
Fan et al. Cybersecurity            (2023) 6:35  
https://doi.org/10.1186/s42400-023-00171-y

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

FMSA: a meta-learning framework-based 
fast model stealing attack technique 
against intelligent network intrusion detection 
systems
Kaisheng Fan1, Weizhe Zhang1,2*, Guangrui Liu1 and Hui He1 

Abstract 

Intrusion detection systems are increasingly using machine learning. While machine learning has shown excellent 
performance in identifying malicious traffic, it may increase the risk of privacy leakage. This paper focuses on imple-
menting a model stealing attack on intrusion detection systems. Existing model stealing attacks are hard to imple-
ment in practical network environments, as they either need private data of the victim dataset or frequent access to 
the victim model. In this paper, we propose a novel solution called Fast Model Stealing Attack (FMSA) to address the 
problem in the field of model stealing attacks. We also highlight the risks of using ML-NIDS in network security. First, 
meta-learning frameworks are introduced into the model stealing algorithm to clone the victim model in a black-box 
state. Then, the number of accesses to the target model is used as an optimization term, resulting in minimal queries 
to achieve model stealing. Finally, adversarial training is used to simulate the data distribution of the target model and 
achieve the recovery of privacy data. Through experiments on multiple public datasets, compared to existing state-
of-the-art algorithms, FMSA reduces the number of accesses to the target model and improves the accuracy of the 
clone model on the test dataset to 88.9% and the similarity with the target model to 90.1%. We can demonstrate the 
successful execution of model stealing attacks on the ML-NIDS system even with protective measures in place to limit 
the number of anomalous queries.
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Introduction
Deep neural networks (DNN) and machine learning 
(ML) have received much attention. In a variety of fields, 
like as image classification (Touvron et al. 2021), auton-
omous driving (Kiran et  al. 2021), and natural language 
processing (Brown et  al. 2020), they have achieved sig-
nificant strides. ML has also proved great potential in 

security-sensitive areas like network intrusion detec-
tion system that uses machine learning techniques 
(ML-NIDS) (Goryunov et  al. 2020). NIDS is used to 
detect malicious behavioral activities usually generated 
by malware. ML has improved the accuracy of malware 
detection, which is better suited to detect sophisti-
cated cyber-attacks than traditional methods. However, 
deploying these methods might be threatened by attacks 
(Rüping et al. 2022) against ML models that raise privacy 
and security risks, especially in security-sensitive areas.

Motivation
Although ML-NIDS can effectively defend against tradi-
tional network attacks, the security vulnerabilities of the 
algorithms are easily ignored. In particular, poisoning 
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attacks (Truong et  al. 2020) can poison the model and 
give enemies the ability to interfere with model deci-
sions; adversarial samples (Aldahdooh et al. 2022) crafted 
under malicious perturbation cause models to compute 
false predictions; model stealing attacks (Orekondy et al. 
2019) cause leakage of information about the parameters 
of models. In addition, various security threats, such as 
model reverse engineering (Oh et al. 2019), membership 
inference attacks (Hu et al. 2022), and backdoor attacks 
(Wang et  al. 2019), can lead to severe consequences. 
Among them, once stolen, AI models, as the core car-
rier of the technology, will be exposed to risks, which can 
cause the enterprise or organization with the technol-
ogy to suffer huge losses. The model stealing attack also 
will be a stepping stone to subsequent effective attacks 
(Mahmood et al. 2021) against the target model.

We focus on model stealing attacks against ML-NIDS. 
With just black-box access to the victim model, the model 
stealing attack enables the adversary to train a clone 
model to replicate target prediction capabilities. Train-
ing an advanced ML model is often tricky when lacking 
data or computational resources, and low-cost stealing 
of trained models constitutes intellectual property theft 
(Chen et al. 2022a).

Challenge
There are three key obstacles to conducting undetected 
model stealing attacks against ML-NIDS.

Challenge 1 No access to the victim ML-NIDS training 
dataset. Most existing works (Juuti et al. 2019; Kesarwani 
et al. 2018) underrate the effects of model stealing attacks 
and assume that a significant quantity of training data or 
supplementary information about the victim is required 
for a successful theft. It is a challenge to conduct model 
stealing attacks effectively with little to no access to pri-
vate data knowledge of the victim model.

Challenge 2 The NIDS has a strict limit on the number 
of input queries. Unlike previous model stealing attacks 
have unlimited access to victim models, malicious input 
queries are detected because of the sensitivity secu-
rity of NIDS. We need to carry out the model stealing 
attack with very few queries without being detected by 
ML-NIDS.

Challenge 3 Existing works do not evaluate the degree 
to which trained models are at risk from model stealing 
attacks and underestimate the threat posed by model 
stealing attacks. The benefit of an ML-NIDS model steal-
ing attack is to obtain a clone model that closely resem-
bles the target NIDS. The adversary may use the replica 
model’s white-box access to launch additional attacks. It 
is a challenge in our future work on the assessment and 
defense of model stealing.

