
Jin and Xue Cybersecurity (2023) 6:38
https://doi.org/10.1186/s42400-023-00173-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Improved lower bound for the complexity
of unique shortest vector problem
Baolong Jin1,2 and Rui Xue1,2*

Abstract
Unique shortest vector problem (uSVP) plays an important role in lattice based cryptography. Many cryptographic
schemes based their security on it. For the cofidence of those applications, it is essential to clarify the complex-
ity of uSVP with different parameters. However, proving the NP-hardness of uSVP appears quite hard. To the state
of the art, we are even not able to prove the NP-hardness of uSVP with constant parameters. In this work, we gave
a lower bound for the hardness of uSVP with constant parameters, i.e. we proved that uSVP is at least as hard as gap
shortest vector problem (GapSVP) with gap of O(n/ log(n)) , which is in NP ∩ coAM . Unlike previous works, our
reduction works for paramters in a bigger range, especially when the constant hidden by the big-O in GapSVP
is smaller than 1.

Keywords Computational complexity, Unique shortest vector problem, Bounded distance decoding, Complexity
reduction

*Correspondence:
Rui Xue
xuerui@iie.ac.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00173-w&domain=pdf
http://orcid.org/0000-0001-6024-3635

Page 2 of 9Jin and Xue Cybersecurity (2023) 6:38

Graphical abstract

Introduction
The Shortest Vector Problem (SVP) is one of the most
important problems in lattice theory. From the perspec-
tive of complexity theory, it’s very important to figure out
the precise complexity of SVP with different parameters.
The NP-hardness of SVP in l2 norm was conjectured in
1981 by Boas (1981). However it remains to be an open
problem for quite a long period. A breakthrough came
up at Ajtai (1998), which proved that SVP in l2 norm is
NP-hard under randomized reductions. Actually, in
Ajtai’s work, he proved that approximate SVP in l2 norm
to within a factor of 1+ 2−nε is NP-hard. This result
answered the long standing question of the NP-hardness
of SVP in l2 norm, moreover it showed the possibility
that approximating SVP to some factors beyond the frac-
tion of exponential in n is still NP-hard, which turned
out to be true. The NP-hardness result of SVP was later
improved by Micciancio in Micciancio (1998) to within a
constant approximation factor under a number theoretic
assumption. Moreover, Micciancio’s proof works for any
lp norms for approximation factor p

√

2 . In Khot (2003),
Khot improved the NP-hardness of SVP to approximation
factor p1−ε , which is stronger than Micciancio’s result
(Micciancio 1998). However this reduction only work

for p ≥ p(ε) norms, especially, it don’t apply to l2 norm.
Soon after (Khot 2003), Khot proposed another proof
(Khot 2004) for the NP-hardness of approximating SVP,
which stated that approximating SVP to within any con-
stant factor is NP-hard assuming that NP � RP . Further,
assuming NP � RTIME(2poly(log(n))) there is no polyno-
mial-time algorithm approximates SVP to within factor
of 2log

1
2
−ε

(n) , which is almost polynomial in n. This result
is way more stronger than Micciancio (1998) and Khot
(2003). Later, Micciancio (2012) proposed another proof
for the NP-hardness of approximating SVP. Micciancio
(2012) used the same technique as the one used by Khot
(2004), which is called the BCH code, in a different man-
ner. He had also proved the NP-hardness of SVP for any
constant approximation factor, moreover he proved that
approximating SVP for subpolynomial factors n

1
O(log log n) is

NP-hard assuming that NP is not contained by subexpo-
nential time. The reduction in Micciancio (2012) contains
significantly less probabilistic parts compared to the proof
in Khot (2004), and it is potentially easier to be derand-
omized since the only random parts are the choosing of a
vector and the famous Sauer’s lemma due to Sauer (1972),
Vapnik and Chervonenkis (2015) and Shelah (1972).

Page 3 of 9Jin and Xue Cybersecurity (2023) 6:38

The so called Lattice based cryptography was inovated
by Ajtai (1996), in which Ajtai constructed an aver-
age hard lattice problem called Short Integer Solution
problem (SIS), and it is widely used in all kinds of lat-
tice base cryptographic schemes. Follwoing Ajtai’s work
(Ajtai 1996), researches proposed various cryptographic
schemes. The first one was due to Ajtai and Dwork
(1997), their one-way function was based on the hard-
ness of n8-uSVP, the uniqueness factor of which is quite
large. Following (Ajtai and Dwork 1997), many improved
results (Cai and Cusick 1999; Micciancio 2004; Regev
2003) were proposed, and the security assumption was
improved to n1.5-uSVP. Apparently, a cryptosystem based
on weaker assumption is way more attractive than those
based on strong assumptions. As for uSVP based crypto-
systems, we want to build them upon small uniqueness
factor since O(n)-uSVP tends to be a lot easier than the
corresponding GapSVPO(n) , and both are far away from
being NP-hard.

