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Abstract 

The elliptic curve discrete logarithm problem (ECDLP) is a popular choice for cryptosystems due to its high level 
of security. However, with the advent of the extended Shor’s algorithm, there is concern that ECDLP may soon 
be vulnerable. While the algorithm does offer hope in solving ECDLP, it is still uncertain whether it can pose a real 
threat in practice. From the perspective of the quantum circuits of the algorithm, this paper analyzes the feasibility 
of cracking ECDLP using an ion trap quantum computer with improved quantum circuits for the extended Shor’s 
algorithm. We give precise quantum circuits for extended Shor’s algorithm to calculate discrete logarithms on ellip-
tic curves over prime fields, including modular subtraction, three different modular multiplication, and modular 
inverse. Additionally, we incorporate and improve upon windowed arithmetic in the circuits to reduce the CNOT-
counts. Whereas previous studies mostly focused on minimizing the number of qubits or the depth of the circuit, 
we focus on minimizing the number of CNOT gates in the circuit, which greatly affects the running time of the algo-
rithm on an ion trap quantum computer. Specifically, we begin by presenting implementations of basic arithmetic 
operations with the lowest known CNOT-counts, along with improved constructions for modular inverse, point 
addition, and windowed arithmetic. Next, we precisely estimate that, to execute the extended Shor’s algorithm 
with the improved circuits to factor an n-bit integer, the CNOT-count required is 1237n3/ log n+ 2n2 + n . Finally, we 
analyze the running time and feasibility of the extended Shor’s algorithm on an ion trap quantum computer.

Keywords Elliptic curve discrete logarithm problem, Extended Shor’s algorithm, Quantum circuits, Ion trap quantum 
computer

Introduction
Elliptic curve cryptography (ECC) has attracted wide 
attention for its unique advantages since it was intro-
duced in the 1980s (Miller 1985; Koblitz 1987). The safety 
of ECC relies on the elliptic curve discrete logarithm 
problem (ECDLP), which is the discrete logarithm prob-
lem (DLP) on the cyclic subgroup with a point on the 

elliptic curve as the generator. Although there are many 
attempts to solve DLP, the best-known classical algorithm 
for DLP is still exponentially complex (Miyaji 1992). For-
tunately, with the development of quantum comput-
ing, the emergence of quantum algorithms offers hope 
for solving such problems. The most representative and 
compelling quantum algorithm is Shor’s algorithm (Shor 
1994, 1999), which can theoretically solve DLP over mul-
tiplicative groups for the prime fields in polynomial time 
(Shor 1994, 1999). This algorithm can be extended to 
elliptic curve groups (we call it extended Shor’s algorithm 
in this paper), which makes ECDLP theoretically not dif-
ficult for a quantum computer, thus posing a threat to 
the cryptography system based on ECDLP. However, the 
gate number of a quantum algorithm’s circuit determines 
the time to run the quantum algorithm on a quantum 
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computer and the exact quantum gates number of the 
extended Shor’s algorithm has not been analyzed. There-
fore, it is debatable whether the extended Shor’s algo-
rithm can pose a threat to ECC, which is exactly what we 
are trying to figure out. From the perspective of running 
time, for the extended Shor’s algorithm to have a threat 
to ECC, it must run in a reasonable time. Therefore, our 
goal in this paper is to give a lower bound of the opti-
mized circuits on the running time of the extended Shor’s 
algorithm. A tight lower bound is difficult to obtain in 
theory. Instead, we give an implementation lower bound 
of optimized circuits from the view of circuit synthesis 
and optimization.

Quantum computers implement quantum computa-
tion by taking as input superposition quantum states 
representing all the different possible inputs and simul-
taneously evolving them into the corresponding outputs 
using a sequence of unitary transformations (Yao 1993; 
Nielsen and Chuang 2002; Chiribella et  al. 2008; Dong 
et al. 2013; Nash et al. 2020; Kimura et al. 2021; Liu et al. 
2021, 2022; Gao et  al. 2022). Quantum computing can 
be described as a quantum circuit in which the unitary 
transformations are represented by quantum gates. The 
most basic quantum gates are the controlled-NOT (i.e., 
CNOT) gate and single-qubit gates. In an ion trap quan-
tum computer, the operation time of the non-adjacent 
CNOT is much longer than that of single-qubit quantum 
gates, and the CNOT gates can only be executed in series 
(Yang and Zhou 2013). Therefore, the number of CNOT 
gates contained in the quantum circuit of a quantum 
algorithm largely determines the running time of this 
algorithm.

Since the advent of the first quantum algorithm to 
attack ECC in Boneh and Lipton (1995), research in 
this field has attracted extensive attention. Eicher and 
Opoku (1997), Proos and Zalka (2003), Kaye and Zalka 
(2004) proposed quantum algorithms that attack ECDLP 
defined on finite fields Fp and F2m . Roetteler et al. (2017) 
studied the extended Shor’s algorithm to attack ECDLP 
on Fp and improved the algorithm of modular inverse in 
Proos and Zalka (2003). The resources needed in terms of 
the number of Toffoli gates were 448n3 log2(n)+ 4090n3 , 
but only rough results of O(n3) were obtained for the 
number of CNOT gates. Häner et al. (2020) improved the 
Kaliski algorithm in Roetteler et al. (2017). Fewer T gates 
were used in the circuit of modular inverse using win-
dowed arithmetic introduced by Gidney (2019). In view 
of the size of the quantum computer, i.e., the number of 
qubits, a quantum circuit for calculating the discrete log-
arithm problem on a binary elliptic curve is optimized in 
Banegas et al. (2021).

Note that the resources required by the quantum cir-
cuit in previous papers did not analyze the CNOT-count 

in detail, but with the development of ion trap quantum 
computers, the running time of an algorithm is greatly 
affected by the CNOT-count (Knight et  al. 1999). If 
even all the CNOTs in the circuits of an algorithm can-
not be run within a reasonable time, it is unnecessary 
to consider other gates, such as T gates. Therefore, this 
paper analyzes the feasibility of the quantum algorithm 
to attack ECDLP by studying the CNOT-count of the cir-
cuit and discusses the applications of windowed arithme-
tic in detail. It is worth noting that based on the physical 
limitations of quantum computers, we consider whether 
a sufficiently large quantum computer in the future can 
complete the extended Shor’s algorithm in a reason-
able running time, so we do not focus on the number of 
qubits.

Our contributions
In this paper, we give precise quantum circuits for the 
extended Shor’s algorithm to calculate discrete loga-
rithms on elliptic curves over prime fields. More specifi-
cally, we have the following contributions. 

