
Demmese et al. Cybersecurity (2023) 6:32
https://doi.org/10.1186/s42400-023-00170-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Machine learning based fileless malware
traffic classification using image visualization
Fikirte Ayalke Demmese1*   , Ajaya Neupane2, Sajad Khorsandroo1, May Wang2, Kaushik Roy1 and Yu Fu2 

Abstract 

In today’s interconnected world, network traffic is replete with adversarial attacks. As technology evolves, these
attacks are also becoming increasingly sophisticated, making them even harder to detect. Fortunately, artificial intelli-
gence (AI) and, specifically machine learning (ML), have shown great success in fast and accurate detection, classifica-
tion, and even analysis of such threats. Accordingly, there is a growing body of literature addressing how subfields of
AI/ML (e.g., natural language processing (NLP)) are getting leveraged to accurately detect evasive malicious patterns
in network traffic. In this paper, we delve into the current advancements in ML-based network traffic classification
using image visualization. Through a rigorous experimental methodology, we first explore the process of network
traffic to image conversion. Subsequently, we investigate how machine learning techniques can effectively leverage
image visualization to accurately classify evasive malicious traces within network traffic. Through the utilization of
production-level tools and utilities in realistic experiments, our proposed solution achieves an impressive accuracy
rate of 99.48% in detecting fileless malware, which is widely regarded as one of the most elusive classes of malicious
software.

Keywords  Network security, Traffic classification, Fileless malware, Image visualization, Machine learning, Intrusion
detection

Introduction
Network traffic flow classification is an essential net-
work function that paves the way for dynamic and agile
network management. It empowers network operators
to handle different service requirements and constraints
to allocate resources more efficiently while maximizing
their utilization. It also enables security-based network
traffic engineers to identify malicious patterns affect-
ing network services’ availability and performance. As
most devices maintain their connectivity through net-
works, most cyber threats are triggered through network

traffic which ranges from malware infection to distrib-
uted denial of service (DDoS) attacks. Hence, it is essen-
tial to identify malicious network traffic that targets the
underlying devices.

Fileless malware (Kumar 2020) is a type of evasive mal-
ware that is notable for its capability to reside solely in
the system’s main memory, without leaving traces on
the disk or file system. These malware attacks employ
manipulation techniques on legitimate libraries and utili-
ties of benign platforms to achieve their objectives (Saad
et al. 2019). Conventional methods of file-based detec-
tion operate by scanning for any malicious programs or
software. However, benign software that is included in a
whitelist is never subjected to testing because the mal-
ware detection system does not classify them as mali-
cious (Saad et al. 2019). This allows fileless malware to
exploit vulnerabilities in trusted and widely used applica-
tions (Smelcer 2017), such as web browsers, text-process-
ing applications, and video players. Commonly abused

*Correspondence:
Fikirte Ayalke Demmese
fademmese@aggies.ncat.edu
1 Department of Computer Science, College of Engineering, North
Carolina A&T State University, 1601 E Market St, Greensboro, NC 27411,
USA
2 Palo Alto Networks, Inc., 3000 Tannery Way, Santa Clara, CA 95054, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00170-z&domain=pdf
http://orcid.org/0000-0002-4600-0298

Page 2 of 18Demmese et al. Cybersecurity (2023) 6:32

tools by fileless malware include Bitsadmin, certutil, MS
Office macros, mshta, msiexec, PowerShell, psexec, regis-
try, regsvr32, task scheduler, WMI, and VBscript (Borana
et al. 2021).

Popular malware detection systems like Signature-
based and Static analysis are ineffective at detecting file-
less malware because this type of malware does not leave
any residual traces in the file system after the attack has
concluded. As a result, fileless malware has an advantage
in evading traditional detection solutions (Barnes 2021).
The ability to leave no trace after an attack also makes it
challenging for forensic investigators to use reverse engi-
neering to analyze fileless malware attacks (Saad et al.
2019).

In general, three unique properties of fileless malware
make them different from file-based malware (Babar
2020). First, fileless malware does not require data to be
written on the target’s file system at the time of infection
and propagation. Second, it does not download any file
on disk. Third, fileless malware depends on pre-installed
benign software libraries and utilities to execute the mali-
cious payload.

Recent advances in combining network traffic visu-
alization with machine learning techniques have shown
promising results in the detection of malicious patterns
in network traffic (Joo et al. 2021; Shapira and Shavitt
2019; Wang et al. 2017). The conversion of network traffic
to image facilitates the visualization of possible changes
in network traffic patterns before and during different
attacks. Research has shown that network traffic exhibits

strong patterns of behavior across multiple timescales
(Taheri et al. 2018; Wang et al. 2017; Xu et al. 2021). By
leveraging visualization techniques, the complex patterns
and characteristics within network data can be effectively
analyzed, enabling the machine learning algorithms to
make more informed and precise classifications. This
combination of visualization and machine learning
plays a vital role in enhancing the effectiveness and reli-
ability of detecting malicious activities in network traffic.
Image-based techniques can offer advanced visual aids
that enable the quick detection of suspicious, unknown
malware and the timely alerting of anomalous behavior
patterns. Representing malware as an image enables the
detection of even small changes while preserving the
overall structure of samples from the same malware fam-
ily (Gibert et al. 2019). Visual representations of malware
patterns can also provide a concise overview of potential
attacks. Additionally, converting malicious executables
into images makes it easier to differentiate between dif-
ferent binary sections.

Distinct sections of the executable binary are depicted
as distinctive image textures, which facilitates faster anal-
ysis and can increase the productivity of malware ana-
lysts. Figure 1 demonstrates that related malware classes
exhibit stronger visual similarities with one another than
with unrelated classes, as shown in Fig. 2.

Summary of contributions
This paper introduces a solution for detecting file-
less malware traffic using image visualization based on

Fig. 1  Related malware families

Page 3 of 18Demmese et al. Cybersecurity (2023) 6:32 	

Convolutional Neural Networks (CNN). The key con-
tributions of this paper are as follows:

•	 We propose a novel approach for malware detec-
tion using image visualization, specifically targeting
fileless malware and low-rate attacks. Existing stud-
ies in image visualization-based malware detec-
tion have primarily focused on file-based malware
detection and classification. However, the applica-
tion of such visualization techniques for detecting
evasive traces generated by stealthy fileless malware
or low-rate attacks (Khorsandroo and Tosun 2018,
2019) has not been extensively explored. Notably, at
the time of writing this paper, no published work
has addressed the classification of Cobalt Strike
beacons using machine learning and image visuali-
zation.

•	 We explored the viability of employing a Convolu-
tional Neural Network (CNN) for an image-based
network traffic classification to effectively identify
elusive traces of fileless malware. To obtain a realis-
tic network traffic payload, we utilized Cobalt Strike
(Rahman 2021), a commercial adversary simulation
software. It is worth noting that while penetration
testing tools like Mimikatz, Cobalt Strike, and Metas-
ploit are designed for assessing the security of IT net-
works from a red teaming perspective, Cobalt Strike,
in particular, has gained notoriety for its utilization
by threat actors.

•	 The objective of our approach is twofold: firstly, to
address the relatively under-explored challenge of
classifying Cobalt Strike beacons, and secondly, to
efficiently identify this form of fileless malware within
a vast dataset. Unlike previous works conducted in
laboratory settings, our experiment was conducted in
a production-level environment, ensuring the repre-
sentativeness of the dataset in relation to real-world
malware (Yadav and Tokekar 2021). In this experi-
ment, we assess the performance of our model and
compare it to prior techniques, taking into account
the varying behaviors exhibited by Cobalt Strike bea-
cons. We convert the collected Cobalt Strike beacon
payloads into grayscale images and employ image
transformation techniques to enhance their effec-
tiveness. These generated images are then utilized to
train a CNN model, enabling the classification of net-
work traffic as either benign or malicious. Our results
demonstrate that our solution surpasses existing
methods in accurately detecting stealthy malicious
traffic associated with fileless malware.