In the perspective of complexity theory, we want to
build NP-hardness results for uSVP similar with what
was done for SVP. However, things turned out to be
extremly difficult, up to now, we don’t even know
whether uSVP is NP-hard for constant uniqueness factor.
The first result proving the NP-hardness of uSVP was
proposed by Kumar and Sivakumar (2001), without any
guarantee for the uniqueness factor. Aggarwal and Dubey
(2016) proposed a deterministic reduction from SVP to
O(1+ 2−O(n2))-uSVP and a randomized reduction from
SVP to 1+ 1

poly(n)
-uSVP. Aggarwal’s reduction from SVP

to 1+ 1
poly(n)

-uSVP used the same technique used by
Kumar and Sivakumar (2001) to make the shortest vector
unique. At the same time, another work (Stephens-Davi-
dowitz 2016) gave a randomized polynomial-time reduc-
tion from SVP to (1+ O(log(n)/n))-uSVP, which showed
us some hope for proving the NP-hardness of uSVP for
bigger uniqueness factor. As for the l∞ norm, Khoat and
Tan (2008) gave a reduction from Knapsak Optimization
problem to uSVP. On the other side, Cai (1998) proved
that n

1
4-uSVP cannot be NP-hard, unless the polynomial

hierarchy collapses. Lyubashevsky and Micciancio (2009)
investigated the relation between the lattice problems
GapSVP, BDD (Bounded Distance Decoding) and uSVP.
Their results states that 1

2γ -BDD reduces to γ-uSVP, γ-
uSVP reduces to 1

γ
-BDD, and GapSVPγ reduces to

1
γ

√

n/ log(n)-BDD. The last reduction holds for any
γ > 2

√

n/ log(n) . Combine them we have that GapSVPγ
reduces to γ2

√

log(n)/n-uSVP for any γ > 2
√

n/ log(n) .
That is, GapSVP

c′
√

n/ log(n)
 reduces to c′

2-uSVP, which
states that uSVP with constant uniqueness factor is at

least as hard as GapSVP
O(
√

n/ log(n))
 . Note that this result

holds only for c′ > 2.

Our contribution
The NP-hardness of uSVP with constant uniqueness fac-
tor still remains open. And it seems hard to establish
reduction from NP-hard SVP instances to such uSVP
instances. Instead of proving the NP-hardness of uSVP
with constant uniqueness factor, we proved a result
which is similar with the one obtained by combining
results of Lyubashevsky and Micciancio (2009). We
reduced GapSVP

c′
√

n/ log(n)
 to c′

3
√

2c
-uSVP for almost any

constant c and c′ > 3
√

2c . Compared to Lyubashevsky
and Micciancio (2009), our reduction holds for any c′ ,
especially when c′ < 1 is a small constant. Moreover,
since the uniqueness factor of uSVP instance depends on
the fraction of c′ and c instead of only c′ , our result is way
more flexible in the choice of uniqueness factor. Combine
our reduction with the reduction from γ-uSVP to 1

γ
-BDD

in Lyubashevsky and Micciancio (2009), we have that
GapSVP

c′
√

n/ log(n)
 reduces to 3

√

2c
c′ -BDD. Notice that, in

the sence of parameters of BDD, this result from GapSVP
to BDD is the same with that in Lyubashevsky and Mic-
ciancio (2009). However, due to the flexibility of the
choice for c, c′ , the constant for GapSVP can be as small
as you like, which gave a stronger guarantee for the hard-
ness of BDD.

As an application of our result, one can directly con-
vert an algorithm for uSVP with arbitrary constant
uniqueness factor into an algorithm for GapSVP with
parameter o(

√

n/ log(n)) . According to the results of
Liu et al. (2011); Wei et al. (2015), some lattice reduc-
tion or enumeration algorithms enjoy a better time and
space complexity. In our reduction the constant hidden
by o(

√

n/ log(n)) is almost irrelevant the uniqueness
factor of uSVP. Hence we have the result that
GapSVP

o(
√

n/ log(n))
 is solvable within time 20.8306n+o(n).

