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Abstract 

In CRYPTO 2019, Gohr opens up a new direction for cryptanalysis. He successfully applied deep learning to differen-
tial cryptanalysis against the NSA block cipher SPECK32/64, achieving higher accuracy than traditional differential 
distinguishers. Until now, one of the mainstream research directions is increasing the training sample size and utiliz-
ing different neural networks to improve the accuracy of neural distinguishers. This conversion mindset may lead 
to a huge number of parameters, heavy computing load, and a large number of memory in the distinguishers training 
process. However, in the practical application of cryptanalysis, the applicability of the attacks method in a resource-
constrained environment is very important. Therefore, we focus on the cost optimization and aim to reduce network 
parameters for differential neural cryptanalysis.In this paper, we propose two cost-optimized neural distinguisher 
improvement methods from the aspect of data format and network structure, respectively. Firstly, we obtain a partial 
output difference neural distinguisher using only 4-bits training data format which is constructed with a new advan-
tage bits search algorithm based on two key improvement conditions. In addition, we perform an interpretability 
analysis of the new neural distinguishers whose results are mainly reflected in the relationship between the neu-
ral distinguishers, truncated differential, and advantage bits. Secondly, we replace the traditional convolution 
with the depthwise separable convolution to reduce the training cost without affecting the accuracy as much as pos-
sible. Overall, the number of training parameters can be reduced by less than 50% by using our new network struc-
ture for training neural distinguishers. Finally, we apply the network structure to the partial output difference neural 
distinguishers. The combinatorial approach have led to a further reduction in the number of parameters (approxi-
mately 30% of Gohr’s distinguishers for SPECK).

Keywords  Deep learning, Block cipher, Neural distinguisher, Depthwise separabe convolution, SPECK

Introduction
As deep learning spreads to various fields, large-scale 
neural networks have become more important in com-
puter tasks. As the most important neural network, 
the trend of Convolutional Neural Network (CNN) in 
various fields is to make more complicated and deeper 

networks to get a higher accuracy such as image classifi-
cation (Krizhevsky et al. 2017; He et al. 2016; Huang et al. 
2017), object detection (Ren et  al. 2015; Liu et  al. 2016; 
Redmon and Farhadi 2017; He et al. 2017) and semantic 
segmentation (Long et al. 2015; Chen et al. 2017). How-
ever, the huge number of parameters, heavy computing 
load, and large number of memory access lead to huge 
power consumption, which makes it difficult to apply the 
model to portable mobile devices with limited hardware 
resources. Therefore, models with fewer parameters are 
getting more and more attention (Jin et al. 2014; Iandola 
et  al. 2016; Rastegari et  al. 2016). MobileNet (Howard 
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et  al. 2017) is one of them which provides a solution 
for mobile and embedded devices. Instead of using the 
standard convolution, MobileNet uses a special convo-
lution called depthwise separable convolution. With the 
depthwise separable convolution, it needs about one-
eighth of the computational cost and has only a little drop 
in accuracy.

It is worth mentioning that some researchers have 
investigated the viability of applying deep learning to 
cryptanalysis. In CRYPTO 2019, Gohr (2019) combined 
deep learning with differential cryptanalysis and first pre-
sented differential neural cryptanalysis. He trained neural 
distinguishers of SPECK32/64 based on the deep residual 
neural networks (ResNet) (He et  al. 2016). The labeled 
data used as training data is composed of ciphertext 
pairs: half the training data comes from ciphertext pairs 
encrypted by plaintext pairs with a fixed input difference, 
and half comes from random values. Gohr obtained high 
accuracy for 6-round and 7-round neural distinguishers 
of SPECK32/64 and achieved 11-round and 12-round key 
recovery attacks based on the neural distinguishers.

Subsequently, Gohr’s neural distinguishers have been 
gradually derived into two mainstream directions. One is 
adopting different neural networks to improve accuracy. 
Bao et al. (2022) used Dense Network and Squeeze-and-
Excitation Network to train neural distinguishers, and 
obtained effective (7-11)-rounds neural distinguishers for 
SIMON32/64. Zhang et al. (2022) adopted the inception 
block to construct a new neural network architecture to 
train neural distinguishers for (5-8)-rounds SPECK32/64 
and (7-12)-rounds SIMON32/64. The other popular 
research direction is changing the input data format of 
neural distinguishers. Chen et al. (2021) proposed multi-
ple groups of ciphertext pairs instead of single ciphertext 
pair (Gohr 2019) as the training sample and effectively 
improved the accuracy of the (5-7)-rounds neural distin-
guishers of SPECK32/64. Hou et al. (2021) built multiple 
groups of output differences pairs instead of multiple 
groups of ciphertext pairs (Chen et  al. 2021) to further 
improve the accuracy of neural distinguishers.

Similar to the development trajectory of deep learn-
ing, developments in neural distinguishers face a com-
mon problem. Researchers have focused on how to 
better improve neural distinguisher performance with-
out exploring the computational costs. This conver-
sion mindset may lead to a huge number of parameters, 
heavy computing load, and a large number of memory, 
which is difficult to apply the cryptanalysis method in the 
resource-constrained environment. Therefore, we decide 
to focus on the cost optimization of differential neural 
cryptanalysis. There is not much relevant work available, 
and the two notable researches are as follows. Bacuiet 
(2022) first evaluated Gohr’s neural distinguishers 

with the Lottery Ticket Hypothesis. The Lottery Ticket 
Hypothesis states some subnetworks match or even 
outperform the accuracy of the original network. They 
conducted pruning based on average activations equal 
to zero and obtained a smaller or better-performing net-
work. Ebrahimi et al. (2021) showed experimentally that 
not all the bits in a block are necessary as features to have 
an effective neural distinguisher. They also found that dif-
ferent selections of features lead to vastly different accu-
racy results and that certain bits are consistently better 
than others for this purpose. On this basis, they proposed 
a new feature selection method for obtaining a much 
more compact network for training neural distinguishers. 
Meanwhile, a similar view is held by Chen et al. (2022). 
They argue that there is an informative bit in the cipher-
text bit which is helpful to distinguish between the cipher 
and a pseudo-random permutation. And they develop a 
simple but effective framework for identifying informa-
tive bits.

