
Nazish et al. Cybersecurity (2023) 6:42
https://doi.org/10.1186/s42400-023-00174-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

An efficient permutation approach
for SbPN-based symmetric block ciphers
Mir Nazish1, M. Tariq Banday1* , Insha Syed1 and Sheena Banday1

Abstract

It is challenging to devise lightweight cryptographic primitives efficient in both hardware and software that can
provide an optimum level of security to diverse Internet of Things applications running on low-end constrained
devices. Therefore, an efficient hardware design approach that requires some specific hardware resource may not be
efficient if implemented in software. Substitution bit Permutation Network based ciphers such as PRESENT and GIFT
are efficient, lightweight cryptographic hardware design approaches. These ciphers introduce confusion and diffu-
sion by employing a 4 × 4 static substitution box and bit permutations. The bit-wise permutation is realised by sim-
ple rerouting, which is most cost-effective to implement in hardware, resulting in negligible power consumption.
However, this method is highly resource-consuming in software, particularly for large block-sized ciphers, with each
single-bit permutation requiring multiple sub-operations. This paper proposes a novel software-based design
approach for permutation operation in Substitution bit Permutation Network based ciphers using a bit-banding fea-
ture. The conventional permutation using bit rotation and the proposed approach have been implemented, analysed
and compared for GIFT and PRESENT ciphers on ARM Cortex-M3-based LPC1768 development platform with KEIL
MDK used as an Integrated Development Environment. The real-time performance comparison between conven-
tional and the proposed approaches in terms of memory (RAM/ROM) footprint, power, energy and execution time
has been carried out using ULINKpro and ULINKplus debug adapters for various code and speed optimisation sce-
narios. The proposed approach substantially reduces execution time, energy and power consumption for both PRE-
SENT and GIFT ciphers, thus demonstrating the efficiency of the proposed method for Substitution bit Permutation
Network based symmetric block ciphers.

Keywords Lightweight cryptography, PRESENT, GIFT, SbPN, Cortex-M, LPC1768, Bit-band memory

Introduction
The Internet of things (Ashton 2009) is an ever-growing
network of uniquely identifiable smart connected devices
that sense, communicate and share information using
heterogeneous networks. Smart IoT applications (Rejeb
et al. 2022) are set to bring remarkable benefits to human
lives by digitising the day-to-day used physical assets.
However, IoT, a fragmented technology, encompasses

heterogeneous-natured devices with several limita-
tions and challenges hindering its widespread adoption
(Nazish and Banday 2018). Because of the generic con-
straints associated with these devices in terms of area,
bandwidth, memory, power and battery life, together
with the financial limitations, security has often been
an afterthought, resulting in minimal space left for the
crypto implementation. This restricts the application
of conventional and standardised crypto primitives for
securing IoT devices. Nevertheless, lightweight cryp-
tography attempts to design efficient primitives to miti-
gate most existing threats while proving less resource
intensive.

*Correspondence:
M. Tariq Banday
sgrmtb@yahoo.com
1 Department of Electronics and Instrumentation Technology, University
of Kashmir, Srinagar 190006, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00174-9&domain=pdf
http://orcid.org/0000-0001-8504-5061

Page 2 of 18Nazish et al. Cybersecurity (2023) 6:42

Most cryptography revolves around the block cipher
design due to their profound use in designing pseudor-
andom number generators, key establishment protocols,
MAC, hash and encryption primitives. The design tar-
get metrics considered in lightweight design are mainly
area (slice or flip-flop count), memory footprint (RAM/
ROM), latency, power and energy consumption. How-
ever, the heterogeneous nature of IoT devices and the
trade-offs between various metrics make it quite chal-
lenging to design a ‘one design fits all’ lightweight block
cipher. Therefore, specific featured lightweight crypto-
graphic primitives have been designed for diverse smart
IoT applications. For example, PRINCE (Borghoff, et al.
2012) and Midori (Banik et al. 2015) are low-latency and
low-energy block primitives, respectively. On the other
hand, PRESENT (Bogdanov et al. 2007), SIMON (Beau-
lieu et al. 2015) and GIFT (Lee 1989) are hardware-effi-
cient primitives, with ITUBee (Karakoç et al. 2013) and
SPECK (Beaulieu et al. 2015) being examples of software-
friendly block ciphers.

A sub-class of SPN network-based ciphers known
as SbPN primitives, such as PRESENT and GIFT block
ciphers, are remarkably efficient in hardware because of
their s-boxes and bit-permutations. Both use lightweight
4 × 4 s-boxes to offer confusion, whereas, for diffusion,
bit-permutations involving zero gate count are used.
However, in software, bit-permutations are the most
inefficient in terms of the instruction count and execu-
tion time. As such, to make the SbPN-based primitives’
software efficient, several methods have been used, such
as table-based implementations (Heys 2020), bit-slicing
(Kwan 2000), fix-slicing (Adomnicai et al. 2020) in addi-
tion to the use of the bit manipulation instructions (Lee
1989). However, even though these implementation tech-
niques provide impressive results, they have some form
of complexity in terms of large memory footprint or high
energy and power consumption requirements. Moreover,
they are not always cost-effective, limiting their use for
securing low-end embedded devices. Thus, rather than
getting bogged down with addressing security concerns
for lightweight IoT devices from a hardware or only soft-
ware perspective, designing ciphers from a use-case per-
spective with optimum efficiency in both is the ultimate
requirement for smart IoT applications. Thus, efforts
must be put to use the appropriate confusion and diffu-
sion implementation techniques that are both hardware
and software efficient to have an optimum and balanced
crypto design suitable for several applications.

This paper provides a novel method to offer bit-per-
mutation-based diffusion for permutation operation in
Substitution bit Permutation Network based ciphers
using Bit-Banding feature of contemporary ARM Cor-
tex-M processors. The proposed approach has been

implemented, analysed and compared using GIFT and
PRESENT ciphers.

The paper is structured as follows: “Background” sec-
tion summarises the SbPN-based PRESENT and GIFT
block primitives and outlines their existing implementa-
tion techniques. This section also explains the bit-band
feature available with the ARM Cortex-M processors
and lists various software-efficient compiler optimisation
techniques. “Related work” section presents the literature
survey of the software efficient block cipher implemen-
tation techniques. “Proposed work” section discusses the
proposed software-efficient implementation technique
for performing the permutation in PRESENT and GIFT
block primitives. “Implementation” section explains the
implementation methodology and provides a compara-
tive analysis of the results obtained for the direct and
proposed methods in terms of various performance met-
rics. In addition, this section reports the code and perfor-
mance improvements obtained for the proposed method
using seven optimisation techniques. Finally, “Results
and discussions” section provides the summarised results
of the proposed technique.