Technique and limitation
The reduction used to establish our result is essentially the
same one used by Lyubashevsky (2008) which was inspired
by Peikert (2009). In order to solve GapSVP instance with
the help of uSVP oracle, the reduction procedure construct
a new basis from the input GapSVP instance. When the
input is a NO instance, the uSVP oracle must answer the
unique shortest vector generated by the reduction proce-
dure. Meanwhile, if the input is a YES instance, the uSVP
oracle won’t be able to distinguish between the vector gen-
erated by the procedure and it’s difference with some

Page 4 of 9Jin and Xue Cybersecurity (2023) 6:38

vectors in the lattice spanned by the original basis of
GapSVP instance. Actually this indistinguishability holds
for any full power oracle, which is quite strong. One may
want to use the same technique to prove similar results for
uSVP with uniqueness factors beyond constant, which
would be quite attractive. Unfortunately, this won’t work
due to the basic rules of high dimensional balls. The same
situation arises when one tries to decrease c′ to beyond
constant. It should be emphasized that our reduction dosn’t
hold for of GapSVP

O(

√

n/ logk n)
 for constant k > 1 , which is

a little closer to the NP-hardness bound n
1

O(log log(n)) proved
by Micciancio (2012).

Roadmap
In “Preliminary” Section, we provided some basic knowl-
edge about lattice. The main reduction is proved in
“Hardness of uSVP” Section, it can be read alone since
“Intersection of high dimensional balls” Section only pro-
vided a fact of high dimensional balls supporting the
parameter settings in our reduction. Readers familiar with
lattices and high dimensional balls can safely skip “Prelimi-
nary” and “Intersection of high dimensional balls” Sections.

Preliminary
Through out this paper, we use lowercase letters to denote
numbers, variables and matrices, which can be told easily
according to their contexts. Especially, e is used as the base
of natural logrithm. We use log(a) to denote the logrithm
of a with base 2. For a vector v = (v1, · · · , vn) , we use
�v� =

√

∑n
i=1 v

2
i to denote its Euclidean norm, which is

usually called the length of v. Given a, b, with
a = (a1, . . . , an) being column vector, b = (b1, . . .) being
vector or number, we use (a, b) to denote the concatenation
of a and b, i.e. (a, b) = (a1, . . . , an, b1, . . .).

A lattice is the group generated by the integral com-
bination of a finite subset of Rn . Given a set of vectors
B = [b1, · · · , bm] ∈ Rn×m , the lattice generated by B is the
group

Take a vector t ∈ Rn , we define the distance from t to lat-
tice L(B) to be

For every lattice L(B) , there is a very important sequence
of constants {�i(L(B))}i∈[1,m] , which are called the suc-
cessive minimums. They are defined as follows.

L(B) =

{

m
∑

i=1

zibi|zi ∈ Z

}

.

dist(t,L(B)) = min
v∈L(B)

{�t − v�}.

where Bn(r) = {v|v ∈ Rn, �v� ≤ r} is the n-dimensional
closed ball of radius r centered at 0 with respect to
Euclidean norm. For simplicity, we use �i(B) to denote
�i(L(B)) . The most studied one of them is �1(L(B)) ,
which is usually denoted by �(B).

Definition 1 (Bounded Distance Decoding Problem
(BDDα)) Given basis B and a vector t with the promise
that dist(t,L(B) < α�(B) , the Bounded Distance Decod-
ing problem is a promised search problem which asks for
the vector v ∈ L(B) closest to t.

Definition 2 (Shortest Vector Problem (SVP)) Given
basis B, the Shortest Vector problem is a search problem
which asks for a vector v ∈ L(B) with length �v� = �(B).

Definition 3 (Approximate Shortest Vector Problem
(SVPγ)) For any real γ , given basis B, the Approximate
Shortest Vector problem is a search problem which asks
for a vector v ∈ L(B) with length �v� ≤ γ �(B).

Definition 4 (Gap Shortest Vector Problem (GapSVPγ))
For any real γ ≥ 1, d , given basis B, the Gap Shortest
Vector problem is a decisional problem which asks to tell
the following

• (B, d) is a YES instance if �(B) ≤ d

• (B, d) is a NO instance if �(B) > γd.