The remainder of the paper is organized as follows.
“Related work” Section presents a detailed literature
review on image-based malware classification and file-
less malware detection mechanisms. This provides a
foundation for understanding the existing research in
the field. Building upon the literature review, “Types
of use cases” Section explores the various use cases of

Fig. 2  Unrelated malware families

Page 4 of 18Demmese et al. Cybersecurity (2023) 6:32

image-based network traffic classification. By examining
different scenarios and applications, we demonstrate the
practical relevance of this approach. In “Image represen-
tation methods” Section, we delve into the investigation
of image representation methods. This analysis allows us
to identify the most effective techniques for represent-
ing images in the context of malware detection. “Meth-
odology: from network traffic to image classifier” Section
elaborates on the proposed methodology we used to
visualize Cobalt Strike beacon payloads and automati-
cally classify them using images as input. We explain the
steps and techniques involved in this process, highlight-
ing the unique aspects of our approach. To support the
visualization and classification process, “Proposed CNN
architecture” Section provides details on the designed
Convolutional Neural Network (CNN). We describe the
architecture and components of the CNN model, high-
lighting its suitability for our purposes. Moving forward,
in “Experimental setup and evaluation” Section, we dis-
cuss our experimental setup and the evaluation of the
proposed approach. We present the data used, the met-
rics employed, and the results obtained, providing a com-
prehensive assessment of our methodology. Finally, in
“Conclusion” Section, we conclude the paper and discuss
future directions. We summarize the key findings and
contributions of our work and highlight potential ave-
nues for further research in the field of image-based net-
work traffic classification and fileless malware detection.

Related work
Numerous visualization techniques relying on images
have been suggested in academic studies for the pur-
pose of facilitating the analysis of network traffic classi-
fication. This section presents a summary of image-based
approaches to network traffic classification, employing
various machine learning algorithms. Additionally, it
explores mechanisms designed for the detection of file-
less malware.

Overview of image‑based network traffic classification
Nataraj et al. (2011) were among the early adopters of the
malware visualization technique for the purpose of clas-
sifying diverse malware families. The method proposed
by the authors involves converting malware binary data
into 2D grayscale images. They noted that malware vari-
ants belonging to the same family exhibit similarities in
image texture. Initially, the authors extracted GIST fea-
tures to classify malware, followed by the application of
K-Nearest Neighbors (KNN) algorithm using Euclidean
distance. KNN is a supervised learning technique com-
monly used for classification and regression problems. In
KNN, unclassified samples are assigned to a specific class
based on a majority vote from their neighboring samples

(Shabtai et al. 2009). If a significant proportion of the k
nearest neighbors belong to a particular class, the sam-
ple will be assigned to that class (Xie et al. 2018). In their
extensive analysis, the authors utilized a dataset of 9458
malware samples, encompassing 25 malware families,
and achieved a classification accuracy of 97.18%.

Dai et al. (2018) proposed a technique involving
extracting grayscale images from malware memory dump
files. They employed K-Nearest Neighbors (KNN), Ran-
dom Forest (RF), and Multi-Layer Perceptron (MLP) for
malware classification. RF, being an ensemble model, gen-
erates a response variable based on results from different
decision tree models and has proven effective in solving
classification and regression problems (Xie et al. 2018).
When running a random forest, it is important to spec-
ify parameters such as training data, response variables,
the number of trees, predictor variables, error calcula-
tion parameters, and other relevant factors. Furthermore,
MLP (Taud and Mas 2018), belonging to the class of
powerful Artificial Neural Networks (ANNs), is widely
used. It employs supervised training to generate a non-
linear model capable of predicting output based on input
data. To extract image features, the authors employed
histograms of gradients and followed three key steps for
classifying memory dumps. Initially, they extracted runt-
ime malware memory dump files using a sandbox. Next,
they converted the memory dump into grayscale images
and extracted feature vectors using bi-cubic interpola-
tion. To validate their approach, the authors conducted
experiments using actual malware samples, demonstrat-
ing the effectiveness of their methodology.

Gibert et al. (2019) introduced a Convolutional Neu-
ral Network(CNN) to the Nataraj et al. (2011) approach
to classify assembly language within portable execut-
able (PE) files. A Convolutional Neural Network is part
of deep learning whose connectivity pattern is inspired
by mammals’ visual cortex structure (Hubel and Wiesel
1968). Without human supervision, CNN can process an
image’s high dimensionality. CNN accepts the raw pixels
of an image as input and performs feature extraction. By
transforming the input image, CNN can learn important
objects constituted within. In their work, the authors
represented malware binary content as a grayscale image
to find a pattern and classify malware into families. By
deriving features such as local and invariant out of the
image, they inferred that the presence of malware pat-
terns could be detected.

Ni et al. (2018) proposed a malware family classifi-
cation technique that combines image-based malware
visualization and Convolutional Neural Network. In this
work, the authors extracted similar hash values of simi-
lar malware codes using the locality-sensitive hashing
technique. In this regard, similar Hash values produce

Page 5 of 18Demmese et al. Cybersecurity (2023) 6:32 	

a similar grayscale image. The performance of the pro-
posed algorithm was improved by considering additional
methods such as multi-hash, major block selection, and
bilinear interpolation. Finally, Convolutional Neural Net-
works were used to identify which family the malware
belongs to.

Zhang et al. (2019) Converted network flow data to a
grayscale image to classify encrypted network traffic. The
authors combined Long Short-Term Memory (LSTM)
and Convolutional Neural Network(CNN) to extract sta-
tistical features. As a class of recurrent neural networks
(RNN), long-short-term memory networks (LSTM) are
capable of dealing with long-term dependency (Liu et al.
2018). Along with the hidden state, LSTM has an addi-
tional information flow path compared to other forms of
RNN. Input, output, and forget gates are the three com-
ponents of Cell which is the additional processor intro-
duced in LSTM. The Cell controls the flow of information
and decides which information needs to be dropped by
going through the network (Li et al. 2021). This property
of Cell helps LSTM to store information that is acquired
from previous steps. In their work, the authors apply the
LSTM model to extract the representation vectors of the
images. On the other hand, to extract representation fea-
tures and classify the network CNN algorithm is used.

Fileless malware detection mechanisms
van der Eijk and Schuijt (2020) developed an algorithm
to detect the presence of a Cobalt Strike Command
and Control (C2) beacon in a network communication
based on NetFlow data. The authors established a net-
work topology that consists of a Cobalt Strike C2 server,
domain redirection, and target infrastructure. And con-
figure a NetFlow that helps them distinguish between
malicious and benign data. They analyzed the character-
istics of the regular HTTP and HTTPS network connec-
tion of Cobalt Strike. For their experiment, they used a
static algorithm.

Hendler et al. (2018) proposed a Deep Neural Net-
works-based fileless malware detection method. In this
study, the authors implemented several detectors for
identifying malicious PowerShell commands. The evalu-
ation of their detection model demonstrated high recall
values and an exceptionally low false positive rate. The
authors proposed that combining Natural Language
Processing (NLP) techniques with Convolutional Neural
Networks (CNNs) resulted in the optimal performance
for this task.

Authors in Bucevschi et al. (2019) proposed a machine
learning based fileless attack prevention. They tested the
presence of an anomaly in command lines such as Pow-
erShell scripts, Windows Management Instrumentation
(WMI) scripts, Windows tasks, shortcut files (LNK), and

Batch scripts. In this paper, the authors use One Side
Class perception(OSC) which is a modified version of the
Perceptron algorithm. By providing an extra stage that
will maintain a small false positive rate, OSC ensures the
correctness of classification in the training phase. To vali-
date their proposed model, the authors utilized a dataset
consisting of a total of 37,546 samples that were labeled
as both anomaly and anomaly-free. In their experimen-
tal evaluation, the authors achieved a detection rate of
83.32%.

Rigaki and Garcia (2018) used Generative Adversarial
Networks(GANs) to mimic network traffic. GAN gener-
ates network traffic, and the malware source codes were
modified to accept parameters from GAN. GAN allows
them to mimic legitimate application traffic and bypass
malware detection. Real-life experiments were con-
ducted on Facebook chat traffic to train it with GAN. The
authors successfully mimic Facebook’s chat by modifying
the behavioral patterns of real-world malware samples.
In this work, the authors applied deep learning to create
malware samples. Additionally, they evaluated the effec-
tiveness of these enhanced malware samples in evading
detection by a machine learning-based malicious traf-
fic detection system known as Stratosphere Linux IPS
(slips). Their experiment revealed that approximately
63.42% of the malicious samples successfully bypassed
the detection capabilities of the Stratosphere Linux IPS
system.

