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Abstract 

In today’s interconnected world, network traffic is replete with adversarial attacks. As technology evolves, these 
attacks are also becoming increasingly sophisticated, making them even harder to detect. Fortunately, artificial intelli-
gence (AI) and, specifically machine learning (ML), have shown great success in fast and accurate detection, classifica-
tion, and even analysis of such threats. Accordingly, there is a growing body of literature addressing how subfields of 
AI/ML (e.g., natural language processing (NLP)) are getting leveraged to accurately detect evasive malicious patterns 
in network traffic. In this paper, we delve into the current advancements in ML-based network traffic classification 
using image visualization. Through a rigorous experimental methodology, we first explore the process of network 
traffic to image conversion. Subsequently, we investigate how machine learning techniques can effectively leverage 
image visualization to accurately classify evasive malicious traces within network traffic. Through the utilization of 
production-level tools and utilities in realistic experiments, our proposed solution achieves an impressive accuracy 
rate of 99.48% in detecting fileless malware, which is widely regarded as one of the most elusive classes of malicious 
software.

Keywords  Network security, Traffic classification, Fileless malware, Image visualization, Machine learning, Intrusion 
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Introduction
Network traffic flow classification is an essential net-
work function that paves the way for dynamic and agile 
network management. It empowers network operators 
to handle different service requirements and constraints 
to allocate resources more efficiently while maximizing 
their utilization. It also enables security-based network 
traffic engineers to identify malicious patterns affect-
ing network services’ availability and performance. As 
most devices maintain their connectivity through net-
works, most cyber threats are triggered through network 

traffic which ranges from malware infection to distrib-
uted denial of service (DDoS) attacks. Hence, it is essen-
tial to identify malicious network traffic that targets the 
underlying devices.

Fileless malware (Kumar 2020) is a type of evasive mal-
ware that is notable for its capability to reside solely in 
the system’s main memory, without leaving traces on 
the disk or file system. These malware attacks employ 
manipulation techniques on legitimate libraries and utili-
ties of benign platforms to achieve their objectives (Saad 
et  al. 2019). Conventional methods of file-based detec-
tion operate by scanning for any malicious programs or 
software. However, benign software that is included in a 
whitelist is never subjected to testing because the mal-
ware detection system does not classify them as mali-
cious (Saad et  al. 2019). This allows fileless malware to 
exploit vulnerabilities in trusted and widely used applica-
tions (Smelcer 2017), such as web browsers, text-process-
ing applications, and video players. Commonly abused 
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tools by fileless malware include Bitsadmin, certutil, MS 
Office macros, mshta, msiexec, PowerShell, psexec, regis-
try, regsvr32, task scheduler, WMI, and VBscript (Borana 
et al. 2021).

Popular malware detection systems like Signature-
based and Static analysis are ineffective at detecting file-
less malware because this type of malware does not leave 
any residual traces in the file system after the attack has 
concluded. As a result, fileless malware has an advantage 
in evading traditional detection solutions (Barnes 2021). 
The ability to leave no trace after an attack also makes it 
challenging for forensic investigators to use reverse engi-
neering to analyze fileless malware attacks (Saad et  al. 
2019).

In general, three unique properties of fileless malware 
make them different from file-based malware (Babar 
2020). First, fileless malware does not require data to be 
written on the target’s file system at the time of infection 
and propagation. Second, it does not download any file 
on disk. Third, fileless malware depends on pre-installed 
benign software libraries and utilities to execute the mali-
cious payload.

Recent advances in combining network traffic visu-
alization with machine learning techniques have shown 
promising results in the detection of malicious patterns 
in network traffic (Joo et  al. 2021; Shapira and Shavitt 
2019; Wang et al. 2017). The conversion of network traffic 
to image facilitates the visualization of possible changes 
in network traffic patterns before and during different 
attacks. Research has shown that network traffic exhibits 

strong patterns of behavior across multiple timescales 
(Taheri et al. 2018; Wang et al. 2017; Xu et al. 2021). By 
leveraging visualization techniques, the complex patterns 
and characteristics within network data can be effectively 
analyzed, enabling the machine learning algorithms to 
make more informed and precise classifications. This 
combination of visualization and machine learning 
plays a vital role in enhancing the effectiveness and reli-
ability of detecting malicious activities in network traffic. 
Image-based techniques can offer advanced visual aids 
that enable the quick detection of suspicious, unknown 
malware and the timely alerting of anomalous behavior 
patterns. Representing malware as an image enables the 
detection of even small changes while preserving the 
overall structure of samples from the same malware fam-
ily (Gibert et al. 2019). Visual representations of malware 
patterns can also provide a concise overview of potential 
attacks. Additionally, converting malicious executables 
into images makes it easier to differentiate between dif-
ferent binary sections.

Distinct sections of the executable binary are depicted 
as distinctive image textures, which facilitates faster anal-
ysis and can increase the productivity of malware ana-
lysts. Figure 1 demonstrates that related malware classes 
exhibit stronger visual similarities with one another than 
with unrelated classes, as shown in Fig. 2.

Summary of contributions
This paper introduces a solution for detecting file-
less malware traffic using image visualization based on 

Fig. 1  Related malware families
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Convolutional Neural Networks (CNN). The key con-
tributions of this paper are as follows:

•	 We propose a novel approach for malware detec-
tion using image visualization, specifically targeting 
fileless malware and low-rate attacks. Existing stud-
ies in image visualization-based malware detec-
tion have primarily focused on file-based malware 
detection and classification. However, the applica-
tion of such visualization techniques for detecting 
evasive traces generated by stealthy fileless malware 
or low-rate attacks (Khorsandroo and Tosun 2018, 
2019) has not been extensively explored. Notably, at 
the time of writing this paper, no published work 
has addressed the classification of Cobalt Strike 
beacons using machine learning and image visuali-
zation.

•	 We explored the viability of employing a Convolu-
tional Neural Network (CNN) for an image-based 
network traffic classification to effectively identify 
elusive traces of fileless malware. To obtain a realis-
tic network traffic payload, we utilized Cobalt Strike 
(Rahman 2021), a commercial adversary simulation 
software. It is worth noting that while penetration 
testing tools like Mimikatz, Cobalt Strike, and Metas-
ploit are designed for assessing the security of IT net-
works from a red teaming perspective, Cobalt Strike, 
in particular, has gained notoriety for its utilization 
by threat actors.