Definition 5 (Unique Shortest Vector Problem
(γ − uSVP)) For any real γ ≥ 1 , given basis B, the Unique
Shortest Vector problem is a promised search problem
with the promise that �2(B) > γ �1(B) , which asks for the
unique vector v ∈ L(B) with length �v� = �(B).

Balls in n-dimension are defined as the set

where x ∈ Rn is the center of the ball, and r ∈ R is its
radius. If the center of a ball is 0, we simplely write it as
Bn(r) = Bn(0, r) . If the radius of a ball is 1, we simplely write
it as Bn(x) = Bn(x, 1) . Especially, the ball centered at 0 with
radius 1 is denoted by Bn.

The (complete) gamma function is defined as
Ŵ(n) = (n− 1)! . Although there are much more interesting
facts about the gamma function, knowing its basic definition
is enough for our usage. Actually, for our reduction, it’s not
neccessory to know any detail about the gamma function.

�i(L(B)) = inf{r|dim(span(L(B) ∩ B
n(r))) ≥ i},

B
n(x, r) = {v|v, x ∈ Rn, �v − x� ≤ r},

Page 5 of 9Jin and Xue Cybersecurity (2023) 6:38

Intersection of high dimensional balls
We are going to show some facts about high dimen-
sional spheres in this section. First of all, using the
famous notion of gamma function, the volume of
n-dimensional unit ball can be write as

Hence the volume of n-dimensional ball with radius r is

Actually, for the purpose of supporting our proof, it’s
enough to show the relation between V (Bn−1) and V (Bn) .
This can be done by integral of the volume of (n− 1)

-dimensional ball. Formally, we have

V (Bn) =
πn/2

Ŵ(n/2+ 1)
.

V (Bn(r)) =
πn/2rn

Ŵ(n/2+ 1)
.

(1)

V (Bn) =

1
∫

−1

V
(

B
n−1(

√

1− x2)
)

dx

= 2V (Bn−1)

1
∫

0

(1− x2)(n−1)/2dx.

Now let’s focus on the intersection of balls. Since
we are dealing with lattice problems, there is a sib-
ling for every lattice point v in the same lattice. If an
unit ball centered at v intersects Bn , there is another
unit ball centered at −v intersects Bn , too. As an
example we illustrated these balls in Fig. 1 when the
dimension is 2. We want to bound the volume of the
intersection of these 3 unit balls, i.e. the volume of
S = (Bn(1) ∩ Bn(v, 1)) ∪ (Bn(1) ∩ Bn(−v, 1)) . Our redu
ction fails in the situation where ‖v‖ is such a constant
that for sufficiently large dimension n, the volume of S
is negligible. So we only consider the situation where
�v� = 2ε is sufficiently small. For convenience of anal-
ysis, let kε = 1, k ∈ Z . In the case k ′ /∈ Z , we can set
k = ⌊k ′⌋ , and all following inequalities still hold. We
can rewrite the volume of Bn as follows

Instead of directly calculating the volume of S, we bound
the volume of V (Bn(1))− V (S) as follows

Let ε = c0
√

log(n− 1)/(n− 1) , for sufficiently large n
we have

(2)

V (Bn) = 2V (Bn−1)

k
∑

i=1

iε
∫

(i−1)ε

(1− x2)(n−1)/2dx

> 2V (Bn−1)

k
∑

i=1

(

1− (iε)2

1− ε2

)(n−1)/2 ε
∫

0

(1− x2)(n−1)/2dx

> 2V (Bn−1)
(

1+ (1− 4ε2)(n−1)/2
)

ε
∫

0

(1− x2)(n−1)/2dx.

(3)

V (Bn)− V (S) =

ε
�

−ε

V
�

B
n−1(

�

1− x2)
�

− V
�

B
n−1

�

�

1− (2ε − |x|)2
�

�

dx

= 2V (Bn−1)

ε
�

0

(1− x2)(n−1)/2
−

2ε
�

ε

(1− x2)(n−1)/2dx

< 2V (Bn−1)(1− (1− 4ε2)(n−1)/2)

ε
�

0

(1− x2)(n−1)/2dx.

(4)

V (S)

V (Bn)
= 1−

V (Bn)− V (S)

V (Bn)

> 1−
1− (1− 4ε2)(n−1)/2

1+ (1− 4ε2)(n−1)/2

= 2

(

1−
1

1+ (1− 4ε2)(n−1)/2

)

≈ 2

(

1−
1

1+ e−2c20 log(n−1)

)

.

