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Abstract 

In recent years, many researchers focused on unsupervised learning for network anomaly detection in edge 
devices to identify attacks. The deployment of the unsupervised autoencoder model is computationally expensive 
in resource-constrained edge devices. This study proposes quantized autoencoder (QAE) model for intrusion detec-
tion systems to detect anomalies. QAE is an optimization model derived from autoencoders that incorporate pruning, 
clustering, and integer quantization techniques. Quantized autoencoder uint8 (QAE-u8) and quantized autoencoder 
float16 (QAE-f16) are two variants of QAE built to deploy computationally expensive AI models into Edge devices. 
First, we have generated a Real-Time Internet of Things 2022 dataset for normal and attack traffic. The autoencoder 
model operates on normal traffic during the training phase. The same model is then used to reconstruct anomaly 
traffic under the assumption that the reconstruction error (RE) of the anomaly will be high, which helps to identify 
the attacks. Furthermore, we study the performance of the autoencoders, QAE-u8, and QAE-f16 using accuracy, preci-
sion, recall, and F1 score through an extensive experimental study. We showed that QAE-u8 outperforms all other 
models with a reduction of 70.01% in average memory utilization, 92.23% in memory size compression, and 27.94% 
in peak CPU utilization. Thus, the proposed QAE-u8 model is more suitable for deployment on resource-constrained 
IoT edge devices.

Introduction
The adoption of IoT technology in the fields of health-
care, manufacturing, and agriculture requires constant 
network connectivity and data sharing. Because of this, 
cybercriminals could easily target IoT devices for exploi-
tation and exploit any other devices sharing the same 
network infrastructure (Sobin 2020). According to the 
IBM data breach report for 2022, the average cost of a 

data breach reached a record-breaking USD 4.35 million, 
demonstrating a 2.6% rise from the previous year and a 
notable  12.7% surge since the 2020 report (Mansfield-
Devine 2022). The Verkada breach in 2021 exposed the 
live feeds of 150 million surveillance cameras (Higgins 
2022). In the same year, the attacker gained access to a 
water treatment organization in Florida and changed the 
chemical composition to contaminate the water. This 
kind of catastrophic data breach due to anomaly attacks 
in the IoT infrastructure is increasing significantly 
(Radanliev et al. 2018).

Our study aimed to develop a method for identifying 
anomalous attacks in IoT network traffic. Since spotting 
an anomaly requires careful observation of various IoT 
network traffic. In addition, the network traffic of each 
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IoT device varies. So we utilize the autoencoder algo-
rithm for anomaly detection. The training of the model 
particularly utilized benign network traffic, expect-
ing that any anomalous traffic would lead to substan-
tial RE. Therefore, in this research work, we considered 
the real-time IoT network traffic of four major devices: 
ThingSpeak-LED, MQTT-Temp, Amazon-Alexa, and 
Wipro-Bulb.

The distributed denial of service (DDoS) attack is one 
of the most critical threats to Internet of Things devices 
(Hummel Richard 2021). The vulnerability and pervasive-
ness of non-legacy IoT devices such as webcams, baby 
monitoring devices, and printers are primary targets for 
launching this volumetric DDoS attack to form a botnet 
(Salim et al. 2020). These compromised IoT devices redi-
rect a large amount of traffic to the servers, which causes 
them to malfunction. According to the Kaspersky report, 
there was a tremendous increase in the proportion of 
intelligent DDoS attacks in 2022. The length of a DDoS 
attack increased 100-fold, reaching 3000  min. Over the 
last 4  years, the ratio of DDoS attacks has increased to 
about 50%. After the recent cryptocurrency market 
crash, experts predict an increase in DDoS attacks (Gut-
nikov 2022).

The Secure Shell (SSH) brute-force attack is another 
prominent cyberattack that uses trial and error to try 
all possible combinations to break the password (Fahrn-
berger 2022). Most IoT devices provide remote access 
over the SSH protocol with default passwords. The 
attackers utilize SSH brute-force attacks with known cre-
dentials to gain access and exploit IoT devices. In addi-
tion, brute-force attacks on SSH surpassed Telnet attacks 
by threefold. In 2020, Linux-based IoT devices were 
infected with malware named Kaiji Botnet and launched 
DDoS attacks via SSH brute-force attacks (Cimpanu 
2020). In the middle of June 2022, a new IoT botnet virus 
known as RapperBot aggressively expanded its powers 
(Lakshmanan 2022). According to a report by Fortinet 
FortiGuard Labs, this particular category of IoT malware 
demonstrates a significant reliance on the original Mirai 
source code. However, what distinguishes it from other 
IoT malware families is its capability to perform creden-
tial brute-forcing and exploit SSH servers instead of the 
Telnet approach employed by the original Mirai attack.

IoT devices are vulnerable to SSH brute-force attacks 
because of their default credentials, which in turn cause 
DDoS exploitation, and these two attacks are the gateway 
for further exploitation. Hence, this study focuses on the 
two most significant attacks on IoT devices.

