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Abstract 

Federated Learning (FL) suffers from the Non-IID problem in practice, which poses a challenge for efficient and accu-
rate model training. To address this challenge, prior research has introduced clustered FL (CFL), which involves 
clustering clients and training them separately. Despite its potential benefits, CFL can be computationally and com-
municationally expensive when the data distribution is unknown beforehand. This is because CFL involves the entire 
neural networks of involved clients in computing the clusters during training, which can become increasingly time-
consuming with large-sized models. To tackle this issue, this paper proposes an efficient CFL approach called Layer-
CFL that employs a Layer-wised clustering technique. In LayerCFL, clients are clustered based on a limited number 
of layers of neural networks that are pre-selected using statistical and experimental methods. Our experimental results 
demonstrate the effectiveness of LayerCFL in mitigating the impact of Non-IID data, improving the accuracy of clus-
tering, and enhancing computational efficiency.
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Introduction
The advancements in science and technology have led to 
the generation of a vast amount of data from daily used 
intelligent devices, such as smart phone, smart wearable 
devices, etc. It is projected that global internet users have 
climbed to 4.95 billion at the start of 2022, with internet 
penetration now standing at 62.5 percent of the world’s 
total population (Kemp 2022). Global internet users 
generate huge amounts of data each day, which drives 
the development of many data-intensive applications, 
including recommendation systems (Gao et al. 2022) and 
natural language processing, such as ChatGPT (OpenAI 

2022). Additionally, these applications demand a greater 
volume of data generated by various devices to train 
machine learning (ML) models with greater precision 
and accuracy (Zhou et  al. 2017; Al-Jarrah et  al. 2015). 
However, training ML models with distributed data is 
challenging due to the difficulty of collecting the data 
from various devices. With the introduction of regula-
tions like the General Data Protection Regulation (GDPR) 
(Voigt and Von  dem Bussche 2017), privacy protection 
in ML has become a significant area of research focus 
(Papernot et al. 2016; Liu et al. 2021).

Federated Learning (FL) (McMahan et  al. 2017, 2016; 
Kairouz et al. 2021; Li et al. 2020a; Yang et al. 2019a) is 
a novel distributed ML framework that allows intelligent 
devices to collaboratively train a shared global model 
without revealing their local data (Mothukuri et al. 2021), 
making it a popular choice in finance (Yang et al. 2019b), 
medicine (Silva et al. 2019), and image vision (Liu et al. 
2020). However, it faces practical challenges, including 
the Non-IID (Not identically and independently distrib-
uted) data problem (McMahan et al. 2017; Li et al. 2019; 
Zhao et  al. 2018). For example, varying reading habits 
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and preference among users can lead to Non-IID data in 
movie recommendation application (Wu et  al. 2021), as 
seen in the case of user A’s preference for romantic film 
and user B’s liking for science fiction film. Existing stud-
ies (Ma et  al. 2022b; Li et  al. 2020b; Wang et  al. 2019) 
show that non-IID data can lead to slow convergence, 
low accuracy, and increased communication costs, high-
lighting the challenges associated with such data.

To reduce the detrimental effect of non-IID data on 
joint learning, a framework called Clustered Federated 
Learning (CFL) (Sattler et  al. 2020) has been proposed. 
Some CFL-based methods (Sattler et  al. 2020; Ghosh 
et al. 2020; Gong et al. 2022) group clients based on the 
similarity of data distribution, enabling them to jointly 
train the sharing model in group. Most approaches 
approximate clients’ local data distribution using their 
local models’ weight-updates or gradients. But these 
methods bring excessive computation and communica-
tion overhead, resulting in poor clustering accuracy.

However, some other CFL-based methods (Gong et al. 
2022), while accounting for differences between model 
layers, ignore the impact of training on the model under 
different Non-IID settings. Thus, it is necessary to iden-
tify the appropriate method for approximating each cli-
ent’s data distribution. This paper presents LayerCFL, 
an efficient CFL with Layer-wised clustering, which can 
reduce the computing cost and improve the clustering 
accuracy by selecting the appropriate part of the model’s 
layer data to participate in the computing client cluster-
ing under different data distribution environments.(R1.-
9) Major contributions are briefly summarized as follows:

• As far as we know, this paper is the first to compre-
hensively analyze the layer-wised impacts of neu-
ral networks in CFL clustering in different Non-IID 
environments.(R1.-9) Based on that, we propose a 
approach to calculate the similarities in layer-level, 
which can reflect more accurate similarity among cli-
ents than traditional model based CFL methods.

• Moreover, we shed light on how to select the layers 
given different Non-IID data settings (i.e., the feature 
distribution skew and label distribution skew).

• Our experiments provide evidence that LayerCFL is 
effective at clustering clients, requiring fewer com-
munication rounds. Moreover, our findings demon-
strate that LayerCFL is well-suited to scenarios where 
each client has relatively small and large amounts of 
data.

The remainder of this paper is structured as follows: In 
Section 2, we provide an overview of related work in the 
field of CFL and Non-IID. Section 3 details the problem 
formulation and presents LayerCFL. In Section  4, we 

describe the experimental settings used to evaluate our 
approach, and in Section 5, we present the experimental 
results and analysis. Finally, in Section 6, we conclude our 
paper and discuss our future plans for research in this 
field.