Contributions
In this work, we propose a fast model stealing attack 
method against ML-NIDS. We built on the perspective of 
meta-learning and few-shot learning (Vanschoren 2018; 
Wang et al. 2020; Sun et al. 2019), which requires only a 
small number of samples. The objective of the model in 
meta-learning is to swiftly learn a new task from a lim-
ited quantity of data. Model Agnostic Meta Learning 
(MAML) (Finn et  al. 2017) is an approach to few-shot 
meta-learning that is commonly utilized. We also intro-
duce an adversarial training framework for the clone and 
victim models to learn the predictive performance of the 
victim ML-NIDS. Figure 1 shows the methods necessary 
to carry out a quick model stealing attack.

Due to the difficulty of acquiring data knowledge from 
ML-NIDS and the strict restrictions on access queries, 
few model stealing attacks against ML-NIDS have been 
successfully executed. Our proposed approach is the first 
practical model stealing method for ML-NIDS scenarios. 
We show that only a small amount of auxiliary knowledge 
and queries are required to make the clone model as sim-
ilar to the victim as possible. Moreover, we can still craft 
adversarial samples with stolen models compared with 
data-free model stealing attacks. Due to the transferabil-
ity property of adversarial samples, we demonstrate that 
these samples can evade the detection of the victim ML-
NIDS. Briefly stated, our primary contributions include:

Contribution 1 We first introduce a meta-learning 
framework to model stealing attacks and design an adver-
sarial learning strategy for cloning models and genera-
tors. The meta-learning algorithm allows the adversary 
to converge the clone model after a few gradient updates 

Fig. 1 Model stealing attack using auxiliary knowledge and query 
samples to the victim model, and subsequently evasion attacks on 
the victim model based on unlimited access to the white-box clone 
model
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and can successfully steal models with little knowledge of 
the private data.

Contribution 2 Our method uses the quantity of model 
access requests as a constraint for successful model 
stealing attacks for the first time, which is more realis-
tic than the unlimited queries to the victim in previous 
approaches.

Contribution 3 We combine an adversarial learning 
model stealing approach with a data synthesis approach 
approximating the victim data. Our proposed method 
requires only a small amount of auxiliary knowledge to 
successfully attack and demonstrate that the clone model 
facilitates subsequent evasion attacks on the victim 
ML-NIDS.

Related work
Network intrusion detection system (NIDS)
NIDS detects behaviors that compromise the security 
of computer systems (Yang et  al. 2022). NIDS is gener-
ally deployed in the network nodes of the intranet, and 
all network requests flow through these network nodes. 
Machine learning, in particular deep learning techniques, 
has enabled NIDS to detect a variety of cyberthreats. 
Usually, NIDS is unavailable to the adversary, deployed 
inside the system, and the adversary can only get its clas-
sification results but not internal information. In our 
work, we take ML-NIDS as an attack target model only 
with black-box access and limit access to the training 
data as well as the query quantity.

Model stealing attack
Model stealing attack (Orekondy et  al. 2019; Mahmood 
et al. 2021), also known as model extraction attack, aims 
to extract a replica of a black-box victim model. The pur-
pose of the model stealing attack is to train a clone model 
that performs similarly to the target model using the lim-
ited information related to the target model. For example, 
enterprises must spend a lot of time, money, and work-
force training ML models. If an adversary can steal the 
model, it saves lots of computing resources and seriously 
threatens intellectual property security.

The model stealing attack will also serve as a spring-
board for more powerful attacks to come, such as 
adversarial attacks that need access to the target ML 
model’s white-box (Liu et  al. 2021). Recent works 
have proposed three separate types of model stealing 
attacks, which are categorized based on the attack tar-
get: (1) theft of function (Kariyappa et al. 2021), which 
aims to imitate the target model’s output forecasts in a 
clone model; (2) theft of parameters (Rakin et al. 2022; 
Tramèr et  al. 2016) aims to obtain information such 
as the intermediate gradient of the model; (3) theft of 
hyper-parameters (Wang and Gong 2018; Oh et  al. 

2019) focuses on getting the hyper-parameters involved 
in the target model’s training algorithm’s model archi-
tecture. In the current landscape, the majority of model 
function stealing techniques necessitate a substan-
tial number of queries to the target model for gather-
ing sufficient information to construct a replica. In 
contrast, our approach adopts a few-shot learning 
method, seeking to achieve model function stealing of 
a black-box target model within the constraints of lim-
ited query instances. By leveraging this methodology, 
we gain insights into private data information through 
probability prediction vectors.