•	 The objective of our approach is twofold: firstly, to 
address the relatively under-explored challenge of 
classifying Cobalt Strike beacons, and secondly, to 
efficiently identify this form of fileless malware within 
a vast dataset. Unlike previous works conducted in 
laboratory settings, our experiment was conducted in 
a production-level environment, ensuring the repre-
sentativeness of the dataset in relation to real-world 
malware (Yadav and Tokekar 2021). In this experi-
ment, we assess the performance of our model and 
compare it to prior techniques, taking into account 
the varying behaviors exhibited by Cobalt Strike bea-
cons. We convert the collected Cobalt Strike beacon 
payloads into grayscale images and employ image 
transformation techniques to enhance their effec-
tiveness. These generated images are then utilized to 
train a CNN model, enabling the classification of net-
work traffic as either benign or malicious. Our results 
demonstrate that our solution surpasses existing 
methods in accurately detecting stealthy malicious 
traffic associated with fileless malware.

The remainder of the paper is organized as follows. 
“Related work” Section presents a detailed literature 
review on image-based malware classification and file-
less malware detection mechanisms. This provides a 
foundation for understanding the existing research in 
the field. Building upon the literature review, “Types 
of use cases” Section  explores the various use cases of 

Fig. 2  Unrelated malware families
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image-based network traffic classification. By examining 
different scenarios and applications, we demonstrate the 
practical relevance of this approach. In “Image represen-
tation methods” Section, we delve into the investigation 
of image representation methods. This analysis allows us 
to identify the most effective techniques for represent-
ing images in the context of malware detection. “Meth-
odology: from network traffic to image classifier” Section 
elaborates on the proposed methodology we used to 
visualize Cobalt Strike beacon payloads and automati-
cally classify them using images as input. We explain the 
steps and techniques involved in this process, highlight-
ing the unique aspects of our approach. To support the 
visualization and classification process, “Proposed CNN 
architecture” Section provides details on the designed 
Convolutional Neural Network (CNN). We describe the 
architecture and components of the CNN model, high-
lighting its suitability for our purposes. Moving forward, 
in “Experimental setup and evaluation” Section, we dis-
cuss our experimental setup and the evaluation of the 
proposed approach. We present the data used, the met-
rics employed, and the results obtained, providing a com-
prehensive assessment of our methodology. Finally, in 
“Conclusion” Section, we conclude the paper and discuss 
future directions. We summarize the key findings and 
contributions of our work and highlight potential ave-
nues for further research in the field of image-based net-
work traffic classification and fileless malware detection.

Related work
Numerous visualization techniques relying on images 
have been suggested in academic studies for the pur-
pose of facilitating the analysis of network traffic classi-
fication. This section presents a summary of image-based 
approaches to network traffic classification, employing 
various machine learning algorithms. Additionally, it 
explores mechanisms designed for the detection of file-
less malware.

Overview of image‑based network traffic classification
Nataraj et al. (2011) were among the early adopters of the 
malware visualization technique for the purpose of clas-
sifying diverse malware families. The method proposed 
by the authors involves converting malware binary data 
into 2D grayscale images. They noted that malware vari-
ants belonging to the same family exhibit similarities in 
image texture. Initially, the authors extracted GIST fea-
tures to classify malware, followed by the application of 
K-Nearest Neighbors (KNN) algorithm using Euclidean 
distance. KNN is a supervised learning technique com-
monly used for classification and regression problems. In 
KNN, unclassified samples are assigned to a specific class 
based on a majority vote from their neighboring samples 

(Shabtai et  al. 2009). If a significant proportion of the k 
nearest neighbors belong to a particular class, the sam-
ple will be assigned to that class (Xie et al. 2018). In their 
extensive analysis, the authors utilized a dataset of 9458 
malware samples, encompassing 25 malware families, 
and achieved a classification accuracy of 97.18%.

Dai et  al. (2018) proposed a technique involving 
extracting grayscale images from malware memory dump 
files. They employed K-Nearest Neighbors (KNN), Ran-
dom Forest (RF), and Multi-Layer Perceptron (MLP) for 
malware classification. RF, being an ensemble model, gen-
erates a response variable based on results from different 
decision tree models and has proven effective in solving 
classification and regression problems (Xie et  al. 2018). 
When running a random forest, it is important to spec-
ify parameters such as training data, response variables, 
the number of trees, predictor variables, error calcula-
tion parameters, and other relevant factors. Furthermore, 
MLP (Taud and Mas 2018), belonging to the class of 
powerful Artificial Neural Networks (ANNs), is widely 
used. It employs supervised training to generate a non-
linear model capable of predicting output based on input 
data. To extract image features, the authors employed 
histograms of gradients and followed three key steps for 
classifying memory dumps. Initially, they extracted runt-
ime malware memory dump files using a sandbox. Next, 
they converted the memory dump into grayscale images 
and extracted feature vectors using bi-cubic interpola-
tion. To validate their approach, the authors conducted 
experiments using actual malware samples, demonstrat-
ing the effectiveness of their methodology.

Gibert et  al. (2019) introduced a Convolutional Neu-
ral Network(CNN) to the Nataraj et al. (2011) approach 
to classify assembly language within portable execut-
able (PE) files. A Convolutional Neural Network is part 
of deep learning whose connectivity pattern is inspired 
by mammals’ visual cortex structure (Hubel and Wiesel 
1968). Without human supervision, CNN can process an 
image’s high dimensionality. CNN accepts the raw pixels 
of an image as input and performs feature extraction. By 
transforming the input image, CNN can learn important 
objects constituted within. In their work, the authors 
represented malware binary content as a grayscale image 
to find a pattern and classify malware into families. By 
deriving features such as local and invariant out of the 
image, they inferred that the presence of malware pat-
terns could be detected.

Ni et  al. (2018) proposed a malware family classifi-
cation technique that combines image-based malware 
visualization and Convolutional Neural Network. In this 
work, the authors extracted similar hash values of simi-
lar malware codes using the locality-sensitive hashing 
technique. In this regard, similar Hash values produce 
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a similar grayscale image. The performance of the pro-
posed algorithm was improved by considering additional 
methods such as multi-hash, major block selection, and 
bilinear interpolation. Finally, Convolutional Neural Net-
works were used to identify which family the malware 
belongs to.