Background
SbPN ciphers
The lightweight block cipher design uses a round func-
tion iterated a specific number of times to achieve an
optimum security margin. Furthermore, the design
must satisfy Shannon’s confusion and diffusion para-
digm (Shannon 1945). Diffusion means each output bit
should be influenced by each plaintext and key input bit.
The confusion ensures the complicacy of this depend-
ency, which ascertains that the relationship between the
input and output bits is complex and hard to reverse.
Non-linear components such as s-box, boolean functions
and non-linear arithmetic operations offer confusion
in addition to a small amount of local diffusion. Mainly,
linear elements such as Maximum Distance Separable
(MDS) matrices, bit-permutations, circular shifts, XOR
and swap operations are employed to offer diffusion on
a global level. Substitution Permutation Network (SPN)
is one of the most used secure block cipher construc-
tion schemes, utilising s-box, p-box and XOR to realise a
round function. A special class of SPN ciphers is the Sub-
stitution bit Permutation Network (SbPN) based primi-
tives. An m/n-SbPN is an n-bit block cipher with each
s-box being m-bit wide. These ciphers use only the bit-
permutations to realise the linear layer.

Permutations at the bit level find vast applications in
cryptography and digital processing for faster security
and multimedia operations. Bit-permutation has been
used in several famous ciphers such as DES, Serpent,
PRESENT, GIFT and many more. Permutations of two

Page 3 of 18Nazish et al. Cybersecurity (2023) 6:42

and six types have been employed in the hardware-ori-
ented Serpent (Biham et al. 1998) and DES (Biryukov and
Cannière 2006) ciphers, respectively. Bit-permutations
can be invertible or non-invertible. Compression and
expansion p-boxes (Forouzan et al. 2015) are examples
of non-invertible permutations. In compression p-boxes,
the bit-wise permutation is performed so that the dif-
fused output bits are less in number than the input bits.
As a result, several input bits are not mapped to the out-
put. This is useful when the next round needs fewer bits
than the previous one. On the other hand, in expansion
p-boxes, several input bits are mapped to more than one
output bit, which results in a more significant number of
diffused output bits than the input bits. This is used in
ciphers where the next round needs more bits than the
previous one. The irreversible compression and expan-
sions p-boxes are not utilised in SPN or SbPN ciphers,
which instead use straight invertible p-boxes with an
equal number of input and output bits. The following
section details the hardware-efficient SbPN ciphers-PRE-
SENT and GIFT and summarises their existing imple-
mentation techniques.

PRESENT block cipher
PRESENT is one of the premier hardware-efficient light-
weight block ciphers proposed by Bogdanov et al. in
2007. It is an SbPN-based block cipher, having a fixed
block size of 64 bits and variable key lengths of 80- or
128-bits. Figure 1 depicts the encryption process of the
PRESENT64/80 cipher consisting of 31 rounds followed
by a final post-key-whitening stage. Each round consists
of a keyed XOR (addroundkey) and keyless substitution
(s-BoxLayer), and permutation (p-Layer) sub-stages.

AddRoundKey: The key scheduling algorithm takes
an 80-bit shared key as the input and generates 64-bit
sub-round keys using a simple round function involving
circular shift, s-box and round constant addition opera-
tions. Each sub-round key is bit-wise XORed with the
64-bit input state.

S-BoxLayer: The XORed output is applied as input to
16 invertible 4 × 4 static s-boxes. Each s-box takes 4 bits
(X) as input and yields the confused 4-bit output (S[X]).
Apart from confusion, these s-boxes offer a local diffu-
sion. Table 1 lists all the s-box output values correspond-
ing to the 16 inputs in hexadecimal notation.

P-Layer: The 64-bit output from 16 s-boxes is applied
as an input to the p-layer that performs a bit-wise diffu-
sion. The bit at index location i is shifted to location P(i)
as per the diffusion Table 2.

Being an SPN cipher, each sub-operation in a round
function is invertible. As such, decryption is the reverse
of the encryption process. It involves static 4 × 4 inverse
s-box and inverse p-layer realised using a 16-byte

lookup table and 64-bit bit-wise reverse diffusion,
respectively. The sub-round keys generated by the key
scheduling algorithm are applied in reverse order.

The following section summarises several imple-
mentation methods for performing permutation in the
PRESENT Block Cipher:

• Direct Method: In the direct method, the bit-wise
permutation of the s-box layer output is realised
using the bit-rotation method. Each bit permuta-
tion requires four sub-operations comprising the
generation of the mask, masking (AND), shifting
and XOR.

• Wide Table Method: The wide-table method com-
bines a single s-box and a p-box to form a com-
bined SP lookup table for simultaneous confusion
and diffusion. The input to a single SP-wide table is
a 4-bit state output from the add round key stage,
which acts as the index to a specific memory loca-
tion. The 64-bit value at the specified location

Fig. 1 Encryption process of the PRESENT block cipher

Page 4 of 18Nazish et al. Cybersecurity (2023) 6:42

forms the output corresponding to the 4-bit input
state. Sixteen such wide SP tables are required to
offer 64-bit diffusion. All the sixteen 64-bit outputs
corresponding to 16 nibbles are combined to form
the permuted output of one round function.

• Combined Wide Table Method: The combined-wide
table method combines two s-boxes and one p-box
to form a lookup table of 8 × 64 bytes. The 8-bit
input to the two s-boxes forms the input to the
combined SP table that points to a specific mem-
ory location. The 64-bit value corresponding to this
location forms the output. For permuting a 64-bit
state, eight such SP tables are required. The eight
64-bit values are XORed together to yield permuted
state.

All the methods mentioned above are software
efficient; however, these have drawbacks in terms
of memory footprint, instruction count and timing
requirements. The direct method is a memory-efficient
technique. However, this incurs a substantial over-
head due to the requirement of several mask, shift and
XOR sub-operations for the ciphers with large block
sizes. The table-based methods are known for their
high-speed execution. These have comparatively fewer
instruction requirements than the narrow-table or
direct approach. However, these highly memory-inten-
sive methods require 32 and 16 SP tables for encryp-
tion and decryption in wide and combined-wide table
implementation methods, respectively. Furthermore,
these methods employ several bit mask, shift and XOR
operations to apply a lookup operation on a specified
data nibble or byte.

GIFT block cipher
Although PRESENT is a hardware-oriented cipher, it is
not much resistant to linear cryptanalytic attacks. Also,
it utilises a high branch numbered s-box that proves
costlier in terms of area footprint. Therefore, Banik et al.
worked towards designing a comparatively lightweight
and more secure cipher and finally came up with an
improved version of PRESENT in 2017 named the GIFT
block cipher. Unlike PRESENT, which uses an s-box with
branch number 3, GIFT uses a reduced branch numbered
two s-box that proves more area and cost-efficient and is
more resistant against the linear cryptanalytic attack.

GIFT is an SbPN-based symmetric block cipher with
two versions: GIFT 64/128 and GIFT 128/128, having
a fixed key length of 128 bits with varying block sizes
and rounds. For block-size of 64 and 128 bits, 28 and 40
rounds are used, respectively.

GIFT64/128 (Fig. 2) encryption process utilises a key-
alternating construction with two keyless (subcells and
permbits) and one keyed (addroundkey) sub-stage:

Subcells: The 64-bit input state is applied nibble-wise
to the 4 × 4 static s-box to offer optimum confusion and
a small amount of diffusion. Each nibble ‘X’ is replaced
with ‘S[X]’ using the pre-defined s-box mapping shown
in Table 3.