Model stealing attacks can also be divided into three 
categories, depending on the access to the victim’s pri-
vacy data: (1) Data with partial privacy (Papernot et al. 
2017), adversary’s predictions of partial private data 
from the victim are used to train a clone model. None-
theless, it implies that a certain level of familiarity with 
the data distribution of the victim model is essential, 
making it impractical for universal application. (2) Data 
with privacy-related auxiliary knowledge (Orekondy 
et al. 2019), the adversary lacks direct access to personal 
information but can acquire auxiliary knowledge simi-
lar to the victim training dataset and comes from a dis-
tinct task domain. Unlike the scenario of partial privacy 
data, privacy-related auxiliary data alone is insufficient 
to facilitate the training of cloned models. Additional 
techniques such as data synthesis are required to carry 
out model stealing attacks. This approach aligns more 
closely with real-world situations, especially when 
targeting victims who have implemented privacy pro-
tection measures on their private data. (3) Data-free 
(Roberts et  al. 2019; Sanyal et  al. 2022), the adversary 
does not have access to victim knowledge but intro-
duces an adversarial learning framework that elimi-
nates the differences between the output probability 
vectors of the clone and victim models. This indicates 
that the adversary is capable of extensively searching 
the entire feature space in order to replicate the output 
of the target model, even without any prior knowledge 
of the private data. However, it needs to consider the 
real distribution of the data and requires many train-
ing steps to converge. Our proposed approach utilizes 
a small amount of auxiliary knowledge with adversarial 
learning and, for the first time, combines meta-learning 
with model stealing attacks, aiming at having the meta-
learner automatically learn how to steal, i.e., the meta-
learning idea of learning to learn.

Meta‑learning and few‑shot learning
While performing well on multiple tasks, machine 
learning and deep learning cannot adapt to new tasks 
as quickly as humans can based on a minimal amount 
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of prior knowledge. Inspired by the fast learning ability 
of humans, researchers want machine learning models 
to learn quickly with only a limited number of samples 
for new classes after learning a vast amount of tasks and 
data, hence the proposal of meta-learning (Tian et  al. 
2022), or learning to learn. The benefit of employing 
meta-learning lies in its ability to dynamically adjust to 
different tasks and datasets by utilizing learning algo-
rithms. This adaptation enhances the efficiency and accu-
racy of the learning process. In the area of supervised 
learning, few-shot learning (Wang et al. 2020) is a meta-
learning application. It tackles intricate classification and 
regression problems using a limited number of training 
samples, addressing challenges commonly encountered 
in traditional machine learning and deep learning, such 
as overfitting issues.

In our scenario, we set the meta-stealer to go through 
several different scenarios of stealing tasks and finally 
apply it to the target model. Model-agnostic meta-learn-
ing (MAML) (Finn et al. 2017) and prototypical networks 
(Snell et  al. 2017) are two more representative few-shot 
learning algorithms. MAML is designed to teach mod-
els how to initialize parameters for a specific task so that 
they can converge quickly after only a few samples of 
training, and the underlying assumption of the prototypi-
cal network is that there exists a low-latitude embedding 
space in which the sample distributions of all categories 
are far from each other. Both methods have advantages 
in facilitating knowledge transfer across diverse tasks and 
datasets, as they enhance the adaptability and generaliza-
tion capability of the learning process. In our study, we 
adopt the MAML algorithm to guide the training of our 
meta-learners and incorporate the concept of prototypi-
cal networks to extract features from limited auxiliary 
information, promoting the generation of more repre-
sentative query samples.

Generative adversarial network
In some generative tasks, such as the generation of 
images (Bao et  al. 2017) and medical cases (Chen et  al. 
2022b), generative adversarial networks (Goodfellow 
et  al. 2020) have made substantial progress. The gen-
erative adversarial network consists of a generator and 
a discriminator. The discriminator attempts to discrimi-
nate between authentic data and fake data generated by 
the generator in an adversarial game. In contrast, the 
generator aims to confuse the discriminator. DCGAN 
(Yang et al. 2019) and WGAN (Gulrajani et al. 2017) are 
two significant developments in generative adversarial 
networks. DCGAN is a modified version of GAN that 
primarily enhances the image generation quality by uti-
lizing deep convolutional neural networks. On the other 
hand, WGAN is an alternative approach to GAN that 

employs Wasserstein distance for measuring the discrep-
ancy between the generator and discriminator, effectively 
addressing issues such as gradient vanishing and mode 
collapse. In our research, we leverage the advantages of 
Wasserstein distance and deep convolutional neural net-
works to enhance the stability and quality of GAN-based 
sample generation, thus enabling our model stealing 
attacks.

Method
This section outlines the attack scenario and proposes 
our model stealing attack method.

Attack scenario
In this paper, we emphasize ML-NIDS, one of the appli-
cations of ML in security-sensitive scenarios. The goal 
of an ML model is to generally map data samples to the 
appropriate class to which they belong. The input to an 
ML-NIDS model is a session-based traffic sample. The 
output is a vector of probabilities called posterior prob-
ability, with each dimensional element representing the 
probability that the input sample belongs to a specific 
category. ML-NIDS classifies input as the daily benign 
label or a certain malware label.

