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Abstract 

In recent years, deep learning (DL) models have achieved significant progress in many domains, such as autonomous 
driving, facial recognition, and speech recognition. However, the vulnerability of deep learning models to adversarial 
attacks has raised serious concerns in the community because of their insufficient robustness and generalization. 
Also, transferable attacks have become a prominent method for black-box attacks. In this work, we explore the poten-
tial factors that impact adversarial examples (AEs) transferability in DL-based speech recognition. We also discuss 
the vulnerability of different DL systems and the irregular nature of decision boundaries. Our results show a remark-
able difference in the transferability of AEs between speech and images, with the data relevance being low in images 
but opposite in speech recognition. Motivated by dropout-based ensemble approaches, we propose random gradi-
ent ensembles and dynamic gradient-weighted ensembles, and we evaluate the impact of ensembles on the trans-
ferability of AEs. The results show that the AEs created by both approaches are valid for transfer to the black box API.

Keywords  Adversarial attacks, Dynamic gradient weighting, Transferability, Ensemble methods

Introduction
Recent studies Athalye et  al. (2018), Carlini and Wag-
ner (2017, 2018), Papernot et al. (2016), Qin et al. (2019, 
Taori et al. (2019) have shown that tasks based on deep 
learning, such as image recognition and speech recogni-
tion, are vulnerable to adversarial attacks. Szegedy et al. 
(2013) first introduced the concept of adversarial attacks 
and adversarial examples (AEs). AEs are constructed by 
deliberately injecting carefully crafted subtle perturba-
tions into the input. These adversarial examples may pose 
a barrier to the development of deep neural networks 
(DNNs), such as in facial recognition, and intelligent 
homes.

Adversarial attacks can be categorized as white and 
black-box attacks based on the attacker’s knowledge of 

the target’s model. In white-box attacks, the attacker can 
access details about the target model, including its struc-
ture, parameters, and even the training dataset, which 
allows the attacker to construct adversarial samples using 
techniques such as backpropagation. On the other hand, 
in black-box attacks, the attacker can only send input 
data to the target model and receive prediction outcomes 
without knowledge of the model’s internal workings. 
This type of attack is particularly challenging and realis-
tic, especially for commercial API models. Consequently, 
black-box attacks have garnered considerable attention in 
recent times.

Although some deep learning tasks can achieve an 
accuracy rate of 99.99% on the training dataset, the preci-
sion in the real world may suffer heavily from the model’s 
poor robustness and generalization ability. Adversar-
ies have already targeted these vulnerabilities to launch 
attacks against selected black-box models. Several stud-
ies by academic and corporate researchers have shown 
that adversarial examples designed to attack specific deep 
learning (DL) models can also attack other DL mod-
els, referred to as “transfer attacks.” This implies that 
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adversaries can create a substitute target model based on 
some publicly accessible deep learning models to tailor 
the perturbation and generation algorithm of AEs based 
on the target model’s query feedback to attack the target 
model. This method has been widely adopted for attacks 
on black-box models (such as commercial black-box 
APIs). Many studies Xie et al. (2019), Dong et al. (2019), 
Long et al. (2022), Zhu et al. 2022), Qin et al. (2019) have 
proposed different algorithms to improve the transfer 
attack capability and provided relevant experimental 
evidence.

Despite many work Chen et al. (2020), Xu et al. (2022), 
Zheng et  al. (2021), Yuan et  al. (2018) has gained posi-
tive results on transferable adversarial attacks in image 
area, the research of transferable adversarial attacks on 
the audio domain has not received sufficient attention. 
Mostly because, as Du et  al. (2020), Chen et  al. (2020) 
claimed, researches on audio adversarial attacks have 
to deal with a number of non-trivial challenges, such as 
time dimension signals, high sampling rate and etc. Thus, 
there are many unique properties in adversarial attacks 
on voice.

In this study, we conducted a thorough analysis of 
the underlying factors that impact the transferability of 
adversarial examples (AEs). Specifically, our research 
entailed numerous experimental studies and data analy-
ses. We delved into the role of noise, scale invariance, and 
other factors that influence the transferability of AEs and 
provided possible explanations for the observed phenom-
ena. In addition, we attempted to delineate the geometric 
properties of DL models and uncovered the volatility of 
the decision boundary of the model.

Furthermore, we observed that the application of the 
dropout self-ensemble technique could enhance the 
transferability of audio AEs. Based on this insight, we 
present two strategies for creating transferable AEs by 
combining multiple models, i.e., the random gradient 
ensemble and the dynamic gradient weighting ensemble. 
These approaches aim to optimize the transferability of 
AEs across different models, thereby enabling the crea-
tion of AEs that can transfer across diverse systems.

Contributions. The contributions of this paper are as 
follows:

•	 We observed notable differences in the transferability 
of AEs between images and voice. The relationship 
between pixels in images is low, but data context con-
nections are critical in speech recognition. We first 
attempt to portray the geometric property of speech 
DL models, where we believe that the decision 
boundary of the speech recognition model is not as 
smooth and continuous as in the images, but rather 
irregular and unstable.

•	 Our experiments reveal the significant influence of 
noise, muted frames, scale invariance, dropout, and 
other factors on AEs and suggest that different fac-
tors have different degrees of contribution to transfer 
rate and perfectibility.

•	 Motivated by the success of dropout-based model 
ensembles, we propose random gradient ensembling 
and dynamic gradient weighting ensembling to gen-
erate the AEs. Our experiments suggest that the AEs 
generated by both proposed strategies can be imple-
mented at a black-box application programming 
interface (API). Furthermore, we find that a p value 
of 0.5 achieves optimal conditions for the generation 
and transferability of AEs.

•	 We release the source code for our research at: 
https://​github.​com/​sveapp/​trans​ferab​ility_​ensem​ble

Background
Here, we will introduce relevant research on adver-
sarial attacks and increasing transferability. We ana-
lyzed and summarized the fundamental conclusions on 
transferability.

Adversarial attacks and adversarial examples (AEs)
Here, we concentrate on adversarial tasks. In a setup like 
this, the DNN network is represented as f, and f : X → C 
represents the given input x(x ∈ X) is mapped to one of a 
set of classes C , where f (x) = c ∈ C . The DNN model is 
vulnerable to adversarial input attacks, which forces the 
DNN model to misjudge. Attacks on DNNs can be clas-
sified as targeted and untargeted. Here, we will focus on 
the setting of targeted attacks. Specifically, adversarial 
examples x∗ are normally generated by slightly modify-
ing x and x∗ = x + δ . The solve of δ can be converted to 
a min-optimization problem, i.e., arg min L(f (x + δ), c∗) . 
The adversary’s goal is to force f to misclassify x∗ as the 
target c∗ , i.e., f (x∗) = c∗, c∗ �= c . To ensure that x∗ is 
acoustically similar to x, the perturbation needs to be 
restricted to a limited range g(x∗ − x) ≤ ε , where the g is 
a measurement function of the auditory difference.

In the audio adversarial attacks, Xie et al. (2019) were 
the first to successfully attack the Deepspeech model in 
2018. At the time, Deepspeech was the most popular 
open-source neural network-based end-to-end speech 
recognition model. In that same year, Long et al. (2022) 
also achieved a successful attack on the Kaldi ASpIRE 
Chain Model.1 Kaldi is a voice recognition system that is 
widely applied by Microsoft, Xiaomi, and other compa-
nies. The following year, Wu et al. (2021) used an auditory 

1  Kaldi.http://​kaldi-​asr.​org.
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masking model to attack Lingvo2 and produced more 
robust AEs that can be replayed in the physical world. 
Lingvo is a speech recognition system developed by 
Google that adopts deep learning to recognize the voice 
and convert it into text in a highly precise and calculat-
ing efficiency. Long et  al. (2022) successfully attacked 
the APIs of Facebook, Bing, Google, AWS, and other 
commercial entities by a local substitute model. Zheng 
et  al. (2021) successfully attacked voice recognition API 
interfaces from companies such as iFlytek, Alibaba, and 
Tencent by the co-evolution algorithm. These attacks 
achieved success rates close to 100% against commercial 
APIs and obtained exciting results.