The existing works are great explorations of the cost 
optimization of differential neural cryptanalysis, but the 
development of reducing the time and resources con-
sumed by the attack while ensuring the key recovery 
accuracy as much as possible still needs to be further 
explored. Inspired by these works, we propose two cost-
optimized methods from the aspect of data format and 
network structure for wider use of neural distinguishers 
in resource-constrained environments. Our major con-
tributions are listed as follows:

•	 Firstly, we propose a new training sample genera-
tion format to reduce the training cost and signifi-
cantly improve the training efficiency. Specifically, by 
observing the round function of SPECK cipher, we 
propose two key improvement conditions for con-
structing new advantage bits search algorithm in the 
partial differential ML-based distinguisher. The sym-
metry condition provides a better strategy for the 
advantage bits search algorithm, which ensures the 
neural distinguisher accuracy. The difference condi-
tion can significantly reduce the number of bits used 
in the training samples and thus reducing the training 
parameters. Based on the two improved conditions, 
we propose a new advantage bits selection algorithm 
and experimentally verify the validity of the algo-
rithm. We name the new neural distinguishers train-
ing with our new advantage bits selection algorithm 
as partial output difference neural distinguishers. 
Our new neural distinguishers can further reduce 
the number of bits included in the training samples 
while keeping the accuracy (see Table 5). It is worth 
mentioning that the advantage bits search algorithm 
can be applied to all block cipher, especially for large-
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state block ciphers. In addition, we perform an inter-
pretability analysis of the new neural distinguishers 
whose results are mainly reflected in the relationship 
between the neural distinguishers, truncated dif-
ferential, and advantage bits. The advantage bits are 
determined based on the accuracy of multiple neural 
distinguishers, while the accuracy of the neural dis-
tinguishers is influenced by the position and number 
of bits used. The advantage bits can be propagated 
from the truncated difference through two rounds of 
the SPECK round function, while the advantage bits 
used in the training samples also reflect the impor-
tant role of truncated differential in the binary clas-
sification process.

•	 Secondly, we propose a new network structure with 
a smaller training parameter number. Specifically, 
we replace the traditional convolution in the convo-
lution blocks with a depthwise separable convolu-
tion to reduce the training cost without affecting the 
accuracy as much as possible. The effect of the new 
network structure is mainly reflected in the neural 
distinguisher accuracy and the number of training 
parameters. In particular, we experimentally show 
that the three-dimensional depthwise separable 
convolution has achieved excellent results on MCP 
(Multiple Ciphertext Pairs) data formats Chen et al. 
(2021). Overall, the number of training parameters 
can be reduced by 50% by using the new network 
structure for training neural distinguishers. Based on 
the new network structure, we explore the number of 
required depthwise separable convolutional blocks. 
The experimental results show that the new network 
structure can only use one depthwise separable con-
volutional block while maintaining the existing accu-
racy, which further reduces the number of parame-
ters and training costs. Table 6 provides a summary 
of these results. Noteworthy, we apply the improved 
depthwise separable convolutional network structure 
to the partial output difference neural distinguish-
ers. The combination of the two improved schemes 
results in another significant reduction in the num-
ber of parameters. The result can be seen in Table 7.

The rest of the paper is organized as follows. Section  2 
gives a brief description of SPECK and introduces Gohr’s 
neural distinguisher and depthwise separable convolu-
tion. In Sect. 3, we present the partial output difference 
neural distinguishers and give a validity interpretation 
from the cryptanalysis perspective. We adopt the ideas 
of depthwise separable convolution to improve network 
structure and further reduce the training costs in Sect. 4. 
Finally, our work is summarized in Sect. 5.

Preliminaries
Notations
Table 1 presents the major notations.

Brief description of SPECK
SPECK is a family of lightweight block ciphers proposed 
by the National Security Agency (NSA) (Beaulieu et  al. 
2015). SPECK adopts ARX construction that applies a 
composition of the basic functions of modular addition, 
bitwise rotation, and bitwise addition. Various versions of 
SPECK were proposed which are defined for block size 
2n and key size k: 32/64, 48/72, 48/96, 64/96, 64/128, 
96/96, 96/144, 128/128, 128/192, and 128/256. In this 
article, we will focus mainly on SPECK with 32 bits block 
size and 64 bits key size (for simplicity, SPECK32/64 
will be referred to as SPECK32 in the rest of the article) 
(Fig. 1).