The presence of malicious PowerShell was tested
by FireEye (Fang 2018). The author used the Natu-
ral Language Processing (NLP) pipeline. The key to the
proposed NLP module are Decoder, Named Entity Rec-
ognition (NER), Tokenizer, stemmer, Vocabulary Vec-
torizer, Supervised classifier(Kernel SVM, Gradient
Boosted Trees, Deep Neural Networks), and Reasoning.
Any encoded text within the PowerShell script will be
detected and decoded. Then the PowerShell command
will be tokenized to create a list of tokens. All semanti-
cally identical tokens will go through the stemming algo-
rithm to reduce them to the original word form. Prior
to inputting the token list into the machine learning
algorithm, a vectorization process is applied to ensure
a machine learning-friendly format. This process trans-
forms the tokens into a suitable representation. Subse-
quently, the supervised model executes the prediction.

Borana et al. (2021) proposed an assistive tool to detect
fileless malware. This tool will perform a forensic exami-
nation to identify abnormal processes and abnormal
activities on the system and network. The authors also
discussed fileless malware life cycles along with their
infection strategies. In their study, Handaya et al. (2020)
suggested three machine learning algorithms(KNN,
SVM, Random Forest) to detect fileless cryptocurrency

Page 6 of 18Demmese et al. Cybersecurity (2023) 6:32

mining malware accurately. The authors recommended
that researchers use the EMBER dataset that contains
more than 1 million SHA-256 hashes collected from
portable executable (PE) files. This dataset contains 900 K
samples for training and 200 K samples for testing.

Types of use cases
Image-based traffic classification holds potential for vari-
ous applications in network traffic analytics. The exist-
ing body of literature primarily emphasizes two key use
cases: malware detection and traffic engineering.

Internet traffic classification
Internet traffic classification encompasses the classifica-
tion of network traffic into different traffic classes, uti-
lizing a range of features (Dhote et al. 2015). Two main
approaches have been employed for network traffic clas-
sification: rule-based and machine learning-based meth-
ods. Rule-based methods involve techniques such as
port-based and payload-based approaches. Conversely,
machine learning-based methods encompass statistical-
based and behavioral-based approaches, as depicted in
Fig. 3.

Rule‑based approaches
In this approach, packets that enter the network will be
classified according to their predefined hard-coded rules
(Lim et al. 2019; Wang et al. 2017). This method is one
of the traditional classification methods that suffer from
dynamic ports, and encrypted applications (Zhang et al.

2012). Thus, the following two approaches are frequently
employed.

	(i)	 Port-Based Approaches: As one of the traditional
classification methods, port-based methods rely
mainly on port numbers, and it uses only informa-
tion from the packet’s header (Dhote et al. 2015;
Tahaei et al. 2020). This method was successful
because many application hosts use a well-known
port to communicate with other hosts. In early
times, it was easier to find a packet’s target port
number as most applications will have their port
numbers registered at the Internet Assigned Num-
bers Authority (IANA). Then using the classifier,
the port numbers will be associated with the appli-
cation. For example, port number 53 is associated
with DNS, and port 80 is for HTTP traffic. Even
though this method is fast and has a simple imple-
mentation, it fails to detect correctly if a fake port
number is in the traffic (Tahaei et al. 2020). In addi-
tion, the existence of dynamic port allocation in
recent applications which are private ports and are
not available in the IANA’s list, and encryption of
packet header of the IP layer which creates obfus-
cation in TCP or UDP port number, makes port-
based approaches obsolete (Barut et al. 2020).

	(ii)	 Payload-Based Approaches: To address the limita-
tions of port-based approaches, payload or deep
packet inspection (DPI) has been utilized. With
this method, network traffic is classified by examin-
ing both the packet header and the payload infor-
mation from the application layer (Lim et al. 2019;

Fig. 3  Internet traffic classification approaches

Page 7 of 18Demmese et al. Cybersecurity (2023) 6:32 	

Tahaei et al. 2020), and matching them to stored
signatures (Lim et al. 2019). In this approach, the
payloads are scrutinized bit by bit to identify a
match for a predetermined byte sequence. Then
stored signatures are compared with the matched
bit stream and classification will be performed
accordingly (Dhote et al. 2015). This method solves
the problem of port number dependency (Lim
et al. 2019) and performs the network application
classification accurately. Despite its advantage, this
method fails to classify correctly if signatures are
not up to date or if the payload is encrypted (Barut
et al. 2020). Additionally, DPI can have high com-
putational requirements, which can cause delays
in network traffic (Dhote et al. 2015; Tahaei et al.
2020). Stochastic packet inspection (SPI) was pro-
posed as a solution to the limitations of payload-
based classification methods. SPI uses statisti-
cal methods to analyze the traffic flow of packets
rather than inspecting the payload itself. SPI cap-
tures statistical features of the traffic flow such as
packet arrival times, packet size, inter-packet time,
and direction of the flow (Zhao et al. 2021). These
statistical features are then used to create models
for different traffic classes. SPI is more resilient to
encrypted traffic and can provide a more accu-
rate classification than payload-based methods
(Tahaei et al. 2020; Zhao et al. 2021). Moreover,
this method exposes user data privacy as the pack-
et’s content is inspected thoroughly (Tahaei et al.
2020).

Machine learning‑based approaches
The limitations of previous techniques directed research-
ers to apply machine learning approaches that do not
depend only on the port number or payload (Barut et al.
2020). Accordingly, the following two approaches are
commonly used.

	(i)	 Statistical-Based Approaches: This approach uses
flow-level properties such as flow duration, flow
idle time, packet inter-arrival time, and packet
length with the assumption that traffic at the net-
work or transport layers will be unique for cer-
tain classes of applications (Dhote et al. 2015;
Nguyen and Armitage 2008; Tahaei et al. 2020).
These methods solve the problem of payload-
based approaches as they avoid content inspection
(Tahaei et al. 2020).

	(ii)	 Behavioral-Based Approaches: In this approach,
flow level, packet level, and connection level data
were used in order to check a host’s behavior.
Packet header fields such as IP address, port num-

ber, and protocol type play the main role in behav-
ior-based classification to identify an application
behavior in a host (Zhao et al. 2021).

Image representation methods
Data preprocessing plays a vital role in preparing raw
traffic data for classification and detection algorithms.
Its objective is to convert the raw data into a suitable for-
mat that machine learning algorithms can effectively uti-
lize. One common approach is to convert the data into
an image format, which can be fed into machine learning
models for classification. Representing traffic data as an
image enables the extraction of significant features and
patterns that assist in the identification of different traf-
fic classes and the detection of anomalies (Nataraj et al.
2011; Naeem et al. 2019).

Network flow to image conversion
In line with existing literature, raw data will be captured
as packet capture files (PCAP) or binary files (BIN). The
collected network traces will go through three stages:
traffic splitting, traffic sanitizing, and outlier removal.
Traffic splitting categorizes the captured traffic into dif-
ferent representations, such as flow based on header
fields, layer seven information, connection sessions with
header fields, or connection sessions with only layer
seven information. Flows based on session information
are typically stored as PCAP files, while flows based on
layer seven information are saved in BIN format.

During sanitization, Media Access Control(MAC) and
Internet Protocol(IP) addresses in the data link and net-
work layers are randomized, removing identical, dupli-
cated, and empty files without altering the data format.
This process helps address biases during machine learn-
ing model training.

Outliers, files abnormally larger or smaller than the
rest, are removed before generating image files from the
captured traffic. To ensure uniformity, the input data size
(images from network traffic) is adjusted by trimming or
padding. Trimming reduces the file size to the desired
length, while padding adds 0 × 00 to smaller files. The
preprocessed data, now uniform in size, is transformed
into grayscale images by representing each byte as a
pixel in the image. A cutoff size is chosen to ensure equal
length and width, e.g., a 28 × 28 pixel grayscale image
corresponds to a cutoff size of 784 bytes. Figure 4 illus-
trates the general concept of mapping a byte array to a
grayscale image.