Related work
This section provides an introduction to CFL and the dif-
ferent types of Non-IID data. It also introduces the lat-
est research on neural networks’ Layer-wised impacts for 
other domains.

Clustered federated learning and non‑IID data
Due to diverse user usage habits, clients participating in 
FL may have significantly distinct local data distributions, 
a challenge known as Non-IID data. This issue has gar-
nered considerable attention, hindering the progress of 
FL (Ma et al. 2022b; Li et al. 2020b; Wang et al. 2019). The 
classification of Non-IID is a complex and evolving sub-
ject with different academic perspectives (Criado et  al. 
2022; Zhu et al. 2021; Ma et al. 2022b), and most of the 
literature we surveyed classified Non-IID into five types: 
(1) feature distribution skew, (2) label distribution skew, 
(3) same label with different features, (4) same features 
with different labels, and (5) quantity skew. Among the 
five Non-IID types, “feature distribution skew” and “label 
distribution skew” are the two experimental settings that 
are widely used by researchers while the other three Non-
IID types are hardly mentioned (Li et al. 2022). Hence, we 
choose the above two Non-IID types as the experimental 
settings in this paper. In the following, we will analyze the 
related studies on the mitigation of the Non-IID problem 
(R1.-1)(R1.-6).

CFL-based methods improve the accuracy of the model 
by aggregating clients with similar data distribution into 
corresponding clusters to train the model separately. 
FMTL (Sattler et al. 2020) iteratively divides clients into 
different clusters by calculating cosine similarity between 
local models of clients until no new clusters are gener-
ated. This iterative clustering method requires a critical 
point to limit the number of clusters, which is related to 
the final effect.

Some other studies specify the number of clusters in 
advance through hyperparameters to achieve better clus-
tering results (Ghosh et  al. 2020; Mansour et  al. 2020). 
IFCA (Ghosh et al. 2020) assigns clients to clusters based 
on the global model’s minimal losses on their local data, 
while HypCluster (Mansour et al. 2020) enables clients to 
dynamically relocate to the most suitable cluster by run-
ning an updated model. But the performance of this type 
of approach depends on experience, because the number 
of cluster types must be predetermined.
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Existing research also helps clustering clients through 
the K-means method (Dennis et  al. 2021; Yang et  al. 
2022). k-FED (Dennis et  al. 2021) utilized the K-means 
clustering method based on Lloyd’s method to calculate 
the cluster center in a single round of communication. 
G-FML (Yang et al. 2022) method is based on personal-
ized FL and clustering learning, and the accuracy of the 
model is improved by personalized FL after clustering by 
the K-means method.

Layer‑wised FL for non‑IID data
Some existing work computes the model similarity to 
reflect the data distribution, typically using model-based 
approaches, such as model weights (Gong et  al. 2022) 
or model weight-updates (Sattler et al. 2020). Neverthe-
less, as the number of clients and model sizes increase, 
these approaches tend to place greater workload on the 
server. Some research has demonstrated differences 
between different layers of a same model, with higher-
layer weights exhibiting greater task-relatedness than 
lower-layer weights (Yosinski et al. 2014; Zeiler and Fer-
gus 2014).

FedDnC (Chandran et al. 2021) uses an approach based 
on Federated averaging (FedAvg) that alternates between 
freezing and learning parts of the model layer to improve 
the model’s effect, similar to transfer learning. pFedLA 
(Ma et  al. 2022a) is a layer-wised personalized feder-
ated learning, allowing each client to discern the relative 
importance of each layer with respect to other clients. 
Although the above works do not directly address CFL, 
they provide evidence that treating all layers of a neural 
network equally may not be necessary. This insight can 
inform the development of CFL approaches that consider 
the varying importance of different layers in clustering, 
leading to more efficient and effective CFL.

For CFL, although FLC (Kim et  al. 2021) aims to 
improve model performance by independently process-
ing the weights of various layers in the model, it is limited 
to only performs a single-time classification on the cli-
ent, dividing it into two clusters. Beside, AdaCFL (Gong 
et  al. 2022) can select partial model weights (i.e., fully 
connected or classifier layers) to cluster clients for label 
distribution skew. However, FLC and AdaCFL ignore 
various Non-IID settings that can arise in FL, which can 
limit their ability to adapt different real world scenarios.

Problem formulation
This section aims to provide a detailed explanation of the 
problem formulation for LayerCFL.

