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Graphical abstract

Introduction
The Shortest Vector Problem (SVP) is one of the most 
important problems in lattice theory. From the perspec-
tive of complexity theory, it’s very important to figure out 
the precise complexity of SVP with different parameters. 
The NP-hardness of SVP in l2 norm was conjectured in 
1981 by Boas (1981). However it remains to be an open 
problem for quite a long period. A breakthrough came 
up at Ajtai (1998), which proved that SVP in l2 norm is 
NP-hard under randomized reductions. Actually, in 
Ajtai’s work, he proved that approximate SVP in l2 norm 
to within a factor of 1+ 2−nε is NP-hard. This result 
answered the long standing question of the NP-hardness 
of SVP in l2 norm, moreover it showed the possibility 
that approximating SVP to some factors beyond the frac-
tion of exponential in n is still NP-hard, which turned 
out to be true. The NP-hardness result of SVP was later 
improved by Micciancio in Micciancio (1998) to within a 
constant approximation factor under a number theoretic 
assumption. Moreover, Micciancio’s proof works for any 
lp norms for approximation factor p

√

2 . In Khot (2003), 
Khot improved the NP-hardness of SVP to approximation 
factor p1−ε , which is stronger than Micciancio’s result 
(Micciancio 1998). However this reduction only work 

for p ≥ p(ε) norms, especially, it don’t apply to l2 norm. 
Soon after (Khot 2003), Khot proposed another proof 
(Khot 2004) for the NP-hardness of approximating SVP, 
which stated that approximating SVP to within any con-
stant factor is NP-hard assuming that NP � RP . Further, 
assuming NP � RTIME(2poly(log(n))) there is no polyno-
mial-time algorithm approximates SVP to within factor 
of 2log

1
2
−ε

(n) , which is almost polynomial in n. This result 
is way more stronger than Micciancio (1998) and Khot 
(2003). Later, Micciancio (2012) proposed another proof 
for the NP-hardness of approximating SVP. Micciancio 
(2012) used the same technique as the one used by Khot 
(2004), which is called the BCH code, in a different man-
ner. He had also proved the NP-hardness of SVP for any 
constant approximation factor, moreover he proved that 
approximating SVP for subpolynomial factors n

1
O(log log n) is 

NP-hard assuming that NP is not contained by subexpo-
nential time. The reduction in Micciancio (2012) contains 
significantly less probabilistic parts compared to the proof 
in Khot (2004), and it is potentially easier to be derand-
omized since the only random parts are the choosing of a 
vector and the famous Sauer’s lemma due to Sauer (1972), 
Vapnik and Chervonenkis (2015) and Shelah (1972).
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The so called Lattice based cryptography was inovated 
by Ajtai (1996), in which Ajtai constructed an aver-
age hard lattice problem called Short Integer Solution 
problem (SIS), and it is widely used in all kinds of lat-
tice base cryptographic schemes. Follwoing Ajtai’s work 
(Ajtai 1996), researches proposed various cryptographic 
schemes. The first one was due to Ajtai and Dwork 
(1997), their one-way function was based on the hard-
ness of n8-uSVP, the uniqueness factor of which is quite 
large. Following (Ajtai and Dwork 1997), many improved 
results (Cai and Cusick 1999; Micciancio 2004; Regev 
2003) were proposed, and the security assumption was 
improved to n1.5-uSVP. Apparently, a cryptosystem based 
on weaker assumption is way more attractive than those 
based on strong assumptions. As for uSVP based crypto-
systems, we want to build them upon small uniqueness 
factor since O(n)-uSVP tends to be a lot easier than the 
corresponding GapSVPO(n) , and both are far away from 
being NP-hard.

In the perspective of complexity theory, we want to 
build NP-hardness results for uSVP similar with what 
was done for SVP. However, things turned out to be 
extremly difficult, up to now, we don’t even know 
whether uSVP is NP-hard for constant uniqueness factor. 
The first result proving the NP-hardness of uSVP was 
proposed by Kumar and Sivakumar (2001), without any 
guarantee for the uniqueness factor. Aggarwal and Dubey 
(2016) proposed a deterministic reduction from SVP to 
O(1+ 2−O(n2))-uSVP and a randomized reduction from 
SVP to 1+ 1

poly(n)
-uSVP. Aggarwal’s reduction from SVP 

to 1+ 1
poly(n)