1. We construct and improve the circuits of basic oper-
ations including modular subtraction, three different 
modular multiplication, modular inverse, and win-
dowed arithmetic and further improve the quantum 
circuits of extended Shor’s algorithm.

2. We combine the window technique with basic mod-
ular operations to reduce the CNOT-count, and fur-
ther analyze the running time of the extended Shor’s 
algorithm on ion trap quantum computers according 
to the CNOT-count we obtained.

3. We study the feasibility of the extended Shor’s algo-
rithm on ion quantum computers under the prem-
ise that the fault-tolerant quantum computer has 
enough space, further illustrating whether Shor’s 
algorithm can really pose a threat to cryptosystems 
such as ECC.

Outline
The rest of the paper is organized as follows. Preliminar-
ies section is the introduction to ECDLP and the elliptic 
curve group law. Quantum circuits for algebraic prob-
lems section introduces the basic circuits to compute sca-
lar multiplication on the elliptic curve groups required by 
the algorithm, including modular multiplication, modu-
lar inverse, windowed arithmetic, etc. In Quantum cir-
cuits of point addition on elliptic curve groups section, 
we design a new method to calculate the point addition 
reversibly out-of-place (storing the results in a new regis-
ter), which is different from the in-place method (replac-
ing the input value by the sum) in Roetteler et al. (2017) 
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and reduces the CNOT-count. Discussion and conclu-
sion section discusses the time required to attack ECDLP.

Preliminaries
In this section, we first give a brief description of DLP, 
and then show Shor’s algorithm for solving DLP. Next, we 
elaborate on the algorithm for solving ECDLP, which we 
call extended Shor’s algorithm.

Shor’s quantum algorithm for solving the DLP
Discrete logarithms problem
Let g be a generator of a finite cyclic group G with the 
known order ord(g) = k , i.e. gk = 1 . The DLP over G 
is defined as, given an element x ∈ G , determining the 
unique r ∈ [0, |G| − 1] such that gr = x , then r = logg x . 
Consider the case when G is the additive group ZN , 
where N is a positive integer and gcd(g ,N ) = 1 . Here the 

DLP is to find r satisfying r · g ≡ x mod N  . The DLP 
over the ZN can be solved by finding the multiplicative 
inverse of g modulo N with the extended Euclidean algo-
rithm in polynomial time (O(log22N )) (Proos and Zalka 
2003). However, in the group G = Z∗

p (i.e., the multipli-
cative group modulo p and gr ≡ x mod p ), there was 
no classical algorithm to solve the DLP (i.e., calculate 
r = logg x ) until Shor (1994, 1999) proposed a quantum 
algorithm that could theoretically solve this problem in 
polynomial time.

Shor’s quantum algorithm
To be specific, Shor’s algorithm uses three quantum 
registers to solve the DLP, each quantum register has n 
qubits and satisfies p ≤ q = 2n < 2p . Shor’s algorithm 
for DLP is shown as follows.
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Using the above algorithm, Shor proved that r can be 
calculated with high probability in polynomial time. Based 
on Shor’s algorithm to solve DLP, next we show the case of 
ECDLP.

Extended Shor’s quantum algorithm for solving the ECDLP
Elliptic curve discrete logarithms problem
Let Fp be a field of characteristic p  = 2, 3 . An elliptic 
curve over Fp is the set of solutions (x, y) ∈ Fp × Fp to the 
equation

where A,B ∈ Fp satisfy 4A3 + 27B2 �= 0 , together with the 
point O at infinity. The set of all the points on the elliptic curve 
is E(Fp) = {(x, y)|y2 = x3 + Ax + B;A,B ∈ Fp} ∪ {∞} . 
Then E(Fp) forms the Abelian group with a point addition 

(5)y2 = x3 + Ax + B,

operation and O as the neutral element. Let P ∈ E(Fp) 
be a generator of 〈P〉 , which is a cyclic subgroup of 
E(Fp) of known order ord(P) = r , i.e., rP = O . Simi-
lar to DLP, the goal of ECDLP is to find the unique inte-
ger m ∈ {1, . . . , r} such that mP = Q , where r,m ∈ Fp 
and Q is a given point in 〈P〉 . Hasse (1936) pointed out 
that the number of all the points on the elliptic curve is 
#E(Fp) = p+ 1− t, |t| ≤ 2

√
p . Thus the order of 〈P〉 is no 

larger than p. Therefore, when analyzing ECDLP on 〈P〉 , the 
order can be set to p, which has no effect on the results.

Extended Shor’s quantum algorithm
Different from Shor’s quantum algorithm, the extended 
Shor’s algorithm uses two n-qubit and one 2n-qubit reg-
isters with n = ⌈log2 p⌉ to solve the ECDLP. The specific 
algorithm for ECDLP is shown as follows.
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The initial state of the third register is |kP� instead of 
|0� to satisfy the point addition rule on the elliptic curve. 
Whether we use |0� or |kP� has no effect on the result of 
measuring probability. The detailed proof can be seen in 
the Appendix.

Elliptic curve groups law
Before designing the circuits of the extended Shor’s 
quantum algorithm, The elliptic curve group law on an 
affine Weierstrass curve we give the law on the group of 
elliptic curves.

Let P(x1, y1)  = O , Q(x2, y2) , R(x3, y3) ∈ �P� , P + Q = R , 
the elliptic curve group law on the Eq.  (5) can be com-
puted as follows:

where � satisfies the following equation:

Thus we have

The detailed steps of how to transform coordinates from 
(x1, y1) to (x3, y3) can be found in Proos and Zalka (2003), 
Roetteler et al. (2017), Häner et al. (2020). Since the pur-
pose of this paper is to minimize the CNOT-count of 
quantum circuit for the extended Shor’s algorithm, we 
improve the previous circuits of the coordinate trans-
formation in the Quantum circuits of point addition on 
elliptic curve groups section but at the cost of increasing 
the number of qubits, which is not the focus of this paper.

Quantum circuits for algebraic problems
In the implementation of the extended Shor’s algorithm 
for ECDLP, the most important step is to design a quan-
tum circuit to compute scalar multiplication on the ellip-
tic curve groups, i.e., ((a+ k)P + bQ) mod p , which 
includes a series of modular operations. In this sec-
tion, we design the circuits of modular subtraction and 
direct modular multiplication operations. Meanwhile, we 
improve a series of basic operations as well as modular 
inverse and windowed arithmetic.