Subsequently, the research on attacks against open-
source deep learning models became almost static. 
Instead, they are shifting their attention towards attacks 
on commercial speech recognition APIs. The researchers 
doubt that these commercial APIs may leverage DL mod-
els, and hence, might be susceptible to the same vulner-
abilities as open-source deep learning models.

Transferability of AEs
The transferability of AEs is an important attribute. It 
means that one AE can attack different models. In other 
words, an AE is not just for fooling one specific mod, but 
can also deceive other models. From a geometric per-
spective, paper Liu et al. (2016) shows that the decision 
boundaries between different models are very similar, 
which provides an explanation for why AE can transfer 
between different models. The study quantitatively analy-
ses the different transferability of optimization-based and 
gradient-based attacks, showing that the gradient-based 
attacks have a higher transferability. Inspired by data aug-
mentation strategies, paper Xie et al. (2019) proposes to 
increase the transferability of adversarial attacks through 
input diversity. This approach reduces the overfitting 
risk of AEs, and subsequent works have proposed differ-
ent input transformations to further mitigate overfitting, 
such as Wu et al. (2021), Dong et al. (2019), Long et al. 
(2022). Some people think that the more linear the deci-
sion boundary in the last layer, the better the transferabil-
ity of AEs in DNN, as suggested by Huang et al. (2019). 
Paper Kim et  al. (2022) proposes perturbing the feature 
space instead of the input to improve transferability and 
employs attention mechanisms to achieve this. Finally, 
Zhu et  al. (2022) introduces Adversarial Distribution 
Enhancement to tune the adversarial sample distribution 
and improve transferability. The paper shows that the 
transferability of adversarial samples is affected by vari-
ous factors and suggests effective methods to enhance 

transferability. Future research should focus on develop-
ing more robust and generalizable methods to defend 
against adversarial attacks.

In another study, Kim et al. (2023) analyzed the trans-
ferability of AEs from different models in quiet and 
noisy settings. They identified a potential connection 
between transferability and additive noise and proposed 
an approach that injects noise during the gradient ascent 
process to enhance transferability. On the other hand, 
Neekhara et al. (2019) proposed an algorithm to generate 
universal adversarial perturbations with high transfer-
ability. The perturbation is updated using gradient infor-
mation. In a parallel study, Cortes et al. (2015) introduced 
the Houdini attack method, which exploits the difficulty 
of human perception of AE. The results show that Hou-
dini has good transferability and concealment, and can 
successfully fool even unknown models.

The highly non-linear and complex nature of speech 
signals leads to the high variability and uncertainty in 
their features in adversarial speech recognition attacks. 
Simultaneously, the transmission environment of voice 
signals is very complicated, with noise, room acoustics, 
speaker variability, and so on. Research Carlini and Wag-
ner (2017) has highlighted that adversarial examples do 
not appear randomly in small spaces but rather in large, 
continuous subspaces. The dimensionality of these sub-
spaces is a critical factor in the issue of transferability 
since higher dimensionality increases the likelihood that 
subspaces of different models overlap. There is evidence 
Szegedy et  al. (2013), Carlini and Wagner (2017), Chen 
et  al. (2022), Moosavi-Dezfooli et  al. (2016) that these 
perturbations affect specific features that different mod-
els rely on to make decisions. Thus, AEs may be transfer-
able between different models. Additionally, models with 
similar structures, parameter weights, or feature extrac-
tion methods may share common points, facilitating the 
transfer of AEs between them. Similarly, if the source and 
target models have similar structures and parameters, it 
may be easier to transfer adversarial examples between 
these two models, as shown in those studies.

Transferable audio AEs
In this section, we illustrate the factors that affect the 
transferability of audio AEs and describe the geometric 
properties of the decision boundaries associated with 
speech recognition models.

Properties of transferability
Based on the above analysis and related studies Szegedy 
et  al. (2013), Tramèr et  al. (2017), Liu et  al. (2016), Xie 
et  al. (2019), Wu et  al. (2021), Dong et  al. (2019), Long 
et al. (2022), Huang et al. (2019), Kim et al. (2022), Zhu 
et  al. (2022), Athalye et  al. (2018), Carlini and Wagner 2  https://​github.​com/​tenso​rflow/​lingvo.
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(2017), Papernot et al. (2016), Carlini and Wagner (2018), 
Qin et al. (2019), Taori et al. (2019), we summarized some 
properties of the transferability.

Given models A, B, and C with different network struc-
tures but the same training dataset, where the number of 
parameters follows the relationship A ≫ B ≈ C , the fol-
lowing properties are observed:

•	 The transferability of AEs greatly relies on the model 
architecture. Specifically, AEs produced in model A 
will have worse transferability than those in model B. 
While larger and deeper models tend to have better 
performance, they may also have reduced transfer-
ability. Smaller models tend to have better transfer-
ability and are less prone to overfitting. We believe 
that reducing the degree of fit of adversarial pertur-
bations to specific models is beneficial to transfer-
ability.

•	 When models B and C exhibit high classification 
accuracy but low robustness, their decision bound-
aries are usually close. This means that the mod-
els make similar classification decisions on inputs. 
Under these circumstances, AEs can be more eas-
ily transferred from model B to model C because 
the perturbation direction in these examples typi-
cally follows the tangent direction along the decision 
boundary. We think that if the decision boundaries of 
models B and C are similar, the AEs will have equiva-
lent effects on B and C.

•	 AEs can transfer between different models because 
they share a similar input space, i.e., they can pro-
cess similar inputs. However, the transferability 
of AEs between models may be variable due to the 
wavy nature of decision boundaries. As decision 
boundaries change among models, the transferability 
of adversarial examples may be affected. Therefore, 
we consider it essential to understand the decision 
boundaries of different models and their relationship 
to the transferability of AEs.

•	 In deep learning models, the middle layers are criti-
cal for improving robustness and generalization. AEs 
and benign samples display noticeable differences in 
the middle layers of deep neural networks (DNNs), 
and these differences in middle-layer features are 
critical in determining whether an input is malicious 
or not. We suspect that by harnessing the differences 
in middle-layer features, it may be possible to better 
distinguish between adversarial and benign samples, 
ultimately improving the robustness and transferabil-
ity of AEs.

Potential factors impacting transferability
In our study, we pulled the code for attacking Deep-
Speech3 and Lingvo4 and replicated similar results as 
reported by the authors. Additionally, we contacted the 
authors of the ASpIRE model for attacking Kaldi (Yuan 
et al. 2018) and obtained some code and samples. Based 
on this, we conducted further research on adversarial 
attacks in speech recognition and observed the following 
characteristics:

1.	 We used the self-ensembling technique of dropout 
on the Kaldi ASpIRE model to produce AEs. During 
the process of production, we queried the decoding 
results on the APIs every 10 iterations and found that 
after about 80 queries, the samples could be decoded 
as the target command on the Baidu Speech Recog-
nition API,5 Alibaba Cloud Speech Recognition API,6 
and Xfyun API.7 The results are presented in Table 1. 
This shows that a self-ensemble adversarial attack is a 
promising approach. We further investigated a more 
comprehensive ensemble adversarial attack that 
involves combining multiple base models to produce 
more transferable AEs.