Permbits: This layer performs a bit-wise 64-bit permu-
tation on the output bits of 16 parallel s-boxes. A bit at
index position i is shifted to the P(i) bit position as per
the permutation table given in Table 4.

AddRoundKey: The diffused state bits from the
permbits stage are XORed with the sub-round key bits
and round constants. Each sub-round key generated from
the key scheduling algorithm using simple extraction and
circular shift operations is 32 bits in size. Therefore, only
32 bits out of the 64-bit state are bit-wise XORed with

Table 1 S-box of the PRESENT block cipher

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[X] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Table 2 Permutation table of the PRESENT block cipher

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Page 5 of 18Nazish et al. Cybersecurity (2023) 6:42

the sub-round key for greater hardware efficiency. This
saves the computational costs associated with the XOR
operations, making the cipher efficient in hardware and
software.

AddRoundConstants: Six input state bits are bit-wise
XORed with six round constants. In addition, bit (b63) is
XORed with ‘1’.

GIFT decryption involves using a 4 × 4 static inverse
s-box and inverse p-layer to offer confusion and diffu-
sion in the cipher. The round keys generated from the
key generation algorithm are applied in reverse order to
obtain the original message.

The following methods exist for performing permuta-
tion in the GIFT Block Cipher:

• Direct Method: In the direct Implementation, the
permutation layer takes the output state from the
s-box as input. It performs diffusion using the bit-
rotation method involving several mask generation,
masking, shifting and XOR sub-operations.

• Bit-Slicing Method: In the bit-slicing technique, dif-
fusion is performed using masking, shift and XOR
steps simultaneously on bits in a given slice. This, in
turn, amounts to the requirement of multiple such
operations for permuting bits in multiple slices,
resulting in a higher cycle count and delayed execu-
tion. Bit-sliced permutation can also be performed by
transposing and then subjecting each slice to differ-
ent row-swapping operations determined by the slice
number.

• Fix-Slicing Method: In the fix-slicing method, the
first slice is not subjected to any diffusion operation,
whereas the rest of the three slices undergo row-wise
and column-wise rotations.

Fig. 2 Encryption process of the GIFT block cipher

Table 3 S-box of the GIFT block cipher

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[X] 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Table 4 Permutation table of the GIFT block cipher

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Page 6 of 18Nazish et al. Cybersecurity (2023) 6:42

The direct implementation method proves to be a
memory-efficient technique. But, this incurs a substantial
overhead due to the requirement of several mask, shift
and XOR sub-operations for the ciphers with large block
sizes. The bit-sliced-based computational process is more
straightforward and faster because the plaintext block is
divided into multiple slices. Also, it permits the process-
ing of multiple blocks in parallel. However, it can prove
inappropriate for low-end IoT devices that usually work
with much smaller payloads. Also, substantial overhead is
associated with the diffusion layer, as bits must be trans-
posed in the slice individually rather than in large chunks,
making it computationally intensive. Even though bit-
slicing can improve speed, the overheads associated
with packing and unpacking data at the start and the
end of the encryption and decryption processes make
the process quite resource-consuming for ultra-light-
weight devices. Furthermore, this method uses several
general-purpose registers to store the transposed bits of
a given message. Unfortunately, low-end IoT processors
often have a minimal number of such registers, thereby
increasing the number of load and store instructions that
degrade the overall performance. Moreover, the bit-sliced
permutation in GIFT cipher involves multiple mask,
shift, and XOR operations, thereby incurring large com-
putational overhead regarding the number of cycles. The
fix-slicing technique saves multiple operations by replac-
ing the transposition and row-switching operations with
row and column rotations, thereby increasing the speed
of the cipher. It also takes advantage of the barrel shifter
capability available with the ARM Cortex architecture
for performing multi-bit rotations in a single clock cycle,
thereby making the implementation of the linear layer
less costly. However, the round keys and round constants
need to be modified as per the new bit positions, which
incurs additional computational overheads.

Bit‑band memory
ARM Cortex-M (Banday 2018; Rouf et al. 2022) are
32-bit processors primarily designed for deeply embed-
ded microcontrollers and IoT market spaces. These
low-powered processors feature several energy modes,
barrel shifters and pipelined architectures. This makes
them suitable for diverse low-power and low-latency IoT
applications. Furthermore, these processors are based
on ARMv7 instruction set architecture and support the
Thumb-2 instruction set, which includes a mix of 16-
and 32-bit instructions, making them highly suitable for
high-performance and memory-deficient IoT applica-
tions (Schwabe and Stoffelen 2017; Kim, et al. 2022).
In addition, ARM Cortex-M processors have optional
support for bit manipulation using the bit-banding fea-
ture. Unlike other processors, which include separate

bit-manipulation processors or use specific instructions
to perform bit-level manipulations that increase the over-
all design cost, these processors incorporate a unique
feature of bit-banding that uses two memory regions,
bit-band and bit-band alias, to support bit-wise opera-
tions. Regular access to the bit-band region results in a
word read or write operation. On the other hand, normal
read or write to the bit-band alias region results in sin-
gle-bit access in the corresponding bit-band region. This
is because each bit in the bit-band region is mapped to a
word (more specifically, to the least significant bit of the
32-bit word) in the corresponding bit-band alias area.

In ARM Cortex-M3 processors, two bit-band regions
are set aside for performing the bit-band operations.
These are located in the starting 1 MB of SRAM and the
first 1 MB of the peripheral regions with base addresses
as 0X20000000 and 0X40000000, respectively. The cor-
responding two bit-band alias regions are in SRAM, and
peripheral regions with base addresses 0X22000000 and
0X42000000, respectively. Each bit-band alias region is
32 MB in size because each bit mapping in the bit-band
region requires a word (32 bits) in the bit-band alias
region.

Bit-banding offers several advantages. First, it simplifies
the bit write and read operations by working directly on
the appropriate bit-band alias location corresponding to a
specific bit in the bit-band region. It performs bit manip-
ulation in a single cycle. Unlike the conventional bit-
modification involving read, modify and write sub-tasks,
bit-banding permits atomic and uninterrupted error-
free bit operations. This also prevents conflicts in the
case of multiple tasks using shared memory (Yiu 2014).
Also, single-bit manipulation operation is realised using
a single load or store instruction, which results in faster
bit manipulations (Bai 2015). Further, it simplifies the
execution of several conditional branching operations by
reading a specific bit-band alias location instead of read-
ing and masking 32 bits in the bit-band region, thereby
speeding the branching decisions (Tahir and Javed 2017).

Compiler optimisation
One of the design approaches to achieve software effi-
ciency is to employ optimisation techniques available
with the compilers. This method makes the design either
code-efficient with reduced RAM and ROM utilisation or
can help enhance the execution speed. In addition, using
optimisation techniques can help run programs faster
without changing the code. The compiler uses precom-
putation of values, inlining functions, unrolling loops,
reordering code statements, and many more to pro-
duce a much faster binary. However, the downside with
the inclusion of the compiler optimisation techniques is
that it can make the program hard to debug. With lower

Page 7 of 18Nazish et al. Cybersecurity (2023) 6:42

optimisation levels, detailed information about the pro-
gram can be viewed, which can then be used to track
down the bugs in the code. On the other hand, this fea-
ture becomes more restricted with higher optimisation
levels, which hinders debugging to a greater extent. How-
ever, these levels permit high-speed or low code footprint
optimisations. Thus, it is recommended to use lower or
no optimisations while developing the algorithm and
switch to higher optimisations once the code is released.