(9)P + Q = R =
Q, P = O,
O (i.e∞), P = −Q = (x2,−y2),

(�2 − (x1 + x2), �(x1 − x3)− y1), others,

(10)� =
{ y2−y1

x2−x1
, P �= Q,

3x21+A

2y1
, P = Q.

(11)2P = (x′, y′) =







�

�

3x21+A

2y1

�2

− 2x1,
3x21+A

2y1
(x1 − x′)− y1

�

, y1 �= O,

∞, y1 = 0.

Modular subtraction
Modular subtraction with inputs x, y < p computes 
|(x − y) mod p� , where p is the known n-bit constant. 
The computation can be done with the following steps: 

1 Subtract y from |x� to obtain |x − y� using the reverse 
circuit of addition.

2 If the highest bit of |x − y� is 1, which corresponds to 
x − y < 0 , then add p to |x − y� . Otherwise, do noth-
ing.

3 Compare the result of step 2 with (p− y) . Uncom-
pute the auxiliary qubit and get |(x − y) mod p�.

If the input y is a known constant, then it can be ignored 
in quantum circuits and this operation is called constant 
modular subtraction. Otherwise, it is called quantum 
state modular subtraction.

Next, we give the details of the quantum circuit for 
performing addition and comparison.

(I). Quantum circuits for addition.
We use two circuits, 1-Addy and 2-Addy , to perform 

addition, i.e., |x�|y�|0� → |(x + y)0,...,n−1�|y�|(x + y)n� . 
The first two quantum registers both have n qubits and 
the third one has 1 qubit as the highest bit of the sum. 
The two circuits of addition are shown below. 

1 First version of the quantum circuit for addition, 
1-Addy . Cuccaro et  al. (2004) presented a way to 
calculate the addition as shown in Fig.  1, which we 
denote by 1-Addy . It shows that each MAJ (i.e., com-
pute the majority of three qubits in-place) and each 
UMA (i.e., UnMajority and Add) contain two CNOTs 
and one Toffoli gate. Since an n-qubit 1-Addy has 
n MAJ s and n UMA s, it consists of 4n+ 1 CNOTs 
and 2n Toffoli gates. At the same time, based on 
the standard decomposition of the Toffoli gate into 
the Clifford+T set, we obtain that one Toffoli gate 
contains six CNOTs (Nielsen and Chuang 2002). 
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Therefore, we conclude that the CNOT-count of an 
n-qubit 1-Addy is 16n+ 1 . According to 1-Addy , we 
further design its controlled version in Fig. 2 with a 
CNOT-count of 26n+ 6.

2 Second version of the quantum circuit for addition, 
2-Addy . Vedral et al. (1996) proposed another quan-
tum circuit for calculating addition as shown in Fig. 3, 
where the blocks of CARRY and SUM are shown in 
Fig. 4 and the circuit of CARRY−1 consists of the same 
quantum gates in CARRY but in the reverse order. 
When the addend y is known, Markov and Saeedi 
(2012) modified the CARRY,SUM to the form shown 
in the last two rows of Fig. 4, that is, the y is omitted. 
At this point, one CARRY (or CARRY−1 ) contains on 
average 1 Toffoli gate and 12 CNOT, and one SUM has 
on average 1 CNOT. Therefore, an n-qubit 2-Addy 

has a total of n CARRY s, n SUM s, n− 1 CARRY−1 s, 
and 1 additional CNOT. Combining with six CNOTs 
of one Toffoli, we conclude that the CNOT-count in 
2-Addy is 14n− 5.5 when y is known. The left circuit 
in Fig. 5 is a common controlled version of 2-Addy , 
while the right one proposed in Häner et  al. (2020) 
gives a simpler controlled version: First, the control 
qubit ctrl uses NOT gates to control the known 
addend y to store in an n-qubit auxiliary register. 
Then 1-Add is used because the addend y cannot 
be omitted. Finally, repeat the storage operation to 
restore the auxiliary qubits. Since encoding a known 
n-qubit addend y into the circuit requires an average 
of n2 CNOTs, combined with the 1-Add , we conclude 
that 2-Add requires 17n+ 1 CNOTs.

Fig. 1 The first quantum circuit of addition 1-Addy is constructed by MAJ blocks and UMA blocks. A MAJ block and a UMA block both have two 
CNOT gates and one Toffoli gate
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(II). Quantum circuits for comparison
Now we also use two circuits, 1-Compy and 2-Compy , 

to perform the comparison. Compare x and y by 
checking whether the highest qubit of x − y is 0 or 1. 
When the highest qubit is 0, then x − y > 0 ; other-
wise, x − y < 0 . The difference between these two cir-
cuits is that 1-Compy applies to the case where y is a 
known constant, while 2-Compy can be used either for 
y known or for y unknown. We use 2-Compy for all the 
comparisons covered in this paper and details of the 
two circuits are shown below. 

1 First version of the quantum circuit for comparison, 
1-Compy . 1-Compy in Fig. 6 is obtained by modify-
ing 1-Addy so that it outputs only the highest qubit 
of |x − y� (Markov and Saeedi 2012). But the premise 
is that the input is −y+ 2n instead of y, which means 
this way only works if y is a known constant instead 
of an unknown quantum state. When y is known, 
the MAJ can be simplified to Fig. 7, that is, one MAJ 
contains 1 Toffoli. Thus the number of CNOT in 
1-Compy is 12n+ 1.

Fig. 2 The controlled version of 1-Addy
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Fig. 3 The second quantum circuits of addition 2-Add , where the blocks of CARRY and SUM are shown in the first row of Fig. 4

Fig. 4 The first row gives the versions of CARRY and SUM when y is an unknown quantum state. The last two rows show the versions of CARRY 
and SUM when y is known
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2 Second version of quantum circuit for comparison, 
2-Compy . Although the 1-Compy does not work 
when the minus y is an unknown quantum state, it 
can be modified to not precompute −y+ 2n . The 
specific steps are as follows. Firstly, input x,  y and 

flip each of the x bits to get 2n − 1− x . Then use 
1-Compy to get the highest qubit of 2n − 1− x + y . 
Finally, flip each of the x bits and the highest qubit of 
2n − 1− x + y to recover x and get (x − y)n , which 
represents the highest qubit of x − y . Following the 

Fig. 5 The original controlled version of 2-Addy and the new controlled form of 2-Addy when y is known

Fig. 6 1− Compy . The y is a known constant

Fig. 7 The form of MAJ when y is known
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Fig. 8 2-Compy . The y can be either known or unknown

Fig. 9 The controlled version of 2-Compy
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above steps we obtain the circuit 2-Compy shown 
in Fig.  8. We see that 2-Compy not only applies to 
where y is a known constant but also applies to an 
unknown quantum state. The CNOT-count in the 
former is 12n+ 1 , which is the same as 1-Compy , 
and the latter is 16n+ 1 . Figure  9 is the controlled 
version of 2-Compy . The corresponding CNOT-
counts are 12n+ 7 and 16n+ 7 , respectively.