	 The production of adversarial samples can be viewed 
as a training process, and there is just one input 
data set for training. With the dropout technique, 
during training, each neuron has its output set to 0 
with probability p. In order to maintain consistency 

Table 1  Results of transfer attack on API service

The “±N” indicates noise range is [−N,N] . The success rate of attack “A/B” 
indicates that there is A out of B AEs that trigger the command on the black-box 
platforms

Noise Baidu-API iFlytek-API Alibaba-API

± 0 5/50 3/50 5/50

± 4000 25/50 20/50 22/50

± 8000 22/50 13/50 20/50

± 12,500 1/50 1/50 1/50

± 17500 10/50 6/50 13/50

± 20,000 30/50 30/50 28/50

± 25,000 5/50 0/50 1/50

Dropout (p = 0.5) 32/50 30/50 28/50

Scale-Invariant (m = 4) 35/50 32/50 30/50

3  https://​github.​com/​carli​ni/​audio_​adver​sarial_​examp​les.
4  https://​github.​com/​cleve​rhans-​lab/​cleve​rhans/​tree/​master/​cleve​rhans_​
v3.1.​0/​examp​les/​adver​sarial_​asr.
5  cloud.baidu.com.
6  cn.aliyun.com.
7  xfyun.cn.

https://github.com/carlini/audio_adversarial_examples
https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/adversarial_asr
https://github.com/cleverhans-lab/cleverhans/tree/master/cleverhans_v3.1.0/examples/adversarial_asr
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between the output during training and testing, it is 
usually necessary to divide the output by 1− p . But 
there is no testing involved in the training of adver-
sarial samples, this step can be simplified to Eq. 1:

where ⊙ denotes the multiplication operation and ∼x 
is the output; we do an Eq. 1 operation on the data 
before each iteration.

2.	 In adversarial attacks, adding noise is a common 
technique to increase the robustness of AEs, ena-
bling them to successfully attack target models in a 
variety of settings. Several papers Wu et  al. (2018), 
Serban et al. (2020), Lin et al. (2022), Li et al. (2022) 
have demonstrated the effectiveness of noise in 
improving the robustness of models or AEs. Noise 
has a subtle effect, including preventing overfitting 
during training, producing highly robust, pertur-
bation-resistant examples, and being used in both 
attack and defense. In experiments, we continuously 
increased the level of noise, adding random noise 
to data at each iteration during the production of 
adversarial examples, and then optimized according 
to the gradient. We found that the AEs performed 
significantly better as the noise levels rose. Although 
the number of iterations and time spent increased, 
the examples optimized with noise were easier to 
attack and more stable than those without noise. It 
became more difficult to produce adversarial exam-
ples with higher levels of noise, but once they were 
produced, the effectiveness of their adversarial 
attacks became much stronger.

	 In our experimental tests, we set the target com-
mand as “turn off the light” and used Eq. 2 to produce 
uniformly distributed random noise, repeating the 
experiment 50 times (with 50 input samples). This 
resulted in 50 adversarial samples. During the pro-
cess of producing each AE, we queried the API every 
10 iterations, totaling 500 queries. If the AE could be 
decoded as the target command by the API, we con-
sidered it to be an example of a successful transfer 
attack. As shown in Table  1, without adding noise, 
the transferability of the AEs was very low, nearly 
zero. We also evaluated the perceptual quality of the 
samples, and there was almost no audible perturba-
tion. As the noise level gradually increased to 20,000, 
the transferability gradually increased and then 
decreased, and the perceptual quality of the samples 
decreased significantly. When the noise level reached 
20,000, the transferability was at its highest and the 
attack effect was at its best, but the noise completely 
covered the base carrier. As the noise level continued 

(1)
m ∼ Bernouli(p)
∼
x = m⊙ x

to increase, the attack success rate decreased sharply, 
and the transferability of the samples declined.

	 Speech and image recognition systems exhibit differ-
ential sensitivities to contextual perturbations. While 
speech recognition is highly dependent on contextual 
cues, with minor fluctuations engendering significant 
decoding inaccuracies, image recognition is more 
robust to analogous variations. This disparity may 
stem from the non-linear relationship between noise 
level and transferability. Initial increases in noise may 
enhance the resilience of AEs, but continued escala-
tion degrades contextual coherence to the point of 
outright obfuscation. Beyond a threshold noise level 
of 20,000, the contextual structure of speech signals 
is wholly disrupted, instead facilitating the emer-
gence of adversarial contextual relationships. How-
ever, these maladaptive relationships also become 
increasingly difficult to establish as noise levels rise 
further.

3.	 Based on substantial testing, we found that the sen-
sitivity of a model to different AEs is diverse, despite 
these having the same algorithm. The choice of audio 
carrier has a direct impact on the performance and 
transferability of the AEs, resulting in differential 
perturbation impacts and attack success rates. Some 
DL models appear inherently more sensitive to some 
input than others. For example, models tend to be 
more receptive to AEs crafted from images of snowy 
landscapes than from images of dogs. This effect is 
even more marked and extreme for speech recog-
nition, with auditory perturbation and attack suc-
cess rates showing significant differences due to the 
audio carrier. Conversational speech carriers tend to 
be more robust to attacks than music carriers, and 
simple musical elements are more readily perturbed 
than multi-element music carriers. Tochoose suitable 
carriers for generating AEs and to reduce the human 
perception of perturbations, research studies such as 
Papernot et al. (2016), Qin et al. (2019), and Serban 
et al. (2020) have used carrier selection methods such 
as automated selection and multi-angle evaluation.

4.	 Through our experimental testing, we found that 
the insertion of silence frames can improve the con-
cealability of the target command and increase the 
attack success rate of AEs. Inserting silence frames 
in appropriate positions can significantly impact the 
decoding result of audio, which can be designed to 
enhance the robustness of adversarial attacks.

	 In speech recognition, the input audio has to be 
segmented into frames. For a length of about 4  s 

(2)f (x) =

{

1
2A , −A < x < A
0, else
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of audio, it can usually be divided into about 500 
frames. That means there are 501 possible insertion 
positions for an audio length of 4 s. At the same time, 
silence frames can disturb the decoded output of the 
whole window, and decouple the original contexts. 
The silence frames do not induce uncomfortable per-
ception and only elicit minor pauses. We randomly 
picked 10 insertion positions during the perturbation 
overlay to study this effect. We found the effect to 
be more marked in the high-frequency domain (see 
Fig. 1) and weaker in the low-frequency domain for 
the inserted silence frames. The impact of carriers 
on AE is discussed in “CommanderSong (Yuan et al. 
2018)”, carrier modality impacts AE feasibility, with 
some carriers enabling un notice AEs and others not 
by comparing their spectrums. We found that silence 
frame insertion is more akin to conversational carrier 
audio and could easily produce adversarial samples 
without being noticed. This may be because silence 
frames not only dissociate original contexts but also 
introduce blank segments, bringing the signal closer 
to conversational speech and increasing AE feasibil-
ity.

5.	 Scale-invariant adversarial attacks are a method of 
targeting models insensitive to scalar transforma-
tions. The scale-invariant adversarial attack is based 
on generating features that can fool models at various 
scales. Lin et al. (2022) generates scale-variant adver-
sarial examples by processing samples at different 
scales, increasing transferability. Li et al. (2022) pro-
poses scale-invariant convolutional layers to enhance 
robustness by maintaining scale-invariant kernels, 
allowing recognition of similarly-featured inputs at 
different scales. Other work (e.g., Xiong et  al. 2016; 
Xu et al. 2022) applies scale and translation transfor-
mations to improve adversarial robustness at vary-
ing levels. Recent work has shown that adversarial 
attacks that are invariant to scale transformations 
can be highly effective in damaging machine learn-

ing models. Scale-invariant attacks attempt to lever-
age the limited scale invariance of models by train-
ing adversarial samples across multiple scales. We 
study a specific scale-invariant adversarial attack 
approach with Eq. 3 and evaluate the effectiveness of 
speech recognition models. The results suggest that 
this scale-invariant approach achieves attack perfor-
mance comparable to other adversarial attack meth-
ods. Furthermore, the produced adversarial samples 
demonstrate strong transferability to other models. 
For the optimal hyperparameter setting of m = 4, 
the attack achieves an average success rate of 65% on 
deception transfer models. Overall, our results high-
light the potential impact of scale-invariant adversar-
ial attacks and the need for further research to allevi-
ate such threats to model robustness.

where Si(x) denotes the scale copy of the input x with 
the scale factor 1/2i and m denotes the number of the 
scale copies, y is the true label.