Fig. 1 Intersection of 3 balls in dimension 2

Page 6 of 9Jin and Xue Cybersecurity (2023) 6:38

Let c0 be a constant such that 2c20 log(n− 1) log(e)

< log(nk − 1) , we have

With this result, we have the following lemma for lattices

Lemma 1 For any integer k ≥ 1 , let c0 be a constant
such that 2c20 log(n− 1) log(e) ≤ log(nk − 1) ,
ε ≤ c0

√

log(n−1)
n−1 , and x be a vector in Rn such that

�x� ≤ d . If s is sampled uniform randomly form Bn(1
2εd) ,

then with probability at least 1
nk

 we have the length of
either s − x or s + x is at most 12εd.

Collary 1 For k ≥ 2 , let c0 be any constant, lemma 1 holds
for all sufficiently large n. Especially, lemma 1 holds for

(5)
V (S)

V (Bn)
> 1−

1

1+ (nk − 1)−1
=

2

nk
>

1

nk
.

(6)ε = c0

√

log(n)

n
< c0

√

log(n− 1)

n− 1
.

Hardness of uSVP
In this section we construct the reduction from GapSVPγ
to γ ′-uSVP, where γ = O(

√

n/ log(n)) and γ ′
= O(1) .

Actually, we used the same reduction which was used by
Lyubashevsky (2008) with different parameters. Lyuba-
shevsky established the connection between GapSVPγ
and γ

6
√
n
-uSVP. Different with Lyubashevsky (2008), our

reduction proved that γ ′-uSVP, where γ ′ being any con-
stant, is at least in NP ∩ coAM (Goldreich and Goldwas-
ser 2000), which showed us some hope for proving the
NP-hardness of γ ′-uSVP. This is even better than a possi-
ble result mentioned by the author in Lyubashevsky
(2008), where it was conjectured that the uniqueness fac-
tor of uSVP can be optimized to be γ ·

√

log(n)/n (the
corresponding gap of GapSVP should be O(

√

n/ log(n)) ,
this is the same with the parameter resulted by our
reduction).

Page 7 of 9Jin and Xue Cybersecurity (2023) 6:38

The reduction procedure takes as input a basis
B0 ∈ Rn×n and a real number d as a GapSVPγ instance.
We will proved that this procedure output YES if
�(B0) ≤ d with probability exponentially close to 1, and
output NO if �(B0) > γd . The basic idea of this reduc-
tion is that we can distinguish between YES and NO
instance of GapSVPγ with access to an oracle for γ ′-uSVP.
More specificly, a new basis B was constructed by adding
an extra vector, say s, to B0 . Then we are able to proved
that if �(B0) > γd , with properly parameters, the procu-
dure can find s. On the other hand, if �(B0) ≤ d , with rea-
sonalble probability, NO procedure can tell s from some
other vectors and hence may output any one of them.
Hence we know that the original (B0, d) is a YES instance
once the procedure output a short vector other than s.
Similar with Lyubashevsky (2008), we write the following
theorem as a summary of this reduction.

Theorem 1 For any constant c0 satisfies lemma 1, let
c = 1

2c0
 , c′ > 3

√

2c and γ = c′
√

n/ log(n) , for any integer
k ≥ 2 and all sufficiently large n, GapSVPγ reduces to c′

3
√

2c

-uSVP in polynomial time under randomized reduction.

Proof of Theorem 1
Now let’s prove that reduction 1 behaves right as expected
under the situations where (B0, d) is a YES and NO
instance of GapSVPγ.

On one hand, assume that (B0, d) is a NO
instance. In this case, we have �(B0) > γd , and
dist(t,L(B0)) ≤ �s� ≤ c

√

n/ log(n)d ≤
c
c′ �(B0) . Notice

that reduction 1 only output YES in two places. For
the first place, we have β = 1, �v − t� ≤ c

√

n/ log(n)d
and v = t − s . Notice that t − s ∈ L(B0) , we can prove
�v − (t − s)� < �(B0) by the following

This contradits the definition of �(B0).

In the second place, we have that BetaWasOne was
never set to true. According to lemma 2, there is an α
such that

(7)

�v − (t − s)� ≤ �v − t� + �s�

≤ 2c
√

n/ log(n)d

≤ c
√

n/ log(n)�(B0)/γ

≤
c

c′
�(B0).