In recent years, IDS frameworks for IoT devices have 
integrated unsupervised learning techniques and other 
advances. In unsupervised learning, anomaly detection 
is a popular technique utilized for the identification of 

rare observations that deviate from normal events. The 
potential for significant environmental damage result-
ing from such anomalies establishes it as a crucial issue 
within the cyber domain. Several studies proposed dif-
ferent unsupervised learning techniques through various 
network traffic datasets to validate their IDS framework 
(Khraisat and Alazab 2021). However, the availability of 
IoT traces in most of the datasets is limited (Ring et  al. 
2019). Hence, it is difficult to identify an anomaly in IoT 
infrastructure. In this proposed work, we have generated 
network traces using real-time IoT devices for normal 
and attack patterns.

Real-time IoT devices, in contrast to general-purpose 
GPUs and CPUs, are designed for applications with lim-
ited physical resources. The deployment of an AI-based 
IDS framework in these devices imposes computational 
challenges such as restricted memory, fewer ALUs, high 
CPU time, etc. In such conditions, direct implementation 
of memory-consuming AI algorithms is unreliable with-
out optimization (Lee et al. 2022; Garifulla et al. 2021). A 
solution to this problem is optimizing AI algorithms for 
IoT devices. Neural networks in AI optimization include 
network pruning and integer quantization (Shomron 
et al. 2021; Liang et al. 2021). The network pruning pro-
cess includes removing redundant neurons that do not 
significantly affect model accuracy. This helps to decrease 
memory size and leads to a reduction in energy con-
sumption (Hoefler et  al. 2021). In addition, we reduced 
the numerical weights and activation function by con-
verting commonly used floating-point 32-bit representa-
tion to floating-point 16-bit and 8-bit integer precision. 
This process represents a post-quantization technique 
(Finotti and Albertini 2021). The operations on integers 
reduce the overhead compared to floating point opera-
tions and reduce computational time and complexity.

Existing work
This section discusses different benchmark network traf-
fic datasets developed for IDS and optimization strate-
gies implemented to deploy Artificial Intelligence (AI) 
algorithms for edge devices.

In AI, the critical analysis and evaluation of the IDS 
framework depend on the type of dataset selected dur-
ing the training and testing phases. The DARPA 1999 
dataset that the MIT Lincoln Laboratory created is the 
most popular dataset for network IDS (McHugh 2000). 
DARPA contained 41 features in a packet-based format. 
The top attacks include DoS, port scanning, R2L, and 
U2R. Even though the distribution is high, DARPA suf-
fers from high redundancy (Tavallaee et al. 2009). Shara-
faldin et  al. (2018) proposed the CICIDS2017 dataset. 
This dataset has 80 attributes and bidirectional flow-
based network traces. The dataset includes botnet, DoS, 
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SSH brute-force, infiltration, and web attack traffic. Both 
servers and personal computers generated these attacks.

Cybersecurity researchers at the University of New 
South Wales Canberra developed the UNSW-NB15 data-
set in 2015 (Moustafa and Slay 2015). Nour et al. used the 
IXIA Perfect Storm tool to produce this UNSW-NB15 
dataset. They have extracted normal and attack traf-
fic from the simulation tool. This dataset contains both 
packet-based and time-based features. The attack family 
includes DDoS, DoS, reconnaissance, and theft. In addi-
tion, UNSW proposed a new BoT-IoT dataset of 72 mil-
lion traces in 2019 (Koroniotis et  al. 2019). In this data 
collection, Node-RED, a simulation tool for middleware, 
was used to simulate Internet of Things (IoT) traffic. The 
authors developed JavaScript for virtual weather stations 
using IoT sensors like pressure, humidity, and tempera-
ture and communicated through the Message Queu-
ing Telemetry Transport (MQTT) protocol. The prime 
attacks in this dataset include DoS and information theft. 
Sebastian Garcia and Erquiaga (2020) captured the IoT-
23 dataset in the stratosphere lab at CTU University. The 
dataset has 23 captures of different networks generated 
in Raspberry Pi devices. IoT-23 comprised benign traffic 
collected from Amazon Echo, the Philips HUE LED Light 
and the Somfy Smart door lock devices. In this dataset, 
benign and malicious traffic was captured on different 
devices, leading to separate networks.

Table  1 summarizes the publicly available benchmark 
datasets for researchers. The survey shows that most 
of the examined datasets are not part of the IoT infra-
structure. Even though IoT-23 utilized a real-time envi-
ronment, the attack traces and benign traces generated 
were in a different environment. In addition, in anomaly-
based IDS, we need to analyze the entire behavior of all 
IoT devices to identify the novel anomaly in the network. 
Therefore, in this research work, we have captured nor-
mal and attack traffic on the same IoT-based network 
infrastructure.