Geometric properties of ASR models
Briefly, the “transfer attack” means that the AEs produced 
in model A can successfully attack the targeted model 
(APIs). In our experiments, we analyzed how phonemes 
change from benign to audio AEs and found that some 
phonemes shift to the target phoneme with more diffi-
culty than others, with varying patterns across models. 
We deduce that the decision boundaries between speech 
recognition models may be irregular and unstable, which 
is one of the reasons why speech recognition transferabil-
ity attacks are difficult.

In Fig.  2, the green dots are data distribution points 
above model A’s decision boundary, belonging to benign 
sample data points, and the input x can be correctly tran-
scribed as y. Adversarial samples (AEs, red points in the 
figure) formed from the benign sample points (green 
points) that have crossed the decision boundary. AEs are 

(3)gt =
1

m

m
∑

i=1

∇xl(Si(x
adv), y)

Fig. 1  Compare the frequency domain features after the inclusion 
of silence frames

Fig. 2  Transferable attacks on speech recognition models
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produced on model A, and the goal is to attack the target 
model. Although all green dots have crossed the decision 
boundary of A, some data dots (q) have not crossed the 
decision boundary of the target model and some have 
(s,p). For speech recognition, tri-phoneme correlation 
decoding is usually adopted, as shown in Fig.  2, where 
three data points with front and back correlations com-
pose a decoding union. For a transferable attacker, to 
produce AEs that can attack the target on model A, they 
must cross the target’s decision boundary for all data 
dots. Qab, pab, and sab are three decoding units, and 
pab, qab, and sab can be decoded into target commands 
on model A, but only pab and sab can be decoded into 
target commands on the target model. The main differ-
ence between pab and sab is the differing positions of p 
and s, suggesting that the level of perturbation is differ-
ent. (The higher the perturbation, the lower the position.)

For example, in the words “end” and “old”, the phoneme 
for the end is ‘IY-N-D’, and for old is ‘UW-I-D.’ Our goal 
is to transform “old” into “end.” The essence of adver-
sarial attacks in speech recognition is to make the pho-
nemes cross the decision boundary of the target model to 
achieve the attack. The phonemes ‘I’ and ‘D’ correspond 
to the ‘a’ and ‘b’ dots in the figure, while ‘N’ and ‘D’ are 
the corresponding green dots above ‘a’ and ‘b’. The dot q 
represents the phoneme “UW” for model A, but for the 
target model, only dots “s” and “p” are regarded as “UW.” 
The qab cannot be decoded as “end” on the target model, 
and it may be decoded in other words. Even if the major-
ity of phonemes (’N’ and ’D’) have crossed the decision 
boundary, it cannot ensure a target decoding result for 
“end” and “old.” This is also the fundamental reason why 
transfer attacks are difficult.

In image or audio adversarial attacks, a “hard clip” is 
a technique used to limit the amount of perturbation 
within a certain range. Due to the measurement of audi-
tory perturbation clips, in Fig.  2, the “s” and “p” point 
positions have different levels of perturbation, making 
it difficult to optimize to a specific point, such as the 
s-point, usually the p-point. Hard clipping is a rough way, 
and such clipped perturbation may result in uncomfort-
able listening, which is why many audio adversarial sam-
ples are noisy. Nevertheless, optimization to the s-point 
is always the desired goal. In addition, the choice of 
decoding rules will also impact the decoding results.

Approach to enhance the transferability of audio 
AEs
Based on our findings, the dropout strategy inciden-
tally increases the transferability of audio AEs. This 
encouraged us to further examine the impact of ensem-
ble approaches on the transferability of audio AEs. We 

gathered Deepspeech, Kaldi, and Lingvo models as base 
models and evaluated the effect of different ensemble 
strategies on transferability.

Rethinking the ensemble learning
In supervised machine learning, we want to train a model 
that is stable and performs well in all aspects. In practice, 
this goal is often difficult to achieve, and we may only 
obtain several well-performing but still biased models. 
Ensemble learning is a technique that combines multi-
ple weakly supervised models to create a more accurate 
and robust overall prediction. By combining them, the 
ensemble model can correct for the errors or biases in 
the individual models.

There are three approaches to ensemble learning: bag-
ging, boosting, and stacking. Bagging uses random sam-
pling with replacement to repeatedly extract different 
subsets from the training set to train a group of base 
models. Finally, the predictions of these baselines are 
combined using methods such as voting to reduce vari-
ance. Boosting trains the next base learner by focusing 
on the samples that the previous base model misclassi-
fied. These results are weighted and averaged to produce 
the final model. Stacking trains several base models using 
the training set and obtains the output results of these 
base models. These output results are then used as a new 
training set to train a model.

Similarly, ensemble learning has potential applications 
in attacking deep learning models, particularly black-
box models. We can construct robust AEs by combin-
ing a collection of base models that can effectively attack 
black-box or gray-box models. These examples are then 
trained using a specific methodology to obtain embedded 
AEs. The gradient information collected from different 
models is used to generate an adversarial example based 
on a specified optimization method to attack the targeted 
model. It is expected that different ensemble methods 
will have varying impacts on gradient information.

Adversarial Attack with ensemble learning
Different ensemble strategies have different impacts on 
the results of attacks. Below are some popular ensemble 
attack approaches. Liu et  al. (2016) first implemented 
multi-model ensemble methods, for k base models, to 
obtain a loss Ji(x) (after softmax) and a set of weights 
αi to ensemble the optimization 

∑k
i=1 αiJi(x) . This 

approach soon became the baseline. Besides, various 
models have been used as base models for ensembling, 
while some have explored self-ensembling strategies. 
One example of such a strategy proposed by Li et  al. 
(2020) involves the use of ghost networks, which com-
bine dropout, skip connection, and other operations 
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to create a variety of candidate models that are then 
ensembled to produce AEs. In a related way, Wu et al. 
(2020) proposed the skip gradient method, which 
employs a network with skip connections to give higher 
weight to shallow networks and attempt to produce 
AEs with stronger transferability. Another proposed 
Long-term Gradient Memory Ensemble Adversarial 
Attack Che et al. (2020), is based on two assumptions: 
one that model transfer is equal to network generali-
zation, and the other that boundary similarity is more 
important than perturbation limit s. SVRE-MI-FGSM 
Xiong et  al. (2022) also tries to improve the transfer-
ability of adversarial examples by reducing the variance 
between models, ultimately obtaining a smooth deci-
sion boundary curve to improve transferability. The 
geometric properties of ImageNet were analyzed in 
Liu et al. (2016), revealing that the gradient directions 
of different models are orthogonal to each other, and 
the decision boundaries of each model are relatively 
similar, facilitating the transferability of non-targeted 
attacks. Subsequently, two ensemble-based black-box 
attack strategies, the selective cascading ensemble 
strategy, and the stack parallel ensemble strategy were 
proposed in Hang et  al. (2020) to implement more 
powerful black-box attacks on DL models. The diver-
sity and number of substitutes in the ensemble are two 
important factors influencing the transferability of AEs, 
which is crucial for selecting effective substitutes for 
the ensemble.

For the adversarial attack on a single model, it is only 
necessary to cross the decision boundary of that spe-
cific model. However, there is a degree of gap between 
the decision boundaries of different models. As illus-
trated above, the decision boundary in the speech 
recognition model is sharply wavy and irregular. The 
ability of different models to cross the classification 
boundary is not equal, and ensemble methods can help 
to overcome this deficiency. As shown in Fig.  3, AEs 
produced based on a single model 1 may not transfer 
successfully to other models due to differences in deci-
sion boundaries. The same problem is often present in 
the production of AEs based on other models. If those 

basic models are connected, it is possible to obtain AEs 
that cross more model decision boundaries, thus form-
ing stronger attack capabilities.

It can be observed that the AEs (the red dot) generated 
by the ensemble-based strategy cross k decision bounda-
ries of substitute models, indicating its higher gener-
alization ability and a greater likelihood of successfully 
deceiving the target black-box model API, i.e., crossing 
the decision boundary of the target model.

