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Abstract 

It is challenging to devise lightweight cryptographic primitives efficient in both hardware and software that can 
provide an optimum level of security to diverse Internet of Things applications running on low-end constrained 
devices. Therefore, an efficient hardware design approach that requires some specific hardware resource may not be 
efficient if implemented in software. Substitution bit Permutation Network based ciphers such as PRESENT and GIFT 
are efficient, lightweight cryptographic hardware design approaches. These ciphers introduce confusion and diffu-
sion by employing a 4 × 4 static substitution box and bit permutations. The bit-wise permutation is realised by sim-
ple rerouting, which is most cost-effective to implement in hardware, resulting in negligible power consumption. 
However, this method is highly resource-consuming in software, particularly for large block-sized ciphers, with each 
single-bit permutation requiring multiple sub-operations. This paper proposes a novel software-based design 
approach for permutation operation in Substitution bit Permutation Network based ciphers using a bit-banding fea-
ture. The conventional permutation using bit rotation and the proposed approach have been implemented, analysed 
and compared for GIFT and PRESENT ciphers on ARM Cortex-M3-based LPC1768 development platform with KEIL 
MDK used as an Integrated Development Environment. The real-time performance comparison between conven-
tional and the proposed approaches in terms of memory (RAM/ROM) footprint, power, energy and execution time 
has been carried out using ULINKpro and ULINKplus debug adapters for various code and speed optimisation sce-
narios. The proposed approach substantially reduces execution time, energy and power consumption for both PRE-
SENT and GIFT ciphers, thus demonstrating the efficiency of the proposed method for Substitution bit Permutation 
Network based symmetric block ciphers.
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Introduction
The Internet of things (Ashton 2009) is an ever-growing 
network of uniquely identifiable smart connected devices 
that sense, communicate and share information using 
heterogeneous networks. Smart IoT applications (Rejeb 
et al. 2022) are set to bring remarkable benefits to human 
lives by digitising the day-to-day used physical assets. 
However, IoT, a fragmented technology, encompasses 

heterogeneous-natured devices with several limita-
tions and challenges hindering its widespread adoption 
(Nazish and Banday 2018). Because of the generic con-
straints associated with these devices in terms of area, 
bandwidth, memory, power and battery life, together 
with the financial limitations, security has often been 
an afterthought, resulting in minimal space left for the 
crypto implementation. This restricts the application 
of conventional and standardised crypto primitives for 
securing IoT devices. Nevertheless, lightweight cryp-
tography attempts to design efficient primitives to miti-
gate most existing threats while proving less resource 
intensive.
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Most cryptography revolves around the block cipher 
design due to their profound use in designing pseudor-
andom number generators, key establishment protocols, 
MAC, hash and encryption primitives. The design tar-
get metrics considered in lightweight design are mainly 
area (slice or flip-flop count), memory footprint (RAM/
ROM), latency, power and energy consumption. How-
ever, the heterogeneous nature of IoT devices and the 
trade-offs between various metrics make it quite chal-
lenging to design a ‘one design fits all’ lightweight block 
cipher. Therefore, specific featured lightweight crypto-
graphic primitives have been designed for diverse smart 
IoT applications. For example, PRINCE (Borghoff, et  al. 
2012) and Midori (Banik et al. 2015) are low-latency and 
low-energy block primitives, respectively. On the other 
hand, PRESENT (Bogdanov et al. 2007), SIMON (Beau-
lieu et al. 2015) and GIFT (Lee 1989) are hardware-effi-
cient primitives, with ITUBee (Karakoç et al. 2013) and 
SPECK (Beaulieu et al. 2015) being examples of software-
friendly block ciphers.

A sub-class of SPN network-based ciphers known 
as SbPN primitives, such as PRESENT and GIFT block 
ciphers, are remarkably efficient in hardware because of 
their s-boxes and bit-permutations. Both use lightweight 
4 × 4  s-boxes to offer confusion, whereas, for diffusion, 
bit-permutations involving zero gate count are used. 
However, in software, bit-permutations are the most 
inefficient in terms of the instruction count and execu-
tion time. As such, to make the SbPN-based primitives’ 
software efficient, several methods have been used, such 
as table-based implementations (Heys 2020), bit-slicing 
(Kwan 2000), fix-slicing (Adomnicai et al. 2020) in addi-
tion to the use of the bit manipulation instructions (Lee 
1989). However, even though these implementation tech-
niques provide impressive results, they have some form 
of complexity in terms of large memory footprint or high 
energy and power consumption requirements. Moreover, 
they are not always cost-effective, limiting their use for 
securing low-end embedded devices. Thus, rather than 
getting bogged down with addressing security concerns 
for lightweight IoT devices from a hardware or only soft-
ware perspective, designing ciphers from a use-case per-
spective with optimum efficiency in both is the ultimate 
requirement for smart IoT applications. Thus, efforts 
must be put to use the appropriate confusion and diffu-
sion implementation techniques that are both hardware 
and software efficient to have an optimum and balanced 
crypto design suitable for several applications.

This paper provides a novel method to offer bit-per-
mutation-based diffusion for permutation operation in 
Substitution bit Permutation Network based ciphers 
using Bit-Banding feature of contemporary ARM Cor-
tex-M processors. The proposed approach has been 

implemented, analysed and compared using GIFT and 
PRESENT ciphers.

The paper is structured as follows: “Background” sec-
tion summarises the SbPN-based PRESENT and GIFT 
block primitives and outlines their existing implementa-
tion techniques. This section also explains the bit-band 
feature available with the ARM Cortex-M processors 
and lists various software-efficient compiler optimisation 
techniques. “Related work” section presents the literature 
survey of the software efficient block cipher implemen-
tation techniques. “Proposed work” section discusses the 
proposed software-efficient implementation technique 
for performing the permutation in PRESENT and GIFT 
block primitives. “Implementation” section explains the 
implementation methodology and provides a compara-
tive analysis of the results obtained for the direct and 
proposed methods in terms of various performance met-
rics. In addition, this section reports the code and perfor-
mance improvements obtained for the proposed method 
using seven optimisation techniques. Finally, “Results 
and discussions” section provides the summarised results 
of the proposed technique.