After showing the circuits of addition and com-
parison in steps (I) and (II), we design the constant 
modular subtraction circuit ModAdd−1(·) in Fig.  10, 
which contains one 2-Add−1

y  , one CNOT, one 1-Add , 
one 2-Compp−y with the known constant p− y , and 
two circuits of encoding p. Thus we conclude that 
the CNOT-count of ModAdd−1(·) is 43n− 2.5 . Cal-
culate |(x + y) mod p� using the reverse circuit of 
ModAdd−1(·) , which is denoted by ModAdd(·).

The quantum state modular addition circuit ModAdd 
can be obtained in a similar way, which is shown in 
Fig.  11. Different from the constant modular addi-
tion, ModAdd contains one 1-Add , two 2-Compy with 

the known constant y, two CNOTs, one 1-Add−1 , and 
two circuits of encoding p. Thus, we conclude that 
the CNOT-count of ModAdd is 61n+ 6 . Furthermore, 
using the reverse circuit of ModAdd we can calculate 
quantum state modular subtraction.

The controlled version of ModAdd−1(·) and ModAdd 
are shown in Figs.  12 and  13, respectively. The corre-
sponding CNOT-counts are 46n+ 11 and 71n+ 17 , 
respectively.

Negation
Given the value of x mod p , it is easy to calculate 
−x mod p algebraically. However, performing this cal-
culation using a quantum circuit is difficult. In order to 
solve this problem, Markov and Saeedi (2012) showed 
that it can be done by first flipping each of the bits x to 
get (2n − 1− x) and then subtracting (2n − 1− p) from 
2-Add−1 to get the result. According to these two steps, 
Fig.  14 shows the circuit of calculating −x mod p and 
Fig.  15 is its controlled version. The CNOT-count in 
NegMod is equal to that of 2-Add−1 , i.e. 14n− 5.5 , while 
in the controlled circuit is 18n+ 1.

Fig. 10 Circuit of the constant modular subtraction ModAdd−1(·) . Since addition is the inverse operation of subtraction and y is a known constant, 
we can use the reverse circuit of 2-Addy to compute |x − y� and denote it 2-Add−1

y  . The black triangle symbols in this figure as well as all the other 
figures in this paper indicate that the corresponding qubit registers are modified and hold the results of the computation

Fig. 11 Circuit of the quantum state modular addition ModAdd . Since addition is the inverse operation of subtraction, we can use the reverse 
circuit of 1-Add to compute |x − y� and denote it 1-Add−1
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Modular shift
For constructing the circuit of modular shift, i.e., 
|x mod p� → |2x mod p� , we first show the circuits of 
the binary shift. The functions of the binary shift are as 
follows.

The original method, as shown in Fig.  16, uses SWAP 
gates to implement. However, we note that there is no 

Left shiftl-shift : |0xn−1 · · · x1x0� −→ |xn−1 · · · x1x00�;
Right shiftr-shift : |xn−1 · · · x1x00� −→ |0xn−1 · · · x1x0�.

Fig. 12 The controlled version of ModAdd−1(·)

Fig. 13 The controlled version of ModAdd

Fig. 14 The circuit of negation NegMod

Fig. 15 The controlled version of NegMod
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need to swap two qubits with a SWAP operation if a 
qubit is known to be in the state of |0� . Hence, we recon-
struct the modular shift circuit for an n-qubit quantum 
register to reduce the CNOT-count, which is shown in 
Fig. 17. 

1 The original shift method shown in Fig. 16 requires 
3n CNOTs. The controlled version of the second 

method needs to use one qubit to control the middle 
CNOT in each SWAP gate. Then the circuit requires 
2n CNOTs and n Toffoli gates in total, that is, 8n 
CNOTs.

2 Our shift method shown in Fig.  17 requires 2n 
CNOTs and the controlled version uses one control 
qubit to control each CNOT, which needs 2n Toffoli 
gates, that is, 12n CNOTs.

Fig. 16 First method to perform binary shift, l-shift and r-shift , respectively

Fig. 17 Second method to perform binary shift, l-shift and r-shift , respectively

Fig. 18 Circuit of the modular shift, ShiftMod
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Based on the above two methods to perform modular 
shift, we can choose an appropriate circuit to minimize 
the CNOT-count, that is, choose the original when a 
controlled mode is involved, and choose our method 
otherwise.

As shown in Fig.  18, we improve the modular shift 
by replacing the subtraction of the constant p with a 
comparison of the constant p. The CNOT-count of our 
modular shift is 31n+ 15 by selecting the appropriate 
binary shift method.

Modular multiplication
There are three kinds of modular multiplication methods: 
fast modular multiplication, Montgomery modular mul-
tiplication, and direct modular multiplication. The first 
way is to compute by repeating modular and conditional 
modular additions. The second way is often the most effi-
cient choice for modular multiplication when modular p 
is not close to a power of 2. The last method is to calcu-
late it in the most direct way, that is, first do the binary 
multiplication and then subtract multiples of p.

Fast modular multiplication
Proos and Zalka (2003), fast modular multiplication 
is used to calculate the modular multiplication, and 
the circuit of this method is designed in detail in sec-
tion  3.3 of Ref.  Roetteler et  al. (2017), which requires 
104n2 − 86.5n− 11.5 CNOTs. Furthermore, modular 
addition and modular shift in the fast modular multi-
plication apply to the circuits mentioned earlier in this 
paper.

Montgomery modular multiplication
According to the Montgomery algorithm (Kaliski 1995), 
inputting x and y, we can obtain (x · y · 2−n mod p) , 
where 2n−1 < p < 2n and Roetteler et  al. (2017) gave 
a specific quantum circuit. With the circuits of basic 
arithmetic operations improved earlier in this paper, 

we obtain the Montgomery modular quantum circuit 
in Fig.  19. The result in M-Mul is (x · y · 2−n mod p) , 
where Add is 1-Add , and Add−1 is the constant subtrac-
tion 2-Add−1 . The reverse operation of M-Mul , which 
is denoted by M-Mul−1 , is used to restore the auxiliary 
bits. The entire quantum circuit of Montgomery modular 
multiplication is a combination of M-Mul and M-Mul−1 
with a CNOT-count of 90n2 + 78n− 9 . Actually, to 
obtain the value (x · y · 2−n mod p) , we still need to set 
n CNOTs to encode the value into extra n-qubit auxiliary 
qubits before performing M-Mul−1.