Table 1  The notations

Notation Description

SPECK 2n/nm SPECK acting on 2n-bit plaintext blocks

and using nm(k)-bit key

⊕ Bitwise XOR

+ Addition modulo 2n

S
α(x) Circular left shift of x by α bits

K Master key

rki i-round subkey

�in Input difference

(P, P′) Plaintext pair

(C , C ′) Ciphertext pair

(Pl , Pr , P
′
l
, P′r) P = Pl � Pr and P′ = P

′
l
� P

′
r

(Cl , Cr , C
′
l
, C ′

r ) C = Cl � Cr and C ′ = C
′
l
� C

′
r

(�Cl ,�Cr) �Cl = Cl ⊕ C
′
l
 and �Cr = Cr ⊕ C

′
r

Fig. 1  The round function of SPECK
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SPECK has a function that iterates for many rounds 
until the ciphertext is generated. For SPECK32, the round 
function F : Fn

2 × F
2n
2 → F

2n
2  takes as input a 16-bit sub-

key rki and a cipher state consisting of two n-bit words 
(Li,Ri) and produces from this the next round state 
(Li+1,Ri+1) as follows:

Differential‑based neural distinguishers
In the analysis of block cipher security, differential 
cryptanalysis (Biham and Shamir 1991) is one of the 
most effective attack methods. It is a chosen plaintext 
attack and was firstly introduced by Biham and Shamir 
to analyze DES block cipher in 1990. Its basic idea is to 
study the probability of differential propagation of spe-
cific plaintext differential values in the encryption pro-
cess. Specifically, in a random permutation with block 
size of 2n, the average probability of a differential is: 
Pr(�in → �out) = 2−2n for all �in,�out . If an attacker 
can find a differential that Pr(�in → �out) > 2−2n , this 
differential is called differential distinguisher and can be 
used to attack cipher algorithms.

In Gohr (2019), Gohr proposed a new differential 
cryptanalysis method combined with deep learning. He 
first trained neural distinguishers of SPECK32 based 
on the deep residual neural networks for distinguishing 
correct pairs from random pairs. Then he developed a 

(1)
Li+1 = S

−7
Li + Ri ⊕ rki,Ri+1 = Li+1 ⊕ S

2
Ri

highly selective key search strategy based on a Bayesian 
optimization method. This deep learning-based differen-
tial cryptanalysis can be divided into two parts according 
to the traditional differential cryptanalysis: generation 
of neural distinguishers and subkeys recovery based on 
neural distinguishers. The generation of neural distin-
guishers is composed of two steps: training data genera-
tion and neural network training.

Step 1: Training data generation

107 plaintext pairs ( P,P′ ) are randomly generated in a 
fit difference �in = (0x40, 0x0) . 107 labels Y ∈ {0, 1} are 
randomly generated and allocated to the samples. For 
the samples with label 1 which is encrypted from plain-
text pairs into r−rounds to generate ciphertext pairs; For 
the samples with label 0, re-generate the right half of the 
plaintext pairs P′ randomly, and then encrypt r-rounds to 
generate ciphertext pairs. 

Step 2 Neural network training

 Set the structure of the residual neural network used for 
training. Based on the training samples generated above, 
the neural network is trained to perform a binary clas-
sification task: distinguish the ciphertext pairs encrypted 
with fixed differences from the random ciphertext pairs. 
The trained neural network is evaluated by generating 106 
test samples (repeat Step1), and if the accuracy is higher 
than 50%, the network is a valid neural distinguisher.

After obtaining a valid neural distinguisher, Gohr gave a 
specific procedure for key recovery attacks (Algorithm 1).
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In Algorithm  1, the r−round neural distinguisher 
is used for a key recovery attack on (r + 1)-round 
SPECK32. Gohr found that since the differential prop-
agation is probabilistic, the encrypted positive sam-
ples are not guaranteed to be traveled correctly along 
the differential path. Therefore, he used k neutral bits 
(Biham and Chen 2004) to create a ciphertext structure 
that generates 2k ciphertext pairs from the same plain-
text pair by changing different neutral bits and then 
encrypting them in (r+1)-round. Gohr gave the gener-
ated ciphertext structure to the algorithm and then set 
the corresponding parameters: the number of candidate 
keys and the number of iterations. The algorithm first 
tries and selects the best ciphertext structure on each 
structure. Finally, all guessed subkeys are scored and 
the highest scoring subkey is considered the most likely 
correct subkey.

Depthwise separable convolution
Depthwise Separable Convolution (Howard et  al. 2017) 
is a key building block for many efficient neural network 

architectures (Chollet 2017; Zhang et  al. 2018) and we 
use them in the present work as well.

Depthwise Separable Convolution was proposed 
for solving the problem of a large number of training 
parameters in neural networks. Depthwise separa-
ble convolution replaces the standard convolution in 
the neural network which can reduce the number of 
parameters required for network training and train-
ing time while greatly guaranteeing the performance 
of the training model. Therefore, the significance of 
using depthwise separable convolution for building a 
lightweight block cipher SPECK neural distinguisher is 
obvious.

The standard convolution operation is shown in Fig. 2. 
Give a specific example, if the number of input feature 
channels is 3, the number of convolution kernel channels 
is also 3. The specific process of convolution operation 
is, the convolution of corresponding channel positions 
to obtain the output feature channels respectively. The 
number of output feature channels is equal to the num-
ber of convolution kernels.

The depthwise separable convolution is shown in 
Fig.  3, which mainly decomposes the standard con-
volution into two steps, depth convolution and 1 ×  1 
pointwise convolution. The specific operation is: each 
channel of the input features is convolved with the 
corresponding single-channel convolution kernel to 
obtain the intermediate features. Then, M 1 × 1 convo-
lution kernels are used to integrate all the intermedi-
ate features to obtain the output features containing M 
features.

It is important to analyze the number of parameters 
and operations of the standard convolution and the 

Fig. 2  Standard convolution

Fig. 3  Depthwise separable convolution
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depthwise separable convolution. Assume that the input 
feature size is DF × DF ×M and the convolution ker-
nel size is Dk × Dk ×M , whose number is N. It is sup-
posed that one convolution operation is performed for 
each point in the corresponding input feature, so a total 
of DF × DF × Dk × Dk ×M calculations are required for 
a single convolution. As a result, the standard convolu-
tional operations and parameter quantities are calculated 
as follows.

The number of operations and the number of parameters 
for the depthwise separable convolution are calculated as 
follows.

The ratio of the depthwise separable convolution to the 
number of standard convolutional parameters is denoted 
as δ and calculated as follows.