Availability of the Victim Model. We think about a 
black-box access configuration. In black-box attacks, 
adversaries can not have complete information about 
the victim model, including its architecture and param-
eters. They are limited to merely querying and receiving 
predictions from the victim model. Furthermore, due to 
the sensitivity security of ML-NIDS, There is a hard cap 
on how many times the adversary may query the model 
rather than having an unlimited number of queries times.

Auxiliary Dataset. We consider having minimal auxil-
iary knowledge. Comparatively to having real data from 
the victim dataset to train a clone model, the adversary 
can only mimic the distribution of the victim model’s 
training data using limited auxiliary knowledge. In our 
work, we set to compute a prototype representative (Snell 
et al. 2017) of each category using each one or few-shot 
samples by a meta-encoder and then generate samples 
around the prototype representative using a trained 
meta-generator.

Attack Object. We assume that a victim model V can 
accurately categorize malware traffic. Our objective is 
to train a clone model C to achieve high accuracy on the 
victim test dataset Dtest and to approach the categoriza-
tion capability of the victim model. The adversary does 
not have access to Dtest , just only for test evaluation pur-
poses. In our attack method, we attempt to approximate 
the probability vector of the victim model’s output with 
the output of the clone model, which allows us to recover 
some useful privacy information.
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FMSA
Overview
The FMSA method is a fast model stealing attack based 
on a meta-learning framework. Unlike existing works, our 
method employs auxiliary information to synthesize the 
data rather than a significant quantity of victim training 
data. After training on a large number of different tasks, 
models can converge fast after a few gradient updates. The 
meta-learner may quickly generalize and provide synthetic 
data that fits the distribution using just a little auxiliary 
information. In addition, we set up a framework for adver-
sarial learning between the generator and the clone model. 
Figure 2 depicts the entire framework diagram.

Meta-training and meta-testing are the two key steps 
that make up the method. In the former phase, the 
adversary attempts to steal a simulated victim model, 
while the latter is cloning from an actual victim. We 
assume the model fθ is parameterized by meta-learner 
θ . θ guides the training of fθ , and the performance of 
fθ is fed back to facilitate the training of θ . With just a 
few gradient steps, the meta-learning architecture may 
swiftly adapt to a new task.

Let p(T ) be a classify task such that a task Ti ∼ p(T ) is 
a collection of examples with labels for the victim model 
simulated under the current task. To further divide this 
data, we create a training set Titr and a validation set 
Tival , i.e., Ti = {Titr , Tival } . Moreover, we adhere to the 

fundamental principles of the N-way K-shot issue for the 
adversary. The adversary can only use ancillary knowl-
edge containing K samples from each of N classes. A 
generative adversarial network built on the meta-learn-
ing framework serves as the model’s central component. 
Our architecture is based on Wasserstein GAN due to its 
stability properties and can avoid mode collapse issues. 
It consists of (1) Stealer C for training a clone model by 
reducing the difference in output with the victim model 
under the same input, (2) Extractor E for extracting 
the prototype representation of each class, (3) Genera-
tor G using the prototype representative extracted by E 
as input to generate samples that match that prototype 
class while maximizing the difference between the vic-
tim and the clone model’s output, and (4) Discriminator 
D for discriminating fake data generated by G. We set up 
meta-learners in each of the four modules.

Training the clone model
We first simulate a well-performed victim model V to 
train the clone model for task Ti . In order to launch a suc-
cessful theft, the adversary merely needed to choose a 
model with enough learning capacity. It means the adver-
sary needs only a basic understanding of the architectural 
decisions made for the tasks that the victim is solv-
ing, not specific knowledge of the victim’s architecture 
(e.g., recurrent neural networks are suitable for natural 

Fig. 2 Fast model stealing attack based on a meta-learning framework
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language processing tasks). In our work, we choose DNN 
as a clone model structure and use the idea of MAML to 
initialize the clone model for different stealing tasks.

Clone model C initialized by meta-learner θc is trained 
using the synthetic samples x that generator G created. 
The I-dimensional input vector x is used to get the vic-
tim model and clone model output probabilities. Meas-
urement of the discrepancy between the victim and clone 
model is done with the loss function L . The KL diver-
gence is chosen as the loss function. As demonstrated in 
Eq. 1, the clone model is trained by minimizing L.