Direct modular multiplication
Now we give a method to construct the circuit of mod-
ular multiplication according to its calculation. Observe 
that x · y = kp+ (x · y mod p) , where k = ⌊ x·yp ⌋ and 
1 < x, y < p . Thus we can rewrite

where the second equality follows from x · y < p2 < 2np . 
The target result is then obtained by comparing the sizes 
of x · y and 2ip . Since this method is constructed directly 
according to the calculation, we call it direct modular 
multiplication. More specifically, this method is divided 
into the following three steps. 

1 Calculate the value of x · y.
2 For each i from n− 1 to 0, calculate the value of 

x · y− 2ip , i.e., (xy)i · · · (xy)n+i − p . If the highest 
qubit of the result is 1, then add p to the result.

3 The circuit for steps 1 and step 2 is shown in Fig. 20. 
Run the reverse of this circuit to recover the auxiliary 
qubits.

x · y mod p = x · y− kp

=
n−1
∑

i=0

2ixi · y−
n−1
∑

i=0

2ikip, ki ∈ {0, 1},

Fig. 19 The partial quantum circuit of Montgomery modular multiplication M-Mul : |x�|y�|0� → |x�|y�|x · y · 2−1
mod p�
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According to the first two steps, we can obtain the fol-
lowing partial quantum circuit D-Mul . The circuit 
of step 3 to restore the auxiliary qubits is denoted by 
D-Mul−1 , i.e. the reverse of D-Mul , where the Add and 
Addp are 1-Add and 2-Add respectively in Fig. 20. Thus 
the whole quantum circuit of direct modular multipli-
cation needs 114n2 + 5n CNOTs. Similar to the Mont-
gomery modular multiplication, to obtain the value 
(x · y mod p) we still need to apply n CNOTs to encode 
the value into extra n-qubit auxiliary qubits before per-
forming D-Mul−1.

Modular inverse
The most common method of the modular inverse is the 
extended Euclidean algorithm (EEA). Proos and Zalka 
(2003) described the idea of using EEA to calculate 
modular inverse and it required O(n) times of division in 
total and each step was performed O(n2) times. However, 
implementing the EEA in a quantum circuit is greatly 
complicated. Thus we consider using the Montgomery 
inversion algorithm described in detail in Roetteler et al. 
(2017). The algorithm repeats the Montgomery-Kaliski 
round function 2n times to get x−1R mod p . Subse-
quently, Häner et  al. (2020) improved this algorithm. 
The improved circuit uses fewer CNOTs, but the modu-
lar inverse part is the same. In this paper, we choose the 
improved algorithm in Häner et  al. (2020) as the round 
function and redesign a simpler circuit to calculate the 
modular inverse.

For inputs x, p, and n such that p > x > 0 and 
2n−1 < x < 2n , the Montgomery-Kaliski algorithm 
consists of two steps. First, calculate gcd(x,  p) and 
x−1 · 2k mod p . Second, calculate x−1 · 2n mod p . 
When the input quantum state is a superposition state, 
the number of iterations k in the first step is related to 
the integer x corresponding to a certain ground state. 
Considering all possible ground states in the superposi-
tion state, the first step requires 2n rounds of iteration. 
However, before each round, it is necessary to judge 
whether the iteration process in the corresponding 
ground state has ended by determining whether v is 0, so 
as to determine whether this round is really iterated. Due 
to k > n , all ground states of the input superposition 
state need to go through the first n rounds of iteration 
and only need to judge whether v is 0 before the iteration 
of the last n rounds. In the second step, the intermedi-
ate result x−1 · 2k mod p is shifted to the right by k − n 
qubits. In the last n-round iteration of the first step, the 
results of the subsequent ShiftMod of the second step 
are stored in the auxiliary qubit and x−1 · 2n mod p is 
obtained.

Combining the round function circuit of Fig.  6b in 
Häner et al. (2020) with the above algorithm steps, the 
quantum circuit of the modular inverse Inv in Fig.  21 
is obtained. The quantum circuit for restoring the 
auxiliary bits is Inv−1 , i.e. the reverse of Inv , and the 
complete quantum circuit is a combination of Inv and 
Inv−1.

Fig. 20 The partial quantum circuit of direct modular multiplication D-Mul : |x�|y�|0� → |x�|y�|x · y mod p�
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According to Inv , we conclude that the whole quan-
tum circuit of modular inverse needs 578n2 + 283n− 13 
CNOTs.

Windowed arithmetic
In this section, we use the window form described in 
Gidney (2019)to design quantum circuits that attack 
ECDLP, reducing the CNOT-count N from O(n3) to 
O(n2) < N < O(n3).

The general method to calculate aP by a quantum cir-
cuit is to express a in its binary expansion and control the 
operation of P by using each bit of a respectively, i.e.,

aP =
(

2n−1an−1 + 2n−2an−2 + · · · + 2a1 + a0

)

P

= 2n−1an−1P + 2n−2an−2P + · · · + 2a1P + a0P.

The circuit is shown in Fig. 22a.
It is pointed out that m different ai can be selected 

first and the 2m cases, a′P represented by m ai , can 
be calculated and stored in an n-qubit register, where 
a′ =

∑m
j=1 2

ij aij (Häner et  al. 2020). Then a′P is used to 
perform the point addition operation on the group of 
elliptic curves. This method is called windowed arithmetic 
as shown in Fig. 22b, and m is the size of the window. The 
left circuit in Fig. 23 shows the situation of m = 2 , where 
Ti represents each of the four cases of a′ . Only the abscissa 
of point P(x, y) is shown in the figure and n2 CNOTs are 
required on average. Therefore, it is estimated that a total 
of 8 Toffoli and 4n CNOTs are needed for the calculation 
point P(x, y), i.e., (4n+ 48) CNOTs in all.

For general m, 2m+1 m-controlled CNOTs (i.e., 
2m+1(2m− 3) Toffoli gates) and 2mn CNOTs are required 
in the circuit, so a total of (24m+ n− 36) · 2m CNOTs 

Fig. 21 The partial quantum circuit of modular inverse Inv : |x mod p�|0� → |x�|x−1 · 2n mod p�

Fig. 22 a is a general method for calculating aP using the quantum circuit. b is the quantum circuit using windowed arithmetic to calculate aP, 
where m is the size of the window and Ti is 2m pre-calculated values. Here is just a simple schematic diagram of the window technique to show its 
principle. We omit the process of point operation and recovery of auxiliary qubits. For more specific circuits see Fig. 33
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are required. However, we improve the circuit above to 
the right one in Fig. 23. Specifically, taking m = 2 as an 
example, we combine the second and the third Toffoli 
gates in the original method into one CNOT. At the same 
time, the sixth and the seventh Toffoli gates are merged 
into one CNOT. Thus we just need (4n+ 26) CNOTs 
when m = 2.