Zhang et  al. (2019) Converted network flow data to a 
grayscale image to classify encrypted network traffic. The 
authors combined Long Short-Term Memory (LSTM) 
and Convolutional Neural Network(CNN) to extract sta-
tistical features. As a class of recurrent neural networks 
(RNN), long-short-term memory networks (LSTM) are 
capable of dealing with long-term dependency (Liu et al. 
2018). Along with the hidden state, LSTM has an addi-
tional information flow path compared to other forms of 
RNN. Input, output, and forget gates are the three com-
ponents of Cell which is the additional processor intro-
duced in LSTM. The Cell controls the flow of information 
and decides which information needs to be dropped by 
going through the network (Li et al. 2021). This property 
of Cell helps LSTM to store information that is acquired 
from previous steps. In their work, the authors apply the 
LSTM model to extract the representation vectors of the 
images. On the other hand, to extract representation fea-
tures and classify the network CNN algorithm is used.

Fileless malware detection mechanisms
van  der Eijk and Schuijt (2020) developed an algorithm 
to detect the presence of a Cobalt Strike Command 
and Control (C2) beacon in a network communication 
based on NetFlow data. The authors established a net-
work topology that consists of a Cobalt Strike C2 server, 
domain redirection, and target infrastructure. And con-
figure a NetFlow that helps them distinguish between 
malicious and benign data. They analyzed the character-
istics of the regular HTTP and HTTPS network connec-
tion of Cobalt Strike. For their experiment, they used a 
static algorithm.

Hendler et  al. (2018) proposed a Deep Neural Net-
works-based fileless malware detection method. In this 
study, the authors implemented several detectors for 
identifying malicious PowerShell commands. The evalu-
ation of their detection model demonstrated high recall 
values and an exceptionally low false positive rate. The 
authors proposed that combining Natural Language 
Processing (NLP) techniques with Convolutional Neural 
Networks (CNNs) resulted in the optimal performance 
for this task.

Authors in Bucevschi et al. (2019) proposed a machine 
learning based fileless attack prevention. They tested the 
presence of an anomaly in command lines such as Pow-
erShell scripts, Windows Management Instrumentation 
(WMI) scripts, Windows tasks, shortcut files (LNK), and 

Batch scripts. In this paper, the authors use One Side 
Class perception(OSC) which is a modified version of the 
Perceptron algorithm. By providing an extra stage that 
will maintain a small false positive rate, OSC ensures the 
correctness of classification in the training phase. To vali-
date their proposed model, the authors utilized a dataset 
consisting of a total of 37,546 samples that were labeled 
as both anomaly and anomaly-free. In their experimen-
tal evaluation, the authors achieved a detection rate of 
83.32%.

Rigaki and Garcia (2018) used Generative Adversarial 
Networks(GANs) to mimic network traffic. GAN gener-
ates network traffic, and the malware source codes were 
modified to accept parameters from GAN. GAN allows 
them to mimic legitimate application traffic and bypass 
malware detection. Real-life experiments were con-
ducted on Facebook chat traffic to train it with GAN. The 
authors successfully mimic Facebook’s chat by modifying 
the behavioral patterns of real-world malware samples. 
In this work, the authors applied deep learning to create 
malware samples. Additionally, they evaluated the effec-
tiveness of these enhanced malware samples in evading 
detection by a machine learning-based malicious traf-
fic detection system known as Stratosphere Linux IPS 
(slips). Their experiment revealed that approximately 
63.42% of the malicious samples successfully bypassed 
the detection capabilities of the Stratosphere Linux IPS 
system.

The presence of malicious PowerShell was tested 
by FireEye (Fang 2018). The author used the Natu-
ral Language Processing (NLP) pipeline. The key to the 
proposed NLP module are Decoder, Named Entity Rec-
ognition (NER), Tokenizer, stemmer, Vocabulary Vec-
torizer, Supervised classifier(Kernel SVM, Gradient 
Boosted Trees, Deep Neural Networks), and Reasoning. 
Any encoded text within the PowerShell script will be 
detected and decoded. Then the PowerShell command 
will be tokenized to create a list of tokens. All semanti-
cally identical tokens will go through the stemming algo-
rithm to reduce them to the original word form. Prior 
to inputting the token list into the machine learning 
algorithm, a vectorization process is applied to ensure 
a machine learning-friendly format. This process trans-
forms the tokens into a suitable representation. Subse-
quently, the supervised model executes the prediction.

Borana et al. (2021) proposed an assistive tool to detect 
fileless malware. This tool will perform a forensic exami-
nation to identify abnormal processes and abnormal 
activities on the system and network. The authors also 
discussed fileless malware life cycles along with their 
infection strategies. In their study, Handaya et al. (2020) 
suggested three machine learning algorithms(KNN, 
SVM, Random Forest) to detect fileless cryptocurrency 



Page 6 of 18Demmese et al. Cybersecurity            (2023) 6:32 

mining malware accurately. The authors recommended 
that researchers use the EMBER dataset that contains 
more than 1 million SHA-256 hashes collected from 
portable executable (PE) files. This dataset contains 900 K 
samples for training and 200 K samples for testing.

Types of use cases
Image-based traffic classification holds potential for vari-
ous applications in network traffic analytics. The exist-
ing body of literature primarily emphasizes two key use 
cases: malware detection and traffic engineering.

Internet traffic classification
Internet traffic classification encompasses the classifica-
tion of network traffic into different traffic classes, uti-
lizing a range of features (Dhote et  al. 2015). Two main 
approaches have been employed for network traffic clas-
sification: rule-based and machine learning-based meth-
ods. Rule-based methods involve techniques such as 
port-based and payload-based approaches. Conversely, 
machine learning-based methods encompass statistical-
based and behavioral-based approaches, as depicted in 
Fig. 3.

Rule‑based approaches
In this approach, packets that enter the network will be 
classified according to their predefined hard-coded rules 
(Lim et  al. 2019; Wang et  al. 2017). This method is one 
of the traditional classification methods that suffer from 
dynamic ports, and encrypted applications (Zhang et al. 

2012). Thus, the following two approaches are frequently 
employed. 

	(i)	  Port-Based Approaches: As one of the traditional 
classification methods, port-based methods rely 
mainly on port numbers, and it uses only informa-
tion from the packet’s header (Dhote et  al. 2015; 
Tahaei et  al. 2020). This method was successful 
because many application hosts use a well-known 
port to communicate with other hosts. In early 
times, it was easier to find a packet’s target port 
number as most applications will have their port 
numbers registered at the Internet Assigned Num-
bers Authority (IANA). Then using the classifier, 
the port numbers will be associated with the appli-
cation. For example, port number 53 is associated 
with DNS, and port 80 is for HTTP traffic. Even 
though this method is fast and has a simple imple-
mentation, it fails to detect correctly if a fake port 
number is in the traffic (Tahaei et al. 2020). In addi-
tion, the existence of dynamic port allocation in 
recent applications which are private ports and are 
not available in the IANA’s list, and encryption of 
packet header of the IP layer which creates obfus-
cation in TCP or UDP port number, makes port-
based approaches obsolete (Barut et al. 2020).