Thudumu et al. (2020) proposed a technique by deriv-
ing a generalized locally relevant subspace from a high 

dimensional dataset using a correlation score. Yang et al. 
(2021) presented a multi-tiered hybrid IDS to secure 
intravehicle networks (IVN) and external vehicular sys-
tems. Their proposed learning model comprises a four-
tiered network. They used tree-based ML models such as 
decision tree (DT), extra trees (ET), random forest, and 
extreme gradient boosting (XGBoost) for the detection 
of known attacks. Furthermore, developing an anomaly 
detection system integrates CL-k-means, Bayesian opti-
mization with the Gaussian process (BO-GP), and biased 
classifiers. They focused on detecting intrusions on the 
Internet of Vehicles using two publicly available CIC-
IDS2017 and CAN-intrusion datasets. High dimension-
ality refers to a dataset that has attributes that are more 
independent. In this scenario, it is hard to identify out-
liers due to the problems associated with the ‘curse of 
dimensionality’. In another study, Dutt et al. (2020) pro-
posed a new statistical modeling based anomaly detec-
tion (SMAD) by exploiting the innate immune system for 
training and feature selection using the predefined value 
F in an ANOVA. This approach builds a naive activation 
function by adopting T-cells and B-cells.

Eskandari et  al. (2020) proposed Passband, an intel-
ligent end-to-end design for IDS for IoT gateways. This 
method utilized the Isolation Forest (IF) and Local Out-
lier Factor (LOF) algorithms for anomaly detection. This 
method was tested against port scanning, SYN flood, 
HTTP, and SSH brute-force attacks. With an F1 score 
of 0.79% for SYN flood, this article shows that Isola-
tion Forest (IF) is more stable than the LOF technique. 
Nevertheless, the model has a high CPU utilization of 
47.17%. Shyla et al. (2022) proposed the Nesterov-accel-
erated adaptive moment estimation-stochastic gradient 
descent (HNADAM-SGD) algorithm. This work utilized 
the UNSW-NB15 dataset for validation. The regression 
model selected to build the proposed algorithm involves 
different hyperparameters for optimization. For fur-
ther investigation, this work compared the Ridge classi-
fier, Logistic Regression, and an ensemble method with 
respect to recorded time complexity and accuracy. In 

Table 1 Dataset

Dataset Features type No of features IoT attack 
traces

IoT device IoT normal 
traces

Year

DARPA 1998 Packet based 41 No No No 1998

CICIDS 2017 Bi-directional flow based 80 No No No 2017

UNSW-NB15 Packet based/flow based 49 No No No 2015

BoT-IoT Packet based 35 Yes Yes
(Virtual)

Yes 2019

Aposemat IoT23 Packet based – Yes Yes Yes 2020

RT-IoT2022 Bi-directional flow based 24 Yes Yes Yes 2022
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contrast, performance depends on the nature of the data-
set and the parameters used during testing.

Ogundokun et  al. (2021) proposed IDS using particle 
swarm optimization (PSO). This work applied particle 
swarm-based feature extraction techniques to optimize 
Machine learning (ML) algorithms. In this work, the 
author deployed PSO to the Decision Tree (PSO + DT) 
algorithm and the K-Nearest Neighbor (PSO  +  KNN) 
algorithm for the KDD-CUP99 dataset. The PSO + KNN 
algorithm performed better compared to other algo-
rithms. Since the dataset does not contain IoT traces, 
deployment on IoT devices is inappropriate. Tang et  al. 
(2020) proposed the Stacked Attention Autoencoder 
(SAAE) IDS model. The authors inserted an attention 
mechanism layer in the middle of the encoder and a 
latent layer. This layer calculates the attention vector of 
all features to identify the contribution of each attribute. 
The proposed algorithm can achieve 98.12% in a simu-
lated environment.

Popoola et  al. (2020) proposed a hybrid deep learn-
ing technique for botnets by combining a Long Short 
autoencoder (LAE) with deep Bidirectional Long Short 
Term Memory (BLSTM) for detecting intrusions in secu-
rity cameras. The classification of Mirai and BASHLITE 
IoT attacks is performed by evaluating and testing net-
work traffic on various cameras, including Samsung SNH 
1011N, XCS7-1.003-WHT, Simple Home XCS7-1.002-
WHT, and Provision PT-838. They have achieved better 
performance in terms of accuracy and precision. How-
ever, the model experienced high losses for classifying 
TCP and SCAN attacks (Zhang et al. 2021). Predić et al. 
(2022) discussed the possibility of optimizing the deep 
neural network (DNN) algorithm. Different compression 
techniques such as pruning, clustering, and quantization 
were discussed in this work. For validating the compres-
sion capacity and correctness of ResNet18, this study 
presents the sparsity and cluster preserving quantization 
(PCQAT) technique.