Figures  24 and  25 give the improved circuits of situ-
ations for m = 3 and m = 4 , respectively, in a similar 
way to the method of combining Toffoli gates at m = 2 . 
According to the recursive formula, (2m+1 − 4) Toffoli 

and [(n+ 1) · 2m − 2] are required for m with m ≥ 3 . 
Thus the CNOT-count is reduced to [(n+ 13) · 2m − 26].

Quantum circuits of point addition on elliptic curve 
groups
Above, we describe the construction of basic arith-
metic operations used in point addition on the elliptic 
curve groups. In this section, we design a new algo-
rithm to calculate point addition reversibly out-of-
place (storing the results in a new register), which 
reduces the CNOT-counts of modular inverse and 

Fig. 23 Quantum circuits of windowed arithmetic at m = 2 . Circuit of right one is the simplified of left one

Fig. 24 The simplified circuit at m = 3

Fig. 25 The simplified circuit at m = 4
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modular multiplication compared to the in-place 
method (replacing the input value by the sum) given 
by Roetteler et  al. (2017), while using O(n2) qubits. 
Based on the new approach for point addition, this 
section gives the schematic circuit of the over-
all extended Shor’s algorithm for ECDLP and then 
applies windowed arithmetic (Gidney 2019) to obtain 
the windowed scalar multiplication of the given point 
on elliptic curves.

Controlled point addition
The algorithm of controlled point addition on an 
elliptic curve operates on a quantum register hold-
ing the point P1 = (x1, y1) �= ∅ , a control qubit 
ctrl, and ten auxiliary qubits ci . The second point 
P2 = (x2, y2) �= ∅,P2 �= ±P1 is assumed to be a pre-
calculated classical constant. If ctrl = 1 , the algorithm 
correctly calculates c9 ← x1 + x2, c10 ← y1 + y2 ; if 
ctrl = 0, c9 ← x1, c10 ← y1.

Tables  1 and  2 describe the process of calculating 
P1 + P2 and restoring auxiliary bits, respectively. Fig-
ures  26 and  27 show quantum circuits corresponding 
to Tables 1 and 2. The quantum registers all consist of n 
logical qubits, whereas |ctrl� is a single logical qubit. Thus 
the CNOT-count is 896n2 + 1064n+ 14.

After each calculation of P1 + P2 , the result will be 
used as the next input P1 for a new calculation and then 
will be restored as an auxiliary qubit. However, the result 
of the last calculation should be kept in the auxiliary reg-
ister without any need to be restored. Thus, the circuit of 
the last calculation is modified as shown in Fig. 28. And 
the CNOT-count is 886n2 + 783.5n− 18.5.

Therefore, the schematic quantum circuit yin Fig. 29 of 
the overall extended Shor’s algorithm for ECDLP can be 
obtained by combining Figs. 26, 27 and 28.

Windowed point addition
The algorithm of windowed point addition on the ellip-
tic curve operates on a quantum register holding the 
point P1 = (x1, y1) �= ∅ , P2(x2, y2)  = ∅,P2  = ±P1 , and 
eight auxiliary qubits. In this form, the second point P2 
is stored in the quantum register as a quantum state and 
cannot be precomputed as a classical constant.

Table 1 The steps from (x1, y1) to (x3, y3) by point addition. Symbols |·�1 and |·�0 respectively represent the state when the control bit is 1 
and 0. The states in the table represent the change of the quantum registers corresponding to each step and the unwritten states are 
the same as the states in the previous step

Process The change in value

1.1 CNOTc1, c2, x1, y1 c1 ← x1; c2 ← y1

2.1 ctrl-CNOTc3, c4, x1, y1,ctrl c3 ← [x1]1, [0]0; c4 ← [y1]1, [0]0
3.1 ModAdd−1(·) x1, y1, x2, y2 x1 ← x1 − x2; y1 ← y1 − y2

4.1 Inv c5, x1 c5 ← 1
x1−x2

5.1 M-Mul c6, y1, c5 c6 ← �

6.1 D-Mul c8, c6, c7 c7 ← �; c8 ← �
2

7.1 ctrl-CNOTc9, c8,ctrl c9 ← [�2]1, [0]0
8.1 ModAdd−1

c9, c3 c9 ← [�2 − x1]1, [0]0
9.1 ctrl− ModAdd−1(·) c9, x2,ctrl c9 ← [�2 − x1 − x2 = x3]1, [0]0
10.1 ModAdd−1

c3, c4 c3 ← [x1 − x3]1, [0]0
11.1 D-Mul c10, c3, c7 c10 ← [�(x1 − x3)]1, [0]0
12.1 ModAdd−1

c10, c4 c10 ← [�(x1 − x3)− y1 = y3]1, [0]0
13.1 ctrl-CNOTc9, c10, c1, c2,ctrl c9 ← [x3]1, [x1]0; c10 ← [y3]1, [y1]0

Table 2 The steps to restore the ancillary bits. Symbols |·�1 and 
|·�0 respectively represent the state when the control bit is 1 and 
0. The states in the table represent the change of the quantum 
registers corresponding to each step and the unwritten states are 
the same as the states in the previous step

Process The change in value

13.2 ctrl-CNOTc9, c10, c1, c2,ctrl c9 ← [x3]1, [0]0; c10 ← [y3]1, [0]0
12.2 ModAdd c10, c4 c10 ← [�(x1 − x3)]1, [0]0
11.2 D-Mul−1

c10, c3, c7 c10 ← 0

10.2 ModAdd c3, c4 c3 ← [x1]1, [0]0
9.2 ctrl− ModAdd(·) c9, x2,ctrl c9 ← [�2 − x1]1, [0]0
8.2 ModAdd c9, c3 c9 ← [�2]1, [0]0
7.2 ctrl-CNOTc9, c8,ctrl c9 ← 0

6.2 D-Mul−1
c8, c6, c7 c7 ← 0; c8 ← 0

5.2 M-Mul−1
c6, y1, c5 c6 ← 0

4.2 Inv−1
c5, x1 c5 ← 0

3.2 ModAdd(·) x1, y1, x2, y2 x1 ← x1; y1 ← y1

2.2 ctrl-CNOTc3, c4, x1, y1,ctrl c3 ← 0; c4 ← 0

1.2 CNOTc1, c2, x1, y1 c1 ← 0; c2 ← 0
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Fig. 26 The circuit for calculating (P1 + P2) mod p in controlled point addition

Fig. 27 The circuit for restoring the auxiliary bits in controlled point addition

Fig. 28 The circuit of the PointAddlast block in Fig. 29
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Tables  3 and  4 describe the process of calculating 
P1 + P2 by windowed arithmetic and restoring auxiliary 
bits, respectively.