Background
SbPN ciphers
The lightweight block cipher design uses a round func-
tion iterated a specific number of times to achieve an 
optimum security margin. Furthermore, the design 
must satisfy Shannon’s confusion and diffusion para-
digm (Shannon 1945). Diffusion means each output bit 
should be influenced by each plaintext and key input bit. 
The confusion ensures the complicacy of this depend-
ency, which ascertains that the relationship between the 
input and output bits is complex and hard to reverse. 
Non-linear components such as s-box, boolean functions 
and non-linear arithmetic operations offer confusion 
in addition to a small amount of local diffusion. Mainly, 
linear elements such as Maximum Distance Separable 
(MDS) matrices, bit-permutations, circular shifts, XOR 
and swap operations are employed to offer diffusion on 
a global level. Substitution Permutation Network (SPN) 
is one of the most used secure block cipher construc-
tion schemes, utilising s-box, p-box and XOR to realise a 
round function. A special class of SPN ciphers is the Sub-
stitution bit Permutation Network (SbPN) based primi-
tives. An m/n-SbPN is an n-bit block cipher with each 
s-box being m-bit wide. These ciphers use only the bit-
permutations to realise the linear layer.

Permutations at the bit level find vast applications in 
cryptography and digital processing for faster security 
and multimedia operations. Bit-permutation has been 
used in several famous ciphers such as DES, Serpent, 
PRESENT, GIFT and many more. Permutations of two 
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and six types have been employed in the hardware-ori-
ented Serpent (Biham et al. 1998) and DES (Biryukov and 
Cannière 2006) ciphers, respectively. Bit-permutations 
can be invertible or non-invertible. Compression and 
expansion p-boxes (Forouzan et  al. 2015) are examples 
of non-invertible permutations. In compression p-boxes, 
the bit-wise permutation is performed so that the dif-
fused output bits are less in number than the input bits. 
As a result, several input bits are not mapped to the out-
put. This is useful when the next round needs fewer bits 
than the previous one. On the other hand, in expansion 
p-boxes, several input bits are mapped to more than one 
output bit, which results in a more significant number of 
diffused output bits than the input bits. This is used in 
ciphers where the next round needs more bits than the 
previous one. The irreversible compression and expan-
sions p-boxes are not utilised in SPN or SbPN ciphers, 
which instead use straight invertible p-boxes with an 
equal number of input and output bits. The following 
section details the hardware-efficient SbPN ciphers-PRE-
SENT and GIFT and summarises their existing imple-
mentation techniques.

PRESENT block cipher
PRESENT is one of the premier hardware-efficient light-
weight block ciphers proposed by Bogdanov et  al. in 
2007. It is an SbPN-based block cipher, having a fixed 
block size of 64 bits and variable key lengths of 80- or 
128-bits. Figure  1 depicts the encryption process of the 
PRESENT64/80 cipher consisting of 31 rounds followed 
by a final post-key-whitening stage. Each round consists 
of a keyed XOR (addroundkey) and keyless substitution 
(s-BoxLayer), and permutation (p-Layer) sub-stages.

AddRoundKey: The key scheduling algorithm takes 
an 80-bit shared key as the input and generates 64-bit 
sub-round keys using a simple round function involving 
circular shift, s-box and round constant addition opera-
tions. Each sub-round key is bit-wise XORed with the 
64-bit input state.

S-BoxLayer: The XORed output is applied as input to 
16 invertible 4 × 4 static s-boxes. Each s-box takes 4 bits 
(X) as input and yields the confused 4-bit output (S[X]). 
Apart from confusion, these s-boxes offer a local diffu-
sion. Table 1 lists all the s-box output values correspond-
ing to the 16 inputs in hexadecimal notation.

P-Layer: The 64-bit output from 16 s-boxes is applied 
as an input to the p-layer that performs a bit-wise diffu-
sion. The bit at index location i is shifted to location P(i) 
as per the diffusion Table 2.

Being an SPN cipher, each sub-operation in a round 
function is invertible. As such, decryption is the reverse 
of the encryption process. It involves static 4 × 4 inverse 
s-box and inverse p-layer realised using a 16-byte 

lookup table and 64-bit bit-wise reverse diffusion, 
respectively. The sub-round keys generated by the key 
scheduling algorithm are applied in reverse order.

The following section summarises several imple-
mentation methods for performing permutation in the 
PRESENT Block Cipher:

• Direct Method: In the direct method, the bit-wise 
permutation of the s-box layer output is realised 
using the bit-rotation method. Each bit permuta-
tion requires four sub-operations comprising the 
generation of the mask, masking (AND), shifting 
and XOR.

• Wide Table Method: The wide-table method com-
bines a single s-box and a p-box to form a com-
bined SP lookup table for simultaneous confusion 
and diffusion. The input to a single SP-wide table is 
a 4-bit state output from the add round key stage, 
which acts as the index to a specific memory loca-
tion. The 64-bit value at the specified location 

Fig. 1 Encryption process of the PRESENT block cipher
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forms the output corresponding to the 4-bit input 
state. Sixteen such wide SP tables are required to 
offer 64-bit diffusion. All the sixteen 64-bit outputs 
corresponding to 16 nibbles are combined to form 
the permuted output of one round function.