-uSVP used the same technique used by 
Kumar and Sivakumar (2001) to make the shortest vector 
unique. At the same time, another work (Stephens-Davi-
dowitz 2016) gave a randomized polynomial-time reduc-
tion from SVP to (1+ O(log(n)/n))-uSVP, which showed 
us some hope for proving the NP-hardness of uSVP for 
bigger uniqueness factor. As for the l∞ norm, Khoat and 
Tan (2008) gave a reduction from Knapsak Optimization 
problem to uSVP. On the other side, Cai (1998) proved 
that n

1
4-uSVP cannot be NP-hard, unless the polynomial 

hierarchy collapses. Lyubashevsky and Micciancio (2009) 
investigated the relation between the lattice problems 
GapSVP, BDD (Bounded Distance Decoding) and uSVP. 
Their results states that 1

2γ -BDD reduces to γ-uSVP, γ-
uSVP reduces to 1

γ
-BDD, and GapSVPγ reduces to 

1
γ

√

n/ log(n)-BDD. The last reduction holds for any 
γ > 2

√

n/ log(n) . Combine them we have that GapSVPγ 
reduces to γ2

√

log(n)/n-uSVP for any γ > 2
√

n/ log(n) . 
That is, GapSVP

c′
√

n/ log(n)
 reduces to c′

2-uSVP, which 
states that uSVP with constant uniqueness factor is at 

least as hard as GapSVP
O(
√

n/ log(n))
 . Note that this result 

holds only for c′ > 2.

Our contribution
The NP-hardness of uSVP with constant uniqueness fac-
tor still remains open. And it seems hard to establish 
reduction from NP-hard SVP instances to such uSVP 
instances. Instead of proving the NP-hardness of uSVP 
with constant uniqueness factor, we proved a result 
which is similar with the one obtained by combining 
results of Lyubashevsky and Micciancio (2009). We 
reduced GapSVP

c′
√

n/ log(n)
 to c′

3
√

2c
-uSVP for almost any 

constant c and c′ > 3
√

2c . Compared to Lyubashevsky 
and Micciancio (2009), our reduction holds for any c′ , 
especially when c′ < 1 is a small constant. Moreover, 
since the uniqueness factor of uSVP instance depends on 
the fraction of c′ and c instead of only c′ , our result is way 
more flexible in the choice of uniqueness factor. Combine 
our reduction with the reduction from γ-uSVP to 1

γ
-BDD 

in Lyubashevsky and Micciancio (2009), we have that 
GapSVP

c′
√

n/ log(n)
 reduces to 3

√

2c
c′ -BDD. Notice that, in 

the sence of parameters of BDD, this result from GapSVP 
to BDD is the same with that in Lyubashevsky and Mic-
ciancio (2009). However, due to the flexibility of the 
choice for c, c′ , the constant for GapSVP can be as small 
as you like, which gave a stronger guarantee for the hard-
ness of BDD.

As an application of our result, one can directly con-
vert an algorithm for uSVP with arbitrary constant 
uniqueness factor into an algorithm for GapSVP with 
parameter o(

√

n/ log(n)) . According to the results of 
Liu et  al. (2011); Wei et  al. (2015), some lattice reduc-
tion or enumeration algorithms enjoy a better time and 
space complexity. In our reduction the constant hidden 
by o(

√

n/ log(n)) is almost irrelevant the uniqueness 
factor of uSVP. Hence we have the result that 
GapSVP

o(
√

n/ log(n))
 is solvable within time 20.8306n+o(n).

Technique and limitation
The reduction used to establish our result is essentially the 
same one used by Lyubashevsky (2008) which was inspired 
by Peikert (2009). In order to solve GapSVP instance with 
the help of uSVP oracle, the reduction procedure construct 
a new basis from the input GapSVP instance. When the 
input is a NO instance, the uSVP oracle must answer the 
unique shortest vector generated by the reduction proce-
dure. Meanwhile, if the input is a YES instance, the uSVP 
oracle won’t be able to distinguish between the vector gen-
erated by the procedure and it’s difference with some 
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vectors in the lattice spanned by the original basis of 
GapSVP instance. Actually this indistinguishability holds 
for any full power oracle, which is quite strong. One may 
want to use the same technique to prove similar results for 
uSVP with uniqueness factors beyond constant, which 
would be quite attractive. Unfortunately, this won’t work 
due to the basic rules of high dimensional balls. The same 
situation arises when one tries to decrease c′ to beyond 
constant. It should be emphasized that our reduction dosn’t 
hold for of GapSVP

O(

√

n/ logk n)
 for constant k > 1 , which is 

a little closer to the NP-hardness bound n
1

O(log log(n)) proved 
by Micciancio (2012).