Ensemble‑based adversarial attack for ASR models
As previously proposed, self-ensemble dropout technol-
ogy has somehow improved the transferability of AEs. 
Despite the irregular and unstable decision boundaries 
that exist between the source model and target model, 
the transfer of AEs has proven to be difficult. However, 
the ensemble method can continue to close toward the 
best overlapping subspaces and the “pab” attack pathway. 
Nonetheless, it is important to note that self-ensemble 
dropout technology may close the “sab” attack path-
way, which can marginally impair auditory perception. 
Adversarial attacks on speech recognition models are 
more complicated than those on images, and the tech-
niques probably vary considerably. However, no one has 
attempted to generate AEs by combining different speech 
recognition models. This is partly due to the scarcity 
of open-source speech recognition models, as well as 
the greater complexity of these models, which require 
more time and resources to produce AEs. Also, the non-
smoothness of decision boundaries in speech recognition 
models poses a challenge to achieving the desired trans-
ferability. To further investigate the impact of the ensem-
ble on AE transfer, we examined the Deepspeech, Kaldi, 
and Lingvo models and designed a combined algorithm, 
with experimental details explained in the following sec-
tion. The Deepspeech, Kaldi, and Lingvo models are cur-
rently the most popular neural network-based speech 
recognition models and have been widely accepted by 
both industry and academia.

In our study, we selected these three models as base 
models for ensemble research.

To attack the Deepspeech model, we used the CTC-
loss of the Deepspeech model as the loss function and 
optimized it through Adam. The method for obtaining 
AEs is shown in Eq. 4.

AEs can be generated to attack Kaldi’s Aspire model 
by computing the pdf-id loss function between the 
input sample x and the target y and performing gradient 
descent with the Adam optimizer. The maximum value of 

(4)xadvt = xadvt−1 + clipεx(Adam(∇xlossctc(x
adv
t−1, y)))

Fig. 3  Transferable attacks on speech recognition models. Yellow 
icons mark benign samples and red icons mark adversarial samples
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the perturbation is also constrained. The implementation 
is shown in the following Eq. 5.

The adversarial attack on the Lingvo model is a two-
step attack algorithm. In the first stage, produce an 
AE that can fool the Lingvo model by using the Adam 
optimizer and gradient descent to according the gra-
dient. In the second stage, the AEs are continuously 
optimized using the psychoacoustical auditory mask-
ing principle. Adversarial perturbations are injected in 
ranges that humans cannot perceive. This principle is 
shown in Eq. 6.

In the image domains, for each model, the ensem-
ble attack employs the same attack method (the FGSM 
method is commonly adopted). On this basis, there are 
three different levels of the ensemble, one in predic-
tions, the other in logits, and the third in loss functions. 
The methods are shown in Eq. 7.

where l is the loss of the model, 1y is the one-hot encod-
ing of the ground-truth label y of x, pk is the prediction of 
the k-th model, and αk ≥ 0 is the ensemble weight con-
strained by 

∑n
k=1 αk = 1.

In audio adversarial attacks, a host of methods has 
been developed to target particular models, frequently 
relying on distinct loss functions to produce different 
attack strategies and outcomes. However, the mainstay 
of these attacks relies on the use of gradient descent, 
which means that they all need to calculate gradi-
ents and thus pose an opportunity for gradient-based 
embedding. In this study, we investigate two gradient 

(5)
xadvt = xadvt−1 + clipεx(Adam(∇xlosspdf−ids(x

adv
t−1, y)))

(6)

{

xadv1t = xadv1(t−1) + clipεx(Adam(∇xloss mod el(x
adv
1(t−1), y)))

xadv2t = xadv1t + Adam(∇xlossmasking (x
adv
1t , ymasking ))

(7)

l(xadvt , y) = −1y ∗ log(
∑n

k=1 αkpk(x
adv
t ))

l(xadvt , y) = −1y ∗ log(softmax(
∑n

k=1 αk log itsk(x
adv
t )))

l(xadvt , y) =
∑n

k=1 αk lk(x
adv
t , y))

ensemble strategies, the serial and parallel gradient 
ensembles, to produce highly transferable AEs. Specif-
ically, we employ two ensemble algorithms to compute 
different gradients for a given input based on the base 
model and combine them according to the ensemble 
strategy to update AEs with gradient momentum and 
the Adam algorithm. The conceptual framework is 
shown in Fig. 4.

Moreover, the transferability of AEs in speech recog-
nition is significantly inferior to images due to the more 
oscillatory nature of the decision boundary. This irreg-
ular and unstable boundary hinders the transferability 
of AEs. However, local smoothing has the advantage of 
reducing the violent oscillations of the decision bound-
ary. In Balduzzi et al. (2017) and Smilkov et al. (2017), 
the authors propose adding a slight degree of noise to 
the input data and repeatedly applying it to smooth 
the impact of noise in models. Alternatively, Wu et al. 
(2018) smooths the input image and use a gradient 
ascent algorithm to maximize the error rate of the pre-
dictive classifier, resulting in a more valid and highly 
transferable attack on the classifier.

In the 2017 NIPS competition, Dong et  al. (2018) 
demonstrated that gradient momentum significantly 
improves the transferability of samples, enabling bet-
ter avoidance of local minima. Specifically, the gradient 
momentum algorithm adds the current gradient vec-
tor to the previous gradient vector and multiplies it by 
a momentum factor before updating the parameters at 
each iteration. This approach maintains earlier gradient 
information, allowing the model to maintain a certain 
direction and speed during descent, thereby increasing 
the convergence rate.

In our study, we propose a novel gradient smooth-
ing method to enhance the adversarial transferability 
of ensemble attacks and address the issue above. Our 
approach is inspired by the Gaussian noise gradient 
smoothing method (Balduzzi et al. 2017; Smilkov et al. 
2017; Wu et  al. 2018), which designs the gradient by 
taking into account the gradients of other points around 
the modified point and treats the averaged value of the 
gradient after multiple Gaussian fuzzes as the final gra-
dient. Our methodology involves multimodel gradient 
smoothing for each iteration. First, superimpose white 
noise on the input, the sound is susceptible to distur-
bance from white noise rather than Gaussian noise. 
Next, sum the gradient information for each model, 
respectively, and finally, normalize the summed gradi-
ent to obtain the final smooth gradient. To increase the 
number of models, we combine the self-ensemble drop-
out method to enhance model diversity. The calculation 
process for our practice is presented in Eqs. 8 and 9.

Fig. 4  Adversarial sample generations based on ensemble attacks
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where D is the dropout function.
After the smoothed gradient gt is obtained, we employ 

Eq. 10 to accelerate the convergence speed and overcome 
the issue of slow and unstable convergence during gradi-
ent descent, thereby promoting a smoother optimization 
process and generating high-quality AEs more quickly.

Algorithm implementation
In this part, we present the implementation of our algo-
rithm, which includes the Random Gradient Ensemble 
and Dynamic Gradient Weighting Ensemble algorithm. 

1.	 Random Gradient Ensemble (RGE). For gradient 
ensembles, there are serial and parallel ensembles. 
The serial ensemble adversarial attack relies on 
diverse base models, randomly picking the gradi-
ent of one model as the ensemble gradient for each 
iteration, and after T iterations, getting terminal AEs. 
Ensuring model diversity is a crucial factor in ensem-
ble attacks, and a random gradient can increase 
model diversity. Randomly selecting a model’s gradi-
ent can increase uncertainty and escape over-fitting 
to a specific model, thus improving transferability. 
Moreover, different models may have different levels 
of robustness, and by randomly selecting a model’s 
gradient, it is possible to expand between different 
models and identify robust models, which may help 
to improve the robustness of AEs. The random gradi-
ent ensemble approach has also been implemented in 
Tramèr et  al. (2017) for ensemble adversarial train-
ing and has achieved positive results. The algorithmic 
workflow is outlined in algorithm 1.