	(ii)	 Payload-Based Approaches: To address the limita-
tions of port-based approaches, payload or deep 
packet inspection (DPI) has been utilized. With 
this method, network traffic is classified by examin-
ing both the packet header and the payload infor-
mation from the application layer (Lim et al. 2019; 

Fig. 3  Internet traffic classification approaches



Page 7 of 18Demmese et al. Cybersecurity            (2023) 6:32 	

Tahaei et  al. 2020), and matching them to stored 
signatures (Lim et  al. 2019). In this approach, the 
payloads are scrutinized bit by bit to identify a 
match for a predetermined byte sequence. Then 
stored signatures are compared with the matched 
bit stream and classification will be performed 
accordingly (Dhote et al. 2015). This method solves 
the problem of port number dependency (Lim 
et  al. 2019) and performs the network application 
classification accurately. Despite its advantage, this 
method fails to classify correctly if signatures are 
not up to date or if the payload is encrypted (Barut 
et al. 2020). Additionally, DPI can have high com-
putational requirements, which can cause delays 
in network traffic (Dhote et  al. 2015; Tahaei et  al. 
2020). Stochastic packet inspection (SPI) was pro-
posed as a solution to the limitations of payload-
based classification methods. SPI uses statisti-
cal methods to analyze the traffic flow of packets 
rather than inspecting the payload itself. SPI cap-
tures statistical features of the traffic flow such as 
packet arrival times, packet size, inter-packet time, 
and direction of the flow (Zhao et al. 2021). These 
statistical features are then used to create models 
for different traffic classes. SPI is more resilient to 
encrypted traffic and can provide a more accu-
rate classification than payload-based methods 
(Tahaei et  al. 2020; Zhao et  al. 2021). Moreover, 
this method exposes user data privacy as the pack-
et’s content is inspected thoroughly (Tahaei et  al. 
2020).

Machine learning‑based approaches
The limitations of previous techniques directed research-
ers to apply machine learning approaches that do not 
depend only on the port number or payload (Barut et al. 
2020). Accordingly, the following two approaches are 
commonly used. 

	(i)	 Statistical-Based Approaches: This approach uses 
flow-level properties such as flow duration, flow 
idle time, packet inter-arrival time, and packet 
length with the assumption that traffic at the net-
work or transport layers will be unique for cer-
tain classes of applications (Dhote et  al. 2015; 
Nguyen and Armitage 2008; Tahaei et  al. 2020). 
These methods solve the problem of payload-
based approaches as they avoid content inspection 
(Tahaei et al. 2020).

	(ii)	 Behavioral-Based Approaches: In this approach, 
flow level, packet level, and connection level data 
were used in order to check a host’s behavior. 
Packet header fields such as IP address, port num-

ber, and protocol type play the main role in behav-
ior-based classification to identify an application 
behavior in a host (Zhao et al. 2021).

Image representation methods
Data preprocessing plays a vital role in preparing raw 
traffic data for classification and detection algorithms. 
Its objective is to convert the raw data into a suitable for-
mat that machine learning algorithms can effectively uti-
lize. One common approach is to convert the data into 
an image format, which can be fed into machine learning 
models for classification. Representing traffic data as an 
image enables the extraction of significant features and 
patterns that assist in the identification of different traf-
fic classes and the detection of anomalies (Nataraj et al. 
2011; Naeem et al. 2019).

Network flow to image conversion
In line with existing literature, raw data will be captured 
as packet capture files (PCAP) or binary files (BIN). The 
collected network traces will go through three stages: 
traffic splitting, traffic sanitizing, and outlier removal. 
Traffic splitting categorizes the captured traffic into dif-
ferent representations, such as flow based on header 
fields, layer seven information, connection sessions with 
header fields, or connection sessions with only layer 
seven information. Flows based on session information 
are typically stored as PCAP files, while flows based on 
layer seven information are saved in BIN format.

During sanitization, Media Access Control(MAC) and 
Internet Protocol(IP) addresses in the data link and net-
work layers are randomized, removing identical, dupli-
cated, and empty files without altering the data format. 
This process helps address biases during machine learn-
ing model training.

Outliers, files abnormally larger or smaller than the 
rest, are removed before generating image files from the 
captured traffic. To ensure uniformity, the input data size 
(images from network traffic) is adjusted by trimming or 
padding. Trimming reduces the file size to the desired 
length, while padding adds 0 × 00  to smaller files. The 
preprocessed data, now uniform in size, is transformed 
into grayscale images by representing each byte as a 
pixel in the image. A cutoff size is chosen to ensure equal 
length and width, e.g., a 28 × 28 pixel grayscale image 
corresponds to a cutoff size of 784 bytes. Figure 4 illus-
trates the general concept of mapping a byte array to a 
grayscale image.

Binary code to image conversion
There are research works (e.g., Nataraj et  al. 2011; 
Ni et  al. 2018; Naeem et  al. 2019; Su et  al. 2018) that 
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discuss techniques for converting raw binary code 
into an 8-bit vector and generating a grayscale image 
as shown in Fig. 5. The grayscale image represents the 
binary code as a 2-dimensional array, where each pixel 
has an 8-bit unsigned integer value ranging from 0 to 
255. Black is represented by 0, and white is represented 
by 255. Each pixel in the grayscale image represents 
intensity information, ranging from 0 to 255 (Kumar 
et  al. 2016). In the conversion process, the binary bit 
string is divided into 8-bit substrings, which are then 
converted to decimal numbers. The conversion is done 
by summing the binary digits multiplied by powers of 2. 
For example, a binary number B = (bn−1...b4b3b2b1b0) 
can be converted to a decimal number 
D = (b0 ∗ 2

0
+ b1 ∗ 2

1
+ b2 ∗ 2

2
+ b3 ∗ 2

3
+ b4 ∗ 2

4
...)  ) . 

As Fig.  6 illustrates, a bit string such as 
B = 0110000010101100 can be split into two substrings 
of B1 = 01100000 and B2 = 10101100 . Then, B1 and 
B2 can be converted further to decimal numbers (that 
is, B1 = 01100000 → 96 and B2 = 10101100 → 172 ). 
The resulting decimal numbers form a 1D vector rep-
resenting the intensity of each pixel (Kancherla and 

Mukkamala 2013). The 1-dimensional array can be 
transformed into a 2-dimensional matrix based on the 
preferred width. Since there are varying input samples, 
the grayscale output image will have distinct widths, 
and heights (Gibert et al. 2019).