Clustered federated learning
FedAvg (McMahan et al. 2017) is widely used to improve 
communication efficiency among clients in FL with 

assumption that all client data is IID. Specifically, FedAvg 
trains the shared model of the server by weighted average 
aggregation of the model parameters trained locally by cli-
ents. We assume that there are M clients, Dm is the data-
set on the client m and nm = �Dm� is the number of data, 
fi(�) is the loss function of model � for some data point i. 
Then the local empirical risk of client m on data set Dm is 
defined as:

The goal of FedAvg is to minimize the following formula:

where N =
M
m=1nm is the total number of data across 

all clients. Data generated by clients in a real-world envi-
ronment is often heterogeneous, i.e., Non-IID, which 
greatly affects the accuracy of the shared model on the 
server. CFL (Sattler et  al. 2020), a practical framework, 
has recently gained attention as an effective approach to 
solving this problem. CFL divides M clients into K clus-
ters G = {g1, . . . , gK } , and satisfies the condition that 
M ≥ K ≥ 2 and gi

⋂

gj = ∅(i �= j) , where �K
i=1

∥

∥gi
∥

∥ = M . 
Each cluster gi optimization target is Eq. (2).

Figure 1 depicts the architecture of a basic CFL system. 
Clients participating in learning are iteratively clustered 
into a cluster with clients having similar data distribu-
tions. Each cluster collaborates to learn a shared global 
model, while ensuring that the privacy of their respec-
tive local data is maintained throughout the process. 
CFL computes a model distance matrix to represent the 
distribution of data stored locally, using model weights 
or weight updates. Step (a) in the Fig.  1 illustrates that 
the client transmits the parameters of the model that is 
trained on the local data to the server. This enables the 
server to compute the model distance matrix, which 
is subsequently leveraged to facilitate the clustering 
process.

Next, we introduce the meaning of the model weight-
updates that needs to be uploaded by the client in step (a) 
at first. We assume that θi is the model weights of the cli-
ent ci , Di is the data stored locally in client ci and θ t is the 
t round model weight which is synchronous between cli-
ent ci and server. The client ci performs round t iterations 
of stochastic gradient descent with minibatches sampled 
from its local data Di and the result is:

where θ t+1
i  is the model weight obtained by client ci in 

round t + 1 training. According to Eq. (3), we can easily 

(1)fm(�) =
1

nm

∑

i∈Dm

fi(�).

(2)f (�) =

M
∑

m=1

nm

N
fm(�),

(3)SGD(θ t+1
i ) = SGD(θ t ,Di),
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conclude that the weight-update of the client ci in round 
t is:

Following the computation of the server in step (b) 
of Fig.  1, all participating clients are partitioned into 
distinct clusters using the clustering algorithm. Each 
cluster proceeds to share a common global model, 
which is subsequently distributed to clients within the 
same cluster to update their local model parameters. 
The clustering process can be repeated iteratively until 
a certain convergence criterion is met, beyond which 
further clustering is deemed unnecessary. In theory, 
clients with similar data distributions are expected to 
have similar model weights trained on their data, as 
opposed to clients with dissimilar data distributions 
(Sattler et  al. 2020; Wang et  al. 2020; Ouyang et  al. 
2021). However, FMTL (Sattler et  al. 2020) demon-
strates a connection between the weight-updates of 
each client’s training round and its data distribution. 
To quantify the difference between clients with differ-
ent data distributions, mathematical methods such as 
l2 distance and cosine distance are commonly used to 
measure similarity.

To show the model distance between any two clients 
ci and cj , AdaCFL (Gong et  al. 2022) choose to use l2 
distance to calculate the similarity of the model weight 
to obtain the model distance matrix, and the model dis-
tance is:

where ϑ is value of the model weight θ.
The definition of the cosine similarity between the 

weight-updates of clients ci and cj is as follows:

(4)�θ t+1
i = SGD(θ t+1

i )− θ t .

(5)l2 : dist(ci, cj) =� θi − θj �l2=

√

∑

ϑ∈θ

(ϑi − ϑj)2,

As mentioned earlier, we can also calculate the cosine 
distance of the model weights among each clients or the 
l2 distance of the model weight-updates. The formula is 
shown below:

Following step (b) of Fig.  1 we get a model distance 
matrix α , which is obtained by calculating the cosine dis-
tance of each clients’ model weights or weight-updates. 
Any two clients ci and cj belonging to the same cluster gk 
(theoretically their data distribution is the same), and the 
minimum value between clients in a cluster in the model 
distance matrix is:

In the case of splitting the clients into two clusters 
(K = 2) , the result of maximum value between clients 
belonging to different clusters in the model distance 
matrix simplifies to:

where gx
⋂

gy = ∅.
According to the relevant proof given by Sattler et  al. 

(2020), client i and j have different data distributions, then:

(6)� cos : dist(ci, cj) =

〈

�θi,�θj
〉

� �θi �� �θj �
.

(7)�l2 : dist(ci, cj) =� �θi −�θj �l2 ,

(8)cos : dist(ci, cj) =

〈

θi, θj
〉

� θi �� θj �
.