• Combined Wide Table Method: The combined-wide 
table method combines two s-boxes and one p-box 
to form a lookup table of 8 × 64 bytes. The 8-bit 
input to the two s-boxes forms the input to the 
combined SP table that points to a specific mem-
ory location. The 64-bit value corresponding to this 
location forms the output. For permuting a 64-bit 
state, eight such SP tables are required. The eight 
64-bit values are XORed together to yield permuted 
state.

All the methods mentioned above are software 
efficient; however, these have drawbacks in terms 
of memory footprint, instruction count and timing 
requirements. The direct method is a memory-efficient 
technique. However, this incurs a substantial over-
head due to the requirement of several mask, shift and 
XOR sub-operations for the ciphers with large block 
sizes. The table-based methods are known for their 
high-speed execution. These have comparatively fewer 
instruction requirements than the narrow-table or 
direct approach. However, these highly memory-inten-
sive methods require 32 and 16 SP tables for encryp-
tion and decryption in wide and combined-wide table 
implementation methods, respectively. Furthermore, 
these methods employ several bit mask, shift and XOR 
operations to apply a lookup operation on a specified 
data nibble or byte.

GIFT block cipher
Although PRESENT is a hardware-oriented cipher, it is 
not much resistant to linear cryptanalytic attacks. Also, 
it utilises a high branch numbered s-box that proves 
costlier in terms of area footprint. Therefore, Banik et al. 
worked towards designing a comparatively lightweight 
and more secure cipher and finally came up with an 
improved version of PRESENT in 2017 named the GIFT 
block cipher. Unlike PRESENT, which uses an s-box with 
branch number 3, GIFT uses a reduced branch numbered 
two s-box that proves more area and cost-efficient and is 
more resistant against the linear cryptanalytic attack.

GIFT is an SbPN-based symmetric block cipher with 
two versions: GIFT 64/128 and GIFT 128/128, having 
a fixed key length of 128 bits with varying block sizes 
and rounds. For block-size of 64 and 128 bits, 28 and 40 
rounds are used, respectively.

GIFT64/128 (Fig. 2) encryption process utilises a key-
alternating construction with two keyless (subcells and 
permbits) and one keyed (addroundkey) sub-stage:

Subcells: The 64-bit input state is applied nibble-wise 
to the 4 × 4 static s-box to offer optimum confusion and 
a small amount of diffusion. Each nibble ‘X’ is replaced 
with ‘S[X]’ using the pre-defined s-box mapping shown 
in Table 3.

Permbits: This layer performs a bit-wise 64-bit permu-
tation on the output bits of 16 parallel s-boxes. A bit at 
index position i is shifted to the P(i) bit position as per 
the permutation table given in Table 4.

AddRoundKey: The diffused state bits from the 
permbits stage are XORed with the sub-round key bits 
and round constants. Each sub-round key generated from 
the key scheduling algorithm using simple extraction and 
circular shift operations is 32 bits in size. Therefore, only 
32 bits out of the 64-bit state are bit-wise XORed with 

Table 1 S-box of the PRESENT block cipher

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[X] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2 Permutation table of the PRESENT block cipher

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
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the sub-round key for greater hardware efficiency. This 
saves the computational costs associated with the XOR 
operations, making the cipher efficient in hardware and 
software.

AddRoundConstants: Six input state bits are bit-wise 
XORed with six round constants. In addition, bit  (b63) is 
XORed with ‘1’.

GIFT decryption involves using a 4 × 4 static inverse 
s-box and inverse p-layer to offer confusion and diffu-
sion in the cipher. The round keys generated from the 
key generation algorithm are applied in reverse order to 
obtain the original message.

The following methods exist for performing permuta-
tion in the GIFT Block Cipher:

• Direct Method: In the direct Implementation, the 
permutation layer takes the output state from the 
s-box as input. It performs diffusion using the bit-
rotation method involving several mask generation, 
masking, shifting and XOR sub-operations.

• Bit-Slicing Method: In the bit-slicing technique, dif-
fusion is performed using masking, shift and XOR 
steps simultaneously on bits in a given slice. This, in 
turn, amounts to the requirement of multiple such 
operations for permuting bits in multiple slices, 
resulting in a higher cycle count and delayed execu-
tion. Bit-sliced permutation can also be performed by 
transposing and then subjecting each slice to differ-
ent row-swapping operations determined by the slice 
number.

• Fix-Slicing Method: In the fix-slicing method, the 
first slice is not subjected to any diffusion operation, 
whereas the rest of the three slices undergo row-wise 
and column-wise rotations.

Fig. 2 Encryption process of the GIFT block cipher

Table 3 S-box of the GIFT block cipher

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[X] 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Table 4 Permutation table of the GIFT block cipher

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15



Page 6 of 18Nazish et al. Cybersecurity            (2023) 6:42 

The direct implementation method proves to be a 
memory-efficient technique. But, this incurs a substantial 
overhead due to the requirement of several mask, shift 
and XOR sub-operations for the ciphers with large block 
sizes. The bit-sliced-based computational process is more 
straightforward and faster because the plaintext block is 
divided into multiple slices. Also, it permits the process-
ing of multiple blocks in parallel. However, it can prove 
inappropriate for low-end IoT devices that usually work 
with much smaller payloads. Also, substantial overhead is 
associated with the diffusion layer, as bits must be trans-
posed in the slice individually rather than in large chunks, 
making it computationally intensive. Even though bit-
slicing can improve speed, the overheads associated 
with packing and unpacking data at the start and the 
end of the encryption and decryption processes make 
the process quite resource-consuming for ultra-light-
weight devices. Furthermore, this method uses several 
general-purpose registers to store the transposed bits of 
a given message. Unfortunately, low-end IoT processors 
often have a minimal number of such registers, thereby 
increasing the number of load and store instructions that 
degrade the overall performance. Moreover, the bit-sliced 
permutation in GIFT cipher involves multiple mask, 
shift, and XOR operations, thereby incurring large com-
putational overhead regarding the number of cycles. The 
fix-slicing technique saves multiple operations by replac-
ing the transposition and row-switching operations with 
row and column rotations, thereby increasing the speed 
of the cipher. It also takes advantage of the barrel shifter 
capability available with the ARM Cortex architecture 
for performing multi-bit rotations in a single clock cycle, 
thereby making the implementation of the linear layer 
less costly. However, the round keys and round constants 
need to be modified as per the new bit positions, which 
incurs additional computational overheads.