Binary to color code mapping
A recent work (Chukka and Devi 2021) has demon-
strated the ability to better capture patterns within mal-
ware instruction using opcode as a color-coded pixel. 
The binary-to-color code mapping process involves five 
steps: collecting opcodes from all code sections, iden-
tifying unique opcodes, mapping each unique opcode 
to a distinct color, arranging opcodes in a two-dimen-
sional image grid, and replacing the opcodes on the grid 
with the corresponding color codes from the mapping. 
According to Chukka and Devi (2021), using grayscale 
images has limited effectiveness in identifying behavio-
ral patterns in binaries. Grayscale representation of raw 
binary files becomes noisy due to the varying sections 
in Portable Executable (PE) binaries (e.g.,.text,.data).

Fig. 4  Byte array to grayscale image conversion

Fig. 5  Binary to grayscale image
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Binary to RGB image
RGB color format uses three colors (Red, Green, Blue) 
represented by 8 bits each, totaling 24 bits to define a 
color out of millions of possibilities. A recent technique 
for malware detection involves converting raw binary 
files into RGB images. In RGB images, each pixel repre-
sents three sequential bytes, allowing for capturing more 
bytes in each row and ensuring consistent byte-level 
alignment. This approach facilitates placing more infor-
mation in each row, making visual similarities between 
similar samples more apparent and easily identifiable. 
Unlike grayscale-based approaches, RGB-based encod-
ing enables more compact images by reducing pixel space 
with a 1/3 ratio, resulting in less distortion during post-
image resizing. However, this approach may have draw-
backs when byte-level variations become prominent in 
raw binary data, compared to 8-bit grayscale encoding 
(Bozkir et al. 2019, 2021).

Non‑image data into an image conversion
The authors in Sharma et  al. (2019) introduced the 
concept of DeepInsight, which transforms non-image 
data into an image through three main steps. Firstly, 

non-linear dimensionality reduction techniques like 
kernel PCA or t-SNE are applied to map features into a 
lower-dimensional space, typically two-dimensional. Sec-
ondly, the smallest rectangle box encompassing all points 
is determined using the convex hull algorithm, and the 
image is rotated to fit horizontally or vertically. Lastly, 
the pixels are framed and mapped to obtain the final pixel 
coordinates. In DeepInsight, pixels that do not contribute 
to representing features are left blank, particularly in the 
presence of outliers, which can sometimes account for 
significant portions of the image. Additionally, compared 
to similar techniques such as IGTD (Zhu et  al. 2021), 
DeepInsight produces larger images, necessitating more 
memory and longer training times.

Symbolic data conversion
In datasets containing both numeric and symbolic data 
types, symbolic features like protocol types (e.g., TCP, 
UDP, ICMP) need to be converted into numeric form to 
be used in machine learning models. One-hot encoding 
is a common technique for this purpose. It represents 
categorical variables as binary vectors. In the context of 
network traffic analysis, one-hot encoding can be applied 

Fig. 6  Binary to decimal conversion
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to represent the byte values of the traffic. Each distinct 
category is mapped to an integer value, and then each 
integer value is represented as a binary vector. Entries 
corresponding to categories not represented by the vec-
tor are set to zero, while the entry representing the cat-
egory is set to one. Thus, the one-hot encoder takes an 
input value of m integers and outputs an m-sized binary 
vector. For example, to represent the byte value ‘0’, a 256-
sized vector is constructed with the first entry set to one 
and the others set to zero. This transformation replaces 
single values with vectors and converts the original 1D 
vector of integers into a 2D binary array (Krupski et  al. 
2021).

Methodology: from network traffic to image 
classifier
This section elaborates on how the captured network 
traffic will be converted into an image. It then discusses 
the architecture of the Convolutional Neural Network 
(CNN), which takes the produced images as input.

Image generation: implementation
We perform image conversion based on the payload col-
lected from one of the prominent attack toolkits used by 
malicious actors, namely Cobalt Strike (Seazzu 2016). 
Cobalt Strike is a threat-emulating proprietary software 
suite that emulates embedded actor beacons in a net-
work. A Cobalt Strike beacon is a fileless malware attack. 
Fileless malware (Kumar 2020) is an evasive malware that 
does not rely on files. Instead, it exploits vulnerabilities 
on legitimate, trusted, and widely used applications to 
infect a system (Smelcer 2017). When fileless malware is 
in action, it performs malicious activity using native tools 
built into a system to steal data, interfere with operations, 
or use compute resources. Moreover, traditional methods 
of detecting malware will no longer work to detect these 
threats since they cannot leave any traces behind. It is 
why fileless malware attacks have 10 times higher success 
rate than traditional file-based attacks (Sanjay et al. 2018). 
The use of beacons within network traffic is a common 
method for communicating with external servers and 
emulating malicious commands. Cobalt Strike beacons, 
in particular, are known for their ability to blend in with 
legitimate traffic due to their communication flexibility, 
making them difficult to detect (Seazzu 2016). Apart 
from spear-phishing, Cobalt Strike is capable of mimick-
ing malware and other sophisticated threat techniques to 
obtain unauthorized access to systems (Rahman 2021).

The Cobalt Strike beacon payload employs asynchro-
nous communication patterns characterized as “low 
and slow.” For beacon communication, Cobalt Strike 
uses three alternative transport mechanisms, such as 
HTTP, HTTP(s), and DNS. In this experiment, we used 
an HTTP request header. Through an HTTP GET or 
POST request, Cobalt Strike’s beacon payload retrieves 
tasks from its team server. The size of the traffic flow 
for HTTP requests generated by the Cobalt Strike bea-
con depends and influenced by a variety of factors. 
These factors include the type and size of the requested 
resource, the HTTP headers that are sent, and the par-
ticular configuration of the beacon payload being used. 
By default, to complete most task packages in a sin-
gle request, the payload limits its data usage to 1 MB 
of encrypted data per request. Beacon does not make 
HTTP requests in parallel; instead, it sends one request 
and waits for its response. If any data that is intended 
for the team server is beyond the limit, the beacon 
chunker will divide it into 100-byte chunks (Mudge 
2019). Every component sends a separate HTTP request 
back to the team server. We used a Cobalt Strike pay-
load with a base64 encoded HTTP request header to 
implement image conversion. The process starts with 
decoding the payloads into byte format. Since the pay-
load length is very small, the image created will also 
have a small size. To have an image that can be readily 
visible, we choose an image dimension of 64 × 64 pixels, 
an image in a perfect square shape. The input payload 
will be resized into the next perfect square by apply-
ing the zero-padding technique. Then, bytes are con-
verted to their corresponding ASCII values and create 
a one-dimensional (1D) array. The generated 1D array 
will then be fed into the Python NumPy (Bressert 2012) 
Reshape module to be converted to a two-dimensional 
(2D) array. Finally, OpenCv (Culjak et al. 2012) interpo-
lation transformation is used to resize the images to the 
model’s desired size. If the image has a smaller size than 
expected, it will be enlarged. It may also be shrunk if it 
exceeds the preferred image dimension of 64 × 64 pix-
els. Figure  7 depicts the process mentioned above. In 
contrast, Algorithm 1 presents the pseudo-code used to 
convert incoming network traffic payload to a grayscale 
image which is fed into the CNN. The network traffic 
payload is enhanced to fit the length and width require-
ment of the CNN algorithm using standard interpola-
tion techniques.
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Proposed CNN architecture
In this section, we will elaborate on the CNN architec-
ture used for our model.