(9)αmin
intra := min

ci, cj ∈ gk
dist(ci, cj),

(10)αmax
cross := max

ci∈gx ,cj∈gy
dist(ci, cj),

(11)αmax
cross < αmin

intra

Fig. 1 Overview of CFL framework
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However, in practice, compared to cross-cluster similar-
ity αmax

cross , which can be easily computed, the computa-
tion of intra-cluster similarity αmin

intra
 is difficult to obtain 

because it requires knowledge of the cluster structure. 
Therefore, we give a more general correct separation 
theorem(R1.-2):

Theorem 1 (Correct clustering theorem): Let M clients 
and their local data sets D1, . . . ,DM belong to K different 
data distributions ϕ1, . . . ,ϕK  . The empirical risk function 
on the local model θ for each client i is able to approxi-
mate the true risk when the amount of local data is large 
enough(R1.-2):

We assume that the data volume of client i is not large 
enough and θ∗ is the target solution of FL, then we have:

 and define:

Then when M clients are dichotomized into two different 
clusters g1 and g2 , because the minimum similarity within 
a cluster requires intra-cluster knowledge, so αmin

intra
 can 

only be estimated by the following equation:

with

 Then we can further obtain:

Therefore, combining Eq. (11) we are able to know that 
the dichotomy is correct if

(12)ri(θ) =
∑

(x,y)∈Di

los(f (x), y)

(13)≈ Rϕi(θ).

(14)
∥

∥Rϕi(θ
∗)
∥

∥ >
∥

∥Rϕi(θ
∗)− ∇ri(θ

∗)
∥

∥,

(15)γi :=

∥

∥Rϕi(θ
∗)−∇ri(θ

∗)
∥

∥

∥

∥Rϕi(θ
∗)
∥

∥

∈ [0, 1).

(16)αmin
intra := min

i,j∈ϕk
α(∇ri(θ

∗),∇rj(θ
∗))

(17)≥ min
i,j∈ϕk

Hi,j ,

(18)Hi,j = −γiγj +

√

1− γ 2
i

√

1− γ 2
j ∈ (−1, 1].

(19)
αmin
intra ≥ −γiγj +

√

1− γ 2
i

√

1− γ 2
j ≥ 1− 2γ 2

max.

(20)
√

1− αmax
cross

2
> γmax.

 The proof of the theorem can be given by CFL(Sattler 
et al. 2020) and will not be repeated in this paper.(R1.-2)

Next, we define the Gap, which is an important indica-
tor of the correctness of clustering in our experiment, as 
it can clearly indicate whether the clustering is correct. 
And Gap is defined and used by CFL(Sattler et  al. 2020). 
Gap is defined as a means measures the distance between 
two clusters to verify the clustering is accurate. Gap1 is the 
separation gap between two clusters when measured using 
cosine distance, defined as:

When Gap1 > 0 the separation is accurate, that is, the 
data distribution of clients in the same cluster is similar. 
Besides, Gap2 is the separation gap between two clusters 
when measured using l2 distance: For the model distance 
matrix obtained from l2 distance calculation, gap can be 
defined as:

Because contrary to the cosine distance method, the 
more similar the data distribution of each clients, the 
smaller the l2 distance between them.

Layer‑wised clustering
AdaCFL (Gong et  al. 2022) proposes to use partial 
weights instead of whole model weights to compute a 
model distance matrix that reflects the similarity of any 
two client models. Experimental results show that the 
method can significantly reduce the computational cost 
and outperform other baseline methods.(R1.-3) Spe-
cifically, the fully connected (FC) layer weights of the 
model can be used to better represent the data distri-
bution of different clients. The experimental results of 
(Chandran et al. 2021) also show that the weight diver-
gence of the model near the FC layer is also significantly 
higher than that of the convolutional (Conv) layer, 
which seems to support the conclusion of AdaCFL. 
However, the experimental environment does not con-
sider the influence of different Non-IID environments, 
which motivates us to explore the generality and valid-
ity of its conclusions through more experiments. In the 
“Experiments” section, we demonstrate the contribu-
tion of our LayerCFL algorithm by examining how dif-
ferent Non-IID environments affect different layers of 

(21)Gap1 := αmin
intra − αmax

cross .

(22)Gap2 := αmin
cross − αmax

intra .

Fig. 2 A simple CNN example
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the model in the clustering process. (R1.-3) Fig. 2 illus-
trates a framework of a simple CNN model.

The existing literature shows that weights at higher 
levels of the model are task-related than weights at 
lower levels of the same model (Yosinski et al. 2014; M. 
et al. 2018). The Conv layer of this CNN model mainly 
extracts input data features, while the FC layer plays the 
role of classifier, that is, it is related to tasks. The above 
research suggests that we can compute the model dis-
tance matrix by selecting the data from a certain layer of 
the model (such as the FC layer or Conv layer) to better 
express the model similarity. Some new formulas can 
be used to express the distance between any two clients 
(R1.-7):

where θ∗ is the weight corresponds to the selected partial 
layer of the model. The data for the clustering algorithm 
of our LayerCFL method in various Non-IID environ-
ments are derived from different layer models. We 
evaluate the performance of LayerCFL in two Non-IID 
environments.(R1.-3)

In the following section, we present the two Non-IID 
environments to distinguish the difference between 
them.(R1.-6)

• Feature distribution skew Client i and j have differ-
ent distribution probabilities P(x) for a given feature 
x, but different clients have the same probability to 
predict the probability P(y|x) of label y by using fea-
ture x. For example, on EMINIST dataset, client i 
and j have different image data of the letter T: i has 
mostly bold letter T images while j has mostly slanted 
T images, despite storing the data with the same label 
T. This Non-IID data distribution, known as feature 
distribution skew, can negatively impact the shared 
model if they participate in FL at the same time.