Several compiler optimisation options are available
with the KEIL MDK Integrated Development Environ-
ment (Table 5). They either optimise the program for
code size or performance, and opting for one metric
degrades the other. Furthermore, depending on the type
of application and the constraints involved, one can use a
particular optimisation level(s).

Related work
Ruby Lee (Lee 1989) used the EXTRACT and DEPOSIT
bit manipulation instructions available with the PA-RISC
Precision Architecture processors to perform bit per-
mutations. The results reported the requirement of only
two instructions for performing a one-bit permutation,
thus resulting in a 50% reduction in instruction count
compared to the bit-rotation method that requires four
instructions to perform a single-bit permutation.

Eli Biham (1997) presented a high-speed software-
friendly bit-sliced implementation of the DES block
cipher that resulted in two times increase in its execution
speed. Furthermore, an average requirement of 100 gates

has been reported for the hardware implementation of
one s-box.

Matthew Kwan et al. (2000) propounded the bit-slicing
term and used this method to improvise Biham’s work
with 56 gates required for a single s-box implementation.

Matsui et al. (2007) provided improvised results for the
AES block cipher implemented using the bit-sliced Intel
Core2 processor architecture. The results report reduced
execution time requirements for the proposed implemen-
tation compared to the table-based AES implementation.

Bogdanov et al. (2007) proposed PRESENT, a hard-
ware-oriented block cipher for highly constrained
devices. It has a fixed block size of 64 bits and a varia-
ble key size of 80 and 128 bits. Both versions use 31 SPN
rounds with a post-key-whitening step used at the end.

In his thesis, Poschmann (2009), provides the code and
speed-optimized implementation of the PRESENT block
cipher for diverse platforms with 8-, 16- and 32-bit pro-
cessors. It also uses the narrow table approach for the
s-box implementation, which despite being efficient in
software, is prone to cache timing attacks.

Benadjila et al. (2014) performed bit-sliced implemen-
tation of several block ciphers using SIMD instructions
and vectorisation features available with the Intel × 86
platforms. The results report increased speed gain for the
analysed ciphers, including PRESENT.

Papapagiannopoulos et al. (2014) implemented vari-
ous block primitives in a bit-sliced manner on the
ATtiny family of AVR platforms. Improved results have
been reported for the PRESENT cipher by utilising the

Table 5 Advantages and drawbacks of various compiler optimisation levels

Compiler optimization level Advantages Drawbacks

-O0 High correlational view between source and generated codes
Quick build and compile
Easy Debugging
Best for prototyping

No Optimisations enabled
Large Code-size
Higher execution-time

-O1 Better debug view
Good stack utilisation

High Memory Requirements
High Execution-time

-O2 High Speed Larger Code-size

-O3 High Speed Larger Code-size
Poor correlational view
between source and gener-
ated codes

-Ofast High Speed Larger Code-size
Poor correlational view
between source and gener-
ated codes
May perform optimisa-
tions that are not standard
compliant

-Oz Reduced Memory Footprint Slower execution

-Os Balanced speed and memory usage Moderate performance

Page 8 of 18Nazish et al. Cybersecurity (2023) 6:42

s-box implementation of Boyar and Peralta (2010) real-
ised using 14 instructions.

Banik et al. (2017) proposed the GIFT block cipher
in 2017, having variable block sizes of 64- and 128-
bits with a fixed key length of 128-bits. The number
of rounds is variable, 28 for 64-bit and 40 for 128-bit
block-sized versions. Results prove the GIFT cipher is
more hardware-efficient and secure than the PRESENT
block cipher.

Tiago et al. (2017) presented a timing attack-resistant
masked implementation of the PRESENT block cipher.
Furthermore, the implementation involves decompos-
ing the linear layer and realising the s-box in a bit-sliced
manner using optimised boolean functions. On 32-bit
ARM Cortex processors, an 8% improvement in execu-
tion speed is reported for the cipher, requiring 2100
cycles compared to that provided by FELICS.

Dinu et al. (2019) evaluated crypto ciphers in terms of
a figure of merit calculated from various metrics such as
time, RAM and ROM footprint. Nineteen block primi-
tives have been comparatively analysed on AVR, MSP430
and ARM, which are 8-, 16- and 32-bit platforms, respec-
tively. In the case of the PRESENT block cipher, a time-
efficient implementation has been carried out utilising
the combined substitution and permutation tables.

Adomnicai et al. (2020) proposed a software-friendly
implementation technique for the GIFT block cipher
named fix-slicing. The method uses a few rotations real-
ised using the barrel shifter feature available with the
ARM Cortex-M3 processors. The results report faster
execution speed requiring 800 and 1300 cycles for
GIFT-64 and GIFT-128, respectively, compared to AES
and PRESENT ciphers requiring 1617 and 2116 cycles,
respectively.

Adomnicai et al. (2020) applied the fix-slicing tech-
nique to the AES block cipher. Compared to the bit-sliced
AES, the results report a 52% reduction in diffusion
operations using the fix-sliced AES implementation tech-
nique, requiring only 81 cycles for a single-byte encryp-
tion on 32-bit processors.

Further, many software efficient ciphers such as REC-
TANGLE (Zhang et al. 2015), a 4/64 SbPN cipher with
structure similar to GIFT and PRESENT ciphers have
been proposed. RECTANGLE uses shift rows to realise
the diffusion layer, which is more software friendly than
bit rotation method used in direct implementation meth-
ods for PRESENT and GIFT block ciphers. However, as
far as its security is concerned, not much analysis has
been reported regarding how the linear and differential
trials are propagated in the RECTANGLE cipher. Also,
its key scheduling algorithm is more complex than PRE-
SENT and GIFT primitives. Furthermore, four rounds
are required to attain full diffusion in RECTANGLE

cipher, whereas the same is attained in only three rounds
in case of the PRESENT and GIFT block ciphers.

Although the works mentioned above have attempted
to make the cipher implementation efficient in software
to a certain extent, however, the associated overheads in
terms of larger instruction count, higher memory, power
and time requirements along with the inclusion of spe-
cific bit-manipulation instructions, a significant increase
in the cost of the development platforms, makes it finan-
cially and resourcefully a non-viable option to secure the
constrained smart IoT applications. This necessitates
designing a novel, software-friendly, cost-effective imple-
mentation technique for securing diverse low-energy and
high-performant low-latency IoT applications. Further,
the digital world around us is mostly embedded in nature
and as such using only software efficient or mere hard-
ware efficient crypto primitives cannot be considered as
a favourable design approach for securing the low-end
devices. There is a need to address the security con-
cerns of the smart embedded applications from a holis-
tic approach that should consider both the hardware and
software aspects. This paper proposes a novel software
efficient implementation method for hardware efficient
SbPN ciphers to make these primitives more accessible
for use in a wide range of embedded devices, particularly
those with limited resource availability.