Bit‑band memory
ARM Cortex-M (Banday 2018; Rouf et  al. 2022) are 
32-bit processors primarily designed for deeply embed-
ded microcontrollers and IoT market spaces. These 
low-powered processors feature several energy modes, 
barrel shifters and pipelined architectures. This makes 
them suitable for diverse low-power and low-latency IoT 
applications. Furthermore, these processors are based 
on ARMv7 instruction set architecture and support the 
Thumb-2 instruction set, which includes a mix of 16- 
and 32-bit instructions, making them highly suitable for 
high-performance and memory-deficient IoT applica-
tions (Schwabe and Stoffelen 2017; Kim, et  al. 2022). 
In addition, ARM Cortex-M processors have optional 
support for bit manipulation using the bit-banding fea-
ture. Unlike other processors, which include separate 

bit-manipulation processors or use specific instructions 
to perform bit-level manipulations that increase the over-
all design cost, these processors incorporate a unique 
feature of bit-banding that uses two memory regions, 
bit-band and bit-band alias, to support bit-wise opera-
tions. Regular access to the bit-band region results in a 
word read or write operation. On the other hand, normal 
read or write to the bit-band alias region results in sin-
gle-bit access in the corresponding bit-band region. This 
is because each bit in the bit-band region is mapped to a 
word (more specifically, to the least significant bit of the 
32-bit word) in the corresponding bit-band alias area.

In ARM Cortex-M3 processors, two bit-band regions 
are set aside for performing the bit-band operations. 
These are located in the starting 1 MB of SRAM and the 
first 1 MB of the peripheral regions with base addresses 
as 0X20000000  and 0X40000000, respectively. The cor-
responding two bit-band alias regions are in SRAM, and 
peripheral regions with base addresses 0X22000000 and  
0X42000000, respectively. Each bit-band alias region is 
32 MB in size because each bit mapping in the bit-band 
region requires a word (32 bits) in the bit-band alias 
region.

Bit-banding offers several advantages. First, it simplifies 
the bit write and read operations by working directly on 
the appropriate bit-band alias location corresponding to a 
specific bit in the bit-band region. It performs bit manip-
ulation in a single cycle. Unlike the conventional bit-
modification involving read, modify and write sub-tasks, 
bit-banding permits atomic and uninterrupted error-
free bit operations. This also prevents conflicts in the 
case of multiple tasks using shared memory (Yiu 2014). 
Also, single-bit manipulation operation is realised using 
a single load or store instruction, which results in faster 
bit manipulations (Bai 2015). Further, it simplifies the 
execution of several conditional branching operations by 
reading a specific bit-band alias location instead of read-
ing and masking 32 bits in the bit-band region, thereby 
speeding the branching decisions (Tahir and Javed 2017).

Compiler optimisation
One of the design approaches to achieve software effi-
ciency is to employ optimisation techniques available 
with the compilers. This method makes the design either 
code-efficient with reduced RAM and ROM utilisation or 
can help enhance the execution speed. In addition, using 
optimisation techniques can help run programs faster 
without changing the code. The compiler uses precom-
putation of values, inlining functions, unrolling loops, 
reordering code statements, and many more to pro-
duce a much faster binary. However, the downside with 
the inclusion of the compiler optimisation techniques is 
that it can make the program hard to debug. With lower 
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optimisation levels, detailed information about the pro-
gram can be viewed, which can then be used to track 
down the bugs in the code. On the other hand, this fea-
ture becomes more restricted with higher optimisation 
levels, which hinders debugging to a greater extent. How-
ever, these levels permit high-speed or low code footprint 
optimisations. Thus, it is recommended to use lower or 
no optimisations while developing the algorithm and 
switch to higher optimisations once the code is released.

Several compiler optimisation options are available 
with the KEIL MDK Integrated Development Environ-
ment (Table  5). They either optimise the program for 
code size or performance, and opting for one metric 
degrades the other. Furthermore, depending on the type 
of application and the constraints involved, one can use a 
particular optimisation level(s).

Related work
Ruby Lee (Lee 1989) used the EXTRACT and DEPOSIT 
bit manipulation instructions available with the PA-RISC 
Precision Architecture processors to perform bit per-
mutations. The results reported the requirement of only 
two instructions for performing a one-bit permutation, 
thus resulting in a 50% reduction in instruction count 
compared to the bit-rotation method that requires four 
instructions to perform a single-bit permutation.

Eli Biham (1997) presented a high-speed software-
friendly bit-sliced implementation of the DES block 
cipher that resulted in two times increase in its execution 
speed. Furthermore, an average requirement of 100 gates 

has been reported for the hardware implementation of 
one s-box.

Matthew Kwan et al. (2000) propounded the bit-slicing 
term and used this method to improvise Biham’s work 
with 56 gates required for a single s-box implementation.

Matsui et al. (2007) provided improvised results for the 
AES block cipher implemented using the bit-sliced Intel 
Core2 processor architecture. The results report reduced 
execution time requirements for the proposed implemen-
tation compared to the table-based AES implementation.