2.	 Dynamic Gradient Weighting Ensemble (DGWE). In 
general, the larger the gradient value (L-norm), the 
more important its role in updating model parame-
ters is, and it dominates the process. Yet, in ensemble 
training, when the model’s gradient value and direc-
tion differ substantially from those of other models, 
the ensemble model is more susceptible to being 
steered by large-gradient models, causing the model’s 

(8)g̃t =

m
∑

i=1

∇xl(D(x
adv
t )+ ςi, y), ςi ∼ U(−A,A)

(9)gt =g̃t/means(abs(g̃t))

(10)gt+1 = µgt−1 + gt

predictions to lean towards such models and fail-
ing to achieve the desired ensemble. This issue may 
arise because large gradients contain noise or occur 
in irregular regions, which have a heavier impact 
on parameter updates. Larger gradients may also 
indicate that the input data is less reliable, whereas 
smaller gradients imply greater reliability. The same 
challenge arises in ensemble adversarial attacks, 
where assigning lower weights to models with gradi-
ents that differ from those of other models may pre-
vent their overwhelming influence on the final out-
put, hence promoting the diversity and robustness of 
AEs. In our DeepSpeech, Kaldi, and Lingvo reposi-
tories, we measured considerable variation in gra-
dients among the three models. Consequently, it is 
important to avoid over-reliance on individual mod-
els in the ensemble. We recommend assigning lower 
weights to models with larger gradients to limit their 
undue influence on the ensemble. We found that this 
approach can also reduce the variance of the ensem-
ble, ultimately leading to lower gradients for param-
eter updating and avoiding the potential for destruc-
tive bias from larger gradients.

Here, we propose DGWE based on the || ∗ ||2 norm of 
the gradient. The || ∗ ||2 norm of the gradient provides 
a weighting formula for input, depending on its impor-
tance to the result. The specific setting method is as fol-
lows Eq. 11:

in this method, ||gtk ||2 represents the gradient Euclidean 
norm of model k, while σ is a parameter used to control 
the smoothness of the weights (in this paper, we take σ
=1). When σ is large, the weights become smoother, 
resulting in smaller differences in weights among differ-
ent data sources. Conversely, when σ is small, the weights 
become more dynamic, resulting in larger differences in 
weights among different data sources. This method is an 
advanced data fusion technique that dynamically adjusts 
the weights based on the contribution of each model’s 
gradient to the outcome, leading to a more refined over-
all gradient that is better suited for the optimization pro-
cess. The algorithm flow is described in the DGWE part 
of Algorithm 1.

(11)











wi = exp(−||gtk ||2
1/σ 2

)

wi = wi/
K
�

i=1

wi
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Experiments and evaluation of ensemble attacks
Evaluation metrics
A transferable adversarial attack is an approach 
that encompasses reduced expenditure of time and 
resources for generating AEs as well as potential 
enhancement of attack success rates. However, it is 
essential to assess the transferability of the attack, as 
the ability of a transferable adversarial attack could be 
negated by shifts in the target model. In order to evalu-
ate the transferability of the AEs generated by the RGE 

and DGWE approaches, we measured the transfer rate 
(TR) of the AEs (Hang et al. 2020; Papernot et al. 2017). 
TR serves as a metric that defines the misclassification 
rate of AEs generated by the local model relative to the 
target model. Superior transferability is indicated by a 
higher transfer rate.

In our experiments, we trained 50 AEs on the ensem-
ble model (single input, requiring 50 manual runs of 
the experiment), with every 10 samples corresponding 
to one target command (5 target commands in total). 
In this work, we do not consider the influence of tar-
get commands on transferability (Chen et  al. 2022), 
despite the possibility that different target commands 
have different transferability. Our primary goal is to 
evaluate the transferability of the AEs generated by the 
ensemble method, emphasizing overall transferability. 
We consider the ratio of the number of AEs containing 
different target commands that are successfully trans-
ferred to the target model divided by the total number 
of AEs as the transfer rate to assess the transferability 
performance of our method, as shown in Eq. 12.

where T is the target command group, N is the sample 
group of a specific command, xij indicates the j-th sample 
of the i-th command, X is the total sample count, and F(.) 
is the target model output. In Table 2, we usually display 
this TR value in “A/B” form (which can also be converted 
to decimals).

Besides, we use SNR to describe the perturbation on 
audio AEs. SNR is a parameter widely used to quantify 
the level of a signal’s power to noise, so we use it here to 
measure the distortion of the adversarial sample over the 
original song. It is worth noting that the success rate or 
the SNR is not the only metric that determines whether 
an AE can successfully attack the target system. An effec-
tive AE should fool both the model and the human.

(12)TR =

∑

i∈T

∑

j∈N F(xij)

X

Table 2  Transfer rate (TR) of adversarial samples on commercial cloud speech-to-text APIs

The abbreviations DS, ITRA, CS, and DW refer to different attack methods presented in Carlini and Wagner (2018), Qin et al. (2019), Yuan et al. (2018), and Chen et al. 
(2020), respectively. Occam and DC refer to the attack methods proposed in Zheng et al. (2021) and Xu et al. (2022), respectively. The “-” indicates that the attack 
method has not been tested on the API. In the DW Chen et al. (2020), the authors evaluated 10 AEs. To match the number format of this work, we doubled the number. 
In the DC Xu et al. (2022), the authors reported the attack success rate as the result, which was converted by calculation to the format

API service Audio length DS ITRA​ CS DW Occam DC RGE DGWE

Aliyun-API 4s 2/50 0/50 9/50 15/50 50/50 – 35/50 20/50

Xfyun-API 4s 0/50 0/50 20/50 35/50 50/50 34.5/50 30/50 35/50

Baiduyun-API 4s 4/50 0/50 4/50 – – 37.25/50 38/50 33/50

Tencent-API 4s 2/50 2/50 5/50 20/50 – 41.2/50 – –

Microsoft-API 4s 15/50 7/50 15/50 40/50 50/50 – – –

Average 4s 4.6/50 1.4/50 10.6/50 27.5/50 50/50 37.7/50 34.3/50 28.3/50
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We then use Eq.  13 to obtain SNR, where the origi-
nal song x is the signal while the perturbation δ(x) is the 
noise and δx = ||xadv − x|| . Usually, a larger SNR value 
indicates a smaller perturbation.

Experiment setting
To evaluate the transferability of our proposed combined 
adversarial attack strategy, we conducted experiments 
on commercial speech recognition APIs, such as those 
provided by iFlytek, Alibaba, and Baidu. These APIs 
offer high-level English speech recognition services that 
directly impact the user experience of millions of peo-
ple. Attacks against these commercial APIs are closer to 
real-world attack patterns and are more sophisticated. In 
the choice of attack targets, we picked some representa-
tive commands as attack targets.8 In this context, higher 
transferability implies a more significant potential for 
danger.

Also, as shown in the previous experiments, the car-
rier of AEs plays a significant role in transferability. The 
generation and transferability of AEs are directly influ-
enced by the choice of carrier. In CommanderSong (Yuan 
et  al. 2018), Cheng Yuxuan et  al. first used music seg-
ments as the carrier of AEs in attacks, arguing that music 
has the nature of common consumption, giving it native 
opportunities in attacks with its popularity and exten-
sive reach. Attacks on music segments are likely to raise 
public concern. Music segments have also been shown to 
serve as carriers in Chen et  al. (2020), Xu et  al. (2022). 
In our study, we also consider music segments as carri-
ers of AEs, including popular music, classical music, rock 
music, and light music, covering multiple language types 
such as Korean, English, Japanese, Chinese, Russian, and 
Arabic. The length of each music segment is about 4 s.

(13)SNR(dB) = 10log10(Px/Pδx )
Evaluation of the attack
In this section, we conduct a quantitative analysis of the 
transferability differences between RGE and DWGE by 
comparing several state-of-the-art attacks, including DS 
(Carlini and Wagner 2018), ITRA (Qin et al. 2019), and 
CS (Yuan et  al. 2018) for white-box attacks, and DW 
(Chen et al. 2020), Occam (Zheng et al. 2021) and DC (Xu 
et  al. 2022) for black-box attacks on commercial APIs. 
This comparison provides additional support for inves-
tigating the interpretability and robustness of the mod-
els. All of these attacks are single-model transfer attacks 
in speech recognition adversarial attacks and do not 
exploit ensembles. This is possibly overly expensive, and 
there is also a lack of available models that can be com-
bined. There are still many gaps in exploring the transfer-
ability of adversarial examples trained from ensembles. 
In this study, we strive to meet these gaps by gathering 
three speech recognition models capable of supporting 
ensemble attacks. We also propose an attack algorithm 
for speech recognition model ensembles. Table 2 shows 
the transferability of each attack to different APIs. Table 3 
shows the SNR results.