It can be seen that using depthwise separable convolution 
instead of standard convolution can significantly reduce 
the number of parameters required to train the neural 
network, thus reducing the training cost of the neural 
network.

Partial output difference neural distinguishers
Currently, the key recovery attack by differential neu-
ral cryptanalysis is effective on several lightweight 
block ciphers (Gohr 2019; Hou et  al. 2022). Light-
weight block ciphers are usually used in scenarios with 
resource-constrained hardware, so the cost constraints 
for implementing key recovery attacks are even greater. 
For the SPECK family, the training sample is a 4n bits 
ciphertext pair, and the cost to complete the neural 

(2)F1 = DF × DF × Dk × Dk ×M × N

(3)P1 = M × Dk × Dk × N

(4)
F2 = DF × DF × Dk × Dk ×M +M × 1× 1× N

(5)P2 = M × Dk × Dk +M × 1× 1× N

(6)

δ =
P2

P1
=

M × Dk × Dk +M × 1× 1× N

M × Dk × Dk × N
=

1

N
+

1

D
2
k

distinguisher training will increase significantly as the 
block size 2n keeps increasing. Therefore, reducing 
the time and resources consumed by the attack while 
ensuring the key recovery accuracy as much as possi-
ble is a key direction of the current differential neural 
cryptanalysis. Ebrahimi et al. (2021) proposed a partial 
ML-distinguisher, but the explorations they made were 
limited to distinguisher feasibility. They did not make 
an exploration in terms of integration with the cryp-
tographic techniques, nor did they make a theoretical 
analysis.

In this section, we propose a new neural distin-
guisher model based on traditional cryptanalysis 
techniques and theoretical analysis. Our neural dis-
tinguisher model reduces the size of training samples 
to 1

16
 of ciphertext pairs, but still maintains great accu-

racy. Meanwhile, we analyze the reason why our distin-
guisher model can perform well from the theoretical 
perspective.

New neural distinguisher model
Our new neural distinguisher model consists of three parts: 
advantage bits search, training sample generation and neu-
ral network training.

Step 1: Advantage bits search

	 In EUROCRYPT 2021, Benamira et  al. (2021) 
proved that Gohr’s neural distinguishers made their 
decisions on the difference of ciphertext pair and the 
internal state difference in the penultimate and ante-
penultimate rounds. In traditional cryptanalysis, the 
probability is different between different bit positions 
of the differential characteristics. In some cipher algo-
rithms, the probability fluctuation can be very large. 
Therefore, the learnable features that can be captured 
by the neural distinguishers are asymmetric for differ-
ent bit positions. We further explored the bit positions 
in the ciphertext pairs used as training samples, with 
the aim of using the smallest number of bits to obtain 
an effective distinguisher.
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	 The process of the advantage bits search algo-
rithm is designed as follows. Firstly, setting the 
number of target bits N and the accuracy verifica-
tion times k for generating training samples. Tak-
ing SPECK32 algorithm as an example (block size 
2n = 32 ), we set N = 8 , k = 100 . Then, we ran-
domly select N/2 bits from the first 16 bit positions 
and record them in the set B. Next, the selected bit 
position is shifted right by 16 bits and added to B. 
According to the set B, the ciphertext pairs set are 
transformed to form the new training set C ′ , and 
record the verification set accuracy of the new neural 
distinguisher based C ′ . We repeat the above steps k 
times, and we will get k partial neural distinguishers 
whose results are saved in the set Acc.

	 The M matrix record the bit positions selected in 
each cycle. Then each bit position is evaluated by cal-
culating the average of the neural distinguisher accu-
racy. Finally, we output the set of bit positions that 

score the top N. We describe the above search pro-
cess as Algorithm 2.

	 The bit sensitivity test (Algorithm 5 in Chen et al. 
(2022)) proposed by Chen et al. which can be briefly 
summarized as follows. For each bit in the ciphertext 
pair as a test set, a random mask η ∈ {0, 1} is used to 
perform a dissimilarity. This operation means that a 
particular bit position is randomized and the neural 
distinguisher is no longer able to identify by the infor-
mation of this bit position. If the test dataset accu-
racy after randomizing one bit position is decreasing 
significantly, it means that this bit position contains 
more feature information. The idea used in our 
advantage bits search algorithm is opposite to the bit 
sensitivity text. The first thing determined is the bit 
number N contained in the partial bit neural distin-
guisher, and N ciphertext bit positions are randomly 
selected to retrain the neural distinguisher. After k 
times of random bit position selection and neural 
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distinguisher training, all bit positions can be scored 
(the detailed scoring method see Algorithm  2). The 
higher the score, the more important the bit posi-
tions are for the neural distinguisher. Meanwhile, 
two key conditions are introduced to further improve 
the reliability of the advantage bits search algorithm. 
Compared with Chen’s bit sensitivity text, our advan-
tage bits search algorithm is more direct in bit advan-
tage determination. Because the bit selection is based 
on practical neural distinguisher training, it is gener-
ated in the same way as the partial output difference 
neural distinguisher. But the advantage bits search is 
done by training k different neural distinguishers, our 
algorithm takes more time to complete.
Step 2 Training sample generation
	 New neural distinguisher is to accomplish the 
binary classification task of distinguishing correct 
pairs from random values. We denote ciphertext 
pairs corresponding to plaintext pairs with the fixed 
difference as positive samples and denote ciphertext 
pairs corresponding to plaintext pairs with a random 
difference as negative samples. The positive sample 
generation method is described in Fig. 4.

