
Liu et al. Cybersecurity (2023) 6:48
https://doi.org/10.1186/s42400-023-00181-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Minimizing CNOT-count in quantum circuit
of the extended Shor’s algorithm for ECDLP
Xia Liu1,2, Huan Yang3 and Li Yang1*

Abstract

The elliptic curve discrete logarithm problem (ECDLP) is a popular choice for cryptosystems due to its high level
of security. However, with the advent of the extended Shor’s algorithm, there is concern that ECDLP may soon
be vulnerable. While the algorithm does offer hope in solving ECDLP, it is still uncertain whether it can pose a real
threat in practice. From the perspective of the quantum circuits of the algorithm, this paper analyzes the feasibility
of cracking ECDLP using an ion trap quantum computer with improved quantum circuits for the extended Shor’s
algorithm. We give precise quantum circuits for extended Shor’s algorithm to calculate discrete logarithms on ellip-
tic curves over prime fields, including modular subtraction, three different modular multiplication, and modular
inverse. Additionally, we incorporate and improve upon windowed arithmetic in the circuits to reduce the CNOT-
counts. Whereas previous studies mostly focused on minimizing the number of qubits or the depth of the circuit,
we focus on minimizing the number of CNOT gates in the circuit, which greatly affects the running time of the algo-
rithm on an ion trap quantum computer. Specifically, we begin by presenting implementations of basic arithmetic
operations with the lowest known CNOT-counts, along with improved constructions for modular inverse, point
addition, and windowed arithmetic. Next, we precisely estimate that, to execute the extended Shor’s algorithm
with the improved circuits to factor an n-bit integer, the CNOT-count required is 1237n3/ log n+ 2n2 + n . Finally, we
analyze the running time and feasibility of the extended Shor’s algorithm on an ion trap quantum computer.

Keywords Elliptic curve discrete logarithm problem, Extended Shor’s algorithm, Quantum circuits, Ion trap quantum
computer

Introduction
Elliptic curve cryptography (ECC) has attracted wide
attention for its unique advantages since it was intro-
duced in the 1980s (Miller 1985; Koblitz 1987). The safety
of ECC relies on the elliptic curve discrete logarithm
problem (ECDLP), which is the discrete logarithm prob-
lem (DLP) on the cyclic subgroup with a point on the

elliptic curve as the generator. Although there are many
attempts to solve DLP, the best-known classical algorithm
for DLP is still exponentially complex (Miyaji 1992). For-
tunately, with the development of quantum comput-
ing, the emergence of quantum algorithms offers hope
for solving such problems. The most representative and
compelling quantum algorithm is Shor’s algorithm (Shor
1994, 1999), which can theoretically solve DLP over mul-
tiplicative groups for the prime fields in polynomial time
(Shor 1994, 1999). This algorithm can be extended to
elliptic curve groups (we call it extended Shor’s algorithm
in this paper), which makes ECDLP theoretically not dif-
ficult for a quantum computer, thus posing a threat to
the cryptography system based on ECDLP. However, the
gate number of a quantum algorithm’s circuit determines
the time to run the quantum algorithm on a quantum

*Correspondence:
Li Yang
yangli@iie.ac.cn
1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
3 Beijing Youzhuju Network Technology Co., Ltd., Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00181-w&domain=pdf

Page 2 of 27Liu et al. Cybersecurity (2023) 6:48

computer and the exact quantum gates number of the
extended Shor’s algorithm has not been analyzed. There-
fore, it is debatable whether the extended Shor’s algo-
rithm can pose a threat to ECC, which is exactly what we
are trying to figure out. From the perspective of running
time, for the extended Shor’s algorithm to have a threat
to ECC, it must run in a reasonable time. Therefore, our
goal in this paper is to give a lower bound of the opti-
mized circuits on the running time of the extended Shor’s
algorithm. A tight lower bound is difficult to obtain in
theory. Instead, we give an implementation lower bound
of optimized circuits from the view of circuit synthesis
and optimization.