Bogdanov et  al. (2007) proposed PRESENT, a hard-
ware-oriented block cipher for highly constrained 
devices. It has a fixed block size of 64 bits and a varia-
ble key size of 80 and 128 bits. Both versions use 31 SPN 
rounds with a post-key-whitening step used at the end.

In his thesis, Poschmann (2009), provides the code and 
speed-optimized implementation of the PRESENT block 
cipher for diverse platforms with 8-, 16- and 32-bit pro-
cessors. It also uses the narrow table approach for the 
s-box implementation, which despite being efficient in 
software, is prone to cache timing attacks.

Benadjila et al. (2014) performed bit-sliced implemen-
tation of several block ciphers using SIMD instructions 
and vectorisation features available with the Intel × 86 
platforms. The results report increased speed gain for the 
analysed ciphers, including PRESENT.

Papapagiannopoulos et  al. (2014) implemented vari-
ous block primitives in a bit-sliced manner on the 
ATtiny family of AVR platforms. Improved results have 
been reported for the PRESENT cipher by utilising the 

Table 5 Advantages and drawbacks of various compiler optimisation levels

Compiler optimization level Advantages Drawbacks

-O0 High correlational view between source and generated codes
Quick build and compile
Easy Debugging
Best for prototyping

No Optimisations enabled
Large Code-size
Higher execution-time

-O1 Better debug view
Good stack utilisation

High Memory Requirements
High Execution-time

-O2 High Speed Larger Code-size

-O3 High Speed Larger Code-size
Poor correlational view 
between source and gener-
ated codes

-Ofast High Speed Larger Code-size
Poor correlational view 
between source and gener-
ated codes
May perform optimisa-
tions that are not standard 
compliant

-Oz Reduced Memory Footprint Slower execution

-Os Balanced speed and memory usage Moderate performance
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s-box implementation of Boyar and Peralta (2010) real-
ised using 14 instructions.

Banik et  al. (2017) proposed the GIFT block cipher 
in 2017, having variable block sizes of 64- and 128-
bits with a fixed key length of 128-bits. The number 
of rounds is variable, 28 for 64-bit and 40 for 128-bit 
block-sized versions. Results prove the GIFT cipher is 
more hardware-efficient and secure than the PRESENT 
block cipher.

Tiago et  al. (2017) presented a timing attack-resistant 
masked implementation of the PRESENT block cipher. 
Furthermore, the implementation involves decompos-
ing the linear layer and realising the s-box in a bit-sliced 
manner using optimised boolean functions. On 32-bit 
ARM Cortex processors, an 8% improvement in execu-
tion speed is reported for the cipher, requiring 2100 
cycles compared to that provided by FELICS.

Dinu et al. (2019) evaluated crypto ciphers in terms of 
a figure of merit calculated from various metrics such as 
time, RAM and ROM footprint. Nineteen block primi-
tives have been comparatively analysed on AVR, MSP430 
and ARM, which are 8-, 16- and 32-bit platforms, respec-
tively. In the case of the PRESENT block cipher, a time-
efficient implementation has been carried out utilising 
the combined substitution and permutation tables.

Adomnicai et  al. (2020) proposed a software-friendly 
implementation technique for the GIFT block cipher 
named fix-slicing. The method uses a few rotations real-
ised using the barrel shifter feature available with the 
ARM Cortex-M3 processors. The results report faster 
execution speed requiring 800 and 1300 cycles for 
GIFT-64 and GIFT-128, respectively, compared to AES 
and PRESENT ciphers requiring 1617 and 2116 cycles, 
respectively.

Adomnicai et  al. (2020) applied the fix-slicing tech-
nique to the AES block cipher. Compared to the bit-sliced 
AES, the results report a 52% reduction in diffusion 
operations using the fix-sliced AES implementation tech-
nique, requiring only 81 cycles for a single-byte encryp-
tion on 32-bit processors.

Further, many software efficient ciphers such as REC-
TANGLE (Zhang et  al. 2015), a 4/64 SbPN cipher with 
structure similar to GIFT and PRESENT ciphers have 
been proposed. RECTANGLE uses shift rows to realise 
the diffusion layer, which is more software friendly than 
bit rotation method used in direct implementation meth-
ods for PRESENT and GIFT block ciphers. However, as 
far as its security is concerned, not much analysis has 
been reported regarding how the linear and differential 
trials are propagated in the RECTANGLE cipher. Also, 
its key scheduling algorithm is more complex than PRE-
SENT and GIFT primitives. Furthermore, four rounds 
are required to attain full diffusion in RECTANGLE 

cipher, whereas the same is attained in only three rounds 
in case of the PRESENT and GIFT block ciphers.

Although the works mentioned above have attempted 
to make the cipher implementation efficient in software 
to a certain extent, however, the associated overheads in 
terms of larger instruction count, higher memory, power 
and time requirements along with the inclusion of spe-
cific bit-manipulation instructions, a significant increase 
in the cost of the development platforms, makes it finan-
cially and resourcefully a non-viable option to secure the 
constrained smart IoT applications. This necessitates 
designing a novel, software-friendly, cost-effective imple-
mentation technique for securing diverse low-energy and 
high-performant low-latency IoT applications. Further, 
the digital world around us is mostly embedded in nature 
and as such using only software efficient or mere hard-
ware efficient crypto primitives cannot be considered as 
a favourable design approach for securing the low-end 
devices. There is a need to address the security con-
cerns of the smart embedded applications from a holis-
tic approach that should consider both the hardware and 
software aspects. This paper proposes a novel software 
efficient implementation method for hardware efficient 
SbPN ciphers to make these primitives more accessible 
for use in a wide range of embedded devices, particularly 
those with limited resource availability.

Proposed work
This paper proposes a novel software-friendly implemen-
tation technique for performing the bit-wise permuta-
tion in the SbPN ciphers by employing the ‘Bit-Banding’ 
feature of ARM Cortex-M processors. An easy, efficient, 
and high-speed software-efficient mapping between the 
bit-band alias regions is performed to achieve bit-level 
diffusion.