Roadmap
In “Preliminary” Section, we provided some basic knowl-
edge about lattice. The main reduction is proved in 
“Hardness of uSVP” Section, it can be read alone since 
“Intersection of high dimensional balls” Section only pro-
vided a fact of high dimensional balls supporting the 
parameter settings in our reduction. Readers familiar with 
lattices and high dimensional balls can safely skip “Prelimi-
nary” and “Intersection of high dimensional balls” Sections.

Preliminary
Through out this paper, we use lowercase letters to denote 
numbers, variables and matrices, which can be told easily 
according to their contexts. Especially, e is used as the base 
of natural logrithm. We use log(a) to denote the logrithm 
of a with base 2. For a vector v = (v1, · · · , vn) , we use 
�v� =

√

∑n
i=1 v

2
i  to denote its Euclidean norm, which is 

usually called the length of v. Given a,  b, with 
a = (a1, . . . , an) being column vector, b = (b1, . . . ) being 
vector or number, we use (a, b) to denote the concatenation 
of a and b, i.e. (a, b) = (a1, . . . , an, b1, . . . ).

A lattice is the group generated by the integral com-
bination of a finite subset of Rn . Given a set of vectors 
B = [b1, · · · , bm] ∈ Rn×m , the lattice generated by B is the 
group

Take a vector t ∈ Rn , we define the distance from t to lat-
tice L(B) to be

For every lattice L(B) , there is a very important sequence 
of constants {�i(L(B))}i∈[1,m] , which are called the suc-
cessive minimums. They are defined as follows.

L(B) =

{

m
∑

i=1

zibi|zi ∈ Z

}

.

dist(t,L(B)) = min
v∈L(B)

{�t − v�}.

where Bn(r) = {v|v ∈ Rn, �v� ≤ r} is the n-dimensional 
closed ball of radius r centered at 0 with respect to 
Euclidean norm. For simplicity, we use �i(B) to denote 
�i(L(B)) . The most studied one of them is �1(L(B)) , 
which is usually denoted by �(B).

Definition 1 (Bounded Distance Decoding Problem 
( BDDα )) Given basis B and a vector t with the promise 
that dist(t,L(B) < α�(B) , the Bounded Distance Decod-
ing problem is a promised search problem which asks for 
the vector v ∈ L(B) closest to t.

Definition 2 (Shortest Vector Problem (SVP)) Given 
basis B, the Shortest Vector problem is a search problem 
which asks for a vector v ∈ L(B) with length �v� = �(B).

Definition 3 (Approximate Shortest Vector Problem 
( SVPγ )) For any real γ , given basis B, the Approximate 
Shortest Vector problem is a search problem which asks 
for a vector v ∈ L(B) with length �v� ≤ γ �(B).

Definition 4 (Gap Shortest Vector Problem ( GapSVPγ )) 
For any real γ ≥ 1, d , given basis B, the Gap Shortest 
Vector problem is a decisional problem which asks to tell 
the following

• (B, d) is a YES instance if �(B) ≤ d

• (B, d) is a NO instance if �(B) > γd.

Definition 5 (Unique Shortest Vector Problem 
( γ − uSVP )) For any real γ ≥ 1 , given basis B, the Unique 
Shortest Vector problem is a promised search problem 
with the promise that �2(B) > γ �1(B) , which asks for the 
unique vector v ∈ L(B) with length �v� = �(B).

Balls in n-dimension are defined as the set

where x ∈ Rn is the center of the ball, and r ∈ R is its 
radius. If the center of a ball is 0, we simplely write it as 
Bn(r) = Bn(0, r) . If the radius of a ball is 1, we simplely write 
it as Bn(x) = Bn(x, 1) . Especially, the ball centered at 0 with 
radius 1 is denoted by Bn.

The (complete) gamma function is defined as 
Ŵ(n) = (n− 1)! . Although there are much more interesting 
facts about the gamma function, knowing its basic definition 
is enough for our usage. Actually, for our reduction, it’s not 
neccessory to know any detail about the gamma function.