DS attack
The Deepspeech Attack (DS) Carlini and Wagner (2018) 
is a white-box attack against the DeepSpeech model. 
There are two methods to train adversarial audio, namely 
gradient descent and genetic algorithms. Both meth-
ods are time-consuming. The DS attack can generate an 
audio waveform that is 99.9% similar to the original and 
can be transcribed into any target phrase. The DS attack 
was first implemented in DeepSpeech-0.1.0 and has been 
found to exhibit good transferability to versions 0.2.0 and 
0.3.0 (Chen et al. 2022). This can be attributed to the sim-
ilarity in model structure and optimization algorithms 
between these versions. However, the transferability 
of the DS attack to APIs is poor, with an average trans-
fer rate of only 0.1. This limitation makes it difficult to 
extend the attack to other models. As for SNR, although 
effective AEs from DS can achieve SNR as high as 26.47 
dB, the TR is too low to effectively mislead the SR ser-
vices and thus far from being practical.

Table 3  SNR(dB) of adversarial examples on commercial cloud speech-to-text APIs

API service Audio length DS ITRA​ CS DW Occam DC RGE DGWE

Aliyun-API 4s 26.47 – 19.02 17.33 17.84 – 13.51 18.01

Xfyun-API 11.22 14.20 12.85

Baiduyun-API – 12.21 13.34

Tencent-API 16.70 – –

Microsoft-API 10.74 – –

Average 4s 26.47 – 19.02 17.33 14.13 13.31 14.73

8  including turn off the light, open a website, where is my car, what is the 
weather, and navigate to my home.
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IRTA attack
The IRTA attack algorithm Qin et al. (2019) is a two-stage 
method designed to target the Lingvo white-box model. 
In the initial stage, a sample is generated to deceive the 
Lingvo model. In the subsequent stage, psychoacoustic 
masking is applied to inject adversarial perturbations in 
the audio range that are imperceptible to humans. Com-
pared to other approaches, IRTA is remarkably quiet, and 
the perturbations are barely detectable to the human ear. 
This feature is closely related to the human hearing range. 
Regrettably, our investigation revealed that the transfer-
ability of IRTA’s AEs is seriously limited, with an aver-
age transferability rate of only 0.04. This implies that this 
method is only effective for specific models. The primary 
reason for this limitation is that the automatic speech 
recognition (ASR) model focuses solely on the human 
audible range and is indifferent to the inaudible range. 
Consequently, sound in this range is also ignored by the 
ASR model. With respect to IRTA, the metric employed 
to evaluate the magnitude of the interference is not SNR, 
as it is an inadequate measure of auditory perceptibility. 
This is due to the utilization of a psychoacoustic masking 
model within the system.

CS attack
. The CommanderSong Attack (CS) Yuan et al. (2018) is 
a white-box attack that embeds a command into a song. 
This manipulated song can then be played to activate 
real-world ASR systems and execute targeted commands. 
In the context of Kaldi, the WTA attack can achieve a 
100% success rate, while the WAA attack can achieve a 
96% success rate. Our investigation revealed that the 
average transfer rate (TR = 0.22) of CS adversarial exam-
ples (AEs) is higher than that of DS and ITRA, potentially 
indicating a higher degree of perturbation. Through an 
analysis of AEs and codes, we observed that the degree 
of clip perturbation in the CS attack is greater than that 
of DS and ITRA (approximately 4000 for CS compared 
to 2000 for DS and ITRA). So, the auditory perceptibil-
ity of the CS attack is inferior compared to the DS and 
ITRA. CS is a method of attacking the Kaldi system. We 
submit the same AE to different APIs to test its transfera-
bility so that its SNR remains the same, which is 19.02dB. 
Although the SNR of CS is high, the transferability is low.

DW attack
The Devil’s Whisper (DW) attack Chen et  al. (2020) is 
designed to target commercial black-box models that 
deploy surrogate models to estimate the target model. The 
AEs can successfully attack various commercial devices, 
including Google Assistant, Google Home, Amazon 
Echo, and Microsoft Cortana, with an average success 
rate of 98% of target commands. However, the transfer 

performance of DW is relatively high (TR = 0.55) for iFly-
tek, while poor for Tencent and Alibaba APIs. DW is an 
attack on APIs that poses a low risk of model overfitting. 
The training of AEs can be tuned based on feedback from 
different APIs to attack them more effectively, achieving 
a higher transferability rate than other attacks. However, 
due to differences in models, generating AEs based on 
the feedback of a specific API may lead to stronger attack 
capabilities against some APIs and weaker against others. 
For DW, we followed the same method to test its transfer-
ability and SNR, the SNR is 17.33 dB.

DC attack
The Disappeared Command (DC) attack Xu et al. (2022) 
relies on an acoustic masking model to attack ASR sys-
tems. By injecting noise or inserting additional audio to 
conceal the target command and prevent it from being 
recognized as normal speech. In their study, the authors 
evaluated the effectiveness of AEs generated with the 
DC attack on iFLYTEK, Tencent, and Baidu APIs and 
achieved promising results. However, the author did 
not release the source code or samples, and we have 
not verified their accuracy or conducted further evalua-
tions on other API platforms. Because DC is not embed-
ding additional target instructions through perturbation 
in the existing audio information, the commonly used 
measure of SNR is not suitable for evaluating their attack 
algorithms.

Occam attack
The Occam attack (Zheng et  al. 2021) generates AEs 
through a coevolving optimization algorithm, which ena-
bles the identification of optimal solutions with minimal 
information and effectively fools speech recognition sys-
tems. While the success rate of the attack on APIs can 
reach 100%, the authors have not released the source 
code or provided access to the AEs, limiting further 
evaluation and confirmation of the reported results. The 
average SNR is 14.13 dB. A smaller SNR means the audio 
of the target command is more obvious in the audio AE, 
making it easier for the devices to recognize.

The evaluation of RGE and DGWE attacks
The ensemble attack with RGE is a serial method that 
randomly selects gradients as the ensemble model gra-
dient to update x∗ . As shown in Tables  2 and 3, the 
ensemble adversarial method of RGE exhibits remark-
able transferability and SNR to the Baidu, Alibaba, 
and iFlytek APIs, with an average transfer rate of 0.69, 
which surpasses that of DS, ITRA, CS, and DW but 
falls short of Occam and DC. The DC approach uti-
lizes psychoacoustic masking, whereas the RGE and 
DGWE methods employ ensemble techniques and have 
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comparable transferability. RGE and DGWE provide 
a new complement to strategies for generating highly 
transferable adversarial examples, with low time cost 
and high SNR. In applied research, ensemble methods 
have more areas to investigate. This finding highlights 
the potential of ensemble attacks in enhancing the 
robustness of samples and promoting generalization 
to other models. Besides, our analysis suggests that the 
similarity of decision boundaries in speech recogni-
tion models has a limited impact on the transfer rate of 
samples. As discussed in Chen et al. (2022), the robust-
ness of sample features may play a more crucial role in 
transferability than model similarity, and randomiza-
tion can mitigate the risk of overfitting and improve 
the robustness of AEs. Overall, the results show that 
ensemble attacks with random gradient ensembles can 
effectively improve the transferability of AEs to normal 
black-box APIs. In addition, the SNR is maintained at 
a high level while preserving a high TR, for RGE, the 
average SNR can reach 13.31 dB and DGWE reaches 
17.73 dB.