The AS-IDS model performs both signature-based 
and anomaly-based detection using the NSL-KDD data-
set. This framework includes a Deep Q-Learning frame-
work in which the output layer utilizes Signal to Noise 
Ratio (SNR) and bandwidth for classification (Otoum 
and Nayak 2021). Saba et  al. (2022) proposed the con-
volution neural network (CNN) algorithm for IDS for 
outlier detection. This model utilized NID dataset and 
the BoT-IoT dataset for validation. However, the CNN 
model is far too complicated for deployment with lim-
ited resources. Gong et  al. (2020) employed the VecQ 
model for compressing DNN algorithms using MNIST, 
ImageNet, CIFAR, THUCNews text, and IMDB movie 
review datasets. Parameterizing the probability estimate 
method used in the quantization process allowed this 

model to achieve higher accuracy. Hu et  al. (2021) pro-
posed the One-shot pruning quantization (OPQ) com-
pression technique for the DNN algorithm. This method 
addresses the problem of manual tuning by utilizing pre-
trained weight parameters for computing the compres-
sion allocation and sharing a common codebook for all 
channels at each layer to replace conventional channel-
wise quantization. However, these research works do not 
address the computational complexity of AI algorithms 
on real-time IoT devices, which includes memory con-
sumption, CPU load, and processing time.

Table  2 shows the different optimization approaches 
for IDS. In summary, the deployment of AI algorithms in 
attack detection will elevate the performance of the IDS 
(Lakhan et  al. 2022; Verhelst and Moons 2017). Besides 
the enormous advantage of AI techniques, the deploy-
ment of IDS in IoT devices is complex. Because the IoT 
devices suffer from limited storage capacity, low pro-
cessing ability, and low power (Thakkar and Chaudhari 
2021; Imteaj et al. 2021). Hence, this research work pre-
sents two QAE models, such as QAE-u8 and QAE-f16, 
by exploiting the combination of sparsity-based prun-
ing (Anwar et al. 2017; Zeng et al. 2019), clustering, and 
quantization (Fang et  al. 2020) methods. The empiri-
cal analysis also includes Raspberry Pi devices in its 
investigation.

Paper contribution
In this research work, the major contribution is as 
follows: 

(a) We generated RT-IoT2022 datasets for normal and 
attack network traffic using IoT infrastructure with 
the deployment of real-time IoT devices like Thing-
Speak-LED, MQTT-Temp, Amazon Alexa, Wipro 
bulb, and Raspberry Pi.

(b) We proposed optimized QAE-u8 and QAE-f16 
models for IDS to support resource-constrained 
IoT devices, aiming to reduce the complexity of AI.

(c) Regarding the evaluation of the proposed model, 
QAE-u8 achieved better performance than QAE-
f16 and the autoencoder model in terms of F1 score.

(d) We measure the computational complexity of the 
proposed model in terms of execution time, CPU, 
and memory utilization for deployment in compu-
tationally constrained devices. The proposed QAE-
u8 model significantly outperforms the QAE-f16 
and benchmark autoencoder models. For this pur-
pose, we simulated all three models on a Raspberry 
Pi device.



Page 5 of 15Sharmila and Nagapadma  Cybersecurity            (2023) 6:41  

Proposed framework
In this section, we introduce our proposed QAE IDS 
Framework for anomaly detection in resource-con-
strained IoT devices, as shown in Fig. 1. The work con-
tribution mainly consists of four stages that offer: (a) 
dataset generation, (b) feature engineering, (c) autoen-
coder framework, (d) post-training quantization.

Dataset generation
The generation of the dataset is one of the crucial parts 
of unsupervised learning. In this section, we propose the 
RT-IoT2022 dataset for the training and testing of QAE-
based IDS. Figure 2 shows the testbed infrastructure for 
RT-IoT2022 dataset generation.

The infrastructure consists of two parts, namely IoT 
victim devices and IoT attacker devices, both connected 
through a router. We collect the network traffic through 
a router using Wireshark, which is an open-source moni-
toring tool for network traffic that helps extract traces 
and convert them into a PCAP file. Table 3 shows the list 
of devices, operating systems, and related configurations. 
In this dataset, we created four normal profiles and two 
attack profiles. The details are as follows.

ThingSpeak‑LED
ThingSpeak is an open-source IoT cloud platform to 
visualize sensor data and control actuator data. In 

this work, we established an interface between the 
Intel Galileo Gen 2 board and an RGB LED module. 
Subsequently, the LED status is monitored using the 
ThingSpeak platform. The router recorded the data 
communication of the LED module interfaced with the 
IoT device.

MQTT‑Temp
MQTT protocol is a publish/subscribe protocol that 
aims to support resource-constrained IoT devices for 
communicating low-bandwidth data. First, we estab-
lished an interface between the Raspberry Pi device and 
the temperature sensor. Consequently, the Raspberry Pi 
device publishes the temperature value to the MQTT 
Mosquitto Broker using the Paho MQTT library over 
the internet. Using the Wireshark tool, we passively 
monitor and capture the backend traffic, resulting in 
the collection of a dataset that includes MQTT-Temp.

Wipro‑Bulb
Recently, Wipro released the NS9400 9-Watt B22 
Smart Bulb as an IoT Smart Home Integrated Solution. 
Mobile devices can remotely control these bulbs using 
the WiFi protocol. Our Wipro-Bulb dataset includes 
the complete Wipro-Bulb communication.