�i(L(B)) = inf{r|dim(span(L(B) ∩ B
n(r))) ≥ i},

B
n(x, r) = {v|v, x ∈ Rn, �v − x� ≤ r},
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Intersection of high dimensional balls
We are going to show some facts about high dimen-
sional spheres in this section. First of all, using the 
famous notion of gamma function, the volume of 
n-dimensional unit ball can be write as

Hence the volume of n-dimensional ball with radius r is

Actually, for the purpose of supporting our proof, it’s 
enough to show the relation between V (Bn−1) and V (Bn) . 
This can be done by integral of the volume of (n− 1)

-dimensional ball. Formally, we have

V (Bn) =
πn/2

Ŵ(n/2+ 1)
.

V (Bn(r)) =
πn/2rn

Ŵ(n/2+ 1)
.

(1)

V (Bn) =

1
∫

−1

V
(

B
n−1(

√

1− x2)
)

dx

= 2V (Bn−1)

1
∫

0

(1− x2)(n−1)/2dx.

Now let’s focus on the intersection of balls. Since 
we are dealing with lattice problems, there is a sib-
ling for every lattice point v in the same lattice. If an 
unit ball centered at v intersects Bn , there is another 
unit ball centered at −v intersects Bn , too. As an 
example we illustrated these balls in Fig.  1 when the 
dimension is 2. We want to bound the volume of the 
intersection of these 3 unit balls, i.e. the volume of 
S = (Bn(1) ∩ Bn(v, 1)) ∪ (Bn(1) ∩ Bn(−v, 1)) . Our redu 
ction fails in the situation where ‖v‖ is such a constant 
that for sufficiently large dimension n, the volume of S 
is negligible. So we only consider the situation where 
�v� = 2ε is sufficiently small. For convenience of anal-
ysis, let kε = 1, k ∈ Z . In the case k ′ /∈ Z , we can set 
k = ⌊k ′⌋ , and all following inequalities still hold. We 
can rewrite the volume of Bn as follows

Instead of directly calculating the volume of S, we bound 
the volume of V (Bn(1))− V (S) as follows

Let ε = c0
√

log(n− 1)/(n− 1) , for sufficiently large n 
we have

(2)

V (Bn) = 2V (Bn−1)

k
∑

i=1

iε
∫

(i−1)ε

(1− x2)(n−1)/2dx

> 2V (Bn−1)

k
∑

i=1

(

1− (iε)2

1− ε2

)(n−1)/2 ε
∫

0

(1− x2)(n−1)/2dx

> 2V (Bn−1)
(

1+ (1− 4ε2)(n−1)/2
)

ε
∫

0

(1− x2)(n−1)/2dx.

(3)

V (Bn)− V (S) =

ε
�

−ε

V
�

B
n−1(

�

1− x2)
�

− V
�

B
n−1

�

�

1− (2ε − |x|)2
�

�

dx

= 2V (Bn−1)





ε
�

0

(1− x2)(n−1)/2
−

2ε
�

ε

(1− x2)(n−1)/2dx





< 2V (Bn−1)(1− (1− 4ε2)(n−1)/2)

ε
�

0

(1− x2)(n−1)/2dx.

(4)

V (S)

V (Bn)
= 1−

V (Bn)− V (S)

V (Bn)

> 1−
1− (1− 4ε2)(n−1)/2

1+ (1− 4ε2)(n−1)/2

= 2

(

1−
1

1+ (1− 4ε2)(n−1)/2

)

≈ 2

(

1−
1

1+ e−2c20 log(n−1)

)

.

Fig. 1 Intersection of 3 balls in dimension 2
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Let c0 be a constant such that 2c20 log(n− 1) log(e)

< log(nk − 1) , we have

With this result, we have the following lemma for lattices

Lemma 1 For any integer k ≥ 1 , let c0 be a constant 
such that 2c20 log(n− 1) log(e) ≤ log(nk − 1) , 
ε ≤ c0

√

log(n−1)
n−1  , and x be a vector in Rn such that 

�x� ≤ d . If s is sampled uniform randomly form Bn( 1
2εd) , 

then with probability at least 1
nk

 we have the length of 
either s − x or s + x is at most 12εd.