All the steps involved in the encryption round func-
tion of the PRESENT64/80 cipher (Fig. 3), except the dif-
fusion, are performed in a manner similar to the direct 
implementation method. First, the 64-bit XORed output 
is provided to 16 (4 × 4) s-boxes that provide the confused 
64-bit output state. This forms the input to the diffusion 
layer (P). Then, the diffusion layer in the proposed bit-
banding approach is implemented as per the pseudocode 
(Algorithm 1) using the following steps:

Step 1 Initialise the permutation table,  Pt (as shown in 
Table 2) and store it in memory.

Step 2 Declare two bit-band memory areas, P and Q, 
each 8 bytes wide.

Step 3 Store 64-bit output state from the sixteen 
s-boxes in the ‘P’ bit-band memory of SRAM.

In ARM Cortex-M3-based LPC1768 IoT hard-
ware platform, the SRAM bit-band region starts from 
0X200000000 × 20,000,000. However, the locations from 
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0X20000000  to  0X2007BFFF are reserved. The input state 
bits to the linear layer are stored starting from location 
0X2007C000. Sixteen nibbles require eight memory byte 

locations for storage. As such, bits  b0 and  b63 occupy LSB 
of  0X2007C000 and MSB of  0X2007C007 memory loca-
tions in the bit-band region.

Step 4 Use the following mapping formula to fill in the  Qa 
bit-band alias memory locations with the permuted state 
bits.

Qa + Pt(i) × 4 ← Pa + (i × 4)

where  Pa and  Qa are the base addresses of the bit-alias 
region storing the input and output of the permutation 
layer, respectively,  Pt is the array of permutation values 
(as given in Table 2), and i represents the bit number var-
ying from 0 to 63.

Fig. 3 Bit-band method of performing permutation for the PRESENT block cipher
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In the bit-band alias region, each bit is represented 
by 32-bit; storing a 64-bit state requires 64 × 4 = 256 
bytes in the ‘Pa’ bit-band alias region with  b0 stored 
at  0X22F80000 through  0X22F80003 and  b63 occupy-
ing  0X22F801EC to  0X22F801EF memory locations. 
Similarly, in the ‘Qa’ bit-band alias area,  0X22F80100 
to  0X22F80103 memory locations store the permuted 
value  b0. Again, the  b63 permuted bit occupies four loca-
tions starting from  0X22F801FC bit-band alias memory 
location. In this mapping process, the Q bit-band region 
from  0X2007C008 to  0X2007C00F, corresponding to the 
 Qa bit-band alias area, gets automatically filled with the 
permuted output state.

In addition to the mapping formula, a scatter file is 
exclusively used to direct the linker to set aside the par-
ticular SRAM regions for the permutation function to 
avoid memory conflicts during program execution.

Step 5 Return the 64-bit permuted output state from 
the Q bit-band area for further processing by the follow-
ing rounds.

Similarly, the decryption phase (Fig. 4) involves the fol-
lowing mapping formula between the inverse permuta-
tion layer’s input and output state bits.

The proposed method for performing the bit-banding-
based permutation has been illustrated for the PRESENT 
block primitive. GIFT block cipher (Figs. 5, 6) follows the 

Qa + (i × 4) ← Pa + Pt(i) × 4

bit-banding approach similar to that used for the PRE-
SENT block cipher.

Implementation
Methodology
The PRESENT and GIFT lightweight block primitives 
have been choosen to evaluate the proposed permutation 
because both the ciphers offer a good balance between 
efficiency, security and hardware simplicity. These are 
used to secure RFID tags, wireless sensor networks and 
any low-end embedded smart IoT applications for which 
resource intensive ciphers like AES are not usually prefer-
able (Bogdanov et al. 2007). Further GIFT cipher inspired 
by PRESENT cipher has been implemented in part or 
full in many of the NIST lightweight AEAD candidates 
such as GIFT-CoFB (Banik et al. 2019a), SUNDAE-GIFT 
(Banik et  al. 2019b), HYENA (Avik Chakraborti 2019a), 
ESTATE (Avik Chakraborti et  al. 2020), LOCUS and 
LOTUS (Avik Chakraborti et al. 2019b).

The PRESENT and GIFT block ciphers have been 
implemented on a 32-bit ARM Cortex-M3-based 
LPC1768 development board. It has 64kB and 512kB 
of RAM and ROM, respectively and operates with a 
core clock frequency of 100  MHz. The availability of 
onboard 20-pin JTAG, 10-pin and 20-pin Cortex con-
nectors permits real-time debugging and tracing of 
the programs. KEIL MDK has been used on the host 
side as an integrated development environment to 
observe, analyse, verify and optimise the algorithms. 
The algorithms’ flashing, debugging and tracing have 

Fig. 4 Bit-band method of performing inverse permutation for the PRESENT block cipher
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Fig. 5 Bit-band method of performing permutation for the GIFT block cipher

Fig. 6 Bit-band method of performing inverse permutation for the GIFT block cipher
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been carried out using advanced debug adapters from 
ARM, namely ULINKpro and ULINKplus. The RAM 
and ROM memory usage of the primitives can be cal-
culated using either debug adapters. Power measure-
ment has been explicitly performed using ULINKplus 
debug adapter. Also, the streaming trace capability 
with ULINKpro permits complete module and func-
tion-level instruction tracing for longer, thus provid-
ing detailed execution timing information. Moreover, 
the energy consumption of the ciphers has been cal-
culated as Energy (in µJ) = Power (in mW) * Time (in 
ms). Moreover, several compiler optimisation tech-
niques have been used to increase the code and speed 
efficiency of the direct and proposed implementation 
methods. In addition, a highly optimised set of libraries 
known as micro-lib has been used that helps reduce the 
overall flash footprint of the block cipher primitives to 
a marginal extent.