• Label distribution skew Given any data point (x, y), 
the label distribution of different clients i and j is dif-
ferent, that is, Pi(y)  = Pj(y) . But the feature is the 
same when given label y, which means that P(x|y) is 
the same. For example, 90% of client i’s data is dig-
its 7 and 10% is some other number. For client i, the 
data distribution is similar, but the 90% digits are 5. 
But given label y, the probability P(x|y) of feature x 
for any client is the same.

In the “label distribution skew” setting, the FC layer 
reflects the different data distributions better because it 
is more task-related. However, this is not hold for other 
Non-IID settings (e.g., feature distribution skew). In this 

(23)

l
p
2
: dist∗(ci, cj) =� θ∗i − θ∗j �l2

=

√

∑

ϑ∈θ∗

(ϑi − ϑj)2,

(24)�l
p
2
: dist∗(ci, cj) =� �θ∗i −�θ∗j �l2 ,

(25)cos
p : dist∗(ci, cj) =

〈

θ∗i , θ
∗
j

〉

� θ∗i �� θ∗j �
,

(26)� cos
p : dist∗(ci, cj) =

〈

�θ∗i ,�θ∗j

〉

� �θ∗i �� �θ∗j �
,



Page 7 of 14Yuan et al. Cybersecurity            (2023) 6:39  

setting, using the FC layer to compute the model dis-
tance matrix results in a weaker clustering effect. This 
is because the “feature distribution skew” setting makes 
the Conv layer capture the data distribution differences 
among the clients due to the learned features, while the 
classification layer is relatively insensitive.(R1.-4)

LayerCFL algorithm
Exploring the impact of various environments on the 
weights of different layers within a model, as well as 
developing more efficient and accurate methods for cal-
culating the differences between individual client mod-
els to cluster clients into appropriate clusters, is a crucial 
research problem. Addressing this problem is exactly 
what our proposed LayerCFL aims to achieve. Combined 
with our current work, the LayerCFL algorithm is pro-
posed in this paper as shown in Algorithm 2.

LayerCFL begins with initializing global model param-
eter θ and cluster g , and performs FL to make the global 
shared model of the initial cluster converge to a cluster-
ing condition according to Algorithm 1. ε1 is an empirical 
hyperparameter used to determine whether FL is close to 
the stationary solution. The stop condition is defined as:

 and according to the CFL(Sattler et al. 2020) recommen-
dation, ε1 can be set to around tenth of the maximum 
average update norm ε1 ≈ max �△θ�/10 . After obtain-
ing the stable solution for FL to reach the clustering start 
condition, we select the weight-updates of the fixed layer 
θ∗ (Obtain in advance through statistics) of the model 
uploaded by the client according to the Non-IID environ-
ment we are in. And we select the model layers according 
to the environment: (1) In “Feature distribution skew”, we 
use the data of the Conv layer (2) In “Label distribution 
skew”, we use the data of the FC layer (3) For other cases 
we use all model parameters by default. It means that the 
worst performance of our algorithm is not lower than 
that of the CFL algorithm.

Next we need to check the second condition for clus-
tering, i.e., to verify if the current global model is a stable 
solution for the clients in cluster. We make the judgment 
with the help of the hyperparameter ε1:

 and ε2 is set in the range [ε1, 10ε1].
If the clustering conditions are met, we cluster the 

clients using cosine distance and obtain two clusters. 
We use Theorem  1 to validate the clustering and run 

(27)

∥

∥

∥

∥

∥

g
∑

i=1

ni

ng

�
θ it+1

∥

∥

∥

∥

∥

< ε1,

(28)maxi∈g
∥

∥θ∗i

∥

∥ ≥ ε2,

the LayerCFL algorithm for each cluster. Otherwise, we 
discard the clustering and revert to the original cluster. 
The whole algorithm procedure is given in Algorithm 2, 
and a schematic illustration is presented in Fig. 3 (R1.-2) 
(R1.-5).

Experiments
In our experience, we evaluated multiple methods on 
experimental clients with different data distributions 
and used two classical public datasets. We carried out 
all of our experiments with PyTorch and collected train-
ing data on a server equipped with Intel Xeon Platinum 
8255C CPU and NVIDIA TESLA T4 GPU.

Datasets
We chose EMNIST and CIFAR10 as our training 
datasets.

• EMINIST (Cohen et  al. 2017) contains is an exten-
sion of MNIST, which divides data into six methods 
for easy use. We use the Letters dataset, which con-
tains 26 letter types of data and the size of each image 
is 28× 28.

• CIFAR-10 (Krizhevsky and Hinton 2009) contains 
10 classes of three-channel images, where the size of 
each image is 32× 32.

In all subsequent experiments, the model we trained 
was VGG16 (Simonyan and Zisserman 2014), and we 
used the adam optimizer where we set the batch size to 
50 on each client. In order to fit the model to the EMN-
IST dataset, we transform the image so that the original 
size of 28× 28 becomes 32× 32 . For the VGG16 model, 
we changed the initial size of 3 channels to 1 channel so 
that we could train on the EMNIST dataset. Next, we will 
introduce the settings related to the Non-IID environ-
ment in our experiments.