Collary 1 For k ≥ 2 , let c0 be any constant, lemma 1 holds 
for all sufficiently large n. Especially, lemma 1 holds for

(5)
V (S)

V (Bn)
> 1−

1

1+ (nk − 1)−1
=

2

nk
>

1

nk
.

(6)ε = c0

√

log(n)

n
< c0

√

log(n− 1)

n− 1
.

Hardness of uSVP
In this section we construct the reduction from GapSVPγ 
to γ ′-uSVP, where γ = O(

√

n/ log(n)) and γ ′
= O(1) . 

Actually, we used the same reduction which was used by 
Lyubashevsky (2008) with different parameters. Lyuba-
shevsky established the connection between GapSVPγ 
and γ

6
√
n
-uSVP. Different with Lyubashevsky (2008), our 

reduction proved that γ ′-uSVP, where γ ′ being any con-
stant, is at least in NP ∩ coAM (Goldreich and Goldwas-
ser 2000), which showed us some hope for proving the 
NP-hardness of γ ′-uSVP. This is even better than a possi-
ble result mentioned by the author in Lyubashevsky 
(2008), where it was conjectured that the uniqueness fac-
tor of uSVP can be optimized to be γ ·

√

log(n)/n (the 
corresponding gap of GapSVP should be O(

√

n/ log(n)) , 
this is the same with the parameter resulted by our 
reduction).
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The reduction procedure takes as input a basis 
B0 ∈ Rn×n and a real number d as a GapSVPγ instance. 
We will proved that this procedure output YES if 
�(B0) ≤ d with probability exponentially close to 1, and 
output NO if �(B0) > γd . The basic idea of this reduc-
tion is that we can distinguish between YES and NO 
instance of GapSVPγ with access to an oracle for γ ′-uSVP. 
More specificly, a new basis B was constructed by adding 
an extra vector, say s, to B0 . Then we are able to proved 
that if �(B0) > γd , with properly parameters, the procu-
dure can find s. On the other hand, if �(B0) ≤ d , with rea-
sonalble probability, NO procedure can tell s from some 
other vectors and hence may output any one of them. 
Hence we know that the original (B0, d) is a YES instance 
once the procedure output a short vector other than s. 
Similar with Lyubashevsky (2008), we write the following 
theorem as a summary of this reduction.

Theorem  1 For any constant c0 satisfies lemma  1, let 
c = 1

2c0
 , c′ > 3

√

2c and γ = c′
√

n/ log(n) , for any integer 
k ≥ 2 and all sufficiently large n, GapSVPγ reduces to c′

3
√

2c

-uSVP in polynomial time under randomized reduction.

Proof of Theorem 1
Now let’s prove that reduction 1 behaves right as expected 
under the situations where (B0, d) is a YES and NO 
instance of GapSVPγ.

On one hand, assume that (B0, d) is a NO 
instance. In this case, we have �(B0) > γd , and 
dist(t,L(B0)) ≤ �s� ≤ c

√

n/ log(n)d ≤
c
c′ �(B0) . Notice 

that reduction 1 only output YES in two places. For 
the first place, we have β = 1, �v − t� ≤ c

√

n/ log(n)d 
and v  = t − s . Notice that t − s ∈ L(B0) , we can prove 
�v − (t − s)� < �(B0) by the following

This contradits the definition of �(B0).

In the second place, we have that BetaWasOne was 
never set to true. According to lemma  2, there is an α 
such that

(7)

�v − (t − s)� ≤ �v − t� + �s�

≤ 2c
√

n/ log(n)d

≤ c
√

n/ log(n)�(B0)/γ

≤
c

c′
�(B0).

Moreover, (v − t,−α) is the c′

3
√

2c
-unique shortest vector 

in L(B) . Notice that α = 2i · c
2c′ γd , with 

0 ≤ i ≤ ⌈log(�b1�)− log(γd)⌉ . We have α ranges from

to

Since α is multiplied by 2 in each loop, there exist an i 
makes c

2c′ �(B0) ≤ α ≤
c
c′ �(B0) holds. When calling the 

c′

3
√

2c
-uSVP oracle with the corresponding matrix B as 

input, the oracle would return the unique vector 
�w� = �(v − t,−α)� = �(B) , which satisfies 
β = 1, �v − t� ≤ c

√

n/ log(n)d and v = t − s . The varia-
ble BetaWasOne is set to be true, hence it won’t output 
YES.