	 The single plaintext pair (P,P′) is encrypted by a 
random master key to obtain single ciphertext pair 
(C ,C ′) . The ciphertext pair is then processed based 
on the advantage bits set obtained in the first step. 
The processed ciphertext pairs are converted output 
difference ( ̄C ⊕ C̄ ′ ) to obtain 8-bits positive training 
samples.
Step 3 Neural network training
	 To demonstrate the effect of our neural distin-
guisher model, we use the same network as Gohr’s 
work (Gohr 2019). The network consists of four 
parts: an input layer for processing training datasets, 
an initial convolutional layer, a residual tower con-
sisting of multiple two-layer convolutional neural 
networks, and a prediction head consisting of fully 
connected layers. And the neural network training 
parameters are shown in Table 2.
	 Because we use partial bits of ciphertext pairs 
and convert them to difference as the training sample 
format for the neural distinguishers, we call the new 
distinguishers the partial output difference neural 
distinguishers.

Results
Before training the distinguishers, the number and posi-
tion of the used bits need to be determined. The bit posi-
tions are determined by starting from the most efficient. 
And the number of bits needs to be determined accord-
ing to the accuracy requirements and cost requirements. 
For SPECK32, we set the number of bits to block size 32 
in Algorithm 2, so that we can obtain the score of all bit 
positions. For easy observation, we normalize the scores 
and the results are shown in Table 3.

Table 2  Parameters of the network architecture for training 
neural distinguishers

Hyperparameters Value Hyperparameters Value

Train size 107 Conv size(ks) 3

Validation size 106 Regularization parm 10−4

Batch size 10000 Optimizer Adam

Epochs 30 Loss function MSE

Table 3  The score of each bit pairs in the advantage bits search

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i + 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Score 0.187 0.277 0.210 0.262 0.364 0.512 0.129 0.000 0.290 0.149 0.144 0.190 1.000 0.760 0.596 0.445

Fig. 4  Training data generation
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Observing the Table  3, there is significant disequi-
librium between bit positions, and most bits have low 
ratings. Among them, there are 6 pairs of bit positions 
with high scores: {4,20}, {12,28}, {13,29}, {14,30}, {5,21}, 
{15,31}. We highlight the bit positions with the highest 
scores. The darker the color, the more important it is 
for the accuracy of the neural distinguishers. We will 
mainly use these 6 pairs of bit positions in the actual 
neural distinguisher training process.

During the implementation of the bits selection algo-
rithm, the advantage bits set can be divided into two 
related subsets: randomly select N/2 bits from the first 
16 bit positions and shift the existing bit positions by 
16 bits to the right of the bit positions. The reason is 
that after observing the SPECK round function, the 
right half of the round function output can be written 
as Ri+1 = Li+1 ⊕

(

S2Ri

)

 which reflects the close rela-
tionship between the left and right halves of the out-
put. This statement also is verified by the distribution 
of the scoring results for each bit position of SPECK32 
in Ebrahimi et  al. (2021). In addition, such a selection 
approach leads to another cost-saving breakthrough 
direction. We transform the output pairs into differ-
ences during the construction of the training samples. 
There are two advantages of this approach: 

1.	 Providing the neural network with more directly 
learnable features;

2.	 Reducing the number of bits included in the training 
samples.

To illustrate the advantages of our method more clearly, 
we train two sets of neural distinguishers simultaneously. 
One is to complete the method in Ebrahimi et al. (2021) 
under the same training conditions, and the second is to 
use our bits selection algorithm but the training samples 
are not converted into differences. The results are shown 

in Table 5 (all results are performed with the same net-
work parameters in Table 2).

The symmetry condition indicates that the left half of 
the training sample corresponds to the right half of the 
position; the difference condition indicates that the train-
ing sample is the output difference. For the non-differ-
ential condition, each ciphertext in the training sample 
(ciphertext pair) selects the bit position according to the 
bit set B, so the number of bits in a training sample is 
2 ×number of elements in the bit set B. For the difference 
condition, the training sample (output difference) selects 
the bit position according to the bit set B, so the number 
of sample bits is the number of elements in the bit set B.

In the first experiment, we set the same neural net-
work structure and neural network parameters, and we 
trained the neural network with the same training data 
size (8 bits). Therefore, the difference between the neu-
ral distinguishers is only the ciphertext bit positions (data 
format). In the (Ebrahimi et  al. 2021), the data format 
of the training samples is divided into two parts derived 
from two ciphertext, each part using the four advantage 
bits with the highest scores given by Algorithm 2 in Ebra-
himi et al. (2021), respectively. Figure 5 shows the specific 
generation of 8-bit training data format, the ciphertext 
bit positions chosen are {12, 13, 14, 28}. The accuracy of 
the neural distinguisher generated by training according 
to this data format is 65.2%.

According to Algorithm  2, the chosen ciphertext bit 
positions are {12, 13, 28, 29} under the symmetric con-
dition. Figure  6 shows the specific generation of 8-bit 
training data format and the accuracy of the neural dis-
tinguisher generated the data format is 66.8%.

The chosen ciphertext bit positions are {5, 12, 13, 14, 
21, 28, 29, 30} when both symmetric and differential con-
ditions are used. Figure 7 shows the specific generation of 
8-bit training data format and the accuracy of the neural 
distinguisher generated the data format is 67.3%.

Fig. 5  8-bit data format generation method in Ebrahimi et al. (2021) and its training accuracy
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The results presented in Table  4 show the effective-
ness of our proposed two improved conditions for par-
tial bit ML-distinguisher, the accuracy is 66.8% for the 
introduction of the symmetric condition and 67.3% for 
the introduction of both symmetric and differential 
conditions. The results show that the slight improve-
ment in the accuracy of the neural distinguishers comes 

from the data format whose the improvement comes 
from the symmetric and differential conditions of 
Algorithm 2.