Proposed work
This paper proposes a novel software-friendly implemen-
tation technique for performing the bit-wise permuta-
tion in the SbPN ciphers by employing the ‘Bit-Banding’
feature of ARM Cortex-M processors. An easy, efficient,
and high-speed software-efficient mapping between the
bit-band alias regions is performed to achieve bit-level
diffusion.

All the steps involved in the encryption round func-
tion of the PRESENT64/80 cipher (Fig. 3), except the dif-
fusion, are performed in a manner similar to the direct
implementation method. First, the 64-bit XORed output
is provided to 16 (4 × 4) s-boxes that provide the confused
64-bit output state. This forms the input to the diffusion
layer (P). Then, the diffusion layer in the proposed bit-
banding approach is implemented as per the pseudocode
(Algorithm 1) using the following steps:

Step 1 Initialise the permutation table, Pt (as shown in
Table 2) and store it in memory.

Step 2 Declare two bit-band memory areas, P and Q,
each 8 bytes wide.

Step 3 Store 64-bit output state from the sixteen
s-boxes in the ‘P’ bit-band memory of SRAM.

In ARM Cortex-M3-based LPC1768 IoT hard-
ware platform, the SRAM bit-band region starts from
0X200000000 × 20,000,000. However, the locations from

Page 9 of 18Nazish et al. Cybersecurity (2023) 6:42

0X20000000 to 0X2007BFFF are reserved. The input state
bits to the linear layer are stored starting from location
0X2007C000. Sixteen nibbles require eight memory byte

locations for storage. As such, bits b0 and b63 occupy LSB
of 0X2007C000 and MSB of 0X2007C007 memory loca-
tions in the bit-band region.

Step 4 Use the following mapping formula to fill in the Qa
bit-band alias memory locations with the permuted state
bits.

Qa + Pt(i) × 4 ← Pa + (i × 4)

where Pa and Qa are the base addresses of the bit-alias
region storing the input and output of the permutation
layer, respectively, Pt is the array of permutation values
(as given in Table 2), and i represents the bit number var-
ying from 0 to 63.

Fig. 3 Bit-band method of performing permutation for the PRESENT block cipher

Page 10 of 18Nazish et al. Cybersecurity (2023) 6:42

In the bit-band alias region, each bit is represented
by 32-bit; storing a 64-bit state requires 64 × 4 = 256
bytes in the ‘Pa’ bit-band alias region with b0 stored
at 0X22F80000 through 0X22F80003 and b63 occupy-
ing 0X22F801EC to 0X22F801EF memory locations.
Similarly, in the ‘Qa’ bit-band alias area, 0X22F80100
to 0X22F80103 memory locations store the permuted
value b0. Again, the b63 permuted bit occupies four loca-
tions starting from 0X22F801FC bit-band alias memory
location. In this mapping process, the Q bit-band region
from 0X2007C008 to 0X2007C00F, corresponding to the
 Qa bit-band alias area, gets automatically filled with the
permuted output state.

In addition to the mapping formula, a scatter file is
exclusively used to direct the linker to set aside the par-
ticular SRAM regions for the permutation function to
avoid memory conflicts during program execution.

Step 5 Return the 64-bit permuted output state from
the Q bit-band area for further processing by the follow-
ing rounds.

Similarly, the decryption phase (Fig. 4) involves the fol-
lowing mapping formula between the inverse permuta-
tion layer’s input and output state bits.

The proposed method for performing the bit-banding-
based permutation has been illustrated for the PRESENT
block primitive. GIFT block cipher (Figs. 5, 6) follows the

Qa + (i × 4) ← Pa + Pt(i) × 4

bit-banding approach similar to that used for the PRE-
SENT block cipher.

Implementation
Methodology
The PRESENT and GIFT lightweight block primitives
have been choosen to evaluate the proposed permutation
because both the ciphers offer a good balance between
efficiency, security and hardware simplicity. These are
used to secure RFID tags, wireless sensor networks and
any low-end embedded smart IoT applications for which
resource intensive ciphers like AES are not usually prefer-
able (Bogdanov et al. 2007). Further GIFT cipher inspired
by PRESENT cipher has been implemented in part or
full in many of the NIST lightweight AEAD candidates
such as GIFT-CoFB (Banik et al. 2019a), SUNDAE-GIFT
(Banik et al. 2019b), HYENA (Avik Chakraborti 2019a),
ESTATE (Avik Chakraborti et al. 2020), LOCUS and
LOTUS (Avik Chakraborti et al. 2019b).

The PRESENT and GIFT block ciphers have been
implemented on a 32-bit ARM Cortex-M3-based
LPC1768 development board. It has 64kB and 512kB
of RAM and ROM, respectively and operates with a
core clock frequency of 100 MHz. The availability of
onboard 20-pin JTAG, 10-pin and 20-pin Cortex con-
nectors permits real-time debugging and tracing of
the programs. KEIL MDK has been used on the host
side as an integrated development environment to
observe, analyse, verify and optimise the algorithms.
The algorithms’ flashing, debugging and tracing have

Fig. 4 Bit-band method of performing inverse permutation for the PRESENT block cipher

Page 11 of 18Nazish et al. Cybersecurity (2023) 6:42

Fig. 5 Bit-band method of performing permutation for the GIFT block cipher

Fig. 6 Bit-band method of performing inverse permutation for the GIFT block cipher

Page 12 of 18Nazish et al. Cybersecurity (2023) 6:42

been carried out using advanced debug adapters from
ARM, namely ULINKpro and ULINKplus. The RAM
and ROM memory usage of the primitives can be cal-
culated using either debug adapters. Power measure-
ment has been explicitly performed using ULINKplus
debug adapter. Also, the streaming trace capability
with ULINKpro permits complete module and func-
tion-level instruction tracing for longer, thus provid-
ing detailed execution timing information. Moreover,
the energy consumption of the ciphers has been cal-
culated as Energy (in µJ) = Power (in mW) * Time (in
ms). Moreover, several compiler optimisation tech-
niques have been used to increase the code and speed
efficiency of the direct and proposed implementation
methods. In addition, a highly optimised set of libraries
known as micro-lib has been used that helps reduce the
overall flash footprint of the block cipher primitives to
a marginal extent.

Results and discussions
The simple mapping between the bit-band and bit-band
alias regions with the preclusion of multiple masks, shift,
and XOR operations make the bit-band permutation
method the most time-efficient.

Table 6 tabulates the results for various performance
metrics such as power, energy, execution time and mem-
ory (RAM and ROM) utilisation for the PRESENT block
cipher implemented using the proposed bit-banding
technique and the direct method.

The percentage difference in various lightweight met-
rics for the bit-band and direct implementation meth-
ods has been reported for a better comparative analysis.
In addition, separate computations for the encryption
and decryption phases of the PRESENT block primitive
have been listed. For the encryption part, the maximum
improvement has been reported for the execution time,
with the bit-band technique requiring 68.96% less time
than the direct method. This is followed by 42.43% and
17.82% reductions in energy and power consumption,
respectively. The only downside of the bit-band technique

is a comparatively higher memory requirement in terms
of RAM and ROM footprints. Similar trends have been
observed for the decryption results, with the bit-band
method outperforming the direct method by 27.31%,
45.15% and 82.53% improvements in power, energy and
time requirements. However, the bit-band method entails
a slightly larger memory size than the direct approach.