A convolutional neural network(CNN) is part of deep 
learning whose connectivity pattern is inspired by mam-
mals’ visual cortex structure (Hubel and Wiesel 1968). 
Without any human supervision, CNN is capable of 
processing an image’s high dimensionality. CNN was 
originally created for image classification and can accept 
the raw pixels of an image as input and perform fea-
ture extraction. By transforming the input image, CNN 
can learn about important objects contained within the 
image. CNN is selected for this malware image classifi-
cation experiment because of its ability to learn spatial 
hierarchies of features from images and handle the high 
dimensional input space.

Traditional neural networks like Support Vector 
Machines (SVM) and Random Forests are inefficient 

at processing images as they require feature engineer-
ing and assume that each input feature is independent. 
However, in an image, each pixel is correlated with its 
neighboring pixels, which results in a high dimensional 
input space. CNNs solve this problem by using convo-
lutional layers that can extract relevant features from 
the input image by sliding a filter over it and learning 
a set of weights. The outputs of these convolutional 
layers are then passed through pooling layers, which 
reduce the dimensionality of the output while retain-
ing the important features. Moreover, CNNs can also 
learn local invariances in translations and rotations. 
Robustness to variation is essential for image classifica-
tion tasks where the object of interest can appear in dif-
ferent parts of the image. CNN achieves this by using 
shared weights for the filters in convolutional layers, 
which allows the network to recognize the same feature 
in different parts of the image.

Fig. 7  Turning payload into grayscale image
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In our experiments, once the payload is transformed 
into an image, it is processed further using the CNN 
architecture. The convolutional layer produces feature 
maps proportional to the input image. As Fig.  8 shows, 
the proposed CNN model has three convolutional layers. 
A two-dimensional (2D) convolution layer is followed by 
a Rectified Linear Unit (ReLU) activation layer, followed 
by batch normalization and a max pooling layer. CNN-
based models are proven to be effective at analyzing 
images. We opt for Convolutional Neural Networks to 
classify sessions because they possess the ability to learn 
directly from raw bytes in network traffic, eliminating the 
requirement for feature extraction. This is important for 
detecting fileless malware, as it does not leave traditional 
artifacts on disk that can be used for detection. By rep-
resenting the data in an image format, it becomes easier 
to identify patterns and anomalies that may indicate the 
presence of malware. We chose a dense neural network 
to classify malicious and benign sessions based on the 
features learned by the convolutional layer from images.

During the training phase, to prevent overfitting, 
we incorporated batch normalization. We further uti-
lized a two-dimensional (2D) Maxpooling layer to 
downsample the images. Additionally, we applied the 
Adam algorithm (Kingma and Ba 2014) and tuned vari-
ous parameters to achieve a true positive rate of over 
95% and a false positive rate of less than 0.01%. These 
included the distribution of benign and malicious ses-
sions in the training dataset, the number of CNN and 
dense layers, types of optimizers, learning rate, dropout 
rate, number of filters, size of filters, and the number 
of training epochs. We closely monitored the loss and 
accuracy of our model on the validation dataset during 
the training process to determine the optimal param-
eters. By utilizing the Adam algorithm, we were able to 
identify the best hyperparameters that produced the 

most optimal validation results. We selected a batch 
size of 32 that proved to work best in our case. We flat-
ten the outputs of the last convolutional module and 
pass them through a couple of fully connected layers. 
At the same time, we applied regularization through 
dropout modules between these layers. We set the 
dropout probability equal to 0.4.

The final layer of our model employed softmax to 
transform the logits generated by the dense layer into 
probability distributions. During the training process, 
the cross-entropy loss function was utilized to minimize 
errors. The loss value obtained was assessed on a scale 
ranging from 0 to 1, where a value of 0 indicated a per-
fect model with no errors. Table 1 shows a summary of 
the developed model. This CNN model managed a total 
of 51,993,026 parameters.

Fig. 8  Proposed CNN architecture

Table 1  Summary of the developed model

 Layer (type)  Output shape  Param #

Conv2d (Conv2D) (None, 61, 61, 256) 4352

Conv2d_1 (Conv2D) (None, 58, 58, 512) 2097664

Batch_normalization(BatchNo) (None, 58, 58, 512) 2048

Conv2d_2 (Conv2D) (None, 55, 55, 256) 2097408

Max_pooling2d (MaxPooling2D) (None, 27, 27, 256) 0

Flatten (Flatten) (None, 186624) 0

Dense (Dense) (None, 256 ) 4777600

Dropout (Dropout) (None, 256) 0

Dense_1 (Dense) (None, 64 ) 16448

Dense_2 (Dense) (None, 2 ) 130

Tota params: 51,994,050

Trainable params: 51,993,026

Non-trainable params: 1024
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Experimental setup and evaluation
Experimental setup
To implement the proposed CNN architecture, we used 
TensorFlow (Abadi et al. 2016), and Ketkar (2017), which 
will help the model extract high-level features from the 
images. Our experiments are executed on Palo Alto pri-
vate Cloud. The virtual machines (VMs) used for this 
experiment run Ubuntu 18.04 LTS with 32 GB of RAM 
with dedicated GPU support.