Binary code to image conversion
There are research works (e.g., Nataraj et al. 2011;
Ni et al. 2018; Naeem et al. 2019; Su et al. 2018) that

Page 8 of 18Demmese et al. Cybersecurity (2023) 6:32

discuss techniques for converting raw binary code
into an 8-bit vector and generating a grayscale image
as shown in Fig. 5. The grayscale image represents the
binary code as a 2-dimensional array, where each pixel
has an 8-bit unsigned integer value ranging from 0 to
255. Black is represented by 0, and white is represented
by 255. Each pixel in the grayscale image represents
intensity information, ranging from 0 to 255 (Kumar
et al. 2016). In the conversion process, the binary bit
string is divided into 8-bit substrings, which are then
converted to decimal numbers. The conversion is done
by summing the binary digits multiplied by powers of 2.
For example, a binary number B = (bn−1...b4b3b2b1b0)
can be converted to a decimal number
D = (b0 ∗ 2

0
+ b1 ∗ 2

1
+ b2 ∗ 2

2
+ b3 ∗ 2

3
+ b4 ∗ 2

4
...)  ) .

As Fig. 6 illustrates, a bit string such as
B = 0110000010101100 can be split into two substrings
of B1 = 01100000 and B2 = 10101100 . Then, B1 and
B2 can be converted further to decimal numbers (that
is, B1 = 01100000 → 96 and B2 = 10101100 → 172 ).
The resulting decimal numbers form a 1D vector rep-
resenting the intensity of each pixel (Kancherla and

Mukkamala 2013). The 1-dimensional array can be
transformed into a 2-dimensional matrix based on the
preferred width. Since there are varying input samples,
the grayscale output image will have distinct widths,
and heights (Gibert et al. 2019).

Binary to color code mapping
A recent work (Chukka and Devi 2021) has demon-
strated the ability to better capture patterns within mal-
ware instruction using opcode as a color-coded pixel.
The binary-to-color code mapping process involves five
steps: collecting opcodes from all code sections, iden-
tifying unique opcodes, mapping each unique opcode
to a distinct color, arranging opcodes in a two-dimen-
sional image grid, and replacing the opcodes on the grid
with the corresponding color codes from the mapping.
According to Chukka and Devi (2021), using grayscale
images has limited effectiveness in identifying behavio-
ral patterns in binaries. Grayscale representation of raw
binary files becomes noisy due to the varying sections
in Portable Executable (PE) binaries (e.g.,.text,.data).

Fig. 4  Byte array to grayscale image conversion

Fig. 5  Binary to grayscale image

Page 9 of 18Demmese et al. Cybersecurity (2023) 6:32 	

Binary to RGB image
RGB color format uses three colors (Red, Green, Blue)
represented by 8 bits each, totaling 24 bits to define a
color out of millions of possibilities. A recent technique
for malware detection involves converting raw binary
files into RGB images. In RGB images, each pixel repre-
sents three sequential bytes, allowing for capturing more
bytes in each row and ensuring consistent byte-level
alignment. This approach facilitates placing more infor-
mation in each row, making visual similarities between
similar samples more apparent and easily identifiable.
Unlike grayscale-based approaches, RGB-based encod-
ing enables more compact images by reducing pixel space
with a 1/3 ratio, resulting in less distortion during post-
image resizing. However, this approach may have draw-
backs when byte-level variations become prominent in
raw binary data, compared to 8-bit grayscale encoding
(Bozkir et al. 2019, 2021).

Non‑image data into an image conversion
The authors in Sharma et al. (2019) introduced the
concept of DeepInsight, which transforms non-image
data into an image through three main steps. Firstly,

non-linear dimensionality reduction techniques like
kernel PCA or t-SNE are applied to map features into a
lower-dimensional space, typically two-dimensional. Sec-
ondly, the smallest rectangle box encompassing all points
is determined using the convex hull algorithm, and the
image is rotated to fit horizontally or vertically. Lastly,
the pixels are framed and mapped to obtain the final pixel
coordinates. In DeepInsight, pixels that do not contribute
to representing features are left blank, particularly in the
presence of outliers, which can sometimes account for
significant portions of the image. Additionally, compared
to similar techniques such as IGTD (Zhu et al. 2021),
DeepInsight produces larger images, necessitating more
memory and longer training times.

Symbolic data conversion
In datasets containing both numeric and symbolic data
types, symbolic features like protocol types (e.g., TCP,
UDP, ICMP) need to be converted into numeric form to
be used in machine learning models. One-hot encoding
is a common technique for this purpose. It represents
categorical variables as binary vectors. In the context of
network traffic analysis, one-hot encoding can be applied

Fig. 6  Binary to decimal conversion

Page 10 of 18Demmese et al. Cybersecurity (2023) 6:32

to represent the byte values of the traffic. Each distinct
category is mapped to an integer value, and then each
integer value is represented as a binary vector. Entries
corresponding to categories not represented by the vec-
tor are set to zero, while the entry representing the cat-
egory is set to one. Thus, the one-hot encoder takes an
input value of m integers and outputs an m-sized binary
vector. For example, to represent the byte value ‘0’, a 256-
sized vector is constructed with the first entry set to one
and the others set to zero. This transformation replaces
single values with vectors and converts the original 1D
vector of integers into a 2D binary array (Krupski et al.
2021).

Methodology: from network traffic to image
classifier
This section elaborates on how the captured network
traffic will be converted into an image. It then discusses
the architecture of the Convolutional Neural Network
(CNN), which takes the produced images as input.

Image generation: implementation
We perform image conversion based on the payload col-
lected from one of the prominent attack toolkits used by
malicious actors, namely Cobalt Strike (Seazzu 2016).
Cobalt Strike is a threat-emulating proprietary software
suite that emulates embedded actor beacons in a net-
work. A Cobalt Strike beacon is a fileless malware attack.
Fileless malware (Kumar 2020) is an evasive malware that
does not rely on files. Instead, it exploits vulnerabilities
on legitimate, trusted, and widely used applications to
infect a system (Smelcer 2017). When fileless malware is
in action, it performs malicious activity using native tools
built into a system to steal data, interfere with operations,
or use compute resources. Moreover, traditional methods
of detecting malware will no longer work to detect these
threats since they cannot leave any traces behind. It is
why fileless malware attacks have 10 times higher success
rate than traditional file-based attacks (Sanjay et al. 2018).
The use of beacons within network traffic is a common
method for communicating with external servers and
emulating malicious commands. Cobalt Strike beacons,
in particular, are known for their ability to blend in with
legitimate traffic due to their communication flexibility,
making them difficult to detect (Seazzu 2016). Apart
from spear-phishing, Cobalt Strike is capable of mimick-
ing malware and other sophisticated threat techniques to
obtain unauthorized access to systems (Rahman 2021).

The Cobalt Strike beacon payload employs asynchro-
nous communication patterns characterized as “low
and slow.” For beacon communication, Cobalt Strike
uses three alternative transport mechanisms, such as
HTTP, HTTP(s), and DNS. In this experiment, we used
an HTTP request header. Through an HTTP GET or
POST request, Cobalt Strike’s beacon payload retrieves
tasks from its team server. The size of the traffic flow
for HTTP requests generated by the Cobalt Strike bea-
con depends and influenced by a variety of factors.
These factors include the type and size of the requested
resource, the HTTP headers that are sent, and the par-
ticular configuration of the beacon payload being used.
By default, to complete most task packages in a sin-
gle request, the payload limits its data usage to 1 MB
of encrypted data per request. Beacon does not make
HTTP requests in parallel; instead, it sends one request
and waits for its response. If any data that is intended
for the team server is beyond the limit, the beacon
chunker will divide it into 100-byte chunks (Mudge
2019). Every component sends a separate HTTP request
back to the team server. We used a Cobalt Strike pay-
load with a base64 encoded HTTP request header to
implement image conversion. The process starts with
decoding the payloads into byte format. Since the pay-
load length is very small, the image created will also
have a small size. To have an image that can be readily
visible, we choose an image dimension of 64 × 64 pixels,
an image in a perfect square shape. The input payload
will be resized into the next perfect square by apply-
ing the zero-padding technique. Then, bytes are con-
verted to their corresponding ASCII values and create
a one-dimensional (1D) array. The generated 1D array
will then be fed into the Python NumPy (Bressert 2012)
Reshape module to be converted to a two-dimensional
(2D) array. Finally, OpenCv (Culjak et al. 2012) interpo-
lation transformation is used to resize the images to the
model’s desired size. If the image has a smaller size than
expected, it will be enlarged. It may also be shrunk if it
exceeds the preferred image dimension of 64 × 64 pix-
els. Figure 7 depicts the process mentioned above. In
contrast, Algorithm 1 presents the pseudo-code used to
convert incoming network traffic payload to a grayscale
image which is fed into the CNN. The network traffic
payload is enhanced to fit the length and width require-
ment of the CNN algorithm using standard interpola-
tion techniques.