Figure 7 presents the encryption results of various eval-
uation metrics for the direct and bit-band implementa-
tions of the PRESENT block cipher, executed with the
different optimisation levels (as listed in Table 5) avail-
able with the KEIL IDE. This evaluation has been made
to evaluate the performance of the proposed technique in
different compiler optimization levels.

Significant improvements have been obtained for
the bit-band method with 68.58% and 86.63% reduc-
tion in power and energy consumption by utilising –O2
compared to the –O0 technique. Furthermore, a speed
improvement of 56.45% has been attained using the time-
optimized –O3 level. Moreover, the overhead with the
bit-band-based permutation technique has subsided by
46.02% with the -Ozimage optimisation level. In the case
of the direct method, the -O2 level improves power and
energy consumption by 53.163% and 78.917%, respec-
tively, compared to the –O0 level. Also, with the –Os
balanced level, a 69.14% reduction in execution time
has been observed. Finally, more than a 50% decrease in
memory footprint is obtained using the –Ozimage opti-
mization level.

Figure 8 presents the decryption results for the PRE-
SENT cipher run with different compiler optimiza-
tion levels (Table 5). In the case of the bit-band method,
84.83% and 93.97% improvements in power and energy
consumption have been observed with the -O2 level com-
pared to the –O0 level. A 78.49% less time for decryp-
tion is reported with the –O1 level. The –Oz image size
reduces the memory requirements by half. For the direct
method, as compared to the –O0 level, a 70.01% and
89.94% decrease in power and energy consumption has
been obtained using the –O2 level. A 51.29% decrease

Table 6 Performance comparison of the proposed implementation technique for the PRESENT block cipher

Implementation Technique Encryption Decryption

Direct Bit‑Band Bit‑Band Vs Direct
(%age difference)

Direct Bit‑Band Bit‑Band Vs Direct
(%age difference)

Power (mW) 3.478 2.858 17.82 2.621 1.905 27.31

Energy (uJ) 5.132 2.954 42.43 2.903 1.592 45.15

RAM (Bytes) 600 536 10.67 616 528 14.29

ROM (Bytes) 5896 6192 − 5.02 5912 6192 − 4.74

Execution-Time (ms) 2.385 0.7403 68.96 1.611 0.28146 82.53

Page 13 of 18Nazish et al. Cybersecurity (2023) 6:42

in memory requirements has been possible with the- Oz
image level. Above 70% reduction in decryption time is
made with –O2, -O3 and –Ofast optimization levels.

Table 7 presents the performance evaluation results
in terms of various metrics for the GIFT block cipher,
implemented using the direct and the proposed bit-band
methods on the LPC1768 development board. It also
enumerates the percentage difference in various light-
weight metrics for the bit-band and direct implementa-
tion techniques.

The execution time is reported to show maximum
improvement, with the bit-band method requiring
56.42% less time than the direct method. This is followed
by a 14.76% and 4.25% reduction in energy and power
requirements, respectively. Again all these improvements
in the bit-band method are at the cost of a relatively
higher memory footprint than the direct method. For the
decryption part, a similar trend is followed with 1.11%,
11.28% and 10.28% improvements in power, energy and
time performance metrics. However, the memory size is

comparatively larger in the bit-band than in the direct
method.

Figure 9 depicts the comparative encryption results for
various lightweight metrics of the direct and bit-band
implementations for the GIFT block cipher run with dif-
ferent optimisation levels (Table 5).

Remarkable improvements have been attained for all
metrics of the bit-band method, with 90.38% and 98.57%
reductions in power and energy consumption reported
with the -O2 technique compared to the –O0 technique.
In addition, the execution time has been reduced by
70.90% using high-speed –O3 and –Ofast techniques.
Moreover, a more than 50% decrease in the memory
footprint has been achieved using the most code efficient
–Ozimage optimisation level. For the direct method, with
the –O3 level, 84.39%, 97.73% and 89.89% reductions in
power, energy and time utilisation have been reported
in comparison with the –O0 results. Also, a 32.752%
reduced memory size has been achieved using the –Oz
image size level.

Fig. 7 Performance comparison between direct and proposed implementation techniques for the PRESENT block cipher (encryption) utilising
different compiler optimisation levels

Page 14 of 18Nazish et al. Cybersecurity (2023) 6:42

Figure 10 shows the direct and bit-band decryption
results for the GIFT cipher using various optimisation
levels (Table 5).

For the proposed method, the -O3 level reports a
60.62% and 93.1% decrease in power and energy require-
ments to the –O0 level. Also, a 24.85% reduction in mem-
ory size is possible with the –Oz image level. The –O0,
-O3, -Ofast and –Oz image levels report almost the same

decryption times. For the direct method, in comparison
to the –O0 level, an 85.77% reduction in decryption time
is attained using the high-speed –O3 and –Ofast opti-
misation levels. 34.19% reduction in memory footprint
has been reported for the –Oz image level. 67.18% and
95.33% decrease in power consumption have been pos-
sible with the –Ofast optimisation level.

Fig. 8 Performance comparison between direct and proposed implementation techniques for the PRESENT block cipher (decryption) utilising
different compiler optimisation levels

Table 7 Performance comparison of the proposed implementation technique with the direct method for the GIFT block cipher

Implementation Technique Encryption Decryption

Direct Bit‑Band Bit‑Band Vs Direct
(%age difference)

Direct Bit‑Band Bit‑Band Vs Direct
(%age difference)

Power (mW) 3.204 3.068 4.25 3.308 3.271 1.11

Energy (uJ) 9.119 7.773 14.76 10.016 8.887 11.28

RAM (Bytes) 512 1064 − 107.81 1408 1952 − 38.64

ROM (Bytes) 2064 7124 − 245.16 2188 2720 − 24.31

Execution-time (ms) 5.126 2.234 56.42 3.03 2.72 10.28

Page 15 of 18Nazish et al. Cybersecurity (2023) 6:42

From the results obtained, it can be inferred that
the proposed bit-banding method for performing per-
mutations in the PRESENT and GIFT SbPN ciphers is
highly efficient in energy, power and execution time.
In the direct method, each sub-operation involved in
the bit-rotation method adds to the instruction count,
increasing multiple instruction fetch, decode, execute
and write-back operations. This is more apparent in
lightweight SbPN ciphers with large block sizes and
a larger number of rounds. For PRESENT and GIFT
primitives with block size = 64, the input to the diffu-
sion layer is large. Each bit transposition requires at
least four sub-operations, viz., mask generation, AND
or masking, shifting by a specified number of bits and
XORing the diffused bit state with the original input
state. This amounts to 4 × 64 = 256 such operations for
realising a single round permutation. For the PRESENT
cipher with 31 rounds involving permutation operation
on the 64-bit state, 64 × 4 × 31, such operations must be
carried out by a low-end IoT device. Similarly, for the

28-round GIFT 64/128 cipher, 64 × 4 × 28 sub-opera-
tions are required.