Dataset
Our experimental analysis is based on the Cobalt Strike 
beacon payload collected from Palo Alto Networks’ 
research infrastructure. We acquired a benign dataset 
of network traffic from an enterprise network, compris-
ing over 3.6 million sessions collected over the span of a 
week. We labeled the sessions as benign by running them 
through VirusTotal, and Palo Alto Networks products. 
Additionally, we obtained a dataset of malicious traffic 
by simulating command and control communications 
of Cobalt Strike exploit kits. The Cobalt Strike payloads, 
referred to as beacons, were created to communicate 
with its team server using malleable profiles from a pub-
lic GitHub repository (Mudge 2018), and additional mal-
leable profiles collected by the Palo Alto Networks. In 
total, we created 6,271 malicious sessions. All the benign 
and malicious sessions were stored as PCAP files.

Due to skewed class proportions in the dataset, it was 
challenging for the model to work and generalize well. 

To mitigate this, we employed resampling techniques by 
downsampling the benign dataset and upsampling the 
malicious dataset. Specifically, we used undersampling to 
reduce the size of the benign dataset by applying dedu-
plication on the hostname and URI (Uniform Resource 
Identifier) path. We clustered the sessions with the same 
hostname and URI path in the request header of the first 
packet in the session and randomly selected one session 
from each group. After deduplication, we were left with 
567,620 sessions in the benign dataset.

To upsample the malicious dataset, we shuffled the 
arrangement of the header fields in an HTTP packet. This 
was possible because shuffling the structure of the header 
fields in HTTP payloads does not change the functional-
ity of the HTTP request. However, from our preliminary 
experiments on model selection, we observed that the 
model learned to classify benign and malicious sessions 
based on the structure of the header fields, resulting in 
false positives based on the similarity in the header struc-
ture. Since each header had more than five header fields, 
we could generate 120 sessions with different permuta-
tions of the header fields. After running a few experi-
ments, we found that upsampling the malicious sessions 
by a factor of 30 achieved the best results and a benign-
to-malicious dataset ratio of 75:25. Following upsam-
pling, the size of our malicious dataset was expanded 
to 188,130 samples. After model optimization, we per-
formed our testing using new unknown samples to our 
model to find out testing accuracy. Running our model 
on a dataset it has never seen before will help our model 
to avoid overfitting and obtain an unbiased assessment of 
the performance of our model. We used a total of 865,206 
(859,885 benign and 5321 malicious) samples for testing. 
Table  2 summarizes the total dataset used for training 
and testing.

Table 2  Summary of dataset

 Training set  Testing set

No. of benign samples 567,620 859,885

No. of malicious samples 188,130 5321

Fig. 9  Training loss versus validation loss
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Evaluation
We evaluated the model generated from the training 
pipeline on the non-overlapping sets of the malicious 
dataset obtained from the wild to measure the true posi-
tive rate of the model. The false positive rate was meas-
ured by testing the model in the sessions we collected 
by crawling the top Alexa websites. It was computation-
ally expensive for us to run multiple iterations of cross-
validation, as our model had 51 million parameters and 
more than 800,000 samples. However, during training 
and validation, we split our dataset at different random 
seeds, and we observed consistent results. We eventu-
ally fixed the random seed for final model to make our 
results reproducible. Figure 9 presents how loss variation 
was optimized. From the graph, training loss and valida-
tion loss follow each other, which shows that the model is 
not overfitted. Furthermore, Fig. 10 illustrates the dispar-
ity between the achieved training accuracy and validation 
accuracy. The model’s overall classification accuracy is 
99.48%. Table 3 presents the training and validation accu-
racies attained by the model across 10 epochs.

Performance metrics in our experimentation include: 
i) True Positive (TP) to present the malicious data 
which is correctly classified as malicious), ii) True Neg-
ative (TN) to manifest the benign data which is cor-
rectly classified as benign), iii) False Negative (FN) to 
show the malicious data which is classified as benign, 

and iv) False Positive (FP) to express benign data which 
has been classified as malicious.

A confusion matrix is known to work well with binary 
classification. Therefore, the true positive rate (TPR), 
which describes how accurately the model classifies, 
can also be described in terms of a confusion matrix. 
The true positive rate (TPR) can be calculated using the 
confusion matrix as shown in Eq. (1):

Furthermore, the False Negative Rate (FNR) shows an 
incorrect negative classification and is defined in Eq. (2):

On the other hand, the True Negative Rate (TNR) 
deduces the correct negative classification and is defined 
in Eq. (3):

Finally, False Positive Rate (FPR) represents the ratio of 
incorrect classifications and is defined in Eq. (4):

(1)TPR =
TP

TP + FN

(2)FNR =
FN

TP + FN

(3)TNR =
TN

TN + FP

Fig. 10  Training accuracy versus validation accuracy

Table 3  Training and validation accuracy for 10 epochs

Epoch 1 2 3 4 5 6 7 8 9 10

Training accuracy 95.14 97.70 98.30 98.65 98.83 99.00 99.14 99.17 99.31 99.34

Validation accuracy 86.66 97.61 71.27 95.80 98.30 99.20 99.25 98.83 98.30 99.48
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It is also noteworthy that we define our accuracy, preci-
sion, recall, and F1 score metric in terms of a confusion 
matrix. The four metrics are defined in Eqs. (5), (6), (7), 
and (8) respectively.

 Accuracy serves as a measure of the overall correctness 
of a model’s predictions, whereas precision rate gauges 
the model’s capability to accurately identify positive 
samples. Recall, on the other hand, signifies the model’s 
proficiency in correctly identifying all positive samples. 
F1-score represents a harmonious balance between pre-
cision and recall, indicating an effective trade-off between 
the two metrics.

Discussion
The integration of machine learning and image visualiza-
tion for fileless malware classification is a relatively recent 
field. Table 4 presents the detection rates achieved by our 

(4)FPR =
FP

TN + FP

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1− score =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

model on a test dataset. We collected a total of 5321 mali-
cious samples from four different sources (Wildfire, APTs 
in the wild, Palo Alto Customers, and Public profiles of 
Cobalt Strike). As for the benign samples, we utilized the 
Top Alexa website request headers dataset, consisting of 
859,885 benign samples. The model successfully identi-
fied and classified 4916 malicious samples as malicious, 
resulting in an overall average detection rate of 92.38%. 
Table 3 demonstrates that our approach exhibits improv-
ing training and validation accuracy with each epoch, 
ultimately achieving an average accuracy of 99.4% and 
99.5% for the training and validation phases, respectively.