Page 11 of 18Demmese et al. Cybersecurity (2023) 6:32 	

Proposed CNN architecture
In this section, we will elaborate on the CNN architec-
ture used for our model.

A convolutional neural network(CNN) is part of deep
learning whose connectivity pattern is inspired by mam-
mals’ visual cortex structure (Hubel and Wiesel 1968).
Without any human supervision, CNN is capable of
processing an image’s high dimensionality. CNN was
originally created for image classification and can accept
the raw pixels of an image as input and perform fea-
ture extraction. By transforming the input image, CNN
can learn about important objects contained within the
image. CNN is selected for this malware image classifi-
cation experiment because of its ability to learn spatial
hierarchies of features from images and handle the high
dimensional input space.

Traditional neural networks like Support Vector
Machines (SVM) and Random Forests are inefficient

at processing images as they require feature engineer-
ing and assume that each input feature is independent.
However, in an image, each pixel is correlated with its
neighboring pixels, which results in a high dimensional
input space. CNNs solve this problem by using convo-
lutional layers that can extract relevant features from
the input image by sliding a filter over it and learning
a set of weights. The outputs of these convolutional
layers are then passed through pooling layers, which
reduce the dimensionality of the output while retain-
ing the important features. Moreover, CNNs can also
learn local invariances in translations and rotations.
Robustness to variation is essential for image classifica-
tion tasks where the object of interest can appear in dif-
ferent parts of the image. CNN achieves this by using
shared weights for the filters in convolutional layers,
which allows the network to recognize the same feature
in different parts of the image.

Fig. 7  Turning payload into grayscale image

Page 12 of 18Demmese et al. Cybersecurity (2023) 6:32

In our experiments, once the payload is transformed
into an image, it is processed further using the CNN
architecture. The convolutional layer produces feature
maps proportional to the input image. As Fig. 8 shows,
the proposed CNN model has three convolutional layers.
A two-dimensional (2D) convolution layer is followed by
a Rectified Linear Unit (ReLU) activation layer, followed
by batch normalization and a max pooling layer. CNN-
based models are proven to be effective at analyzing
images. We opt for Convolutional Neural Networks to
classify sessions because they possess the ability to learn
directly from raw bytes in network traffic, eliminating the
requirement for feature extraction. This is important for
detecting fileless malware, as it does not leave traditional
artifacts on disk that can be used for detection. By rep-
resenting the data in an image format, it becomes easier
to identify patterns and anomalies that may indicate the
presence of malware. We chose a dense neural network
to classify malicious and benign sessions based on the
features learned by the convolutional layer from images.

During the training phase, to prevent overfitting,
we incorporated batch normalization. We further uti-
lized a two-dimensional (2D) Maxpooling layer to
downsample the images. Additionally, we applied the
Adam algorithm (Kingma and Ba 2014) and tuned vari-
ous parameters to achieve a true positive rate of over
95% and a false positive rate of less than 0.01%. These
included the distribution of benign and malicious ses-
sions in the training dataset, the number of CNN and
dense layers, types of optimizers, learning rate, dropout
rate, number of filters, size of filters, and the number
of training epochs. We closely monitored the loss and
accuracy of our model on the validation dataset during
the training process to determine the optimal param-
eters. By utilizing the Adam algorithm, we were able to
identify the best hyperparameters that produced the

most optimal validation results. We selected a batch
size of 32 that proved to work best in our case. We flat-
ten the outputs of the last convolutional module and
pass them through a couple of fully connected layers.
At the same time, we applied regularization through
dropout modules between these layers. We set the
dropout probability equal to 0.4.

The final layer of our model employed softmax to
transform the logits generated by the dense layer into
probability distributions. During the training process,
the cross-entropy loss function was utilized to minimize
errors. The loss value obtained was assessed on a scale
ranging from 0 to 1, where a value of 0 indicated a per-
fect model with no errors. Table 1 shows a summary of
the developed model. This CNN model managed a total
of 51,993,026 parameters.

Fig. 8  Proposed CNN architecture

Table 1  Summary of the developed model

 Layer (type) Output shape Param #

Conv2d (Conv2D) (None, 61, 61, 256) 4352

Conv2d_1 (Conv2D) (None, 58, 58, 512) 2097664

Batch_normalization(BatchNo) (None, 58, 58, 512) 2048

Conv2d_2 (Conv2D) (None, 55, 55, 256) 2097408

Max_pooling2d (MaxPooling2D) (None, 27, 27, 256) 0

Flatten (Flatten) (None, 186624) 0

Dense (Dense) (None, 256) 4777600

Dropout (Dropout) (None, 256) 0

Dense_1 (Dense) (None, 64) 16448

Dense_2 (Dense) (None, 2) 130

Tota params: 51,994,050

Trainable params: 51,993,026

Non-trainable params: 1024

Page 13 of 18Demmese et al. Cybersecurity (2023) 6:32 	

Experimental setup and evaluation
Experimental setup
To implement the proposed CNN architecture, we used
TensorFlow (Abadi et al. 2016), and Ketkar (2017), which
will help the model extract high-level features from the
images. Our experiments are executed on Palo Alto pri-
vate Cloud. The virtual machines (VMs) used for this
experiment run Ubuntu 18.04 LTS with 32 GB of RAM
with dedicated GPU support.

Dataset
Our experimental analysis is based on the Cobalt Strike
beacon payload collected from Palo Alto Networks’
research infrastructure. We acquired a benign dataset
of network traffic from an enterprise network, compris-
ing over 3.6 million sessions collected over the span of a
week. We labeled the sessions as benign by running them
through VirusTotal, and Palo Alto Networks products.
Additionally, we obtained a dataset of malicious traffic
by simulating command and control communications
of Cobalt Strike exploit kits. The Cobalt Strike payloads,
referred to as beacons, were created to communicate
with its team server using malleable profiles from a pub-
lic GitHub repository (Mudge 2018), and additional mal-
leable profiles collected by the Palo Alto Networks. In
total, we created 6,271 malicious sessions. All the benign
and malicious sessions were stored as PCAP files.

Due to skewed class proportions in the dataset, it was
challenging for the model to work and generalize well.

To mitigate this, we employed resampling techniques by
downsampling the benign dataset and upsampling the
malicious dataset. Specifically, we used undersampling to
reduce the size of the benign dataset by applying dedu-
plication on the hostname and URI (Uniform Resource
Identifier) path. We clustered the sessions with the same
hostname and URI path in the request header of the first
packet in the session and randomly selected one session
from each group. After deduplication, we were left with
567,620 sessions in the benign dataset.

To upsample the malicious dataset, we shuffled the
arrangement of the header fields in an HTTP packet. This
was possible because shuffling the structure of the header
fields in HTTP payloads does not change the functional-
ity of the HTTP request. However, from our preliminary
experiments on model selection, we observed that the
model learned to classify benign and malicious sessions
based on the structure of the header fields, resulting in
false positives based on the similarity in the header struc-
ture. Since each header had more than five header fields,
we could generate 120 sessions with different permuta-
tions of the header fields. After running a few experi-
ments, we found that upsampling the malicious sessions
by a factor of 30 achieved the best results and a benign-
to-malicious dataset ratio of 75:25. Following upsam-
pling, the size of our malicious dataset was expanded
to 188,130 samples. After model optimization, we per-
formed our testing using new unknown samples to our
model to find out testing accuracy. Running our model
on a dataset it has never seen before will help our model
to avoid overfitting and obtain an unbiased assessment of
the performance of our model. We used a total of 865,206
(859,885 benign and 5321 malicious) samples for testing.
Table 2 summarizes the total dataset used for training
and testing.

Table 2  Summary of dataset

 Training set Testing set

No. of benign samples 567,620 859,885

No. of malicious samples 188,130 5321

Fig. 9  Training loss versus validation loss

Page 14 of 18Demmese et al. Cybersecurity (2023) 6:32

Evaluation
We evaluated the model generated from the training
pipeline on the non-overlapping sets of the malicious
dataset obtained from the wild to measure the true posi-
tive rate of the model. The false positive rate was meas-
ured by testing the model in the sessions we collected
by crawling the top Alexa websites. It was computation-
ally expensive for us to run multiple iterations of cross-
validation, as our model had 51 million parameters and
more than 800,000 samples. However, during training
and validation, we split our dataset at different random
seeds, and we observed consistent results. We eventu-
ally fixed the random seed for final model to make our
results reproducible. Figure 9 presents how loss variation
was optimized. From the graph, training loss and valida-
tion loss follow each other, which shows that the model is
not overfitted. Furthermore, Fig. 10 illustrates the dispar-
ity between the achieved training accuracy and validation
accuracy. The model’s overall classification accuracy is
99.48%. Table 3 presents the training and validation accu-
racies attained by the model across 10 epochs.