Fig. 3 Schematic overview over the LayerCFL
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Non‑IID settings
(1) Feature distribution skew

Our experimental setup is similar to (Ghosh et  al. 
2020), where each client has samples from all classes, 
but some clients rotate their stored image data. We 
use α to denote the number of clusters we partition the 
clients into, with a value of 4 indicating that all experi-
ment clients are divided into four groups. Each group 
of clients performs rotations of 90, 180, 270 degrees, 
and non-rotation on their stored image data, respec-
tively. To simulate this environment we divided the cli-
ents m = 20 into k = 4 clusters for the two datasets in 
our next experiment, that is, α = 4.

(2) Label distribution skew
We use β to represent different levels of Non-IID 

data like (Wang et  al. 2020). When β = 0.8 , 80% of 
each client’s local data belongs to one class, while the 
remaining 20% belongs to other classes. However, we 
found that larger β values make it easier to separate cli-
ents from different clusters using the model distance 
matrix, making it difficult to compare different meth-
ods when the data volume or number of rounds is low. 
Therefore, we typically use β = 0.5 in our experiments, 
even though it causes the curve to collapse quickly as 
the number of rounds increases. In our experiment, we 
divided the clients m = 20 into k = 4 clusters and 50% 
of the client’s local data in each cluster contained one 

type of data and the remaining 50% contained other 
data.

Performance
This section aims to assess the effectiveness of LayerCFL 
in two Non-IID data settings, by analyzing its clustering 
speed (in rounds) and data volume requirements. We 
compare LayerCFL with two baselines, namely FMTL 
and AdaCFL.

Performance in feature distribution skew
(1) Performance under different distance calculation for-
mulas for clustering

To assess the sensitivity of different model layers to 
training data distribution, we use heat maps to visualize 
the model distance matrix across clients trained on the 
CIFAR10 dataset. As previously described, we process 
the image data using the α = 2 setting, and divided the 
m = 10 clients into k = 2 clusters. Results for various 
model layers are shown in Fig. 4.

Figure 4 shows that the distance matrix based on model 
weight of different layers reflects client clusters. Based on 
Fig. 4, the left half reflects the model distance matrix cal-
culated from part of the Conv layer weights, and can dis-
tinguish different clusters more easily than the right half. 
Our research suggests that in feature distribution skew 
environments, this feature is more reflected in the Conv 

Fig. 4 Visualization of model distance matrix using weight calculations from VGG16 model’s different layers. Conv denotes the convolution layer, 
while FC denotes the fully connected layer. cos and l2 represent the cosine distance and Euclidean distance, respectively, used for calculating 
the model distance. Lighter colors indicate greater similarity in data distribution between the two clients
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layer than the FC layer, which becomes more pronounced 
with increasing model complexity. In simple models, the 
FC layer can also reflect this feature, but it is less pro-
nounced than in the Conv layer. In models like VGG16, 
it is difficult for the FC layer to distinguish between dif-
ferent clusters.

Figure 4 shows two methods for calculating the model 
distance matrix based on the weight of the same layer: 
Euler distance and cosine distance. The upper and lower 
halves of the figure correspond to these two methods, 
respectively.

This image shows that the cosine distance method is 
more effective in distinguishing between different clus-
ters, while the Euler distance method is less effective. We 
can easily find that the phenomenon in Fig. 4 is obviously 
different from the conclusion of (Gong et al. 2022). This 
indicates the need for extending the incomplete conclu-
sion of (Gong et al. 2022) with more experiments in vari-
ous Non-IID environments to enhance its applicability.

To better demonstrate the sensitivity of each layer of 
the model to the distribution of client data, we train for 
30 rounds under the above experimental conditions until 
the clustering condition is stable, and then record the 
Gap values of the model distance matrix computed from 
each layer of the model, as shown in Fig. 5. The x-axis is 
the layers of the model and the y-axis is the Gap value, 
where the Gap value of 0 means that the clustering is 
incorrect. Based on the definition of Gap and Fig. 4, we 
can infer that the larger the Gap value, the easier it is to 
distinguish between two different clusters of clients in 

the heatmap. We can also see from Fig.  5 that the Gap 
value for the FC layer is relatively small compared to the 
Conv layer. Moreover, there are classification errors in 
the case of the FC layer. In our subsequent experiments, 
we select different layers to participate in the clustering 
computation based on the statistical results to obtain the 
maximum benefit (R1.-9).

(2) Clustering speed comparison under different data 
volume

We use α = 4 , and based on both experiential and 
experimental analysis, we select the fourth layer of the 
model for calculation. We present a comprehensive 
analysis of five distinct methodologies for partitioning 
clusters and conduct experiments on two data sets. Our 
objective is to compare and contrast the advantages and 
drawbacks of each method.

To this end, we record the minimum number of com-
munication rounds required for each approach to achieve 
separation condition ( Gap > 0 ) as the size of the data 
stored on each client increases.