In the second experiment, we use the difference con-
dition to train with a smaller training sample size, and 
we call the new distinguishers partial output difference 
neural distinguishers. The results in Table 5 show that 

Fig. 6  8-bit data format generation method under Symmetry condition and its training accuracy

Fig. 7  8-bit data format generation method under Symmetry and Difference conditions and its training accuracy

Table 4  Advantage bits search algorithm effect for 6-round SPECK32

Reference Condition Bit Set Number Accuracy (%)

 Ebrahimi et al. (2021) None {12,13,14,28} 8 65.2

This paper Symmetry {12,13,28,29} 8 66.8

Symmetry difference {5,12,13,14,21,28,29,30} 8 67.3
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the new distinguisher accuracy using a 4-bit training 
sample is comparable to the distinguisher in Ebrahimi 
et al. (2021) using a 12-bit training sample, and the new 
distinguisher accuracy using a 10-bit training sample 
is comparable to the distinguisher in Ebrahimi et  al. 
(2021) using a 16-bit training sample.

The proposed bits selection conditions further 
improve the effectiveness and make it possible to use 
fewer bits for training the neural distinguishers. At the 
same time, the benefits of reducing the training sample 
size are obvious which can reduce the number of net-
work parameters. This advantage means the cost time 
and data complexity of model training will be signifi-
cantly reduced. Besides, the partial output difference 
neural distinguishers can reduce the time and data 
complexity by reducing the guessed subkey space in the 
key recovery phase.

It is worth mentioning that the advantage bits search 
algorithm can be applied to all block cipher, especially for 
large-state block ciphers. Gohr’s key-recovery framework 
based on neural distinguishers seem not fit for launching 
practical attacks on large-state block ciphers. Because the 
neural distinguishers take full states as input resulting in 
an attack that requires guessing all bits of the subkey but 
the size of subkeys is typically too large to do last-round 
subkey guessing in one go.

According to the results of our new advantage bits 
search algorithm (Table 3), neural distinguishers do not 
exploit every bits equally. In other words, the advantage 
bits in the ciphertext pair determines the discriminate 
result of neural distinguishers. As a consequence, those 
last-round subkey bits that mainly relate to the non-
advantage bits are hard to be correctly recovered. For 
large-state ciphers, the role of advantage bits is more 
obvious but the number decreases significantly and 
thus it is difficult to recover the complete last-round 
subkeys. Therefore, using the advantage bits to perform 
distribution recovery subkeys for large-state ciphers is 
the most meaningful development prospect of our new 
advantage bits search algorithm (Algorithm 2).

Interpretation from cryptanalysis perspective
For the partial output difference neural distinguisher, 
its effectiveness is validated in Table  5. Yet, our dis-
tinguisher model opened some questions. The most 
important one is the interpretability of the Algorithm 2 
(advantage bits search). In Algorithm 2, the advantage 
bits are chosen based on the accuracy obtained from 
multiple distinguishers trained using different bit sets. 
An obvious issue with a neural distinguisher is that its 
black-box nature is not telling us much about the actual 
dominance of the analyzed bit positions.

In this section, we want to find out why and how the 
advantage bits search algorithm works in a cryptana-
lytic sense. Essentially, we want to answer the following 
question: What types of bit positions are preferred by 
the distinguisher? If the neural network is using some 
currently unknown information to evaluate bit posi-
tions, we want to infer the additional statistics it uti-
lizes. If not, we want to find out what is causing the 
differences between bit positions.

In Benamira et al. (2021), Benamira et al. proposed a 
thorough analysis of Gohr’s deep neural network dis-
tinguishers of SPECK-32/64 Gohr (2019). They con-
cluded that neural distinguishers are not only basing 
their decisions on the ciphertext pairs difference, but 
also the internal state difference in penultimate and 
antepenultimate rounds. SPECK32 has the following 
specific internal state difference:

They conducted a 5-round neural distinguisher which 
was used to evaluate the set of positive samples satisfying 
the above 3-round or 4-round truncated differential. The 
accuracy is closer to Gohr’s neural distinguisher Gohr 
(2019). In other words, they successfully verified that the 
recognition ability of the neural distinguisher is based on 
truncated differential and not just by identifying a differ-
ent set of ciphertext pairs.

3 rounds: 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 00 10 ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ 10

4 rounds: 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 10 10 ∗ ∗ ∗ ∗ ∗ 10 ∗ ∗ ∗ ∗ ∗ 00

Table 5  Accuracy of the partial output difference neural distinguishers for 6-round SPECK32

Reference Condition Bit Set Number Accuracy (%)

 Ebrahimi et al. (2021) None {12,13,14,28} 8 65.2

None {12,13,14,15,28,29} 12 66.8

None {5,12,13,14,15,21,28,29} 16 68.8

This paper Symmetry difference {12,13,28,29} 4 66.7

Symmetry difference {12,13,14,28,29,30} 6 67.3

Symmetry difference {5,12,13,14,21,28,29,30} 8 67.3

Symmetry difference {5,12,13,14,15,21,28,29,30,31} 10 68.8
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Based on the conclusion, we conjecture that the 
source of the advantage bits used in the partial output 
difference neural distinguishers is precisely the trun-
cated differential. So we derive the propagation of the 
4-round truncated differential for SPECK32.

Figure  8 shows us how the bits evolve along the 
most probable difference path from a 4-round trun-
cated differential to a 6-round output. As it goes 
through the modular addition operation, we high-
light the bits that have a relatively high probability of 
being associated with the most probable differential. 
The darker the color, the higher the probability of the 
difference being toggled. In each round, the fixed dif-
ference is changed to a random bit by operating with 
a random bit, but we still highlight the entry bits. 
Finally, we obtain a set of possible carrying entry bits 
{3, 4, 5, 6, 12, 13, 19, 20, 21, 22, 26, 27, 28, 29}.