Combine all above, we proved that on input a NO 
instance (B0, d) , procedure 1 never output YES for all 
j. This proved the correctness of this reduction when 
(B0, d) is a NO instance.

On the other hand, assume that (B0, d) is a YES instance, 
we have �(B0) ≤ d . Obviously, on input a YES instance, 
with high probability, the constructed lattice B is not a 
c′

3
√

2c
-uSVP instance. Hence, the c′

3
√

2c
-uSVP oracle won’t 

behave in any expected way. Notice that this procedure 
only output NO when BetaWasOne was set to be true for 
every sampled s. We can assume that the oracle always 
tries to prevent procedure 1 to output the correct answer. 
Let’s now bound the probability of procedure 1 output 
NO, we denote this event as E. When E happens, Beta-
WasOne is set to be true for every s. This means that the 
oracle output a w = (v − t,−α) which satisfies 
�v − t� ≤ c

√

n/ log(n)d and v = t − s . Notice that t is 
fixed once s is sampled from B(c

√

n/ log(n)d) . Hence 
output such a w is equivalent with output s, which means 
that the oracle knows s. Howerver, by setting k = 2 in 
lemma 1, this only happens with negligible probability for 
the reason that in each loop (for each j) with probability 
at least 1

n2
 there exists no algorithm that can tell s apart 

(8)

�v − t,−α� =

√

�v − t�2 + α2

≤

√

2c
√

n/ log(n)�(B0)/γ

≤

√

2c

c′
�(B0).

(9)α = 20 ·
c

2c′
γd ≤

c

2c′
�(B0)

(10)

α = 2⌈log(�b1�)−log(γd)⌉
·

c

2c′
γd ≥

c

2c′
�b1� ≥

c

2c′
�(B0).
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from one of ±v0 − s . Where v0 is one of the shortest vec-
tor in L(B0) , and t ≡ s ≡ ±v0 − s mod B0 . Hence, the 
reduction procedure set BetaWasOne to true with proba-
bility at most (1− 1

n2
)+ 1

2n2
= 1− 1

2n2
 . As a result, after 

n3 iterations, Pr[E] < (1− 1
2n2

)n
3
≈ e−n/2 , which is negli-

gible for all sufficiently large n.

Lemma 2 Given B0 ∈ Rn×n, t ∈ Rn×1 and positve real 
number α , consider the following matrix

For properly chosen constant c, c′ > 3
√

2c , 
γ = c′

√

n/ log(n) , if

then L(B) has a c′

3
√

2c
-unique shortest vector. Specifically, if 

v ∈ L(B0) satisfies �v − t� = dist(t,L(B0)) , the vector 
w = (v − t,−α) ∈ L(B) is the c′

3
√

2c
-unique shortest vector.

Proof of Lemma 2
We start by proving that �(B) is indeed smaller than 
�(B0)/3 , then finish the proof by showing that the length of 
any vector other than the multiple of w is big, sepcifically, 
greater than �(B0)/3.

For the value of �(B) we have

Now let’s finish this proof by showing that all vec-
tor w′

�= kw, k ∈ Z are long. For the sake of con-
tradiction, assume that �w′

� ≤ �(B0)/3 . Write 
w′

= (v′ − tβ ,−βα) , where v′ ∈ L(B0) . If β ≥
2c′

3c  , we have 
βα ≥ β c

2c′ �(B0) ≥ �(B0)/3 . If β = 0 , �w′
� = �v′� , since 

v′ ∈ L(B0) , �v′� ≥ �(B0) . Hence we can limit 0 < β < 2c′

3c  . 
By our assumption �v′ − t� < �w′

� ≤ �(B0)/3 . Recall 
that v ∈ L(B0) satisfies �v − t� ≤

c
c′ �(B0) . We have the 

following

(11)B =

[

B0 t
0 α

]

.

(12)

c

2c′
�(B0) ≤ α ≤

c

c′
�(B0),

dist(t,L(B0)) ≤
c

c′
�(B0),

(13)

�(B) ≤ �w� =

√

�v − t�2 + α2

≤

√

( c

c′
�(B0)

)2
+

( c

c′
�(B0)

)2

≤

√

2c

c′
�(B0).

This is a contradiction since v, v′ ∈ L(B0).

As a conclusion, we have c′

3
√

2c
�1(B) < �2(B) , and there is 

a unique vector w satisfies � ± w� = �(B).