Moreover, (v − t,−α) is the c′

3
√

2c
-unique shortest vector

in L(B) . Notice that α = 2i · c
2c′ γd , with

0 ≤ i ≤ ⌈log(�b1�)− log(γd)⌉ . We have α ranges from

to

Since α is multiplied by 2 in each loop, there exist an i
makes c

2c′ �(B0) ≤ α ≤
c
c′ �(B0) holds. When calling the

c′

3
√

2c
-uSVP oracle with the corresponding matrix B as

input, the oracle would return the unique vector
�w� = �(v − t,−α)� = �(B) , which satisfies
β = 1, �v − t� ≤ c

√

n/ log(n)d and v = t − s . The varia-
ble BetaWasOne is set to be true, hence it won’t output
YES.

Combine all above, we proved that on input a NO
instance (B0, d) , procedure 1 never output YES for all
j. This proved the correctness of this reduction when
(B0, d) is a NO instance.

On the other hand, assume that (B0, d) is a YES instance,
we have �(B0) ≤ d . Obviously, on input a YES instance,
with high probability, the constructed lattice B is not a
c′

3
√

2c
-uSVP instance. Hence, the c′

3
√

2c
-uSVP oracle won’t

behave in any expected way. Notice that this procedure
only output NO when BetaWasOne was set to be true for
every sampled s. We can assume that the oracle always
tries to prevent procedure 1 to output the correct answer.
Let’s now bound the probability of procedure 1 output
NO, we denote this event as E. When E happens, Beta-
WasOne is set to be true for every s. This means that the
oracle output a w = (v − t,−α) which satisfies
�v − t� ≤ c

√

n/ log(n)d and v = t − s . Notice that t is
fixed once s is sampled from B(c

√

n/ log(n)d) . Hence
output such a w is equivalent with output s, which means
that the oracle knows s. Howerver, by setting k = 2 in
lemma 1, this only happens with negligible probability for
the reason that in each loop (for each j) with probability
at least 1

n2
 there exists no algorithm that can tell s apart

(8)

�v − t,−α� =

√

�v − t�2 + α2

≤

√

2c
√

n/ log(n)�(B0)/γ

≤

√

2c

c′
�(B0).

(9)α = 20 ·
c

2c′
γd ≤

c

2c′
�(B0)

(10)

α = 2⌈log(�b1�)−log(γd)⌉
·

c

2c′
γd ≥

c

2c′
�b1� ≥

c

2c′
�(B0).

Page 8 of 9Jin and Xue Cybersecurity (2023) 6:38

from one of ±v0 − s . Where v0 is one of the shortest vec-
tor in L(B0) , and t ≡ s ≡ ±v0 − s mod B0 . Hence, the
reduction procedure set BetaWasOne to true with proba-
bility at most (1− 1

n2
)+ 1

2n2
= 1− 1

2n2
 . As a result, after

n3 iterations, Pr[E] < (1− 1
2n2

)n
3
≈ e−n/2 , which is negli-

gible for all sufficiently large n.

Lemma 2 Given B0 ∈ Rn×n, t ∈ Rn×1 and positve real
number α , consider the following matrix

For properly chosen constant c, c′ > 3
√

2c ,
γ = c′

√

n/ log(n) , if

then L(B) has a c′

3
√

2c
-unique shortest vector. Specifically, if

v ∈ L(B0) satisfies �v − t� = dist(t,L(B0)) , the vector
w = (v − t,−α) ∈ L(B) is the c′

3
√

2c
-unique shortest vector.

Proof of Lemma 2
We start by proving that �(B) is indeed smaller than
�(B0)/3 , then finish the proof by showing that the length of
any vector other than the multiple of w is big, sepcifically,
greater than �(B0)/3.

For the value of �(B) we have

Now let’s finish this proof by showing that all vec-
tor w′

�= kw, k ∈ Z are long. For the sake of con-
tradiction, assume that �w′

� ≤ �(B0)/3 . Write
w′

= (v′ − tβ ,−βα) , where v′ ∈ L(B0) . If β ≥
2c′

3c , we have
βα ≥ β c

2c′ �(B0) ≥ �(B0)/3 . If β = 0 , �w′
� = �v′� , since

v′ ∈ L(B0) , �v′� ≥ �(B0) . Hence we can limit 0 < β < 2c′

3c .
By our assumption �v′ − t� < �w′

� ≤ �(B0)/3 . Recall
that v ∈ L(B0) satisfies �v − t� ≤

c
c′ �(B0) . We have the

following

(11)B =

[

B0 t
0 α

]

.