In addition, we add to the set the bit positions {14, 15} 
that still have a fixed difference with their counterparts in 
the right half {30, 31} . Although {14, 15} are not marked 
with a special notation in Fig.  8, observing the output 
of 6-round, we find that the value of the differential is 
fixed at the two positions {14, 15} . Thus the bit positions 
{14, 15} retain the information in the 4-round truncated 
differential. In summary, {14, 15} can provide more effec-
tive learnable features for neural networks compared to 
the existing bit positions. The reasons for the bit posi-
tions {30, 31} are as follows. In the advantage bits search 
algorithm, we propose the symmetry condition and 
demonstrate its effect experimentally in Table  4. Also 

in the 3-4 rounds of truncated differential proposed by 
Benamira et al. (2021), all valid differential bit positions 
are in symmetric form, which corroborates the advan-
tage of the symmetry condition. Therefore, we add the 
symmetric positions {30, 31} of the fixed difference bits 
{14, 15} to the set. Surprisingly, all the elements of the 
advantage bit set we obtained in Table  3 (6 pairs of 12 
bits) are included in the set. This confirms our conjecture 
about the reason for the advantage bits.

We sorted out the relationship between the distin-
guisher, truncated differential, and advantage bits which 
are shown in Fig. 9 to help understand the relationship. 
In summary, the truncated differential provides the 
learnable features for training neural distinguishers, the 
distinguisher also recognizes positive samples through 
truncated differential. For our new distinguishers, the 
advantage bits are obtained by training neural distin-
guishers and then building the partial output difference 

Fig. 8  Showing the propagates from the 4-round truncated differential to 6-round output. The darker the color, the higher the probability that it 
has a carry propagated to

Fig. 9  Relationship between the distinguisher, truncated difference 
and advantage bits
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neural distinguishers using advantage bits. After our 
theoretical derivation, we find that the advantage bits are 
effective significantly because they reflect the propaga-
tion of the truncated differential.

Improving network structure with depthwise 
separable convolution
At present, the neural network improvement of training 
neural distinguishers mainly focuses on the accuracy, but 
the effect is not obvious. The neural distinguisher train-
ing is the main consumption of the precomputation in 
the key recovery framework. How to train the network 
more efficiently is a key research problem. Meanwhile, 
the reduction of cost in network training can make the 
application of differential neural cryptanalysis more 
widely.

In this section, we first describe the core layers that the 
network structure is built on depthwise separable con-
volutions to train the neural distinguishers. The start-
ing point of the new network is to reduce the number of 
training parameters and computation. Then we describe 
our comparative experimental ideas and results.

New network structure
We provide in Fig.  10 a representation of our new net-
work structure, whose main components are four parts: 
an input layer for processing training datasets, an initial 
convolutional layer, a residual tower consisting of multi-
ple two-layer depthwise separable convolutional neural 

networks, and a prediction head consisting of fully con-
nected layers.

Input Representation We use the SCP (Sin-
gle Ciphertext Pair) Gohr (2019) and the MCP 
(Multiple Ciphertext Pairs) (Chen et  al. 2021) 
on the input format to demonstrate the excel-
lence of depthwise separable convolution in two-
dimensional and three-dimensional training data. 
Thus, the neural network accept data of the form 
{

C1,C
′
1, . . . ,Cm,C

′
m

}

(m ∈ 1, 2, 4) and m ciphertext 
pairs are arranged in a m× 4 × n array. 2n represents 
the block size of the target cipher. (For SPECK32, the 
block size 2n is 32.)
Initial Convolution The input layer is connected 
to the initial convolutional layer, which is a bit slice 
layer including 1× 1 convolution kernels, Batch nor-
malization, and a ReLU activation function. Batch 
normalization plays a critical role in addressing the 
gradient vanishing/explosion problem. Relu function 
greatly accelerates the convergence of stochastic gra-
dient descent at a smaller cost compared to the sig-
moid/tanh functions.
SeparableConv Blocks The initial convolution is con-
nected to the SeparableConv blocks. Each block is a 
residual construction and consists of two groups of 
depthwise separable convolution, Batch normali-
zation, and a ReLU activation function. Effectively 
depthwise separable convolution reduces computa-

Fig. 10  New network structure
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tion compared to traditional layers by almost a fac-
tor of kernelsize × kernelsize . However it only filters 
input channels, it does not combine them to create 
new features.
Prediction Head The SeparableConv blocks are con-
nected to the prediction head. First, two layers are 
densely connected layers with 64 units and followed 
by a Batch normalization and a ReLU activation 
function. Then, the final layer consists of a single 
output unit using the Sigmoid activation function to 
output a binary classification result.

Results and discussion
In order to compare with the existing results, we keep the 
conditions remain the same except the network, we use 
the new network to train the neural distinguishers. When 
using the SCP training format, we use the new network 
to train the neural distinguisher for 6-round of SPECK32. 
When using the MCP training format, we use the new 
network to train the neural distinguisher for 7-round of 
SPECK32. Meanwhile, to demonstrate the advantages of 
the new network, we further approximate the network. 
We try to reduce the number of separable blocks to 
obtain a network with fewer training parameters but still 
get a neural distinguisher with great accuracy.