We can estimate the convergence speed of the model 
under different algorithms by recording the minimum 
number of training iterations needed for successful 
clustering of different algorithms. The fewer iterations 
required, the faster the model converges. The result as 
shown in Fig.  6. The x-axis represents the data volume, 
while the y-axis represents the number of rounds of com-
munication. The results were obtained by testing 100 to 
1500 data volumes in 200 data intervals.

For EMNIST, the red bar achieves the separation con-
dition with the lowest number of training rounds under 
low data quantity. As data quantity increases, the red bar 
maintain the best performance, while the blue and orange 
bar consistently performs poorly. The yellow and grey bar 
fail to achieve the separation condition in most cases. For 
CIFAR10, the red bar performs consistently best under 
almost all data quantity conditions. Figure 6 shows that 
the red and blue bar perform well in both datasets, with 
the red bar being more suitable for most environments. 
The experiments demonstrate the superiority of cosine 
distance in distinguishing clients with different data 
distributions compared to Euler distance. Additionally, 
incorporating weight-updates is advantageous over solely 
using model weights. Using partial model layer data 
has reasonable advantages compared to using all model 
layer data, guiding the use of partial weight-updates to 
improve accuracy while reducing computation.

In summary, LayerCFL (Red bar) can achieve the separa-
tion condition in different data environments with fewer 
communication rounds than other separation methods, 
including baseline methods FMTL (Blue bar) and AdaCFL 
(Yellow bar).

Fig. 5 Visualize the “Gap” values obtained after 30 rounds of training 
in the “Feature distribution skew” environment and clustering 
operations based on the parameters of each layer of the model. To 
facilitate the plotting display, we record the Gap in the category error 
case as 0 uniformly
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(3) Data volume requirement comparison
To better demonstrate the pros and cons of differ-

ent methods for calculating the model distance matrix, 
we collect data and plotted Fig.  7, which shows how 
the performance changes with increasing data volume 
under fixed training rounds for each method. Figure  7a 
and b depict the results for CIFAR10 and EMNIST data-
sets, respectively, with 100 data intervals and data sizes 
ranging from 100 to 1500 per client. Figure  7a shows 
the results for training round 5 with each fixed amount 
of data in the CIFAR10 dataset, while Fig. 7b shows the 
results for 10 rounds of training with each fixed amount 
of data in the EMNIST dataset. The x-axis represents the 
data volume, while the y-axis represents the Gap. When 
the value of Gap exceeds 0, it serves as an indicator that 
the employed method is capable of effectively segregating 
dissimilar clusters. Furthermore, methods that can satisfy 
the segregation criterion while employing minimal data 

requirements within a predetermined number of com-
munication rounds possess a distinct advantage.

For CIFAR10 dataset, i.e. (a) in Fig.  7, the red line 
achieved the best performance, achieving separa-
tion with less data requirement and higher stability. 
Although clients in different clusters can be separated 
when Gap > 0 , the higher the value of Gap is, the 
higher the clustering accuracy of this method is. For 
EMNIST dataset, the blue line calculation performed 
better with low data volumes, but as data increased, 
the performance of the red line became comparable. 
This suggests that in higher data volume environments, 
partial model weight-updates using cosine distance 
can reduce computational costs while maintaining 
accuracy.

Fig. 6 Visualize the rounds of Gap > 0 achieved by each method 
under different data volume environments. � cos , lp

2
 , �l

p
2
 , cos p 

and � cos
p stand for the distance defined by Eqs. (6), (23), (24), (25), 

and (26). � cos is FMTL and lp
2
 is AdaCFL

Fig. 7 Visualize the change of Gap with the increase of data 
volume under fixed round. � cos , lp

2
 , �l

p
2
 , cos p and � cos

p stand 
for the distance defined by Eqs. (6), (23), (24), (25), and (26)



Page 11 of 14Yuan et al. Cybersecurity            (2023) 6:39  

Based on the above data, we can make some hypoth-
eses. When there is feature distribution skew, the Conv 
layer may display more information about the data dis-
tribution compared to the FC layer. Therefore, to calcu-
late the model distance matrix, choosing to calculate only 
part of the model layer may improve clustering accuracy 

and reduce computation. Furthermore, the experimental 
evidence substantiates that LayerCFL employs the cosine 
distance of partial model weight-updates, for clustering 
purposes. This approach confers several benefits over 
alternative methods in the majority of cases.

Performance in label distribution skew
(1) Performance under different distance calculation for-
mulas for clustering

We trained on the EMNIST dataset with β = 0.8 , 
dividing clients m = 10 into k = 2 clusters. However, the 
model distance matrix calculated using different layers 
showed opposite results to the feature distribution skew. 
The FC layer better displayed different data distribu-
tion characteristics between clients than the Conv layer, 
consistent with the conclusion of (Gong et al. 2022). See 
Fig. 9.

Figure  9 clearly shows the differences between clients 
in different clusters on the right side. The model distance 
matrix on left side may not completely separate clients of 
different clusters, some distinguishing characteristics are 
present, albeit less obvious than those observed in the 
full-connection layer as shown on the rightside of Fig. 9. 
Moreover, the cosine distance calculation method yields 
a clearer model distance matrix compared to the Euler 
distance calculation method, as evidenced by the com-
parison of the upper and lower sides of Fig. 9.