Performance metrics in our experimentation include:
i) True Positive (TP) to present the malicious data
which is correctly classified as malicious), ii) True Neg-
ative (TN) to manifest the benign data which is cor-
rectly classified as benign), iii) False Negative (FN) to
show the malicious data which is classified as benign,

and iv) False Positive (FP) to express benign data which
has been classified as malicious.

A confusion matrix is known to work well with binary
classification. Therefore, the true positive rate (TPR),
which describes how accurately the model classifies,
can also be described in terms of a confusion matrix.
The true positive rate (TPR) can be calculated using the
confusion matrix as shown in Eq. (1):

Furthermore, the False Negative Rate (FNR) shows an
incorrect negative classification and is defined in Eq. (2):

On the other hand, the True Negative Rate (TNR)
deduces the correct negative classification and is defined
in Eq. (3):

Finally, False Positive Rate (FPR) represents the ratio of
incorrect classifications and is defined in Eq. (4):

(1)TPR =
TP

TP + FN

(2)FNR =
FN

TP + FN

(3)TNR =
TN

TN + FP

Fig. 10  Training accuracy versus validation accuracy

Table 3  Training and validation accuracy for 10 epochs

Epoch 1 2 3 4 5 6 7 8 9 10

Training accuracy 95.14 97.70 98.30 98.65 98.83 99.00 99.14 99.17 99.31 99.34

Validation accuracy 86.66 97.61 71.27 95.80 98.30 99.20 99.25 98.83 98.30 99.48

Page 15 of 18Demmese et al. Cybersecurity (2023) 6:32 	

It is also noteworthy that we define our accuracy, preci-
sion, recall, and F1 score metric in terms of a confusion
matrix. The four metrics are defined in Eqs. (5), (6), (7),
and (8) respectively.

 Accuracy serves as a measure of the overall correctness
of a model’s predictions, whereas precision rate gauges
the model’s capability to accurately identify positive
samples. Recall, on the other hand, signifies the model’s
proficiency in correctly identifying all positive samples.
F1-score represents a harmonious balance between pre-
cision and recall, indicating an effective trade-off between
the two metrics.

Discussion
The integration of machine learning and image visualiza-
tion for fileless malware classification is a relatively recent
field. Table 4 presents the detection rates achieved by our

(4)FPR =
FP

TN + FP

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

(8)F1− score =
2 ∗ (Precision ∗ Recall)

Precision+ Recall

model on a test dataset. We collected a total of 5321 mali-
cious samples from four different sources (Wildfire, APTs
in the wild, Palo Alto Customers, and Public profiles of
Cobalt Strike). As for the benign samples, we utilized the
Top Alexa website request headers dataset, consisting of
859,885 benign samples. The model successfully identi-
fied and classified 4916 malicious samples as malicious,
resulting in an overall average detection rate of 92.38%.
Table 3 demonstrates that our approach exhibits improv-
ing training and validation accuracy with each epoch,
ultimately achieving an average accuracy of 99.4% and
99.5% for the training and validation phases, respectively.

In addition, we conducted a comparison of our classifi-
cation accuracy with that of existing approaches (i.e., van
der Eijk and Schuijt 2020; Khalid et al. 2023), as shown
in Table 5. Our experiments involved 193,451 fileless
malware samples and resulted in an accuracy of 99.48%,
precision of 80.2%, recall of 92.38%, and F1-score of
85.86%. As presented in Table 5, the research conducted
by van der Eijk and Schuijt (2020) employed a dataset
comprising only 17 Cobalt Strike beacons and achieved
an accuracy of 99.99%. The precision, recall, and F1-score
were reported as 75%, 88.2%, and 81% respectively. It is
worth noting that van der Eijk and Schuijt (2020) utilized
a deep packet inspection based static algorithm to detect
Cobalt Strike beacons in network traffic. Furthermore, a
small number of non-real-world malware samples were
used in their experiment to identify features. In contrast,
Khalid et al. (2023) used 26 fileless malware samples and
achieved an accuracy of 93.3%, with a true positive rate
(TPR) of 87.5% and a false positive rate (FPR) of 0%. Pre-
cision, recall, and F1-score were not reported in Khalid
et al. (2023). What sets our study apart is the utilization

Table 4  Evaluation metrics results

Type Source Total test data Detected TPR (%) FNR (%) TNR (%) FPR (%)

 Malicious Wildfire 5148 4749 92.24 7.75 N/A N/A

APTs in the wild 29 28 96.55 3.44 N/A N/A

Customers 30 30 100 0 N/A N/A

Public profiles of cobalt strike 114 109 95.61 4.39 N/A N/A

Benign Top Alexa websites request headers 859,885 1214 N/A N/A 99.85 0.14

Table 5  Comparison of evaluation metrics with related works

 Authors Total fileless
malware samples
used

 Accuracy (%) TPR (%) FPR (%) Precision (%) Recall (%) F1-score (%)

This work 193,451 99.48 92.40 0.14 80.2 92.38 85.86

van der Eijk and Schuijt (2020) 17 99.99 88.24 0.004 75 88.2 81.0

Khalid et al. (2023) 26 93.3 87.5 0 NA NA NA

Page 16 of 18Demmese et al. Cybersecurity (2023) 6:32

of a substantial real-world dataset comprising fileless
malware samples. This approach enhances the reliability
and generalizability of our findings.

Table 6 provides a comparison between our approach
and previous literature that incorporates both machine
learning and image-based visualization. It is important
to note that all the works presented in Table 6 focus on
file-based malware. The table highlights that while prior
techniques may achieve high accuracy, they often come
with significant computational costs due to computation-
ally intensive image pre-processing steps.

Limitations and challenges
One of the main challenges in this study stems from the
limited availability of samples. There is a notable imbal-
ance between the number of benign and malicious
instances collected, which presents obstacles to achieving
optimal performance and generalization of the model.
Furthermore, obtaining labeled fileless malware samples
for training purposes is challenging due to their scarce

availability. To tackle this issue, we utilized resampling
techniques, specifically downsampling the benign data-
set and upsampling the malicious dataset, to mitigate the
imbalanced class proportions.

While convolutional neural networks (CNNs) have
shown effectiveness in various computer vision tasks,
their application in classifying network traffic and detect-
ing malware may face certain limitations. Unlike images,
network traffic data is sequential and requires captur-
ing temporal dependencies and contextual informa-
tion. CNNs, on their own, may not be able to adequately
model and utilize such dependencies, potentially impact-
ing their effectiveness in these tasks. Another limita-
tion is CNNs need fixed-size inputs, which is difficult to
achieve with network traffic data. Network packets vary
in length, and different protocols have distinct structures.
Preprocessing data to fit fixed-size inputs may cause
information loss or distortion.