Table 2 Summary of optimization techniques of different anomaly detection models using AI

Methods/references Learning model Security threat Optimization 
method

Applied 
to IDS

Dataset of cyber 
attacks

Remarks

SAAE-DNN (Tang 
et al. 2020)

Stacked autoencoder DoS, Probe, R2L 
and U2R

Attention vectors � NSL-KDD Limited to simulation

Passban (Eskandari 
et al. 2020)

IF, LOF Port scan, SYS flood, 
HTTP and SSH brute-
force

× × × High CPU 47.17%

VecQ (Gong et al. 
2020)

DNN × Quantization × × Not applied for IDS

Hybrid deep learning 
technique (Popoola 
et al. 2020)

LAE, BLSTM Mirai, BASHLITE × × N_BaIoT High false alarm 
rate to correlate TCP 
and SCAN attacks

PSO + DT, PSO_KNN 
(Ogundokun et al. 
2021)

DT KNN DoS, Probe, R2L 
and U2R

Particle swarm � KDDCUP99 Limited to simulation

AS-IDS (Otoum 
and Nayak 2021)

DNN DoS, Probe, R2L 
and U2R

Q-Learning � NSL-KDD Limited to simulation

OPQ (Hu et al. 2021) DNN × Pruning quantization × × Not applied for IDS

HNADAM-SDG (Shyla 
et al. 2022) 

Regression DoS and information 
theft

Hyper parameters � UNSW-NB15 Performance depend 
on hyperparameters 
and type of dataset

Deep learning mod-
els (Saba et al. 2022)

CNN DoS, DDoS, recon-
naissance

×  � NID and BoT-IoT CNN is too complex 
for IoT devices

Quantized autoen-
coder (QAE-u8, 
QAE-f16)

Autoencoder DDoS and SSH brute-
force

Pruning, clustering 
and quantization

� RT-IoT2022 Proposed method
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Amazon Alexa
An Alexa device, developed by Amazon, is connected to 
a router and captured complete communications on the 
router. This device works as a cloud-based voice service 
(Barceló-Armada et al. 2022).

SSH brute‑force attack
The authentication mechanism of IoT devices is prone 
to SSH brute-force attacks due to weak passwords. This 

attack not only discovers the passwords but also enters 
the system and implants malicious code to control and 
attack other connected devices. The SSH login auxiliary 
modules available in Metasploit, an open-source tool, are 
exploited to generate brute-force attack traces. The initial 
phase of the SSH brute-force process involves conducting 
a port scan using the Network Mapper (Nmap) tool to 
identify the machines having open SSH ports. Following 
this, we selected the ‘Scanner SSH’ auxiliary module of 

Fig. 1 Proposed QAE IDS framework for anomaly detection

Fig. 2 RT-IoT2022 dataset infrastructure



Page 7 of 15Sharmila and Nagapadma  Cybersecurity            (2023) 6:41  

msfconsole in Metasploit to initiate a brute-force attack. 
Further, the msfconsole is configured with the victim’s IP 
address, default username, and password files to carry 
out the attack. Once the auxiliary module successfully 
cracks the login credentials, remote connectivity is estab-
lished, allowing entry into the victim’s computer.

DDoS attack
Further, we generate DDoS attack traces using the 
Hping3 tool from multiple Kali Linux IoT devices. 
Hping3 is an open-source tool available in Kali 
Linux OS utilized to launch DDoS attacks for victim 
machines. In the initial step, we established the hping3 
command by specifying the IP address and domain 
name of the targeted victim. Subsequently, we opted 
for the ‘SYN’ scan feature provided by hping3. Addi-
tionally, we personalized the configuration by setting 
up source ports, destination ports, and fragmentation. 
Lastly, we transmitted 30,000 TCP SYN packets to the 
victim’s device, utilizing random sources during the 
attack process. The ability of these attacks to change the 
IP address of source devices randomly every time poses 
difficulty to administrators in identifying the source of 
attacks (Jia et  al. 2022). The procedure was extended 
for a period of 120  s, resulting in the generation of a 
significant volume of packets that overwhelmed the 
resources of the victim machine.

Feature Engineering
The collected PCAP files from Wireshark are converted 
and dumped as CSV files using the CICFlowmeter tool. 
Table  4 illustrates the complete RT-IoT2022 dataset. 
This tool generates a bidirectional flow of time-related 
features that help to distinguish DDoS attacks (Lashkari 
et al. 2017). To prevent over-fitting during training, fea-
tures such as the address of the source, destination, and 
FlowID were eliminated (Aouini and Pekar 2022). In 
addition, numerical values were encoded for categorical 
features such as protocol and service. Then, we stand-
ardized the complete dataset by transforming it into a 
distribution with a mean value of zero and a standard 
deviation of one. The normal dataset had been labeled as 
zero and the attack dataset as one for anomaly detection. 
Finally, the training phase utilizes 70% of the dataset, and 
the validation phase utilizes 30%.