Generateing synthetic samples
We use the idea of Prototypical Network. We assume 
that there exists a low-latitude embedding space in 
which the sample distributions of all categories are far 
from each other. We set up encoder E as a prototype 
extractor. The adversary uses the auxiliary knowledge 
as input x to E. According to the N-way K-shot setting, 
we set the auxiliary knowledge as K samples from each 
class for task Ti . The encoder E projects the input x into 
a feature vector r, r = E(x) . The input to G consists of 
a randomly sampled noise vector z with a feature vec-
tor r from E, y = G(z, r) . The output of G is expected 
to approximate the real sample x, requiring the dis-
criminator D to be involved in working with G to form 
an adversarial training. The discriminator D is used to 

(1)

L
C
Ti

=LKL(V (x),C(x))

LKL(V (x),C(x)) =

I

i=1

Ci(x) log(
Ci(x)

Vi(x)
)

predict the Wasserstein distance between the true and 
fake samples, as shown in Eq. 2.

Where the sample distributions of Pr and Pg correspond 
to the real and false samples, respectively. G’s objective is 
to reduce the Wasserstein-distance. At the same time, the 
output y of G is expected to maximize the output differ-
ence between the clone model C and the victim model V, 
constituting another kind of adversarial learning with the 
clone model. Equation 3 defines the optimization objec-
tive of G.

In contrast to the discriminator D to predict the distance 
between sample distributions, encoder E wants the input 
and generator output to be as close as possible, which is 
consistent with the setting of Prototypical Network, and 
uses l2 norm as encoder E ’s loss function, as defined in 
Eq. 4.

Training meta‑learners
We set up meta-learners in each of the four modules, θc , 
θe , θg , and θd represent the parameters of meta-learners 
of the clone model, encoder, generator, and discriminator, 
respectively. Following the meta-learning setup, Meta-
training and meta-testing both contain inner and outer 
loops. In the inner loop, each meta-learner directs the 

(2)L
D
Ti

= Ex∼Pr [D(x)] − Ey∼Pg [D(y)]

(3)L
G
Ti

= �1 · Ey∽Pg [D(y)] + �2 · L
C
Ti

(4)L
E
Ti

=

I∑

i=1

||xi − yi||
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initialization of the corresponding module separately. The 
overall objective for the inner loop update for task Ti is:

where θ ′c , θ ′e , θ ′g , and θ ′d represent the best parameters of 
four modules for task Ti . In the outer loop, the meta-
learner is evaluated for performance based on the best-
trained parameters and trained with gradient descent 
so that the meta-learner can better direct the models’ 
initialization. The overall meta-objective for each meta-
learner is:

The overall implementation pseudocode of FMSA is 
explained in Algorithm  1. In addition, the FMSA meta-
training algorithm and the FMSA real-attack algorithm 
are explained in Algorithms  2 and  3. The FMSA real 
attack is equivalent to the meta-testing phase, where 
meta-learners are no longer updated.

(5)
min
fθc

L
C
Ti
(fθc ), min

fθe

L
E
Ti
(fθe )

max
fθd

L
D
Ti
(fθd ), max

fθg

L
G
Ti
(fθg )

(6)

θ = θc − η1∇fθc

∑

Ti∽p(T )

L
C
Ti
(fθ ′c )

θe = θe − η2∇fθe

∑

Ti∽p(T )

L
E
Ti
(fθ ′e )

θd = θd + η3∇fθd

∑

Ti∽p(T )

L
D
Ti
(fθ ′d

)

θg = θg + η4∇fθg

∑

Ti∽p(T )

L
G
Ti
(fθ ′g )

Time complexity analysis
Meta-training phase. In the meta-training phase, the 
FSMA algorithm consists of two processes: inner loop 
and outer loop. In the inner loop, the model parameters 
specific to each task, including the encoder E, discrimi-
nator D, generator G, and clone model C, need to be 
updated using gradient descent optimization methods. 
This ensures that the clone model closely approximates 
the victim model simulated for the current task. Assum-
ing the number of gradient descent optimization steps 
for training in the inner loop is N, the time complexity 
of each inner loop in FMSA can be expressed as O(NK), 
where K represents the computational cost of updat-
ing the model in each iteration. This factor is crucial and 
cannot be ignored as it depends on the model’s param-
eter size, the number of training samples per task, and 
the sample dimensions. In the outer loop, the updated 
model parameters are used to update the corresponding 
meta-learner’s parameters, enabling it to achieve good 
generalization performance across all malicious behav-
ior recognition tasks. The overall meta-training time 
complexity of the FMSA algorithm can be expressed as 
O(TNK), where T represents the total number of classifi-
cation tasks set in the outer loop. In our experiments, we 
set 60,000 classification tasks for malicious and benign 
traffic, following the N-way K-shot setting of few-shot 
learning. This allows the meta-learners to reach over-
all optimality by enabling the model to achieve the best 
performance within a few gradient descent steps for each 
sub-task.

Meta-testing phase. In the practical implementation of 
model stealing attacks, we assume that we have already 
found the meta-learners with optimal performance. 
Only a few gradient descent steps are required to make 
the clone model approximate the victim model to be 
attacked. At this stage, the meta-testing time complex-
ity of the FMSA algorithm can be expressed as O(NK), 
where N represents the number of gradient descent opti-
mization steps, and K represents the computational cost 
of updating the model.