Quantum computers implement quantum computa-
tion by taking as input superposition quantum states
representing all the different possible inputs and simul-
taneously evolving them into the corresponding outputs
using a sequence of unitary transformations (Yao 1993;
Nielsen and Chuang 2002; Chiribella et al. 2008; Dong
et al. 2013; Nash et al. 2020; Kimura et al. 2021; Liu et al.
2021, 2022; Gao et al. 2022). Quantum computing can
be described as a quantum circuit in which the unitary
transformations are represented by quantum gates. The
most basic quantum gates are the controlled-NOT (i.e.,
CNOT) gate and single-qubit gates. In an ion trap quan-
tum computer, the operation time of the non-adjacent
CNOT is much longer than that of single-qubit quantum
gates, and the CNOT gates can only be executed in series
(Yang and Zhou 2013). Therefore, the number of CNOT
gates contained in the quantum circuit of a quantum
algorithm largely determines the running time of this
algorithm.

Since the advent of the first quantum algorithm to
attack ECC in Boneh and Lipton (1995), research in
this field has attracted extensive attention. Eicher and
Opoku (1997), Proos and Zalka (2003), Kaye and Zalka
(2004) proposed quantum algorithms that attack ECDLP
defined on finite fields Fp and F2m . Roetteler et al. (2017)
studied the extended Shor’s algorithm to attack ECDLP
on Fp and improved the algorithm of modular inverse in
Proos and Zalka (2003). The resources needed in terms of
the number of Toffoli gates were 448n3 log2(n)+ 4090n3 ,
but only rough results of O(n3) were obtained for the
number of CNOT gates. Häner et al. (2020) improved the
Kaliski algorithm in Roetteler et al. (2017). Fewer T gates
were used in the circuit of modular inverse using win-
dowed arithmetic introduced by Gidney (2019). In view
of the size of the quantum computer, i.e., the number of
qubits, a quantum circuit for calculating the discrete log-
arithm problem on a binary elliptic curve is optimized in
Banegas et al. (2021).

Note that the resources required by the quantum cir-
cuit in previous papers did not analyze the CNOT-count

in detail, but with the development of ion trap quantum
computers, the running time of an algorithm is greatly
affected by the CNOT-count (Knight et al. 1999). If
even all the CNOTs in the circuits of an algorithm can-
not be run within a reasonable time, it is unnecessary
to consider other gates, such as T gates. Therefore, this
paper analyzes the feasibility of the quantum algorithm
to attack ECDLP by studying the CNOT-count of the cir-
cuit and discusses the applications of windowed arithme-
tic in detail. It is worth noting that based on the physical
limitations of quantum computers, we consider whether
a sufficiently large quantum computer in the future can
complete the extended Shor’s algorithm in a reason-
able running time, so we do not focus on the number of
qubits.

Our contributions
In this paper, we give precise quantum circuits for the
extended Shor’s algorithm to calculate discrete loga-
rithms on elliptic curves over prime fields. More specifi-
cally, we have the following contributions.

1. We construct and improve the circuits of basic oper-
ations including modular subtraction, three different
modular multiplication, modular inverse, and win-
dowed arithmetic and further improve the quantum
circuits of extended Shor’s algorithm.

2. We combine the window technique with basic mod-
ular operations to reduce the CNOT-count, and fur-
ther analyze the running time of the extended Shor’s
algorithm on ion trap quantum computers according
to the CNOT-count we obtained.

3. We study the feasibility of the extended Shor’s algo-
rithm on ion quantum computers under the prem-
ise that the fault-tolerant quantum computer has
enough space, further illustrating whether Shor’s
algorithm can really pose a threat to cryptosystems
such as ECC.

Outline
The rest of the paper is organized as follows. Preliminar-
ies section is the introduction to ECDLP and the elliptic
curve group law. Quantum circuits for algebraic prob-
lems section introduces the basic circuits to compute sca-
lar multiplication on the elliptic curve groups required by
the algorithm, including modular multiplication, modu-
lar inverse, windowed arithmetic, etc. In Quantum cir-
cuits of point addition on elliptic curve groups section,
we design a new method to calculate the point addition
reversibly out-of-place (storing the results in a new regis-
ter), which is different from the in-place method (replac-
ing the input value by the sum) in Roetteler et al. (2017)

Page 3 of 27Liu et al. Cybersecurity (2023) 6:48

and reduces the CNOT-count. Discussion and conclu-
sion section discusses the time required to attack ECDLP.

Preliminaries
In this section, we first give a brief description of DLP,
and then show Shor’s algorithm for solving DLP. Next, we
elaborate on the algorithm for solving ECDLP, which we
call extended Shor’s algorithm.