Autoencoder framework
This section discusses the construction of the autoen-
coder framework for training the normal network traffic 
behavior of IoT devices. Autoencoder is an unsupervised 
learning work on reconstruction methods. The mecha-
nism of the autoencoder algorithm is to reconstruct the 
same input data into output data. In anomaly detection, 
the idea behind deploying the autoencoder is that anom-
alous traffic will fail to reconstruct its input traffic at the 
output. So, a significant error arises because the frame-
work is trained exclusively on regular network traffic. The 
autoencoder framework consist of hidden layers, having 
encoder φ that converts the original dataset χ to latent 
space ̥  for compression and a decoder θ reconstructs the 
original dataset from latent space as shown in Fig. 1. In 
addition, the hidden layers in the encoder had decreased, 
which helped extract only essential information and 
ignore the noise. This model consists of six hidden layers 
with three equal encoders and decoders, along with the 
‘relu’ activation function. Since IoT devices are resource-
constrained devices, the autoencoder model incorporates 
optimization procedures, which include pruning, cluster-
ing, and quantization. The following section describes 
the complete steps of optimization.

Table 3 Victim-attacker device configurations

Devices Types Operating 
system

Victim network ThingSpeak LED Intel Galileo Gen-2 Debian

MQTT-Temp Raspberry Pi Rasbian OS

Wipro Bulb NS9400 9-Watt –

Amazon Alexa ARM Cortex-A8 Fire OS

Router Raspberry Pi Kali Linux

Attacker network Attacker-1 Raspberry Pi Kali Linux

Attacker-2 Virtual machine Kali Linux

Attacker-3 Virtual machine Kali Linux

Table 4 RT-IOT2022 dataset

Dataset PCAP CICFlowmeter Protocol Service SubCategory Category

ThingSpeak-LED 10,526 8108 TCP. UDP DNS, HTTP ThingSpeak 0

MQTT-Temp 8162 4146 TCP MQTT MQTT 0

Amazon-Alexa 6056 5023 TCP, UDP, ICMP DNS, HTTP Alexa 0

Wipro-Bulb 1265 253 TCP, UDP SSL, DNS, IRC Wipro_Bulb 0

SSH brute-force 1564 526 TCP, UDP DNS, SSH SSH_Brute_Force 1

DDoS 1786 534 TCP HTTP DDoS 1
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Post‑training quantization
The main goal of this research is to compress the model 
and reduce CPU and memory utilization as much as pos-
sible while retaining the model’s accuracy. Therefore, we 
implemented the Post-Training Quantization technique 
to the trained autoencoder model for optimization. This 
technique includes pruning, clustering, and quantization. 
The steps involved in post-training quantization are as 
follows: 

(a) The first step for model compression is pruning. 
Pruning means the selection of the most signifi-
cant neurons while skipping redundant or zero-
value tensors. The constant pruning involves: (1) 
The method of pruning: In this step, we considered 
retaining constant sparsity throughout training. (2) 
Fine tuning: Following this pruning process, the 
model undergoes retraining again.

(b) In the second step, we applied the weight cluster-
ing method. In this method, the layer weights are 
clustered and subsequently changed based on their 
cluster centroids. This approach helps in further 

reducing the size of the model. Based on a trade-off 
analysis between accuracy and the number of clus-
ters, we selected eight clusters as the optimal choice 
for weight clustering in this research work.

(c) The third step involves converting the clustered 
model to TFlite format, aiming to improve the per-
formance of the model in terms of CPU process-
ing, model size, and memory utilization. This step, 
known as Quantization, involves converting all 
float32 weights and bias into unsigned 8-bit integer 
and floating-point 16-bit representations.

In the final stage, we trained and tested the quantized 
model before loading it onto the IoT device for the final 
predictions. The algorithm 1 shows the pseudo-code for 
Q-Autoencoder.

Experimental analysis
In this section, we first train the dataset for feature extrac-
tion. Then we demonstrate the autoencoder performance 
and compare it with other optimized autoencoders.



Page 9 of 15Sharmila and Nagapadma  Cybersecurity            (2023) 6:41  

Feature extraction
First, we trained four different normal IoT datasets using 
an autoencoder: (a) ThingSpeak-LED, (b) MQTT-Temp, 
(c) Amazon Alexa, (d) Wipro-Bulb. Next, we applied the 
dataset to a trained model to reconstruct both normal 
and anomalous traffic. Then we calculated RE by employ-
ing Eq. 1 for Mean Absolute Error (MAE) and Eq. 2 for 
mean square error (MSE).

(1)MAERE =

1

n

n∑

i=1

� χ − χ
′

�
2

where n represents the number of data points. According 
to the autoencoder model, if the model is trained only for 
normal traffic, it has to generate a high RE for anomalous 
traffic during the prediction. Therefore, we extracted fea-
tures with high RE for all datasets, as shown in Table 5.