Evaluation
We describe the specifics of our experiments in this sec-
tion. We first describe the settings of the trials, includ-
ing the datasets, experimental details, evaluation metrics, 
and comparison methods. Then, for analysis and debate, 
the suggested FMSA method is contrasted with different 
methods. Furthermore, after the model stealing attack, 
we conduct adversarial attack experiments against vic-
tim ML-NIDS to investigate the safety risk caused by our 
method.
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Dataset
There are no acceptable datasets to serve as a benchmark 
since NIDS is a young subject. We adopt the dataset set-
tings used by Rong et al. (2021). Training datasets of the 
victim ML-NIDS must adhere to the following criteria to 
be used in our research: (1) instead of raw network data, 
they ought to include features derived from the traffic; (2) 
datasets must contain a large number of different mali-
cious network behavior labels to satisfy the training tasks 
of the meta-learning. Hence, in order to create our simu-
lated victim datasets, we take into account three real-
world datasets. The two data sources for malicious data 
are MCFP (Stratosphere 2015) and CICIDS2017 (Pani-
grahi and Borah 2018). We choose USTC-TFC (Wang 
et al. 2017) as the source for daily benign behavioral data.

CICIDS2017 includes both raw network data and fea-
ture data, which was created in a simulated scenario. 
There is a wide range of attack techniques, including 
CSRF, Heartbleed, XSS, DDoS, and SYN attacks.

MCFP dataset was produced as part of a CTU (Czech 
Technical University) research effort that aimed to gather 
various forms of harmful traffic from real network activi-
ties. It contains over forty different specific malware 
families, most of which carry out malicious behavioral 
activities, including trojans, denial-of-service attacks, 
exploit extraction, and botnets.

USTC-TFC dataset is a source of benign samples pro-
duced by 21 benign applications and utilized in our 
investigation. Included in these categories are online 
social software, web article reading, online shopping, etc.

Experimental details
Experimental details of the FMSA method are described 
in this section. We executed our code in a computer 
environment based on the Ubuntu 18.04 operating sys-
tem, equipped with a single GPU. We utilized CUDA 
acceleration to enhance the speed of algorithm execution 
and improve the efficiency of training models. Our code 
implementation involved the Python PyTorch frame-
work, along with learn2learn, a PyTorch-based meta-
learning library. As we update the parameters of the 
meta-learner in the outer loop based on the best models 
obtained from the inner loop training, where the initial-
ization of the inner loop’s best models is guided by the 
meta-learner, the parameter update process of the meta-
learner essentially involves calculating second-order gra-
dients. The learn2learn meta-learning library assists us 
in automatically performing second-order gradient com-
putations for updating the meta-learner’s parameters or 
approximating the second-order gradients.

We perform our evaluations by attacking ML-NIDS 
victim models and employ a 6-layer DNN model with 
random initialization as the victim model. For clone 

model C, we also use a 12-layer DNN model with differ-
ent hyperparameter settings and initialization methods. 
Any sufficiently complicated DNN may often be utilized 
as the clone model. Our clone model is trained using an 
Adam optimizer with a learning rate of 0.008. For proto-
type feature extractor E, we choose LeNet5 (LeCun et al. 
1998) to extract the prototype representation of each 
class. The feature vectors are rearranged into a grayscale 
map format as input to E. We employ a generative model 
G with three CNN layers, and each CNN layer is followed 
by a batch norm layer. Moreover, the activations are 
upsampled to guarantee that the outputs produced by G 
are the appropriate dimensionality for the victim dataset. 
In addition, we set discriminator D to be the same struc-
ture as generator G.

Our model stealing attack assumes having N-way 
K-shot data samples from the victim dataset as the aux-
iliary knowledge. It indicates that the adversary picks N 
classes, each with K samples, at random from the total 
dataset. We presume that the real victim dataset and the 
simulated meta-training dataset come from the same 
network environment. Yet, the data classes for simulated 
and real victims differ. We set the values of N and K to 10 
and 5, respectively.

Evaluation metrics
The accuracy rate (ACC), model extraction rate (MER), 
and attack cost of querying the victim model serve as our 
primary assessment measures in experiments.

Accuracy rate (ACC) We utilize the accuracy rate to 
assess how well clone models perform on the victim test 
set. Victim ACC and Clone ACC denote the prediction 
accuracy of the victim model and the clone model on 
the victim test set, respectively. In the FMSA method, a 
meta-cloner is trained with the K-way N-shot setup for 
comparison with other methods.

Model extraction rate (MER) To assess the similarity 
between the clone model and the victim model, Eq.  7 
determines the extraction rate. V(x) and C(x) represent 
the results returned by models for the input sample x, 
and the function d calculates the Hamming distance.