Results and discussions
The simple mapping between the bit-band and bit-band 
alias regions with the preclusion of multiple masks, shift, 
and XOR operations make the bit-band permutation 
method the most time-efficient.

Table  6 tabulates the results for various performance 
metrics such as power, energy, execution time and mem-
ory (RAM and ROM) utilisation for the PRESENT block 
cipher implemented using the proposed bit-banding 
technique and the direct method.

The percentage difference in various lightweight met-
rics for the bit-band and direct implementation meth-
ods has been reported for a better comparative analysis. 
In addition, separate computations for the encryption 
and decryption phases of the PRESENT block primitive 
have been listed. For the encryption part, the maximum 
improvement has been reported for the execution time, 
with the bit-band technique requiring 68.96% less time 
than the direct method. This is followed by 42.43% and 
17.82% reductions in energy and power consumption, 
respectively. The only downside of the bit-band technique 

is a comparatively higher memory requirement in terms 
of RAM and ROM footprints. Similar trends have been 
observed for the decryption results, with the bit-band 
method outperforming the direct method by 27.31%, 
45.15% and 82.53% improvements in power, energy and 
time requirements. However, the bit-band method entails 
a slightly larger memory size than the direct approach.

Figure 7 presents the encryption results of various eval-
uation metrics for the direct and bit-band implementa-
tions of the PRESENT block cipher, executed with the 
different optimisation levels (as listed in Table  5) avail-
able with the KEIL IDE. This evaluation has been made 
to evaluate the performance of the proposed technique in 
different compiler optimization levels.

Significant improvements have been obtained for 
the bit-band method with 68.58% and 86.63% reduc-
tion in power and energy consumption by utilising –O2 
compared to the –O0 technique. Furthermore, a speed 
improvement of 56.45% has been attained using the time-
optimized –O3 level. Moreover, the overhead with the 
bit-band-based permutation technique has subsided by 
46.02% with the -Ozimage optimisation level. In the case 
of the direct method, the -O2 level improves power and 
energy consumption by 53.163% and 78.917%, respec-
tively, compared to the –O0 level. Also, with the –Os 
balanced level, a 69.14% reduction in execution time 
has been observed. Finally, more than a 50% decrease in 
memory footprint is obtained using the –Ozimage opti-
mization level.

Figure  8 presents the decryption results for the PRE-
SENT cipher run with different compiler optimiza-
tion levels (Table 5). In the case of the bit-band method, 
84.83% and 93.97% improvements in power and energy 
consumption have been observed with the -O2 level com-
pared to the –O0 level. A 78.49% less time for decryp-
tion is reported with the –O1 level. The –Oz image size 
reduces the memory requirements by half. For the direct 
method, as compared to the –O0 level, a 70.01% and 
89.94% decrease in power and energy consumption has 
been obtained using the –O2 level. A 51.29% decrease 

Table 6 Performance comparison of the proposed implementation technique for the PRESENT block cipher

Implementation Technique Encryption Decryption

Direct Bit‑Band Bit‑Band Vs Direct 
(%age difference)

Direct Bit‑Band Bit‑Band Vs Direct 
(%age difference)

Power (mW) 3.478 2.858 17.82 2.621 1.905 27.31

Energy (uJ) 5.132 2.954 42.43 2.903 1.592 45.15

RAM (Bytes) 600 536 10.67 616 528 14.29

ROM (Bytes) 5896 6192 − 5.02 5912 6192 − 4.74

Execution-Time (ms) 2.385 0.7403 68.96 1.611 0.28146 82.53
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in memory requirements has been possible with the- Oz 
image level. Above 70% reduction in decryption time is 
made with –O2, -O3 and –Ofast optimization levels.

Table  7 presents the performance evaluation results 
in terms of various metrics for the GIFT block cipher, 
implemented using the direct and the proposed bit-band 
methods on the LPC1768 development board. It also 
enumerates the percentage difference in various light-
weight metrics for the bit-band and direct implementa-
tion techniques.

The execution time is reported to show maximum 
improvement, with the bit-band method requiring 
56.42% less time than the direct method. This is followed 
by a 14.76% and 4.25% reduction in energy and power 
requirements, respectively. Again all these improvements 
in the bit-band method are at the cost of a relatively 
higher memory footprint than the direct method. For the 
decryption part, a similar trend is followed with 1.11%, 
11.28% and 10.28% improvements in power, energy and 
time performance metrics. However, the memory size is 

comparatively larger in the bit-band than in the direct 
method.

Figure 9 depicts the comparative encryption results for 
various lightweight metrics of the direct and bit-band 
implementations for the GIFT block cipher run with dif-
ferent optimisation levels (Table 5).

Remarkable improvements have been attained for all 
metrics of the bit-band method, with 90.38% and 98.57% 
reductions in power and energy consumption reported 
with the -O2 technique compared to the –O0 technique. 
In addition, the execution time has been reduced by 
70.90% using high-speed –O3 and –Ofast techniques. 
Moreover, a more than 50% decrease in the memory 
footprint has been achieved using the most code efficient 
–Ozimage optimisation level. For the direct method, with 
the –O3 level, 84.39%, 97.73% and 89.89% reductions in 
power, energy and time utilisation have been reported 
in comparison with the –O0 results. Also, a 32.752% 
reduced memory size has been achieved using the –Oz 
image size level.

Fig. 7 Performance comparison between direct and proposed implementation techniques for the PRESENT block cipher (encryption) utilising 
different compiler optimisation levels
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Figure  10 shows the direct and bit-band decryption 
results for the GIFT cipher using various optimisation 
levels (Table 5).