Contrary to this high instruction count and resource-
exhaustive bit-rotation method, bit-banding is a soft-
ware-efficient linear layer implementation technique.
Moreover, this method does not involve using bit-manip-
ulation instructions to perform the diffusion, offering a
cost-saving option for low-end IoT processors. Instead,
a simple mapping between the bit-band and its corre-
sponding bit-band alias region is necessary to perform
the bit-wise permutation, thus not only saving the chip
space on processors but also leading to faster execution
time and reduced power and energy consumption. Imple-
menting the diffusion layer using the proposed technique
not only reduces the instruction count, but also results in
a significant decrease in all the lightweight design met-
rics namely power, energy and timing requirements,
making the use of SbPN ciphers ideal for low-cost, low-
power and low latency applications. Above all, since the
proposed method is only an implementation strategy and
does not modify the structure of the primitives, therefore,

Fig. 9 Performance comparison between direct and proposed implementation techniques for the GIFT block cipher (encryption) utilising different
compiler optimisation levels

Page 16 of 18Nazish et al. Cybersecurity (2023) 6:42

it does not alter the security margins of any SbPN based
primitives.

The fallout of the bit-banding method is the compara-
tively large memory requirements. Since each bit in the
bit-band region corresponds to 32 bits in the bit-band
alias region of SRAM. As such, the input and output state
to the permutation layer of 64-bit width together occu-
pies 2 × 64 × 4 = 512 bytes in the bit-band alias memory.
This makes bit-band permutation less memory efficient
than the direct method; however, this memory require-
ment is much smaller than what is available with most
IoT devices.

Conclusion
This paper presents a highly software-efficient method
for performing bit-permutation-based diffusion using
the bit-manipulation bit-banding technique with the
leading edge ARM Cortex-M processors. A simple
mapping between the bit-band and its correspond-
ing bit-band alias region is necessary to perform the
bit-wise permutation, thus saving the chip space on

processors and leading to faster execution time with
reduced power and energy consumption. Compared
with the direct implementation methods for the PRE-
SENT and GIFT ciphers, the bit-banding technique
reports substantial reductions in power, energy and
time requirements. All these improvements result
from decreased instruction count and a fast map-
ping between the bit-band and bit-band alias regions.
The only drawback of this method is an increase in the
memory footprint, which is not much of a concern for
ARM Cortex-M-based smart IoT devices. Furthermore,
the proposed technique has been subjected to vari-
ous compiler optimisation techniques available with
the KEIL MDK IDE. The results have shown that with
-O2 level, GIFT and PRESENT block ciphers signifi-
cantly improved energy and power efficiency, whereas
-O3 and -Ofast have sped up the cipher designs by a
considerable mark. Moreover, high code efficiency is
attained with ‘-Ozimage size’ optimisation but at the
cost of an increase in execution time. Although the pro-
posed technique has been implemented to improve the

Fig. 10 Performance comparison between direct and proposed implementation techniques for the GIFT block cipher (decryption) utilising
different compiler optimisation levels

Page 17 of 18Nazish et al. Cybersecurity (2023) 6:42

software efficiency of two SbPN primitives—PRESENT
and GIFT, it is equally applicable for all such SbPN-
based primitives.

Acknowledgements
The University Grants Commission, Government of India, supported the
research work in the form of a Junior Research Fellowship (190520461818).

Authors’ contributions
The authors read and approved the final manuscript.

Funding
The University Grants Commission, Government of India, supported the
research work in the form of a Junior Research Fellowship (190520461818).

Availability of data and materials
The data supporting this study’s findings are available from the corresponding
author upon reasonable request.

Declarations

Competing interests
The authors declare that they do not have any conflict of interest.

Human and animal rights
This article does not contain any studies with human participants or animals
performed by any authors.

Received: 28 March 2023 Accepted: 5 July 2023

References
Ashton K (2009) That ‘Internet of Things’ Thing. RFID J 22:97–114
Adomnicai A, Najm Z, Peyrin T (2020) Fixslicing: a new GIFT representation.

IACR Trans Cryptogr Hardw Embed Syst 402:427. https:// doi. org/ 10.
46586/ tches. v2020. i3. 402- 427

Adomnicai A, Peyrin T (2020) Fixslicing AES-like ciphers. IACR Trans Cryptogr
Hardw Embed Syst:402–425

Avik Chakraborti MN, Datta N, Jha A (2019) HyENA, NIST lightweight cryptog-
raphy project. https:// csrc. nist. gov/ Proje cts/ Light weight- Crypt ograp hy/
Round-1- Candi dates

Avik Chakraborti CML, Datta N, Jha A, Mancillas-LopezAvik Chakraborti C, Datta
N, Jha A, Mridul Nandi YS (2020) ESTATE: a lightweight and low energy
authenticated encryption mode. IACR Trans Symmetric Cryptol:350–389

Avik Chakraborti CML, Datta N, Jha A, Mridul Nandi YS (2019) LOTUS-AEAD
and LOCUS-AEAD, Technical report, First-round submission to the NIST
Lightweight Cryptography Competition

Bai Y (2015) Practical microcontroller engineering with ARM® technology.
Wiley

Banday MT (2018) A study of current trends in the design of processors for the
Internet of Things. ACM Int Conf Proc Ser. https:// doi. org/ 10. 1145/ 32310
53. 32310 74

Banik S et al (2015) Midori : a block cipher for low energy (extended version).
Int Conf Theory Appl Cryptol Inf Secur 9453:411–436

Banik S, Pandey SK, Peyrin T, Sasaki Y, Sim SM, Todo Y (2017) GIFT: a small pre-
sent. In: Lecture notes in computer science (including subseries lecture
notes in artificial intelligence and lecture notes in bioinformatics), vol
10529 LNCS, 2017, pp 321–345

Banik S et al (2019a) Gift-cofb v1.0. NIST lightweight cryptography project. pp
1–30. https:// csrc. nist. gov/ Proje cts/ light weight- crypt ograp hy/ round-2-
candi dates

Banik S et al (2019b) Sundae-gift. Submiss. to Round 1, vol 1, pp 1–22
Beaulieu R, Shors D, Smith J, Treatman-Clark S, Weeks B, Wingers L (2015)

Simon and speck: block ciphers for the internet of things. In: Proceedings
of the 52nd annual design automation conference on—DAC ’15, no. July.
pp 1–6. http:// dl. acm. org/ citat ion. cfm? doid= 27447 69. 27479 46

Benadjila R, Guo J, Lomné V, Peyrin T (2014) Implementing lightweight block
ciphers on x86 architectures. In: Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture
notes in bioinformatics), vol 8282 LNCS, pp 324–351

Biham E (1997) A fast new DES implementation in software. In: Lecture notes
in computer science (including subseries lecture notes in artificial intel-
ligence and lecture notes in bioinformatics), vol 1267, pp 260–272

Biham E, Anderson R, Knudsen L (1998) Serpent: a new block cipher proposal.
In: Lecture notes in computer science (including subseries lecture notes
in artificial intelligence and lecture notes in bioinformatics), vol 1372, pp
222–238