In Table  2, the transfer rate of the parallel ensemble 
attack method based on DGWE is inferior to that of the 
serial ensemble method based on RGE, with an aver-
age transfer rate of 0.59, which is about 0.1 lower than 
RGE. Notably, both RGE and DGWE present poorer 
performance on Alibaba’s API compared to iFLYTEK 
and Baidu, suggesting that different APIs have different 
susceptibilities to AEs. The experiments suggest that 
black-box models with high accuracy are highly suscep-
tible to the effects of RGE and DGWE proposed in our 
study, and any ensemble method can have a positive 
impact on the transferability of AEs. We also observed 
that carefully crafted AEs with high success rates pos-
sess stronger transferability. RGE is a more effec-
tive method than DGWE and can generate AEs with 
stronger transferability.

Transferability factors exploration
To address the lack of diversity in open-source speech 
recognition models based on deep learning, we pro-
pose a method that combines dropout self-ensemble 
and model ensembling to increase model diversity. 
Specifically, the dropout randomly sets partial inputs 
to zero with probability p, triggering the death of some 
neurons during propagation and consequently the for-
mation of multiple networks. In adversarial attacks, 
the value of input x is updated, serving as both an 
input and a parameter update. We randomly set a por-
tion of xi to zero with probability p, and subsequently 
update x via the gradient of the new input, as outlined 
by Eq. 14.

where ri represents a Bernoulli distribution with the same 
dimension as x, and the probability parameter p plays a 
crucial role in the dropout function. If p is set too low, 
the number of models in the ensemble may be insuffi-
cient, thereby impairing the effectiveness of the ensem-
ble. Conversely, if the value of p is excessively high, the 
sample training process may diverge, resulting in non-
convergence or high convergence costs, ultimately lead-
ing to the training of samples with weak transferability.

The experimental results of the relationship between 
p value and transferability are shown in Fig.  5. As the 
p value increases, the transferability of both ensemble 
methods shows a tendency to increase and then decrease. 
The transferability is up to a peak at p = 0.5 , where 
RGE achieves a transferability of 0.69 and DGWE 0.59, 
with a difference of only 0.1. Initially, the transferability 
is positively correlated with the p value, since a higher p 
value implies an increased number of ensemble models, 
thus slightly decreasing the degree of fitting of the sam-
ple to a particular model, and improving the robustness 
of the AEs. However, at a certain point, the transfer-
ability starts to decrease with the p value. When p = 1 , 
ri is 0, the input becomes 0 and the parameters are not 
updated, resulting in a transferability of 0. In the process 
of decreasing transferability, RGE decreases faster than 
DGWE and becomes 0 earlier. The continuous increase 
in the value of p makes the loss function harder to con-
verge and raises the cost of obtaining samples, leading to 
poorer results.

Discussion
Defense
The ASR system is a sophisticated model that consists 
of several components, including preprocessing, feature 
extraction, acoustic processing, and language processing, 

(14)







ri ∼ Bernoulli(p)

xadv0 = x

xadvt = xadvt−1 + clipεx(Adam(∇xlossctc(ri ∗ x
adv
t−1, y)))

Fig. 5  The transfer rate (TR) as a function of the dropout rate (p 
value) and shows an increasing trend with rising p value until it 
culminates at a p value of 0.5. Subsequently, the TR experiences 
a decline with the p value continuing to increase
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each of which is vulnerable to attacks, as is the defense. 
Adversarial training, input preprocessing, model adapta-
tion, detection, and randomization are commonly imple-
mented as defense mechanisms.

In some works, several defenses have been proposed 
to deal with adversarial perturbations in ASR systems. 
Randomized smoothing is proposed in Zhu et al. (2022), 
while Athalye et al. (2018) suggests the WaveGAN voco-
der reconstructs the waveform and removes the pertur-
bation. Other methods, such as label smoothing (Carlini 
and Wagner 2017) and audio compression (Papernot 
et  al. 2016; Carlini and Wagner 2018) are also recom-
mended. Additionally, downsampling methods (Qin et al. 
2019) and appending distortion signals (Taori et al. 2019) 
have been explored.

Previous studies He et  al. (2019) and Du et  al. (2022) 
suggest training an ASR with adversarial audio can help 
defend against certain attacks. However, the cost of creat-
ing such adversarial audio is expensive. Additionally, this 
approach can only resist attacks that have already been 
identified; it is not capable of preventing new attacks. 
Furthermore, since most adversarial audio is generated 
from music clips, it is difficult to evaluate the effective-
ness of adversarial training on ASR models. Therefore, 
the evaluation of adversarial training poses a significant 
challenge.

In certain studies above, it has been shown that recon-
structing audio can serve as an effective defense mecha-
nism against adversarial samples while still maintaining 
the integrity of the original audio. This is due to the high 
likelihood that the adversarial perturbations will be 
eliminated or reduced during the reconstruction pro-
cess. Another common defense method is to introduce 
interference, which can effectively override the carefully 
crafted perturbations. While downsampling is a conveni-
ent approach to reconstructing audio, adding random 
noise is a suitable method for introducing interference.

In this study, we evaluate the effectiveness of two 
defense methods, downsampling defense (Chen et  al. 
2020) and noise defense (Yuan et  al. 2018). In the con-
text of three ASR APIs (Baidu, Alibaba, and iFlytek), we 
tested the downsampling resampling rate between 5200 

Hz, 5600 Hz, and 6000 Hz, and the noise amplitude 
between 500, 1000, and 2000 based on the 50 AEs. The 
results are presented in Table 4, which denotes that the 
downsampling defense outperforms the noise defense. 
The effectiveness of the downsampling method can be 
attributed to its ability to compress the data and interpo-
late for reconstruction, making it difficult to restore the 
carefully injected perturbation and filter high-frequency 
signals. On the other hand, the noise defense method 
masks the adversarial perturbation with random noise, 
but this approach can also distort auditory perception.

Limitations
In this study, we employed three speech recognition 
models as base models for the ensemble adversarial 
attack. However, we did not further explore the impact of 
the number of base models on the training of adversarial 
examples due to the limited availability of base models. 
Besides, the choice of the carrier is crucial for the success 
of the adversarial examples. In particular, a single music 
element is more susceptible to successful attacks with 
fewer perturbations than a multi-element music carrier. 
However, the specific audio features underlying this phe-
nomenon are still unclear. In future research, we plan to 
increase the number of base models and investigate the 
inherent relationships between multiple models. We will 
also explore algorithms for picking appropriate carriers 
for adversarial examples to improve the robustness and 
interpretability of deep learning algorithms.

Conclusion
Our study investigates the potential factors that influ-
ence the transferability of audio AEs. We reveal the 
subtle role of noise in the attack and the transferability 
of these examples. Specifically, different levels of noise 
can promote or restrict the transferability of AEs. Fur-
thermore, we find that scale invariance and the pres-
ence of silence frames are positively correlated with 
transferability. Regarding the carriers used to gener-
ate AEs, we find that dialogue carriers provide better 
concealment and have a higher success rate than rock 
music carriers. This indirectly confirms the potential 
positive effect of silence frames because dialogue car-
riers contain many silent segments. Overall, our study 
sheds light on the various factors that impact the trans-
ferability of audio adversarial examples and provides 
insights into the development of more robust speech 
recognition systems. Through numerous phoneme 
analyses, we believe that the decision boundaries of 
deep learning-based speech recognition models are 
irregular, which poses a challenge for transferring AEs. 
But we believe there exists an optimal attack path that 
can increase the success rate of attacks while reducing 

Table 4  Results of defense

Methods Value Baidu-API Alibaba-API iFlytek-API

Down-sampling 5200 0/50 0/50 0/50

5600 0/50 0/50 2/50

6000 3/50 5/50 5/50

Adding noise 500 5/50 5/50 5/50

1000 2/50 5/50 2/50

2000 0/50 2/50 0/50



Page 16 of 17Guo et al. Cybersecurity            (2023) 6:44 

auditory perception between these models. Through 
experiments, we have observed that ensemble methods 
can enhance the transferability of adversarial examples. 
So we propose two ensemble transfer attack methods: 
RGE and DGWE, which obtained excellent attack suc-
cess rates on iFlytek, Tencent, and Baidu APIs. We also 
note that the p value in the self-integration is a crucial 
parameter that can influence the transferability of the 
AEs.
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