Table 6  Comparison of this work with prior image visualization based malware classification techniques

Authors Algorithm Visualization
method/
mapping

Use case Accuracy% Real
world
data

Computation cost Remark

Nataraj et al. (2011) KNN Grayscale/2D Malware detection 97.18 No High Manual feature extrac-
tion with high compu-
tational cost

Dai et al. (2018) MLP Grayscale/2D Malware detection 95.2 Yes High Extracted malware
memory dump files at
runtime, and hardware
features may escape
from the detected
feature as malware

Ni et al. (2018) CNN Grayscale/2D Malware detection 99.26 No High Features are extracted
by disassembly of
malware

Zhang et al. (2016) CNN Grayscale/2D Malware detection 96.7 Yes Medium Only 2-tuple of opcode
sequences are used
to represent malware
binaries

Abdullayeva (2019) Deep learning Color/2D Malware detection 79.21 No Low Divided high resolution
images into grids

Gibert et al. (2019) CNN Grayscale/2D Malware classification 97.4 Yes High Big image size
(256X256)

Vasan et al. (2020) Deep learning Color/2D Malware classification 98.82 No High Due to complex and
utilized deep pre-
trained models

Kumar et al. (2016) Random forest Grayscale/2D Android malware clas-
sification

91 No High Any feature selection
method not used

Ran et al. (2018) CNN Grayscale/3D Traffic classification 86.02 No Low Used only spatial
features

Saleh and Ji (2020) CNN Grayscale/2D Internet network clas-
sification

98.9 Yes High Very high dimensional
image processing

 This work CNN Grayscale/2D Cobalt Strike beacon
detection

99.48 Yes Low Raw traffic flow to
image

Page 17 of 18Demmese et al. Cybersecurity (2023) 6:32 	

Conclusion
Previous studies in the field of malware detection and
classification primarily focused on file-based malware
and utilized image visualization techniques. However,
this study represents one of the early works specifi-
cally concentrating on fileless malware detection using
image-based visualization and Convolutional Neural
Networks (CNNs). Fileless malware exploits vulnera-
bilities in legitimate applications, making it difficult for
conventional file-based methods to detect them. In this
research, we conducted experimental research using
evasive and realistic offensive traffic generated by pro-
prietary Cobalt Strike beacons at the production level.
By converting Cobalt Strike beacon payloads into gray-
scale images and training our proposed CNN model
on them, we achieved a high level of accuracy. The
outcome demonstrates that our approach effectively
detects traces of fileless malware in network traffic.

Moving forward, our future studies will focus on
innovative image enhancements aimed at enhancing
the local contrast within regions of images that repre-
sent fileless malware traffic. This approach will enable
us to identify similar pixel values, improve the interop-
erability of fileless malware images, and provide better
input for the machine-learning classifier. Additionally,
we plan to explore different image conversion algo-
rithms, such as converting payloads into bitmaps and
generating RGB-colored 3D images, in order to investi-
gate their impact on the accuracy of machine learning-
based traffic classification.

Acknowledgements
We would like to sincerely thank the anonymous reviewers for their valuable
comments, which have greatly enhanced the quality of our paper. Addition-
ally, we would like to express our deep appreciation to Ms. Tamera Ziglar,
Senior Director of Development at the College of Engineering, North Carolina
A &T State University (NCAT), for her instrumental role in facilitating and sup-
porting the collaboration between NCAT and Palo Alto Networks, Inc. We are
truly grateful for her efforts in establishing this fruitful partnership.

Author contributions
FAD performed the writing, while FAD and AN conducted the necessary
experiments and analyzed the results obtained. SK secured funding, reviewed
the obtained results, proposed revisions, and edited the manuscript. MW
provided administrative support, both technically and financially; MW, KR, and
YF reviewed the paper, provided comments, feedback, and valuable guidance.
All authors read and approved the final manuscript.

Funding
This work was supported in part by NSF Grants #2113945 and #2200538 and
a generous financial and technical support from Palo Alto Networks, Inc. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the funding agencies.

Availability of data and materials
Not applicable

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 13 March 2023 Accepted: 14 June 2023

References
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S,

Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine
learning. Osdi 16:265–283

Abdullayeva F (2019) Malware detection in cloud computing using an image
visualization technique. In: 2019 IEEE 13th International Conference on
Application of Information and Communication Technologies (AICT), pp
1–5. IEEE, https://​doi.​org/​10.​1109/​AICT4​7866.​2019.​89817​27

Babar FM (2020) Emerging & unconventional malware detection using a
hybrid approach. PhD thesis, University of Windsor (Canada)

Barnes E (2021) Fileless attacks: addressing evolving malware threats. https://​
www.​infos​ecuri​ty-​magaz​ine.​com/​opini​ons/​filel​ess-​attac​ks-​malwa​re/
Accessed Accessed 19 Oct 2022

Barut O, Luo Y, Zhang T, Li W, Li P (2020) Netml: a challenge for network traffic
analytics. 1, 13006, arXiv preprint arXiv:​2004.​13006

Borana P, Sihag V, Choudhary G, Vardhan M, Singh P (2021) An assistive tool for
fileless malware detection. In: 2021 World Automation Congress (WAC),
pp 21–25

Bozkir AS, Cankaya AO, Aydos M (2019) Utilization and comparision of con-
volutional neural networks in malware recognition. In: 2019 27th Signal
Processing and Communications Applications Conference (SIU), pp 1–4

Bozkir AS, Tahillioglu E, Aydos M, Kara I (2021) Catch them alive: a malware
detection approach through memory forensics, manifold learning and
computer vision. Comput Secur 103:102166

Bressert E (2012) SciPy and NumPy: an Overview for Developers. “ O’Reilly
Media, Inc.”, ISBN: 9781449361624

Bucevschi AG, Balan G, Prelipcean DB (2019) Preventing file-less attacks with
machine learning techniques. In: 2019 21st International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
pp 248–252

Chukka A, Devi V (2021) Detection of malicious binaries by deep learning
methods. International Conference on Internet of Things, vol 2021. Big
Data and Security, IoTBDS-Proceedings. Science and Technology Publica-
tions, Lda, N/A, pp 132–139

Culjak I, Abram D, Pribanic T, Dzapo H, Cifrek M (2012) A brief introduction
to opencv. In: 2012 Proceedings of the 35th International Convention
MIPRO, pp 1725–1730

Dai Y, Li H, Qian Y, Lu X (2018) A malware classification method based on
memory dump grayscale image. Digit Investig 27:30–37

Dhote Y, Agrawal S, Deen AJ (2015) A survey on feature selection techniques
for internet traffic classification. In: 2015 International Conference on
Computational Intelligence and Communication Networks (CICN), pp
1375–1380

Fang V (2018) Malicious PowerShell Detection via Machine Learning. https://​
www.​mandi​ant.​com/​resou​rces/​blog/​malic​ious-​power​shell-​detec​tion-​
via-​machi​ne-​learn​ing Accessed Accessed 22 Oct 2022

Gibert D, Mateu C, Planes J, Vicens R (2019) Using convolutional neural net-
works for classification of malware represented as images. J Comput Virol
Hack Tech 15(1):15–28

Handaya W, Yusoff M, Jantan A (2020) Machine learning approach for
detection of fileless cryptocurrency mining malware. J Phys Conf Ser
1450:012075

Hendler D, Kels S, Rubin A (2018) Detecting malicious powershell commands
using deep neural networks. In: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, pp 187–197

Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of
monkey striate cortex. J Physiol 195(1):215–243

https://doi.org/10.1109/AICT47866.2019.8981727
https://www.infosecurity-magazine.com/opinions/fileless-attacks-malware/
https://www.infosecurity-magazine.com/opinions/fileless-attacks-malware/
http://arxiv.org/abs/2004.13006
https://www.mandiant.com/resources/blog/malicious-powershell-detection-via-machine-learning
https://www.mandiant.com/resources/blog/malicious-powershell-detection-via-machine-learning
https://www.mandiant.com/resources/blog/malicious-powershell-detection-via-machine-learning

Page 18 of 18Demmese et al. Cybersecurity (2023) 6:32

Joo H, Choi H, Yun C, Cheon M (2021) Efficient network traffic classification
and visualizing abnormal part via hybrid deep learning approach: Xcep-
tion+ bidirectional gru. Glob J Comput Sci Technol 21(3):1–10

Kancherla K, Mukkamala S (2013) Image visualization based malware detec-
tion. In: 2013 IEEE Symposium on Computational Intelligence in Cyber
Security (CICS), pp 40–44

Ketkar N (2017) Introduction to keras. In: Deep Learning with Python, Springer,
pp 97–111

Khalid O, Ullah S, Ahmad T, Saeed S, Alabbad DA, Aslam M, Buriro A, Ahmad
R (2023) An insight into the machine-learning-based fileless malware
detection. Sensors 23(2):612

Khorsandroo S, Tosun AS (2018) Time inference attacks on software defined
networks: Challenges and countermeasures. In: 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD), pp 342–349

Khorsandroo S, Tosun AS (2019) White box analysis at the service of low rate
saturation attacks on virtual sdn data plane. In: 2019 IEEE 44th LCN
Symposium on Emerging Topics in Networking (LCN Symposium), pp
100–107

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv
preprint arXiv:​1412.​6980

Krupski J, Graniszewski W, Iwanowski M (2021) Data transformation schemes
for cnn-based network traffic analysis: a survey. Electronics 10(16):2042