(12)

c

2c′
�(B0) ≤ α ≤

c

c′
�(B0),

dist(t,L(B0)) ≤
c

c′
�(B0),

(13)

�(B) ≤ �w� =

√

�v − t�2 + α2

≤

√

(c

c′
�(B0)

)2
+

(c

c′
�(B0)

)2

≤

√

2c

c′
�(B0).

This is a contradiction since v, v′ ∈ L(B0).

As a conclusion, we have c′

3
√

2c
�1(B) < �2(B) , and there is

a unique vector w satisfies � ± w� = �(B).

Conclusion
We have proved that, for any constant c′

3
√

2c
 , c′

3
√

2c
-uSVP is

at least as hard as GapSVP
c′
√

n/ log(n)
 , and hence c′

3
√

2c
-

uSVP lies at least in NP ∩ coAM . Especially, the constant
of the approximation factor of GapSVP is irrelevant with
c. Our result established a hardness result for uSVP
which allows one to choose its uniqueness factor at wish.
From the perspecitve of complexity theory, we gave a
support for the possibility that uSVP is NP-hard for con-
stant uniqueness factors.

Combining our result for uSVP and the reduction in
Lyubashevsky and Micciancio (2009), which reduce γ-
uSVP to 1

γ
-BDD, we get a similar hardness result for

appriximate BDD. Compared with Lyubashevsky and
Micciancio (2009) our reduction provided more flexibil-
ity for the choice of parameters for GapSVP instance.
Especially, we reduced GapSVP

c′
√

n/ log n
 to 3

√

2c
c′ -BDD. T

value of c′ can be an arbitrary small constant, while it
must be greater than 2 in the result of Lyubashevsky and
Micciancio (2009).

At the end, we emphasize again that the reduction in
this paper dosn’t apply for GapSVP

O(

√

n/ logk n)
, k > 1 .

New ideas are needed to obtain such a result.

Abbreviations
SVP Shortest vector problem
GapSVP Gap shortest vector problem
uSVP Unique shortest vector problem
BDD Bounded distance decoding problem.

Acknowledgements
There is no any third person/ organisation to acknowledge

Author contributions
All authors read and approved the final manuscript.

Funding
This work is funded by National Natural Science Foundation of China (Grants
No. 62172405).

(14)

�v′ − βv� = �(v′ − tβ)− (βv − tβ)�

≤ �v′ − tβ� + β�v − t�

<
1

3
�(B0)+

2

3
�(B0)

= �(B0).

Page 9 of 9Jin and Xue Cybersecurity (2023) 6:38

Availability of data and materials
Not applicable

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100085, China. 2 School
of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049,
China.

Received: 30 March 2023 Accepted: 29 June 2023

References
Aggarwal D, Dubey CK (2016) Improved hardness results for unique shortest

vector problem. Inf Process Lett 116(10):631–637. https:// doi. org/ 10.
1016/j. ipl. 2016. 05. 003

Ajtai M (1996) Generating hard instances of lattice problems (extended
abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, STOC
’96 New York, pp 99–108

Ajtai M (1998) The shortest vector problem in l2 is np-hard for randomized
reductions (extended abstract). In: Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, Association for Computing
Machinery, STOC ’98 New York, pp 10–19

Ajtai M, Dwork C (1997) A public-key cryptosystem with worst-case/average-
case equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, Association for Computing Machinery,
STOC ’97 New York, pp 284–293

Boas P (1981) Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. https:// staff. fnwi. uva. nl/p. vanem
deboas/ vecto rs/ mi810 4c. html

Cai J (1998) A relation of primal-dual lattices and the complexity of shortest
lattice vector problem. Theor Comput Sci 207(1):105–116. https:// doi. org/
10. 1016/ S0304- 3975(98) 00058-9

Cai J, Cusick TW (1999) A lattice-based public-key cryptosystem. Inf Comput
151(1–2):17–31. https:// doi. org/ 10. 1006/ inco. 1998. 2762

Goldreich O, Goldwasser S (2000) On the limits of nonapproximability of lattice
problems. J Comput Syst Sci 60(3):540–563. https:// doi. org/ 10. 1006/ jcss.
1999. 1686

Khoat TQ, Tan NH (2008) Unique shortest vector problem for max norm is
NP-hard. Cryptology ePrint Archive, Paper 2008/366. https:// eprint. iacr.
org/ 2008/ 366