Fig. 8 Visualize the “Gap” values obtained after 30 rounds of training 
in the “Label distribution skew” environment and clustering 
operations based on the parameters of each layer of the model. To 
facilitate the plotting display, we record the Gap in the category error 
case as 0 uniformly

Fig. 9 Visualization of model distance matrix based on weight calculation of different layers of VGG16 model. Conv refers to the convolution layer 
in the model and FC refers to the fully connected layer. cos means the model distance calculated by the cosine distance and l2 means the model 
distance calculated by the Euler distance. The lighter the color in the image, the more similar the data distribution between the two clients
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To better demonstrate the sensitivity of each layer of 
the model to the distribution of client data, We plot the 
Gap values of the distance matrix of the model computed 
by each layer of the model after 30 rounds of training in 
the above environment. The results are shown in Fig. 8. 
We can see from the figure that the data of the Conv layer 
can also distinguish the clients of different clusters com-
pared to the FC layer but less effectively. This is good evi-
dence that for the “Label distribution skew” environment 
we should choose the data of the FC layer for clustering 
computation and have great benefit. Based on the results, 
we finally select the appropriate model layer to continue 
the experiment (R1.-9).

(2) Performance under different amounts of data and 
different rounds

Fig.  10 displays experimental results with β = 0.5 for 
each clients storing 1000 images for 50 rounds of train-
ing. According to Fig. 9, we select the data of the first FC 
layer of the model to participate in the calculation. The 
black, light blue, gold, red, and blue curves correspond 
to different methods for calculating the model distance 
matrix. The x-axis represents the data volume, while the 
y-axis represents the Gap. This figure is intended to look 
at the communication rounds required for each approach 
to successfully separate the different clusters ( Gap > 0 ) 
with a fixed amount of data stored on each client.

From Fig. 10, the blue, red and light blue curves (Eqs. 
(6), (26) and (25)) can separate clusters well under 
β = 0.5 , but their effectiveness weakens with increasing 
rounds. The red curve is generally better at showing the 
difference between clusters and the coincidence of the 
gold and black curves suggests that mathematically the 
two methods give exactly the same result.

In fact, the blue, red and light blue curves cannot 
be compared by observing the conditions required to 
achieve the separation condition ( Gap > 0 ). In order 
to reflect the stability of different algorithms, we count 
the proportion of successful clusters ( Gap > 0 ) in 50 
rounds of training for different algorithms under differ-
ent conditions.

Figure  11 shows experimental results for 100–1500 
data sizes stored at 200 data intervals per client and 50 
rounds of training at each fixed data volume. Figure 11a 
shows the results on the EMNIST dataset, and Fig. 11b 
shows the results on the CIFAR10 dataset. The Eqs. (23) 
and (24) do not meet the separation condition and are 
excluded.

From Fig.  11, the blue, orange, and grey bars main-
tain Gap > 0 in most cases within 50 rounds of training 
under each fixed data volume condition. For EMNIST, 

the blue bars outperform others in maintaining stability 
during training, followed by the orange bars.

For CIFAR10, the blue and orange bars show simi-
lar performance and maintain Gap > 0 in 50 rounds. 
Therefore, the blue bar is a better performer in vari-
ous situations. In other words, we can believe that the 
cosine distance of partial weight-updates (LayerCFL) 
can be used to approximate the similarity of data dis-
tribution between clients in label distribution skew 
environment.

Fig. 10 Visually observe the Gap changes with the increase 
of training rounds in two datasets with different data amounts. � cos , 
l
p
2
 , �l

p
2
 , cos p and � cos

p stand for the distance defined by Eqs. (6), 
(23), (24), (25), and (26)
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Conclusion
This paper proposes LayerCFL, a layer-wise clustering 
method to address the problem of inefficient cluster-
ing in CFL. LayerCFL is an efficient method that filters 
partial layers from large-sized models and introduces 
cosine distance on model weight-updates for cluster-
ing. Furthermore, LayerCFL offers various schemes for 
selecting layers for different non-IID datasets. Cov layers 
are selected for non-IID datasets with feature distribu-
tion skew, while FC layers are selected for datasets with 
label distribution skew. We evaluate LayerCFL using the 
EMNIST and CIFAR10 datasets under different data dis-
tributions in non-IID settings. Our experiments show 
that LayerCFL reduces computation resources by an 
average of 6.47× and communication rounds by an aver-
age of 12.89%, making it an effective solution for ineffi-
cient clustering compared with the baseline approach 
FMTL.

In our future work, we will expand our investigation 
to include other types of Non-IID settings, such as dif-
ferent label features, varied labels for the same features, 
and quantity skew. This broader exploration will provide 
a more comprehensive understanding of the challenges 
and implications of Non-IID in machine learning. (R1.-1) 

Next, we plan to enhance LayerCFL by incorporating 
meta-learning techniques. This will allow it to adaptively 
learn filtering and weights for each layer based on the 
Non-IID nature of client data. Additionally, we aim to 
deploy LayerCFL to solve practical problems, such as rec-
ommendation systems.
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