Figures  30 and  31 show quantum circuits corre-
sponding to Tables  3 and  4. The quantum registers all 
consist of n logical qubits. Thus the CNOT-count is 
896n2 + 1108n+ 36.

After each calculation of P1 + P2 , the result will be 
used as the next input P1 for a new calculation and 

then will be restored as an auxiliary qubit. However, 
the result of the last calculation should be kept in the 
auxiliary register without any need to be restored and 
the coefficients of P and Q are different in the extended 
Shor’s quantum algorithm. Therefore, the window 
arithmetic cannot be used in the last calculation, 
and the circuit is modified as shown in Fig.  32 with 
886n2 + 833.5n+ 9.5 CNOTs.

Figure  33 is the schematic quantum circuit to cal-
culate ECDLP by the extended Shor’s algorithm using 

Fig. 29 Schematic quantum circuit of overall extended Shor’s algorithm for ECDLP

Table 3 The steps from (x1, y1) to (x3, y3) using windowed 
arithmetic by point addition. The states in the table represent 
the change of the quantum registers corresponding to each 
step and the unwritten states are the same as the states in the 
previous step

Process The change in value

1.1 CNOTw1,w2, x1, y1 w1 ← x1,w2 ← y1

2.1 ModAdd−1
x1, y1, x2, y2 x1 ← x1 − x2, y1 ← y1 − y2

3.1 Inv w3, x1 w3 ← 1
x1−x2

4.1 M-Mul w4, y1,w3 w4 ← �

5.1 D-Mul w6,w4,w5 w6 ← �
2

6.1 CNOTw7,w6 w7 ← �
2

7.1 ModAdd−1
w7,w1 w7 ← �

2 − x1

8.1 ModAdd−1
w7, x2 w7 ← �

2 − x1 − x2 = x3

9.1 ModAdd−1
w1,w7 w1 ← x1 − x3

10.1 D-Mul w8,w1,w4 w8 ← �(x1 − x3)

11.1 ModAdd−1
w8,w2 w8 ← �(x1 − x3)− y1 = y3

Table 4 The steps to restore the auxiliary bits. The states 
in the table represent the change of the quantum registers 
corresponding to each step and the unwritten states are the 
same as the states in the previous step

Process The change in value

11.2 ModAdd w8,w2 w8 ← �(x1 − x3)

10.2 D-Mul−1
w8,w1,w4 w8 ← 0

9.2 ModAdd w1,w7 w1 ← x1

8.2 ModAdd w7, x2 w7 ← �
2 − x1

7.2 ModAdd w7,w1 w7 ← �
2

6.2 CNOTw7,w6 w7 ← 0

5.2 D-Mul−1
w6,w4,w5 w6 ← 0

4.2 M-Mul−1
w4, y1,w3 w4 ← 0

3.2 Inv−1
w3, x1 w3 ← 0

2.2 ModAdd x1, y1, x2, y2 x1 ← x1, y1 ← y1

1.2 CNOTw1,w2, x1, y1 w1 ← 0,w2 ← 0
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Fig. 30 Windowed point addition

Fig. 31 The inverse operation of windowed point addition to restore the auxiliary bits

Fig. 32 The last full round of windowed point addition
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windowed arithmetic, where the Lookup is a situation 
where several controlled operations can be merged into 
a single operation acting on a value produced by a small 
QROM lookup (Gidney 2019) and the point addition is 
the circuit introduced in Figs. 30, 31 and 32.

According to the process of calculating point addi-
tion, the CNOT-count of the first 2n− 1 point addition is 
896n2 + 1064n+ 14 (including the circuits for recovering 
auxiliary qubits) and the 2n-th has 886n3 + 783.5n− 18.5 
CNOTs. Therefore, the CNOT-count to calculate the 
point addition of ECDLP using controlled point addi-
tion is 1792n3 + 2118n2 − 252.5n− 32.5 . When using 
the windowed version, the modular subtraction of a 
constant is changed to ModAdd−1 and the CNOT-count 
increases from 43n− 2.5 to 61n+ 6 . At the same time, 
the CNOT-count of the controlled circuit increases 
from 46n+ 11 to 71n+ 17 . Thus the CNOT-count of 
the first n− 1 point addition is 896n2 + 1108n+ 36 
and the n-th has 886n3 + 833.5n+ 9.5 CNOTs in 
calculating (a+ k)P mod p . Hence the CNOT-
count to calculate the point addition of ECDLP 
using the windowed version with window size m is 
N (n,m) = 2⌈ n

m
⌉[(n+ 13) · 2m+1 + 896n2 + 1108n+ 4]

−20n2 − 549n− 53.
Now we analyze the whole circuit of the extended Shor’s 

algorithm to obtain a specific CNOT-count. In order 
to minimize the CNOT-count, we find that the growth 
rate of the CNOT-count is polynomial with n only when 
m = O(log n) , while the other cases are exponential. So 

we further fit N(n, m) to find a suitable value of m to 
make the CNOT-count as low as possible. To be spe-
cific, we calculate ∂N (n,m)

∂m  , and for each ni ∈ (128, 521) , 
we use Matlab to approximate the zero mi of ∂N (ni ,m)

∂m  to 
obtain a pair (ni,mi) . Because m should be an integer, we 
round each mi up and down to get m′

i and m′′
i  , respec-

tively. Then letting Nimin = min(N (ni,m
′
i),N (ni,m

′′
i )) 

for each i and fitting N with respect to n based on all the 
pairs (ni,Nimin) , we obtain N = 1237n3/ log n . Plus the 
2n2 + n CNOTs used for two QFTn , the total CNOT-
count of the extended Shor’s algorithm for ECDLP is 
N = 1237n3/ log n+ 2n2 + n . The lower limit of time 
for executing a CNOT gate on an ion trap quantum com-
puter is about 2.85× 10−4s (Yang and Zhou 2013). Com-
bined with the CNOT-count to run the extend Shor’s 
algorithm, the time to break 512-bit ECDLP is at least 51 
years after three levels of coding.