Shor’s quantum algorithm for solving the DLP
Discrete logarithms problem
Let g be a generator of a finite cyclic group G with the
known order ord(g) = k , i.e. gk = 1 . The DLP over G
is defined as, given an element x ∈ G , determining the
unique r ∈ [0, |G| − 1] such that gr = x , then r = logg x .
Consider the case when G is the additive group ZN ,
where N is a positive integer and gcd(g ,N) = 1 . Here the

DLP is to find r satisfying r · g ≡ x mod N . The DLP
over the ZN can be solved by finding the multiplicative
inverse of g modulo N with the extended Euclidean algo-
rithm in polynomial time (O(log22N)) (Proos and Zalka
2003). However, in the group G = Z∗

p (i.e., the multipli-
cative group modulo p and gr ≡ x mod p), there was
no classical algorithm to solve the DLP (i.e., calculate
r = logg x) until Shor (1994, 1999) proposed a quantum
algorithm that could theoretically solve this problem in
polynomial time.

Shor’s quantum algorithm
To be specific, Shor’s algorithm uses three quantum
registers to solve the DLP, each quantum register has n
qubits and satisfies p ≤ q = 2n < 2p . Shor’s algorithm
for DLP is shown as follows.

Page 4 of 27Liu et al. Cybersecurity (2023) 6:48

Using the above algorithm, Shor proved that r can be
calculated with high probability in polynomial time. Based
on Shor’s algorithm to solve DLP, next we show the case of
ECDLP.

Extended Shor’s quantum algorithm for solving the ECDLP
Elliptic curve discrete logarithms problem
Let Fp be a field of characteristic p = 2, 3 . An elliptic
curve over Fp is the set of solutions (x, y) ∈ Fp × Fp to the
equation

where A,B ∈ Fp satisfy 4A3 + 27B2 �= 0 , together with the
point O at infinity. The set of all the points on the elliptic curve
is E(Fp) = {(x, y)|y2 = x3 + Ax + B;A,B ∈ Fp} ∪ {∞} .
Then E(Fp) forms the Abelian group with a point addition

(5)y2 = x3 + Ax + B,

operation and O as the neutral element. Let P ∈ E(Fp)
be a generator of 〈P〉 , which is a cyclic subgroup of
E(Fp) of known order ord(P) = r , i.e., rP = O . Simi-
lar to DLP, the goal of ECDLP is to find the unique inte-
ger m ∈ {1, . . . , r} such that mP = Q , where r,m ∈ Fp
and Q is a given point in 〈P〉 . Hasse (1936) pointed out
that the number of all the points on the elliptic curve is
#E(Fp) = p+ 1− t, |t| ≤ 2

√
p . Thus the order of 〈P〉 is no

larger than p. Therefore, when analyzing ECDLP on 〈P〉 , the
order can be set to p, which has no effect on the results.

Extended Shor’s quantum algorithm
Different from Shor’s quantum algorithm, the extended
Shor’s algorithm uses two n-qubit and one 2n-qubit reg-
isters with n = ⌈log2 p⌉ to solve the ECDLP. The specific
algorithm for ECDLP is shown as follows.

Page 5 of 27Liu et al. Cybersecurity (2023) 6:48

The initial state of the third register is |kP� instead of
|0� to satisfy the point addition rule on the elliptic curve.
Whether we use |0� or |kP� has no effect on the result of
measuring probability. The detailed proof can be seen in
the Appendix.

Elliptic curve groups law
Before designing the circuits of the extended Shor’s
quantum algorithm, The elliptic curve group law on an
affine Weierstrass curve we give the law on the group of
elliptic curves.

Let P(x1, y1) = O , Q(x2, y2) , R(x3, y3) ∈ �P� , P + Q = R ,
the elliptic curve group law on the Eq. (5) can be com-
puted as follows:

where � satisfies the following equation:

Thus we have

The detailed steps of how to transform coordinates from
(x1, y1) to (x3, y3) can be found in Proos and Zalka (2003),
Roetteler et al. (2017), Häner et al. (2020). Since the pur-
pose of this paper is to minimize the CNOT-count of
quantum circuit for the extended Shor’s algorithm, we
improve the previous circuits of the coordinate trans-
formation in the Quantum circuits of point addition on
elliptic curve groups section but at the cost of increasing
the number of qubits, which is not the focus of this paper.

Quantum circuits for algebraic problems
In the implementation of the extended Shor’s algorithm
for ECDLP, the most important step is to design a quan-
tum circuit to compute scalar multiplication on the ellip-
tic curve groups, i.e., ((a+ k)P + bQ) mod p , which
includes a series of modular operations. In this sec-
tion, we design the circuits of modular subtraction and
direct modular multiplication operations. Meanwhile, we
improve a series of basic operations as well as modular
inverse and windowed arithmetic.