Subsequently, with the help of reconstruction error, we 
calculated the threshold to differentiate between normal 
and anomalous traffic using Eq. 3.

(2)MSERE =

1

n

n

i=1

� χ − χ
′

�

Table 5 Reconstruction error and threshold

Dataset Features Reconstruction error Threshold

ThingSpeak-LED bwd_pkts_payload.avg, flow_pkts_payload.avg, 
bwd_iat.avg, flow_iat.max, bwd_init_window_size

0.1 0.02

MQTT-Temp id.orig_p, idle.avg, idle.std, 
fwd_last_window_size

0.4 0.06

Amazon-Alexa id.orig_p, id.resp_p, down_up_ratio,  
fwd_header_size_max,flow_ECE_flag_count,  
fwd_pkts_payload.std,bwd_pkts_payload.std

0.9 0.06

Wipro-Bulb  flow_RST_flag_count, fwd_pkts_payload.avg,
bwd_pkts_payload.max, bwd_pkts_payload.avg,
bwd_pkts_payload.std,flow_pkts_payload.max,
flow_pkts_payload.avg, flow_pkts_payload.std,
flow_iat.std,payload_bytes_per_second,
fwd_subflow_bytes,bwd_subflow_bytes

0.1 0.04

Final RT-IOT2022 All above features – 0.02

Fig. 3 Anomaly threshold measurement for various normal datasets
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Where µ is mean and σ is the standard deviation, and 
RENormal is the RE of normal traffic. Figure 3 shows the 
graphical representation of discriminating between nor-
mal and anomalous traffic using a threshold value cal-
culated from reconstruction error after decoding the 
normal dataset.

Hereafter, we combined all traces of normal network 
traffic from different IoT devices to form the final RT-
IoT2022 dataset. This final dataset contains features with 
a high RE only in order to reduce computational com-
plexity. Table 5 depicts the extracted features from each 
dataset to detect network anomalies.

Next, we conducted training on RT-IoT2022 using an 
autoencoder and recalculated the RE for both normal 
and anomalous traffic. Figure 4a and b illustrate the cor-
rectness of RE by plotting against all extracted features. 
The figure shows that RE is large in anomaly traffic in 
all datasets compared to normal traffic. Finally, we cal-
culated the threshold to detect anomalous traffic using 
Eq. 2. Figure 4c shows the error generation in normal and 
anomalous traffic and, finally, the threshold level to dis-
tinguish anomalies.

(3)threshold = µ(RENormal)+ σ(RENormal)
Metrics for evaluation of the QAE model
In this section, we performed an experimental evalua-
tion by training an autoencoder model with normal traf-
fic to detect anomalies. The anomalous traffic considered 
in this research work is the SSH brute-force attack and 
the DDoS attack. First, we considered individual normal 
traffic to extract the features for detecting anomalies. 
Then, we aggregated all the features for the proposed 
RT-IoT2022 dataset to evaluate performance. We investi-
gated various evaluation metrics such as accuracy, preci-
sion, recall, and F1 score to validate the proposed training 
model. The accuracy measure measures the proportion 
of correctly predicted normal or anomalous traffic. Due 
to the recommendation against relying only on accuracy 
when there is an imbalance in the number of instances 
between classes, we also considered the precision met-
ric. This metric measures the proportion of accurately 
predicted true positives. The sensitivity, or recall, of the 
model against the ground, or truth, provides a proportion 
of the predicted true positives against all true positives. 
Additionally, we also investigated the F1 score measure 
to enhance precision and recall. F1 score calculates the 
harmonic mean of precision and recall to provide more 

Fig. 4 Reconstruction error and threshold of RT-IoT2022
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insight into the results in an imbalanced dataset. Table 6 
reports all the numerical results.

Furthermore, we evaluated and compared the perfor-
mance of two quantized autoencoder models, namely 
QAE-f16 and QAE-u8, with the non-optimized autoen-
coder model. During the training and testing phases, we 
considered only the extracted features. Table  7 shows 
scores for evaluation metrics and the calculation of dif-
ferent thresholds for each method. In the MAE error 
metric, the accuracy of the QAE-u8 is reduced margin-
ally compared to other models. However, the F1 score of 
the QAE-u8 shows that the model is better than other 
proposed models.

Results and discussions
In this section, we test our models on state-of-the-art 
Raspberry Pi devices. The configuration of this resource-
constrained IoT device is 2  GB of RAM and a 1.2  GHz 

Table 6 Autoencoder evaluation metrics

Dataset Accuracy 
(%)

Precision 
(%)

Recall (%) F1 score (%)

ThingSpeak-
LED

98.98 99.10 98.98 99.10

MQTT-Temp 99.63 100 99.9 99.98

Amazon-
Alexa

98.33 98.33 98.34 98.34

Wipro-Bulb 91.5 91.5 91.5 95.00

Final RT-
IOT2022

98.40 98.40 98.59 99.19

Table 7 Experimental results of autoencoder with and without optimization

Methods Error metric Threshold Accuracy (%) Precision (%) Recall (%) F1 score (%)