Biryukov A, Cannière C (2006) Data encryption standard (DES). Encycloped
Cryptogr Secur 3:129–135

Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A (2007) PRE-
SENT : an ultra-lightweight block cipher. Cryptogr Hardw Embed Syst
2007:10–13

Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A (2007) PRESENT :
an ultra-lightweight block cipher. In: Proc. 9th international workshop on
cryptographic hardware and embedded systems (CHES 2007), Vienna,
Austria, pp 450–466

Borghoff J et al (2012) PRINCE: a low-latency block cipher for pervasive
computing applications. Lect Not Comput Sci Inlude Subser Lect Not
Artif Intell Lect Not Bioinform 7658(10):208–225. https:// doi. org/ 10. 1007/
978-3- 642- 34961-4_ 14

Boyar J, Peralta R (2010) A new combinational logic minimization technique
with applications to cryptology. In: Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture
notes in bioinformatics), vol 6049 LNCS, no 2, pp 178–189

Dinu D, Le Corre Y, Khovratovich D, Perrin L, Großschädl J, Biryukov A (2019) Tri-
athlon of lightweight block ciphers for the Internet of things. J Cryptogr
Eng 9(3):283–302. https:// doi. org/ 10. 1007/ s13389- 018- 0193-x

Forouzan D, Behrouz A, Mukhopadhyay D (2015) Cryptography and network
security. Mc Graw Hill Education (India) Private Limited New York, NY, USA

Heys HM (2020) A tutorial on the implementation of block ciphers: software
and hardware applications. In: IACR Cryptol. ePrint Arch, p 1545. https://
eprint. iacr. org/ 2020/ 1545

Karakoç F, Demirci H, Harmanci AE (2013) ITUbee: a software oriented light-
weight block cipher. Lect Not Comput Sci 8162:16–27. https:// doi. org/ 10.
1007/ 978-3- 642- 40392-7_2

Kim H et al (2022) SPEEDY on Cortex–M3: efficient software implementation
of SPEEDY on ARM Cortex–M3. Lect Notes Comput Sci 13218:434–444.
https:// doi. org/ 10. 1007/ 978-3- 031- 08896-4_ 23

Kwan M (2000) Reducing the gate count of Bitslice DES. IACR Cryptol. ePrint
Arch., vol. 2000, p 51. http:// dblp. uni- trier. de/ db/ journ als/ iacr/ iacr2 000.
html# Kwan00

Lee RB (1989) Precision architecture. Comput Long Beach Calif 22(1):78–91.
https:// doi. org/ 10. 1109/2. 19825

Matsui M, Nakajima J (2007) On the power of bitslice implementation on intel
core2 processor. In: Cryptographic hardware and embedded systems:
CHES 2007, vol. 4727 LNCS, Berlin, Heidelberg: Springer Berlin Heidelberg,
pp 121–134

Nazish M, Banday MT (2018) Green Internet of Things: a study of technologies,
challenges and applications. In: 2018 international conference on auto-
mation and computational engineering (ICACE), pp 210–215. https:// doi.
org/ 10. 1109/ ICACE. 2018. 86869 76

Papapagiannopoulos K (2014) Radio Frequency identification: security and
privacy issues, vol 8651. Springer, Cham

Poschmann A (2009) Lightweight cryptography: cryptographic engineering
for a pervasive world. Ph. D. Thesis, no. February, pp 1–197. http:// cites
eerx. ist. psu. edu/ viewd oc/ summa ry? doi= 10.1. 1. 182. 1450

Reis TBS, Aranha DF, López J (2017) PRESENT runs fast: efficient and secure
implementation in software. Lect Not Comput Sci 10529:644–664.
https:// doi. org/ 10. 1007/ 978-3- 319- 66787-4_ 31

Rejeb A, Rejeb K, Simske S, Treiblmaier H, Zailani S (2022) The big picture on
the internet of things and the smart city: a review of what we know and
what we need to know. Internet Things 19:100565. https:// doi. org/ 10.
1016/j. iot. 2022. 100565

Rouf M, Nazish M, Sultan I, Banday MT (2022) Implementation of area and
power optimised ARM cortex-M cores on FPGA. In: 2022 smart technolo-
gies, communication and robotics (STCR), pp 1–6. https:// doi. org/ 10.
1109/ STCR5 5312. 2022. 10009 282

https://doi.org/10.46586/tches.v2020.i3.402-427
https://doi.org/10.46586/tches.v2020.i3.402-427
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates
https://doi.org/10.1145/3231053.3231074
https://doi.org/10.1145/3231053.3231074
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
http://dl.acm.org/citation.cfm?doid=2744769.2747946
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/s13389-018-0193-x
https://eprint.iacr.org/2020/1545
https://eprint.iacr.org/2020/1545
https://doi.org/10.1007/978-3-642-40392-7_2
https://doi.org/10.1007/978-3-642-40392-7_2
https://doi.org/10.1007/978-3-031-08896-4_23
http://dblp.uni-trier.de/db/journals/iacr/iacr2000.html#Kwan00
http://dblp.uni-trier.de/db/journals/iacr/iacr2000.html#Kwan00
https://doi.org/10.1109/2.19825
https://doi.org/10.1109/ICACE.2018.8686976
https://doi.org/10.1109/ICACE.2018.8686976
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.1450
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.182.1450
https://doi.org/10.1007/978-3-319-66787-4_31
https://doi.org/10.1016/j.iot.2022.100565
https://doi.org/10.1016/j.iot.2022.100565
https://doi.org/10.1109/STCR55312.2022.10009282
https://doi.org/10.1109/STCR55312.2022.10009282

Page 18 of 18Nazish et al. Cybersecurity (2023) 6:42

Schwabe P, Stoffelen K (2017) All the AES you need on cortex-M3 and M4. In:
Lecture Notes in computer science (including subseries lecture notes in
artificial intelligence and lecture notes in bioinformatics), vol 10532 LNCS,
pp 180–194

Shannon CE (1945) A mathematical theory of cryptography. https:// www. iacr.
org/ museum/ shann on45. html

Tahir M, Javed K (2017) ARM microprocessor systems cortex-M architecture,
programming, and interfacing. CRC Press

Yiu J (2014) The definitive guide to ARM Cortex-M3 and cortex-M4 processors.
3rd edition. Newnes, Cambridge, pp 45–55, vol 4, no 1. Elsevier

Zhang W, Bao Z, Lin D, Rijmen V, Yang B, Verbauwhede I (2015) RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci
China Inf Sci. https:// doi. org/ 10. 1007/ s11432- 015- 5459-7

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.iacr.org/museum/shannon45.html
https://www.iacr.org/museum/shannon45.html
https://doi.org/10.1007/s11432-015-5459-7

	An efficient permutation approach for SbPN-based symmetric block ciphers
	Abstract
	Introduction
	Background
	SbPN ciphers
	PRESENT block cipher
	GIFT block cipher

	Bit-band memory
	Compiler optimisation

	Related work
	Proposed work
	Implementation
	Methodology

	Results and discussions
	Conclusion
	Acknowledgements
	References