Discussion and conclusion
Although there have been many attempts to improve 
the qubit number or the circuit depth of the extended 
Shor’s algorithm for ECDLP, their focus has not been on 
optimizing the CNOT-count, which greatly affects the 
time to run the algorithm on an ion trap quantum com-
puter. In this paper, we improve the quantum circuits of 
basic arithmetic operations, including modular subtrac-
tion, three different modular multiplication, modular 

Fig. 33 Schematic quantum circuit of overall extended Shor’s algorithm for ECDLP using windowed arithmetic
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inverse, and windowed arithmetic. Table  5 summarizes 
the CNOT-counts of basic arithmetic operations using 
the Clifford+Toffoli gate set, while Table  6 summa-
rizes the CNOT-counts of basic arithmetic operations 
using the Clifford+T gate set. These improvements lead 
to a reduced CNOT-count of the quantum circuit of 
the extended Shor’s algorithm. We further reduce the 
CNOT-count by choosing a suitable window size m 
with the help of numerical fitting, lowering the CNOT-
count from O(n3) to O(n3/ log n) . The time required by 
the extended Shor’s algorithm to attack 512-bit ECDLP is 
estimated to be 51 years, which means it is hard to attack 
ECDLP using an ion trap quantum computer in a reason-
able time. However, this estimated time does not take 
into account the fault tolerance of the circuit, which we 
will study in the future.

According to the results of the CNOT-count, we can 
consider the lower bound of the CNOT-count required 
by the extended Shor’s algorithm. If we assume that the 
time required to run extended Shor’s algorithm is T, 
the time required to execute a CNOT is t, and the lower 
bound of the number of CNOTs is N, which is a function 

of the number of qubits n. Then, the lower bound of 
the running time of the extended Shor’s algorithm can 
be expressed as T = N (n)t . The modular inverse can 
be constructed using basic arithmetic operations, such 
as modular addition. Therefore, the CNOT-count of 
modular inverse must be greater than that required 
for modular addition. Because the quantum circuit of 
modular addition is a modular operation, the CNOT-
count of modular addition must be larger than that of 
the addition circuit. For two n qubits x, y, we have that 
ci+1 = xi + (xi + yi)(xi + ci), si = xi + yi + ci , where xi 
and yi are the i-th bits of the binary representation of 
x, y, ci+1 is the i-th carry. Therefore, each qubit addition 
requires at least one Toffoli gate and three CNOTs. Thus, 
the addition of n qubits requires at least 9n CNOTs. Here 
we just give a lower bound of the circuit of an addition 
operation. Although the whole circuit of the extended 
Shor’s algorithm consists of many addition operations, 
we have not obtained a tighter lower bound to run this 
algorithm, which we plan to derive in our future work.

Table 5 The number of Toffoli gates and CNOT gates for 
Clifford+Toffoli implementations

The basic arithmetic operations #Toffoli #CNOTs for 
Clifford+Toffoli

1-Addy (unknown state y) 2n 4n+ 1

ctrl-1-Addy (unknown state y) 4n+ 1 2n

2-Addy (known constant y) 2n− 1 2n+ 0.5

ctrl-2-Addy 2n 5n+ 1

1-Comp 2n 1

2-Compy (known constant y) 2n 1

ctrl-2-Compy (known constant y) 2n+ 1 1

2-Compy (unknown state y) 2n 4n+ 1

ctrl-2-Compy (unknown state y) 2n+ 1 4n+ 1

ModSuby or ModAddy (known 
constant y)

6n− 1 7n+ 3.5

ctrl-ModSuby (known constant y) 6n+ 1 10n+ 5

ModAddy (unknown state y) 8n 13n+ 6

ctrl-ModAddy (unknown state y) 10n+ 2 11n+ 5

Neg 2n− 1 2n− 0.5

ctrl-Neg 2n 6n+ 1

1-Shift - 2n

ctrl-1-Shift 2n -

2-Shift - 3n

ctrl-2-Shift n 2n

ShiftMod 4n 7n+ 3

M-Mul (half ) 6n2 + 5n− 1 9n2 + 9n+ 0.5

D-Mul (half ) 8n2 9n2 + 1.5

Table 6 The number of T gates and CNOT gates for Clifford+T 
implementations

The basic arithmetic 
operations

#T gates #CNOTs for 
Clifford+T

1-Addy (unknown state y) 14n 16n+ 1

ctrl-1-Addy (unknown 
state y)

28n+ 7 26n+ 6

2-Addy (known constant y) 14n− 7 14n− 5.5

ctrl-2-Addy 14n 17n+ 1

1-Comp 14n 12n+ 1

2-Compy (known constant y) 14n 12n+ 1

ctrl-2-Compy (known 
constant y)

14n+ 7 12n+ 7

2-Compy (unknown state y) 14n 16n+ 1

ctrl-2-Compy (unknown 
state y)

14n+ 7 16n+ 7

ModSuby or ModAddy (known 
constant y)

42n− 7 43n− 2.5

ctrl-ModSuby (known 
constant y)

42n+ 7 46n+ 11

ModAddy (unknown state y) 56n 61n+ 6

ctrl-ModAddy (unknown 
state y)

70n+ 14 71n+ 17

Neg 14n− 7 14n− 5.5

ctrl-Neg 14n 18n+ 1

ctrl-1-Shift 14n 12n

ctrl-2-Shift 7n 8n

ShiftMod 28n 31n+ 15

M-Mul (half ) 42n2 + 35n− 7 45n2 + 39n− 4.5

D-Mul (half ) 56n2 57n2 + 2.5n
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Appendix
We first prove in detail that whether the input state of 
the third quantum register is |0� or |1� has no effect on 
the measurement probability. Then, we give the specific 
derivation process of the number of CNOT gates in the 
n-controlled-NOT.

The value of the input state has no effect on the result

Proof (1) When the input state is |0� , we have
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(2) When the input state is |kP� , we have
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(3) To prove that it doesn’t matter whether the input is |0� 
or |kP� , just prove that (5) = (6) There has
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Because c1 = c2, d1 = d2 , so we have 1� = 4�, 2� = 3� , 
then (5) = (6) .  �
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Fig. 35 The equivalent form of n-controlled-NOT

Fig. 34 n-controlled-NOT

The number of CNOT gates in n‑controlled‑NOT
The Fig. 34 is the quantum circuit of n-controlled-NOT, 
which can be contrusted by n− 2 auxiliary qubits and 
2n− 3 Toffoli. The quantum circuit is shown in Fig. 35.
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