Conclusion
We have proved that, for any constant c′

3
√

2c
 , c′

3
√

2c
-uSVP is 

at least as hard as GapSVP
c′
√

n/ log(n)
 , and hence c′

3
√

2c
-

uSVP lies at least in NP ∩ coAM . Especially, the constant 
of the approximation factor of GapSVP is irrelevant with 
c. Our result established a hardness result for uSVP 
which allows one to choose its uniqueness factor at wish. 
From the perspecitve of complexity theory, we gave a 
support for the possibility that uSVP is NP-hard for con-
stant uniqueness factors.

Combining our result for uSVP and the reduction in 
Lyubashevsky and Micciancio (2009), which reduce γ-
uSVP to 1

γ
-BDD, we get a similar hardness result for 

appriximate BDD. Compared with Lyubashevsky and 
Micciancio (2009) our reduction provided more flexibil-
ity for the choice of parameters for GapSVP instance. 
Especially, we reduced GapSVP

c′
√

n/ log n
 to 3

√

2c
c′ -BDD. T 

value of c′ can be an arbitrary small constant, while it 
must be greater than 2 in the result of Lyubashevsky and 
Micciancio (2009).

At the end, we emphasize again that the reduction in 
this paper dosn’t apply for GapSVP

O(

√

n/ logk n)
, k > 1 . 

New ideas are needed to obtain such a result.

Abbreviations
SVP  Shortest vector problem
GapSVP  Gap shortest vector problem
uSVP  Unique shortest vector problem
BDD  Bounded distance decoding problem.
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�v′ − βv� = �(v′ − tβ)− (βv − tβ)�

≤ �v′ − tβ� + β�v − t�

<
1

3
�(B0)+

2

3
�(B0)

= �(B0).



Page 9 of 9Jin and Xue  Cybersecurity            (2023) 6:38  

Availability of data and materials
Not applicable

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Information Security, Institute of Information 
Engineering, Chinese Academy of Sciences, Beijing 100085, China. 2 School 
of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, 
China. 

Received: 30 March 2023   Accepted: 29 June 2023

References
Aggarwal D, Dubey CK (2016) Improved hardness results for unique shortest 

vector problem. Inf Process Lett 116(10):631–637. https:// doi. org/ 10. 
1016/j. ipl. 2016. 05. 003

Ajtai M (1996) Generating hard instances of lattice problems (extended 
abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium 
on Theory of Computing, Association for Computing Machinery, STOC 
’96 New York, pp 99–108

Ajtai M (1998) The shortest vector problem in l2 is np-hard for randomized 
reductions (extended abstract). In: Proceedings of the Thirtieth Annual 
ACM Symposium on Theory of Computing, Association for Computing 
Machinery, STOC ’98 New York, pp 10–19

Ajtai M, Dwork C (1997) A public-key cryptosystem with worst-case/average-
case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, Association for Computing Machinery, 
STOC ’97 New York, pp 284–293

Boas P (1981) Another NP-complete partition problem and the complexity 
of computing short vectors in a lattice. https:// staff. fnwi. uva. nl/p. vanem 
deboas/ vecto rs/ mi810 4c. html

Cai J (1998) A relation of primal-dual lattices and the complexity of shortest 
lattice vector problem. Theor Comput Sci 207(1):105–116. https:// doi. org/ 
10. 1016/ S0304- 3975(98) 00058-9

Cai J, Cusick TW (1999) A lattice-based public-key cryptosystem. Inf Comput 
151(1–2):17–31. https:// doi. org/ 10. 1006/ inco. 1998. 2762

Goldreich O, Goldwasser S (2000) On the limits of nonapproximability of lattice 
problems. J Comput Syst Sci 60(3):540–563. https:// doi. org/ 10. 1006/ jcss. 
1999. 1686

Khoat TQ, Tan NH (2008) Unique shortest vector problem for max norm is 
NP-hard. Cryptology ePrint Archive, Paper 2008/366. https:// eprint. iacr. 
org/ 2008/ 366

Khot S (2003) Hardness of approximating the shortest vector problem in high 
lp norms. , In: 44th Annual IEEE Symposium on Foundations of Computer 
Science, 2003. Proceedings. pp 290–297

Khot S (2004) Hardness of approximating the shortest vector problem in 
lattices. In: 45th Annual IEEE Symposium on Foundations of Computer 
Science pp 126–135