Attack cost In addition to the clone model’s accuracy and 
extraction rate, we are also concerned about the cost of 
training clone models, including the training cost to 
make clone models converge and the quantity of victim 
model inquiries. The quantity of query samples is even 

(7)

MER(C ,V ) = 1−
∑

x∈Dtest

C(V (x),V (x))

|Dtest |

d(C(x),V (x)) =

n∑

i=1

C(xi)⊕ V (xi)



Page 9 of 12Fan et al. Cybersecurity            (2023) 6:35  

more critical in security-sensitive ML-NIDS and needs 
to be strictly controlled to prevent NIDS alerts. In this 
paper, we investigate the relationship between the vic-
tim model’s query volume and the clone model’s perfor-
mance to evaluate the cost of the model stealing attack. It 
is worth noting that only one of the methods used in the 
experiments uses real victim data for querying, including 
our FMSA method, which utilizes synthetic data.

Also, we use FID (Heusel et al. 2017) and IS (Salimans 
et  al. 2016) to evaluate synthetic data. IS evaluates how 
well a generative model is and whether the generated 
data is actual and diverse; the more significant the IS 
value, the better the generative model is. FID indicates 
the distance between the generated and real feature vec-
tors. The closer the FID distance is, the better the gener-
ated model is; i.e., the smaller the FID is, the better the 
generated model is.

Comparison methods
We choose three methods to compare with the proposed 
FSMA method depending on the type of training data of 
the clone model. These three methods represent random 
noise, partial real data, and adversarial data, respectively. 

1. Random (baseline): Randomly produced data may 
be the only dataset the adversary may use if they are 
unaware of the victim’s training data. As suggested 
by Roberts et  al. (2019), we query the victim model 
using data randomly sampled from an Ising prior 
model. This attack acts as a baseline for comparison 
with our method.

2. Knockoff (Orekondy et  al. 2019): It assumes the 
adversary owns part of the victim’s actual dataset and 
constructs a clone training dataset using this part and 
prediction results from the victim model.

3. MAZE (Kariyappa et  al. 2021): The generator pro-
duces adversarial data (not adversarial attack sam-
ples) to execute model stealing. However, synthetic 
samples only reduce the output error of the clone 
and victim models without any practical meaning. It 
tends to ignore the real data distribution and leads to 
catastrophic forgetting and mode collapse (Thanh-
Tung and Tran 2020).

Performance evaluation
According to the experimental setting, we assume simu-
lated victim datasets from the same network environ-
ment as the real victim dataset. For example, in the case 
of the conventional Internet, simulated and real victim 
datasets are both considered as parts of the CICIDS2017. 
We carry out our method from two representative situ-
ations independently to investigate the effectiveness and 
cost of FMSA against ML-NIDS deployed in various net-
work settings. Table  1 shows the performance of differ-
ent methods. We compare the results with three separate 

Fig. 3 The clone accuracy rate of FMSA, MAZE, Noise, and KnockoffNets as the query budget varies

Table 1 Comparison of clone accuracy rates and extraction 
rates obtained from different methods

Dataset Victim ACC (%) Attacks Clone ACC (%) MER (%)

CICIDS2017 96.71 FMSA 88.92 90.10

Random 48.64 41.39

Knockoff 69.15 57.10

MAZE 80.83 82.50

MCFP 92.36 FMSA 83.85 87.74

Random 37.28 22.75

Knockoff 62.73 51.46

MAZE 75.48 79.47
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attacks to steal the victim model. Furthermore, Fig.  3 
demonstrates how the clone model’s accuracy varies as 
the number of query samples rises.

According to the results, FMSA achieves advanced per-
formance and outperforms the comparative methods. 
Though the adversarial learning of the generator and the 
clone model in our approach is similar to MAZE, FMSA 
allows the generator to learn the distribution of real vic-
tim data simultaneously. Since the generator’s goal in our 
task is to generate feature samples rather than complex 
data such as images, the generator can converge quickly 
after a few training iterations. For the CICIDS2017 
dataset, the clone model trained using the FMSA algo-
rithm achieved an accuracy of 88.92% and a similarity of 
90.10% to the victim model on the test set. However, as 
the network environment becomes more complex and 
the diversity of malicious traffic increases, the accuracy 
and similarity of the clone model on the MCFP dataset 
dropped to 83.85% and 87.74%, respectively. It is note-
worthy that the decrease in accuracy for both the clone 
model and the victim model is approximately equal, 
while the decrease in the model extraction rate is smaller. 
This indirectly reflects that the optimization goal of the 
clone model is to fit the target model’s classification abil-
ity rather than solely optimizing the classification task.