Table 6 shows the experimental results of the new net-
work. For the SCP training format, the accuracy of the 
6-round SPECK32 neural distinguisher using a new net-
work is similarly comparable to Gohr’s results. However, 
the number of network training parameters we use is 
50611, which is a significant reduce over Gohr’s network 
training parameter number. Meanwhile, for the neural 
distinguishers obtained by further reducing the separable 
blocks based on the new network structure, the accuracy 
is comparable to the original one, and the number of net-
work training parameters is only 58% of Gohr’s network. 
For the MCP training format, we selected ciphertext 

pairs of 2 and 4 for training the 7-round SPECK32 neural 
distinguisher. When using two ciphertext pairs in a single 
training sample, the accuracy of the neural distinguisher 
obtained using the new network is 64.70%. In compari-
son with Chen’s results, our new neural distinguishers 
not only improve the accuracy, but the number of train-
ing parameters is only 39% of Chen’s network. In addi-
tion, the neural distinguisher obtained by reducing the 
number of separable blocks based on the new network 
to 1 has the same accuracy as the original one, and the 
number of trained network parameters is further reduced 
to 30% of Chen’s network. When using four ciphertext 
pairs in a single training sample, the neural distinguisher 
accuracy obtained using the new network is 69.39%. In 
contrast to Chen’s results, our new neural distinguisher 
not only improve the accuracy, but also reduce the num-
ber of training parameters of the network, which is only 
51% of Chen’s network. In addition, the neural distin-
guishers obtained by reducing the number of separable 
blocks based on the new network to 1 has a little slightly 
decrease in accuracy, but the number of trained network 
parameters is further reduced to 44% of Chen’s network.

Finally, we apply the improved depthwise separable 
convolutional network structure to the output difference 
neural distinguisher presented in Sect.  3.1. Our main 
objective is to observe how much our method saves the 
number of training parameters and how much it affects 
the neural distinguisher accuracy.

The results are presented in Table  7. Compared to 
the neural distinguishers obtained with the traditional 
convolutional network in Sect.  3.1, the new neural dis-
tinguishers using depthwise separable convolution can 
reduce the number of training parameters by 50% with-
out reducing the accuracy. The above results show that 
our two proposed improvement schemes have their own 
advantages of reducing the parameters for neural distin-
guishers, and then the combination of the two schemes 
can further reduce the training cost.

Table 6  Results of the new network structure

Core Net Pair Round Depth Total Params Accuracy Source

Conv 1 6 5 70177 0.7888 Gohr (2019)

2 7 5 129409 0.6393  Chen et al. (2021)

4 7 5 162177 0.6861

SeparableConv 1 6 5 50661 0.7871 “New network 
structure” section1 6 1 40421 0.7840

2 7 5 50369 0.6470 “New network 
structure” section2 7 1 38593 0.6452

4 7 5 83137 0.6939 “New network 
structure” section4 7 1 71361 0.6598
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Conclusion
In this paper, we focus on two aspects for reducing the 
cost of training neural distinguishers, including light-
weight optimization in terms of data format and network 
structure.

Firstly, we make the following optimization contribu-
tions in terms of data format. In the existing partial ML-
distinguisher construction process, the training data 
format needs to be determined in advance by the bits 
selection algorithm. By observing the round function 
of the SPECK cipher, we propose two key improvement 
conditions with important effects on the advantage bits 
selection algorithm. The first improvement condition 
is symmetry condition. The motivation is that the close 
relationship between the left and right halves of the out-
put. The second improvement condition is difference 
condition, which represents the conversion of ciphertext 
pairs into differences. Without reducing the accuracy of 
the neural distinguishers, the effect of the difference con-
dition significantly reduces the amount of sample data 
and the number of parameters in the training process. 
Based on the above two conditions, we present a new 
complete advantage bits search approach (Algorithm 2), 
and we conduct a series of experiments for validation 
effectiveness and finally achieve satisfactory results. 
Moreover, the advantage bits search algorithm can be 
applied to all block cipher, especially for large-state block 
ciphers. At the same time, the advantage bit will provide 
new development ideas for key recovery methods.

Secondly, in order to optimize the network structure 
with fewer training parameters, we introduce depthwise 
separable convolution into the existing network. Observ-
ing the results obtained from the experiments, we find 
that the new network structure is greatly optimized in the 
number of training parameters and training efficiency. In 
particular, the new network structure can provide better 
parameter approximate reduction for the MCP (Mutiple 
Ciphertext Pairs) training data format. Meanwhile, based 
on our network structure, we further investigate the 
required number of SeparableConv blocks. According to 
the experimental results, the new network structure can 

still maintain great accuracy when using one Separable-
Conv block. Furthermore, we combine the two proposed 
improvements for data format and network structure, 
and the experimental results show that the new com-
bined neural distinguishers can substantially reduce the 
training cost with a certain loss of accuracy.

In summary, the proposed parameter optimization 
scheme in terms of data format and network structure 
has significant effect on the problem of huge number of 
parameters and heavy computing load, which provides 
support for deep learning cryptanalysis technology to 
be applied to larger block size ciphers. Meanwhile, our 
results have the potential to open the way for efficient 
neural cryptanalysis in applications for portable mobile 
devices with limited hardware resources. For future 
work, we will explore the network structures that have 
shown significant results in other areas of deep learning 
that can be migrated to differential neural cryptanalysis 
and retain their benefits.
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Table 7  Results of a combination of the new network structure and the output difference neural distinguisher

Core Net Bit Set Number Total Params Accuracy (%) Source

Conv {12,13,28,29} 4 41441 66.7  Ebrahimi et al. (2021)

{12,13,14,28,29,30} 6 43489 67.3

All bits 64 70177 78.9 Gohr (2019)

SeparableConv {12,13,28,29} 4 21921 66.7 “Results and discus-
sion” section{12,13,14,28,29,30} 6 23969 67.3

All bits 64 50661 78.7 “New network struc-
ture” section

https://github.com/CangXiXi/A-Deep-Learning-aided-Differential-Distinguisher-Improvement-Framework.
https://github.com/CangXiXi/A-Deep-Learning-aided-Differential-Distinguisher-Improvement-Framework.
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