Kumar R, Sivakumar D (2001) On the unique shortest lattice vector problem. 
Theor Comput Sci 255(1–2):641–648. https:// doi. org/ 10. 1016/ S0304- 
3975(00) 00387-X

Liu M, Wang X, Xu G, Zheng X (2011) Shortest lattice vectors in the presence of 
gaps. Cryptology ePrint Archive, Paper 2011/139. https:// eprint. iacr. org/ 
2011/ 139

Lyubashevsky V (2008) The nc-unique shortest vector problem is hard. Cryptol-
ogy ePrint Archive, Paper 2008/504. https:// eprint. iacr. org/ 2008/ 504

Lyubashevsky V, Micciancio D (2009) On bounded distance decoding, unique 
shortest vectors, and the minimum distance problem. In: Halevi S (ed) 
Advances in cryptology - CRYPTO 2009. Lecture Notes in Computer Sci-
ence Berlin, vol 5677, Springer, Heidelberg, pp 577–594

Micciancio D (1998) The shortest vector in a lattice is hard to approximate 
to within some constant. , In: Proceedings 39th Annual Symposium on 
Foundations of Computer Science (Cat. No.98CB36280), pp 92–98

Micciancio D (2004) Almost perfect lattices, the covering radius problem, and 
applications to ajtai’s connection factor. SIAM J Comput 34(1):118–169. 
https:// doi. org/ 10. 1137/ S0097 53970 34335 11

Micciancio D (2012) Inapproximability of the shortest vector problem: toward 
a deterministic reduction. Theory Comput 8(1):487–512. https:// doi. org/ 
10. 4086/ toc. 2012. v008a 022

Peikert C (2009) Public-key cryptosystems from the worst-case shortest vector 
problem: extended abstract. In: Proceedings of the Forty-First Annual 
ACM Symposium on Theory of Computing, Association for Computing 
Machinery, STOC ’09 New York, pp 333–342

Regev O (2003) New lattice based cryptographic constructions. In: Proceed-
ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, 
Association for Computing Machinery, STOC ’03 New York, pp 407–416

Sauer N (1972) On the density of families of sets. J Comb Theory Ser A 
13(1):145–147. https:// doi. org/ 10. 1016/ 0097- 3165(72) 90019-2

Shelah S (1972) A combinatorial problem; stability and order for models and 
theories in infinitary languages. Pac J Math 41:247–261. https:// doi. org/ 
10. 2140/ pjm. 1972. 41. 247

Stephens-Davidowitz N (2016) Search-to-decision reductions for lattice prob-
lems with approximation factors (slightly) greater than one. In: Jansen 
K, Mathieu C, Rolim JDP, Umans C (eds) Approximation, Randomization, 
and Combinatorial Optimization. Algorithms and Techniques (APPROX/
RANDOM 2016). vol. 60, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl, 
Germany, pp. 19–11918

Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative 
frequencies of events to their probabilities. Springer, Cham, pp 11–30

Wei W, Liu M, Wang X (2015) Finding shortest lattice vectors in the presence 
of gaps. In: Nyberg K (ed), Topics in cryptology—CT-RSA 2015 Cham, 
Springer, pp 239–257

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.ipl.2016.05.003
https://doi.org/10.1016/j.ipl.2016.05.003
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html
https://doi.org/10.1016/S0304-3975(98)00058-9
https://doi.org/10.1016/S0304-3975(98)00058-9
https://doi.org/10.1006/inco.1998.2762
https://doi.org/10.1006/jcss.1999.1686
https://doi.org/10.1006/jcss.1999.1686
https://eprint.iacr.org/2008/366
https://eprint.iacr.org/2008/366
https://doi.org/10.1016/S0304-3975(00)00387-X
https://doi.org/10.1016/S0304-3975(00)00387-X
https://eprint.iacr.org/2011/139
https://eprint.iacr.org/2011/139
https://eprint.iacr.org/2008/504
https://doi.org/10.1137/S0097539703433511
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.2140/pjm.1972.41.247

	Improved lower bound for the complexity of unique shortest vector problem
	Abstract
	Introduction
	Our contribution
	Technique and limitation
	Roadmap

	Preliminary
	Intersection of high dimensional balls
	Hardness of uSVP
	Conclusion
	Acknowledgements
	References