Khot S (2003) Hardness of approximating the shortest vector problem in high
lp norms. , In: 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings. pp 290–297

Khot S (2004) Hardness of approximating the shortest vector problem in
lattices. In: 45th Annual IEEE Symposium on Foundations of Computer
Science pp 126–135

Kumar R, Sivakumar D (2001) On the unique shortest lattice vector problem.
Theor Comput Sci 255(1–2):641–648. https:// doi. org/ 10. 1016/ S0304-
3975(00) 00387-X

Liu M, Wang X, Xu G, Zheng X (2011) Shortest lattice vectors in the presence of
gaps. Cryptology ePrint Archive, Paper 2011/139. https:// eprint. iacr. org/
2011/ 139

Lyubashevsky V (2008) The nc-unique shortest vector problem is hard. Cryptol-
ogy ePrint Archive, Paper 2008/504. https:// eprint. iacr. org/ 2008/ 504

Lyubashevsky V, Micciancio D (2009) On bounded distance decoding, unique
shortest vectors, and the minimum distance problem. In: Halevi S (ed)
Advances in cryptology - CRYPTO 2009. Lecture Notes in Computer Sci-
ence Berlin, vol 5677, Springer, Heidelberg, pp 577–594

Micciancio D (1998) The shortest vector in a lattice is hard to approximate
to within some constant. , In: Proceedings 39th Annual Symposium on
Foundations of Computer Science (Cat. No.98CB36280), pp 92–98

Micciancio D (2004) Almost perfect lattices, the covering radius problem, and
applications to ajtai’s connection factor. SIAM J Comput 34(1):118–169.
https:// doi. org/ 10. 1137/ S0097 53970 34335 11

Micciancio D (2012) Inapproximability of the shortest vector problem: toward
a deterministic reduction. Theory Comput 8(1):487–512. https:// doi. org/
10. 4086/ toc. 2012. v008a 022

Peikert C (2009) Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract. In: Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, Association for Computing
Machinery, STOC ’09 New York, pp 333–342

Regev O (2003) New lattice based cryptographic constructions. In: Proceed-
ings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, STOC ’03 New York, pp 407–416

Sauer N (1972) On the density of families of sets. J Comb Theory Ser A
13(1):145–147. https:// doi. org/ 10. 1016/ 0097- 3165(72) 90019-2

Shelah S (1972) A combinatorial problem; stability and order for models and
theories in infinitary languages. Pac J Math 41:247–261. https:// doi. org/
10. 2140/ pjm. 1972. 41. 247

Stephens-Davidowitz N (2016) Search-to-decision reductions for lattice prob-
lems with approximation factors (slightly) greater than one. In: Jansen
K, Mathieu C, Rolim JDP, Umans C (eds) Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/
RANDOM 2016). vol. 60, Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Leibniz International Proceedings in Informatics (LIPIcs) Dagstuhl,
Germany, pp. 19–11918

Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative
frequencies of events to their probabilities. Springer, Cham, pp 11–30

Wei W, Liu M, Wang X (2015) Finding shortest lattice vectors in the presence
of gaps. In: Nyberg K (ed), Topics in cryptology—CT-RSA 2015 Cham,
Springer, pp 239–257

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.ipl.2016.05.003
https://doi.org/10.1016/j.ipl.2016.05.003
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html
https://doi.org/10.1016/S0304-3975(98)00058-9
https://doi.org/10.1016/S0304-3975(98)00058-9
https://doi.org/10.1006/inco.1998.2762
https://doi.org/10.1006/jcss.1999.1686
https://doi.org/10.1006/jcss.1999.1686
https://eprint.iacr.org/2008/366
https://eprint.iacr.org/2008/366
https://doi.org/10.1016/S0304-3975(00)00387-X
https://doi.org/10.1016/S0304-3975(00)00387-X
https://eprint.iacr.org/2011/139
https://eprint.iacr.org/2011/139
https://eprint.iacr.org/2008/504
https://doi.org/10.1137/S0097539703433511
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.4086/toc.2012.v008a022
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.2140/pjm.1972.41.247
https://doi.org/10.2140/pjm.1972.41.247

	Improved lower bound for the complexity of unique shortest vector problem
	Abstract
	Introduction
	Our contribution
	Technique and limitation
	Roadmap

	Preliminary
	Intersection of high dimensional balls
	Hardness of uSVP
	Conclusion
	Acknowledgements
	References