In addition, we conducted a comparison of our classifi-
cation accuracy with that of existing approaches (i.e., van 
der Eijk and Schuijt 2020; Khalid et  al. 2023), as shown 
in Table  5. Our experiments involved 193,451 fileless 
malware samples and resulted in an accuracy of 99.48%, 
precision of 80.2%, recall of 92.38%, and F1-score of 
85.86%. As presented in Table 5, the research conducted 
by van  der Eijk and Schuijt (2020) employed a dataset 
comprising only 17 Cobalt Strike beacons and achieved 
an accuracy of 99.99%. The precision, recall, and F1-score 
were reported as 75%, 88.2%, and 81% respectively. It is 
worth noting that van der Eijk and Schuijt (2020) utilized 
a deep packet inspection based static algorithm to detect 
Cobalt Strike beacons in network traffic. Furthermore, a 
small number of non-real-world malware samples were 
used in their experiment to identify features. In contrast, 
Khalid et al. (2023) used 26 fileless malware samples and 
achieved an accuracy of 93.3%, with a true positive rate 
(TPR) of 87.5% and a false positive rate (FPR) of 0%. Pre-
cision, recall, and F1-score were not reported in Khalid 
et al. (2023). What sets our study apart is the utilization 

Table 4  Evaluation metrics results

Type Source Total test data Detected TPR (%) FNR (%) TNR (%) FPR (%)

 Malicious Wildfire 5148 4749 92.24 7.75 N/A N/A

APTs in the wild 29 28 96.55 3.44 N/A N/A

Customers 30 30 100 0 N/A N/A

Public profiles of cobalt strike 114 109 95.61 4.39 N/A N/A

Benign Top Alexa websites request headers 859,885 1214 N/A N/A 99.85 0.14

Table 5  Comparison of evaluation metrics with related works

 Authors  Total fileless 
malware samples 
used

 Accuracy (%)  TPR (%)  FPR (%)  Precision (%)  Recall (%)  F1-score (%)

This work 193,451 99.48 92.40 0.14 80.2 92.38 85.86

van der Eijk and Schuijt (2020) 17 99.99 88.24 0.004 75 88.2 81.0

Khalid et al. (2023) 26 93.3 87.5 0 NA NA NA
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of a substantial real-world dataset comprising fileless 
malware samples. This approach enhances the reliability 
and generalizability of our findings.

Table 6 provides a comparison between our approach 
and previous literature that incorporates both machine 
learning and image-based visualization. It is important 
to note that all the works presented in Table 6 focus on 
file-based malware. The table highlights that while prior 
techniques may achieve high accuracy, they often come 
with significant computational costs due to computation-
ally intensive image pre-processing steps.

Limitations and challenges
One of the main challenges in this study stems from the 
limited availability of samples. There is a notable imbal-
ance between the number of benign and malicious 
instances collected, which presents obstacles to achieving 
optimal performance and generalization of the model. 
Furthermore, obtaining labeled fileless malware samples 
for training purposes is challenging due to their scarce 

availability. To tackle this issue, we utilized resampling 
techniques, specifically downsampling the benign data-
set and upsampling the malicious dataset, to mitigate the 
imbalanced class proportions.

While convolutional neural networks (CNNs) have 
shown effectiveness in various computer vision tasks, 
their application in classifying network traffic and detect-
ing malware may face certain limitations. Unlike images, 
network traffic data is sequential and requires captur-
ing temporal dependencies and contextual informa-
tion. CNNs, on their own, may not be able to adequately 
model and utilize such dependencies, potentially impact-
ing their effectiveness in these tasks. Another limita-
tion is CNNs need fixed-size inputs, which is difficult to 
achieve with network traffic data. Network packets vary 
in length, and different protocols have distinct structures. 
Preprocessing data to fit fixed-size inputs may cause 
information loss or distortion.

Table 6  Comparison of this work with prior image visualization based malware classification techniques

Authors Algorithm Visualization 
method/
mapping

Use case Accuracy% Real 
world 
data

Computation cost Remark

Nataraj et al. (2011) KNN Grayscale/2D Malware detection 97.18 No High Manual feature extrac-
tion with high compu-
tational cost

Dai et al. (2018) MLP Grayscale/2D Malware detection 95.2 Yes High Extracted malware 
memory dump files at 
runtime, and hardware 
features may escape 
from the detected 
feature as malware

Ni et al. (2018) CNN Grayscale/2D Malware detection 99.26 No High Features are extracted 
by disassembly of 
malware

Zhang et al. (2016) CNN Grayscale/2D Malware detection 96.7 Yes Medium Only 2-tuple of opcode 
sequences are used 
to represent malware 
binaries

Abdullayeva (2019) Deep learning Color/2D Malware detection 79.21 No Low Divided high resolution 
images into grids

Gibert et al. (2019) CNN Grayscale/2D Malware classification 97.4 Yes High Big image size 
(256X256)

Vasan et al. (2020) Deep learning Color/2D Malware classification 98.82 No High Due to complex and 
utilized deep pre-
trained models

Kumar et al. (2016) Random forest Grayscale/2D Android malware clas-
sification

91 No High Any feature selection 
method not used

Ran et al. (2018) CNN Grayscale/3D Traffic classification 86.02 No Low Used only spatial 
features

Saleh and Ji (2020) CNN Grayscale/2D Internet network clas-
sification

98.9 Yes High Very high dimensional 
image processing

 This work  CNN Grayscale/2D  Cobalt Strike beacon 
detection

99.48 Yes Low Raw traffic flow to 
image
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Conclusion
Previous studies in the field of malware detection and 
classification primarily focused on file-based malware 
and utilized image visualization techniques. However, 
this study represents one of the early works specifi-
cally concentrating on fileless malware detection using 
image-based visualization and Convolutional Neural 
Networks (CNNs). Fileless malware exploits vulnera-
bilities in legitimate applications, making it difficult for 
conventional file-based methods to detect them. In this 
research, we conducted experimental research using 
evasive and realistic offensive traffic generated by pro-
prietary Cobalt Strike beacons at the production level. 
By converting Cobalt Strike beacon payloads into gray-
scale images and training our proposed CNN model 
on them, we achieved a high level of accuracy. The 
outcome demonstrates that our approach effectively 
detects traces of fileless malware in network traffic.

Moving forward, our future studies will focus on 
innovative image enhancements aimed at enhancing 
the local contrast within regions of images that repre-
sent fileless malware traffic. This approach will enable 
us to identify similar pixel values, improve the interop-
erability of fileless malware images, and provide better 
input for the machine-learning classifier. Additionally, 
we plan to explore different image conversion algo-
rithms, such as converting payloads into bitmaps and 
generating RGB-colored 3D images, in order to investi-
gate their impact on the accuracy of machine learning-
based traffic classification.
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