Kumar S et al (2020) An emerging threat fileless malware: a survey and
research challenges. Cybersecurity 3(1):1–12

Kumar A, Sagar KP, Kuppusamy K, Aghila G (2016) Machine learning based
malware classification for android applications using multimodal image
representations. In: 2016 10th International Conference on Intelligent
Systems and Control (ISCO), pp 1–6

Li P, Tang H, Yu J, Song W (2021) Lstm and multiple cnns based event image
classification. Multimed Tools Appl 80(20):30743–30760

Lim H-K, Kim J-B, Kim K, Hong Y-G, Han Y-H (2019) Payload-based traffic clas-
sification using multi-layer lstm in software defined networks. Appl Sci
9(12):2550

Liu J, Zhang X, Zhang J, An J, Li C, Gao L (2018) Hyperspectral image classifica-
tion based on long short term memory network. In: 2018 Fifth Interna-
tional Workshop on Earth Observation and Remote Sensing Applications
(EORSA), pp 1–5

Mudge R (2018) Malleable-C2-Profiles. https://​github.​com/​rsmud​ge/​Malle​
able-​C2-​Profi​les

Mudge R (2019) Cobalt Strike: Beware of Slow Downloads. https://​www.​cobal​
tstri​ke.​com/​blog/​beware-​of-​slow-​downl​oads/ Accessed 18 Apr 2023

Naeem H, Guo B, Naeem MR, Ullah F, Aldabbas H, Javed MS (2019) Identifica-
tion of malicious code variants based on image visualization. Comput
Electr Eng 76:225–237

Nataraj L, Karthikeyan S, Jacob G, Manjunath BS (2011) Malware images:
visualization and automatic classification. In: Proceedings of the 8th Inter-
national Symposium on Visualization for Cyber Security, pp 1–7

Nguyen TT, Armitage G (2008) A survey of techniques for internet traffic clas-
sification using machine learning. IEEE Commun Surv Tutor 10(4):56–76

Ni S, Qian Q, Zhang R (2018) Malware identification using visualization images
and deep learning. Comput Secur 77:871–885

Rahman A (2021) Cobalt Strike: Defining Cobalt Strike Components & BEA-
CON. https://​www.​mandi​ant.​com/​resou​rces/​blog/​defin​ing-​cobalt-​strike-​
compo​nents Accessed 05 Oct 2022

Ran J, Chen Y, Li S (2018) Three-dimensional convolutional neural network
based traffic classification for wireless communications. In: 2018 IEEE
Global Conference on Signal and Information Processing (GlobalSIP), pp
624–627

Rigaki M, Garcia S (2018) Bringing a gan to a knife-fight: Adapting malware
communication to avoid detection. In: 2018 IEEE Security and Privacy
Workshops (SPW), pp 70–75

Saad S, Briguglio W, Elmiligi H (2019) The curious case of machine learning in
malware detection. Mach Learn Interpret Malware Detect 5:11

Saad S, Mahmood F, Briguglio W, Elmiligi H (2019) Jsless: A tale of a fileless
javascript memory-resident malware. In: International Conference on
Information Security Practice and Experience. Springer, pp 113–131

Saleh I, Ji H (2020) Network traffic images: A deep learning approach to
the challenge of internet traffic classification. In: 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC), pp
0329–0334

Sanjay B, Rakshith D, Akash R, Hegde VV (2018) An approach to detect fileless
malware and defend its evasive mechanisms. In: 2018 3rd International
Conference on Computational Systems and Information Technology for
Sustainable Solutions (CSITSS), pp 234–239

Seazzu L (2016) Cobalt strike 3.0. Technical report, Sandia National Lab.(SNL-
NM), Albuquerque, NM (United States)

Shabtai A, Moskovitch R, Elovici Y, Glezer C (2009) Detection of malicious code
by applying machine learning classifiers on static features: A state-of-the-
art survey. Inf Secur Tech Rep 14(1):16–29

Shapira T, Shavitt Y (2019) Flowpic: encrypted internet traffic classification is as
easy as image recognition. In: IEEE INFOCOM 2019-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pp 680–687

Sharma A, Vans E, Shigemizu D, Boroevich KA, Tsunoda T (2019) Deepinsight: A
methodology to transform a non-image data to an image for convolu-
tion neural network architecture. Sci Rep 9(1):1–7

Smelcer J (2017) Rise of fileless malware. PhD thesis, Utica College
Su J, Vasconcellos DV, Prasad S, Sgandurra D, Feng Y, Sakurai K (2018) Light-

weight classification of iot malware based on image recognition. In:
2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), vol 2, pp 664–669

Tahaei H, Afifi F, Asemi A, Zaki F, Anuar NB (2020) The rise of traffic classification
in iot networks: A survey. J Netw Comput Appl 154:102538

Taheri S, Salem M, Yuan J-S (2018) Leveraging image representation of net-
work traffic data and transfer learning in botnet detection. Big Data Cogn
Comput 2(4):37

Taud H, Mas J (2018) Multilayer perceptron (mlp). In: Geomatic Approaches for
Modeling Land Change Scenarios. Springer, pp 451–455

van der Eijk V, Schuijt C (2020) Detecting cobalt strike beacons in netflow data.
Technical report, University of Amsterdam

Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q (2020) Imcfn: Image-
based malware classification using fine-tuned convolutional neural
network architecture. Comput Netw 171:107138

Wang W, Zhu M, Zeng X, Ye X, Sheng Y (2017) Malware traffic classification
using convolutional neural network for representation learning. In:
2017 International Conference on Information Networking (ICOIN), pp
712–717

Xie J, Yu FR, Huang T, Xie R, Liu J, Wang C, Liu Y (2018) A survey of machine
learning techniques applied to software defined networking (sdn):
Research issues and challenges. IEEE Commun Surv Tutor 21(1):393–430

Xu P, Eckert C, Zarras A (2021) Falcon: malware detection and categorization
with network traffic images. In: International Conference on Artificial
Neural Networks, pp 117–128

Yadav B, Tokekar S (2021) Recent innovations and comparison of deep learn-
ing techniques in malware classification: a review. Int J Inf Secur Sci
9(4):230–247

Zhang J, Xiang Y, Wang Y, Zhou W, Xiang Y, Guan Y (2012) Network traffic
classification using correlation information. IEEE Trans Parallel Distrib Syst
24(1):104–117

Zhang J, Qin Z, Yin H, Ou L, Hu Y (2016) Irmd: malware variant detection using
opcode image recognition. In: 2016 IEEE 22nd International Conference
on Parallel and Distributed Systems (ICPADS), pp 1175–1180

Zhang Y, Zhao S, Zhang J, Ma X, Huang F (2019) Stnn: A novel tls/ssl encrypted
traffic classification system based on stereo transform neural network.
In: 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pp 907–910

Zhao J, Jing X, Yan Z, Pedrycz W (2021) Network traffic classification for data
fusion: a survey. Inf Fusion 72:22–47

Zhu Y, Brettin T, Xia F, Partin A, Shukla M, Yoo H, Evrard YA, Doroshow JH,
Stevens RL (2021) Converting tabular data into images for deep learning
with convolutional neural networks. Sci Rep 11(1):1–11

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1412.6980
https://github.com/rsmudge/Malleable-C2-Profiles
https://github.com/rsmudge/Malleable-C2-Profiles
https://www.cobaltstrike.com/blog/beware-of-slow-downloads/
https://www.cobaltstrike.com/blog/beware-of-slow-downloads/
https://www.mandiant.com/resources/blog/defining-cobalt-strike-components
https://www.mandiant.com/resources/blog/defining-cobalt-strike-components

	Machine learning based fileless malware traffic classification using image visualization
	Abstract
	Introduction
	Summary of contributions

	Related work
	Overview of image-based network traffic classification
	Fileless malware detection mechanisms

	Types of use cases
	Internet traffic classification
	Rule-based approaches
	Machine learning-based approaches

	Image representation methods
	Network flow to image conversion
	Binary code to image conversion
	Binary to color code mapping
	Binary to RGB image
	Non-image data into an image conversion
	Symbolic data conversion

	Methodology: from network traffic to image classifier
	Image generation: implementation

	Proposed CNN architecture
	Experimental setup and evaluation
	Experimental setup
	Dataset
	Evaluation
	Discussion
	Limitations and challenges

	Conclusion
	Acknowledgements
	References