For the proposed method, the -O3 level reports a 
60.62% and 93.1% decrease in power and energy require-
ments to the –O0 level. Also, a 24.85% reduction in mem-
ory size is possible with the –Oz image level. The –O0, 
-O3, -Ofast and –Oz image levels report almost the same 

decryption times. For the direct method, in comparison 
to the –O0 level, an 85.77% reduction in decryption time 
is attained using the high-speed –O3 and –Ofast opti-
misation levels. 34.19% reduction in memory footprint 
has been reported for the –Oz image level. 67.18% and 
95.33% decrease in power consumption have been pos-
sible with the –Ofast optimisation level.

Fig. 8 Performance comparison between direct and proposed implementation techniques for the PRESENT block cipher (decryption) utilising 
different compiler optimisation levels

Table 7 Performance comparison of the proposed implementation technique with the direct method for the GIFT block cipher

Implementation Technique Encryption Decryption

Direct Bit‑Band Bit‑Band Vs Direct 
(%age difference)

Direct Bit‑Band Bit‑Band Vs Direct 
(%age difference)

Power (mW) 3.204 3.068 4.25 3.308 3.271 1.11

Energy (uJ) 9.119 7.773 14.76 10.016 8.887 11.28

RAM (Bytes) 512 1064 − 107.81 1408 1952 − 38.64

ROM (Bytes) 2064 7124 − 245.16 2188 2720 − 24.31

Execution-time (ms) 5.126 2.234 56.42 3.03 2.72 10.28
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From the results obtained, it can be inferred that 
the proposed bit-banding method for performing per-
mutations in the PRESENT and GIFT SbPN ciphers is 
highly efficient in energy, power and execution time. 
In the direct method, each sub-operation involved in 
the bit-rotation method adds to the instruction count, 
increasing multiple instruction fetch, decode, execute 
and write-back operations. This is more apparent in 
lightweight SbPN ciphers with large block sizes and 
a larger number of rounds. For PRESENT and GIFT 
primitives with block size = 64, the input to the diffu-
sion layer is large. Each bit transposition requires at 
least four sub-operations, viz., mask generation, AND 
or masking, shifting by a specified number of bits and 
XORing the diffused bit state with the original input 
state. This amounts to 4 × 64 = 256 such operations for 
realising a single round permutation. For the PRESENT 
cipher with 31 rounds involving permutation operation 
on the 64-bit state, 64 × 4 × 31, such operations must be 
carried out by a low-end IoT device. Similarly, for the 

28-round GIFT 64/128 cipher, 64 × 4 × 28 sub-opera-
tions are required.

Contrary to this high instruction count and resource-
exhaustive bit-rotation method, bit-banding is a soft-
ware-efficient linear layer implementation technique. 
Moreover, this method does not involve using bit-manip-
ulation instructions to perform the diffusion, offering a 
cost-saving option for low-end IoT processors. Instead, 
a simple mapping between the bit-band and its corre-
sponding bit-band alias region is necessary to perform 
the bit-wise permutation, thus not only saving the chip 
space on processors but also leading to faster execution 
time and reduced power and energy consumption. Imple-
menting the diffusion layer using the proposed technique 
not only reduces the instruction count, but also results in 
a significant decrease in all the lightweight design met-
rics namely power, energy and timing requirements, 
making the use of SbPN ciphers ideal for low-cost, low-
power and low latency applications. Above all, since the 
proposed method is only an implementation strategy and 
does not modify the structure of the primitives, therefore, 

Fig. 9 Performance comparison between direct and proposed implementation techniques for the GIFT block cipher (encryption) utilising different 
compiler optimisation levels
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it does not alter the security margins of any SbPN based 
primitives.

The fallout of the bit-banding method is the compara-
tively large memory requirements. Since each bit in the 
bit-band region corresponds to 32 bits in the bit-band 
alias region of SRAM. As such, the input and output state 
to the permutation layer of 64-bit width together occu-
pies 2 × 64 × 4 = 512 bytes in the bit-band alias memory. 
This makes bit-band permutation less memory efficient 
than the direct method; however, this memory require-
ment is much smaller than what is available with most 
IoT devices.

Conclusion
This paper presents a highly software-efficient method 
for performing bit-permutation-based diffusion using 
the bit-manipulation bit-banding technique with the 
leading edge ARM Cortex-M processors. A simple 
mapping between the bit-band and its correspond-
ing bit-band alias region is necessary to perform the 
bit-wise permutation, thus saving the chip space on 

processors and leading to faster execution time with 
reduced power and energy consumption. Compared 
with the direct implementation methods for the PRE-
SENT and GIFT ciphers, the bit-banding technique 
reports substantial reductions in power, energy and 
time requirements. All these improvements result 
from decreased instruction count and a fast map-
ping between the bit-band and bit-band alias regions. 
The only drawback of this method is an increase in the 
memory footprint, which is not much of a concern for 
ARM Cortex-M-based smart IoT devices. Furthermore, 
the proposed technique has been subjected to vari-
ous compiler optimisation techniques available with 
the KEIL MDK IDE. The results have shown that with 
-O2 level, GIFT and PRESENT block ciphers signifi-
cantly improved energy and power efficiency, whereas 
-O3 and -Ofast have sped up the cipher designs by a 
considerable mark. Moreover, high code efficiency is 
attained with ‘-Ozimage size’ optimisation but at the 
cost of an increase in execution time. Although the pro-
posed technique has been implemented to improve the 

Fig. 10 Performance comparison between direct and proposed implementation techniques for the GIFT block cipher (decryption) utilising 
different compiler optimisation levels
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software efficiency of two SbPN primitives—PRESENT 
and GIFT, it is equally applicable for all such SbPN-
based primitives.
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