Autoencoder MSE 0.006 91.04 91.04 91.05 95.1

MAE 0.02 98.40 98.39 98.40 98.39

QAE-f16 MSE 0.073 78.07 78.07 78.69 86.10

MAE 0.145 97.25 97.24 97.25 97.24

QAE-u8 MSE 6153.01 92.08 92.10 92.08 95.10

MAE 35.02 96.35 96.35 96.36 98.10

quad-core ARM Cortex-A53 64-bit processor. The AI 
packages involved in this research work are Tensor-
Flow-1.2 and the tflite supporting package. On Rasp-
berry Pi device, we tested ground truth-values of time 
consumption, CPU utilization, and memory utilization 
for autoencoders, QAE-f16 and QAE-u8. Table  8 shows 
the complete analysis of all three proposed models. The 
summary of the results pertaining to all three proposed 
models is:

• The experimental results demonstrate a notable 
reduction in the memory size of the QAE-u8 model, 
reaching 92.23% and 26.29% in comparison to the 
autoencoder and QAE-f16, respectively, as shown in 
Table 8.

• QAE-u8 model compressed the average memory uti-
lization to 70.01% and 10.45% with respect to autoen-
coder and QAE-f16 models, as shown in Table 8.

• 27.94% of the reduction is recorded for the CPU peak 
utilization parameter.

• We recorded the time consumption for predicting 
a single traffic instance. The observations in Table 8 
show that the QAE-u8 consumes less time when 
compared to other models.

Figures  5 and 6 show memory consumption and CPU 
utilization on resource-constrained devices. We also 
reported the peak memory utilization and CPU peak uti-
lization of Raspberry Pi devices in Table  8. The results 
show that the QAE-u8 autoencoder model consumes 
less memory and CPU. Therefore, from the above dis-
cussion, we can prove that QAE-u8 outperforms in 

Table 8 Performance evaluation of autoenocder, QAE-f16 and QAE-u8 models on Raspberry Pi IoT device

Methods Memory size 
(bytes)

Average memory 
utilization (MiB)

Peak memory 
utilization(MiB)

Average CPU 
utilization

Peak CPU 
utilization

Time 
consumption 
(s)

Autoencoder 79,432 154.23 219.19 115.87 184 34

QAE-f16 8368 51.64 63.84 107.31 201 24

QAE-u8 6168 46.24 57.06 111.51 147 15
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resource-constrained environments. Figure  7 shows the 
plots of numerical results. Further, the proposed QAE 
model not only provides performance benefits but also 
increases power efficiency by reducing storage memory 
costs and increasing computational efficiency. This is 
essentially beneficial for the widespread deployment of 
IDS based on QAE-u8 in agriculture and healthcare IoT 
devices since these devices require computationally inex-
pensive AI technologies.

Conclusion and future work
In this research, we generated the RT-IoT2022 dataset 
using an IoT environment detecting anomalies using 
an autoencoder framework. The dataset includes Ama-
zon Alexa, ThingSpeak-LED, MQTT-Temp, Wipro-
Bulb, SSH brute-force, and DDoS network traffic. The 
autoencoder model calculates RE and thresholds for 
detecting anomalies in IoT infrastructure. However, 

the major drawback of constructing autoencoder-
based IDS in IoT devices is that they are resource-con-
strained, specifically for memory, processing ability, 
and power. Therefore, in this research, we proposed two 
optimized autoencoder models, the QAE-u8 and QAE-
f16, for constructing the IDS framework. The optimi-
zation of the autoencoder models involves pruning, 
clustering, and quantization techniques. We conducted 
the final model prediction on a Raspberry Pi device, 
where the observation of QAE-u8 shows that the mem-
ory size has compressed to 92.23% and memory utili-
zation reduced to 70.01%. The CPU peak utilization is 
reduced to 27.94%. In addition, there is a significant 
decrease in the time consumed for predictions, from 
35 to 15s. The results indicate that our proposed QAE-
u8 model can outperform the original autoencoder 
model in the context of reduced memory size, CPU, 
and memory utilization. Hence, this proves to be suit-
able for resource-constrained IoT devices. We also 

Fig. 5 Memory utilization of autoencoder, QAE-f16, QAE-u8 models
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Fig. 6 CPU utilization of autoencoder, QAE-f16, QAE-u8 models

Fig. 7 CPU utilization of autoencoder, QAE-f16 and QAE-u8 models
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investigated accuracy, precision, recall, and F1 score for 
all three models. The results depict that QAE-u8 with 
MAE achieved promising performance in evaluation 
metrics over the QAE-f16 model but slightly lower per-
formance when compared to the baseline autoencoder 
model. Therefore, we conclude that there is a trade-off 
between the autoencoder and the QAE-u8 model in the 
context of accuracy and processor evaluation param-
eters like memory and CPU. For future studies, we will 
focus on other vulnerabilities of IoT devices to develop 
a more secure IoT infrastructure.
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