FMSA also achieves high accuracy with a small number 
of queries to the victim model compared to other meth-
ods, which require lots of queries to perform as well as 
our method. As shown in Fig. 3, with only 10 query sam-
ples, FMSA’s cloning model can achieve a cloning ACC 
that far exceeds that of other methods. After undergo-
ing 30 iterations of queries, the cloned models trained 
by other model stealing algorithms are far from conver-
gence. While other algorithms such as MAZE and ran-
dom noise do not rely on the victim dataset, they still 
require a large number of queries and attempts to search 
the entire feature space to successfully imitate the victim 
model. With the introduction of meta-learning, clone 
models can learn and converge fast with a few samples 
after learning many different tasks. Although such a 
model stealing attack comes with a high training cost, it 
is very effective for ML-NIDS with a limited number of 
queries.

Data assessment
In this section, we use two metrics to assess synthetic 
data quality In Table  2, we compare the average IS and 
FID values across the five different categories of data: (1) 
the victim’s training dataset; (2) random noise; (3) auxil-
iary dataset utilized in Knockoff attack; (4) synthetic data 
generated by MAZE, and (5) synthetic data generated by 
our method FMSA.

The real victim training dataset most accurately depicts 
the input space of the five data sets. The auxiliary dataset 
utilized in the Knockoff attack also achieves high qual-
ity and diversity, as it is derived from the real dataset. 
On the other hand, the random noise dataset performs 
the worst, obtaining the lowest IS value and the highest 
FID value. The synthetic data generated by MAZE also 
obtained similar quality scores as the noise data since 
the primary purpose of the synthetic data is to widen the 
gap between the outputs of the victim and clone models, 
favoring the training of the clone model with no real data 
distribution. Our method FMSA produces synthetic data 
that maximizes the difference between the output of the 
clone and victim models while being supervised by a dis-
criminator that forces the learning of the distribution of 
the real victim data, which obtains a quality score only 
slightly worse than the auxiliary data set.

Further adversarial attacks
This section shows that our FMSA method will pose a 
severe security risk to ML-NIDS. Deep learning models 
are susceptible to adversarial example attacks, in which 
adding tiny adjustments imperceptible to the human 
eye to the original samples can successfully misclassify 
the samples (Aldahdooh et al. 2022). We, as adversaries, 
obtain clone models through black-box model stealing 
attacks and use the clone models to generate adversarial 
samples. We exploit the adversarial samples’ transferabil-
ity against the black box victim model. We use the PGD 
approach (Madry et  al. 2017), an iterative adversarial 
attack on a white-box set. We performed the PGD attack 
against the clone and victim models, with the success 
rates shown in Table 3. We compare three different attack 
scenarios: (1) attack against the white-box victim model, 
(2) attack against the white-box clone model, and () attack 

Table 2 Qualiity analysis of data using IS and FID

Dataset Victim Auxiliary Random MAZE FMSA

Dtrain Daux Drand Dsyn Dsyn

IS IS FID IS FID IS FID IS FID

CICIDS2017 6.32 4.63 19.28 1.85 86.50 2.08 84.80 4.22 26.32

MCFP 5.64 4.16 34.23 1.32 128.21 1.77 95.16 3.45 48.10
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against the black-box victim model. We discover that the 
success rate of the black-box adversarial attack is compa-
rable to that of the white-box, demonstrating the effec-
tiveness of the clone model in translating the adversarial 
example from the victim model. It highlights the dangers 
of model stealing attacks, which could be a security risk 
for systems like ML-NIDS that are sensitive to security.

Conclusion
This study proposes FMSA, a low-query, high-accuracy 
model stealing attack against the victim model. FMSA 
is the first model stealing attack based on meta-learning 
and sets ML-NIDS as attack targets. Since the NIDS 
system will strictly protect the private data and detect 
abnormal queries, it is almost impossible for the adver-
sary to access the target dataset and perform a large 
number of queries. We propose two different sets of 
adversarial learning in FMSA, namely, adversarial learn-
ing of generators and discriminators, and adversarial 
learning of generators and clone models. This allows the 
clone model to use auxiliary knowledge to learn the dis-
tribution of the victim dataset while reducing the differ-
ence in output with the victim model. FMSA achieves the 
highest accuracy and model similarity compared to other 
techniques on the CICIDS2017 and MCFP datasets and 
can achieve high accuracy with only a few queries. Nev-
ertheless, the FMSA method entails a substantial train-
ing cost, which might conflict with the initial objective 
of model stealing to replicate victim models at a minimal 
expense. However, to overcome the security measures of 
ML-NIDS, a compromise solution is necessary. Future 
research endeavors should concentrate on developing 
methods that enable the cloning of ML-NIDS victim 
models with enhanced training efficiency and reduced 
costs. In summary, the proposed FMSA method pre-
sented in this study offers a novel solution in the field of 
model stealing attacks, while also highlighting the risks 
associated with employing ML-NIDS for safeguarding 
network security. Despite the high accuracy and sensi-
tivity of these systems, our research demonstrates that 
effective model stealing attacks can still be conducted by 
adversaries, even in the presence of protective measures.
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