(9)P + Q = R =
Q, P = O,
O (i.e∞), P = −Q = (x2,−y2),

(�2 − (x1 + x2), �(x1 − x3)− y1), others,

(10)� =
{ y2−y1

x2−x1
, P �= Q,

3x21+A

2y1
, P = Q.

(11)2P = (x′, y′) =

�

�

3x21+A

2y1

�2

− 2x1,
3x21+A

2y1
(x1 − x′)− y1

�

, y1 �= O,

∞, y1 = 0.

Modular subtraction
Modular subtraction with inputs x, y < p computes
|(x − y) mod p� , where p is the known n-bit constant.
The computation can be done with the following steps:

1 Subtract y from |x� to obtain |x − y� using the reverse
circuit of addition.

2 If the highest bit of |x − y� is 1, which corresponds to
x − y < 0 , then add p to |x − y� . Otherwise, do noth-
ing.

3 Compare the result of step 2 with (p− y) . Uncom-
pute the auxiliary qubit and get |(x − y) mod p�.

If the input y is a known constant, then it can be ignored
in quantum circuits and this operation is called constant
modular subtraction. Otherwise, it is called quantum
state modular subtraction.

Next, we give the details of the quantum circuit for
performing addition and comparison.

(I). Quantum circuits for addition.
We use two circuits, 1-Addy and 2-Addy , to perform

addition, i.e., |x�|y�|0� → |(x + y)0,...,n−1�|y�|(x + y)n� .
The first two quantum registers both have n qubits and
the third one has 1 qubit as the highest bit of the sum.
The two circuits of addition are shown below.

1 First version of the quantum circuit for addition,
1-Addy . Cuccaro et al. (2004) presented a way to
calculate the addition as shown in Fig. 1, which we
denote by 1-Addy . It shows that each MAJ (i.e., com-
pute the majority of three qubits in-place) and each
UMA (i.e., UnMajority and Add) contain two CNOTs
and one Toffoli gate. Since an n-qubit 1-Addy has
n MAJ s and n UMA s, it consists of 4n+ 1 CNOTs
and 2n Toffoli gates. At the same time, based on
the standard decomposition of the Toffoli gate into
the Clifford+T set, we obtain that one Toffoli gate
contains six CNOTs (Nielsen and Chuang 2002).

Page 6 of 27Liu et al. Cybersecurity (2023) 6:48

Therefore, we conclude that the CNOT-count of an
n-qubit 1-Addy is 16n+ 1 . According to 1-Addy , we
further design its controlled version in Fig. 2 with a
CNOT-count of 26n+ 6.

2 Second version of the quantum circuit for addition,
2-Addy . Vedral et al. (1996) proposed another quan-
tum circuit for calculating addition as shown in Fig. 3,
where the blocks of CARRY and SUM are shown in
Fig. 4 and the circuit of CARRY−1 consists of the same
quantum gates in CARRY but in the reverse order.
When the addend y is known, Markov and Saeedi
(2012) modified the CARRY,SUM to the form shown
in the last two rows of Fig. 4, that is, the y is omitted.
At this point, one CARRY (or CARRY−1) contains on
average 1 Toffoli gate and 12 CNOT, and one SUM has
on average 1 CNOT. Therefore, an n-qubit 2-Addy

has a total of n CARRY s, n SUM s, n− 1 CARRY−1 s,
and 1 additional CNOT. Combining with six CNOTs
of one Toffoli, we conclude that the CNOT-count in
2-Addy is 14n− 5.5 when y is known. The left circuit
in Fig. 5 is a common controlled version of 2-Addy ,
while the right one proposed in Häner et al. (2020)
gives a simpler controlled version: First, the control
qubit ctrl uses NOT gates to control the known
addend y to store in an n-qubit auxiliary register.
Then 1-Add is used because the addend y cannot
be omitted. Finally, repeat the storage operation to
restore the auxiliary qubits. Since encoding a known
n-qubit addend y into the circuit requires an average
of n2 CNOTs, combined with the 1-Add , we conclude
that 2-Add requires 17n+ 1 CNOTs.

Fig. 1 The first quantum circuit of addition 1-Addy is constructed by MAJ blocks and UMA blocks. A MAJ block and a UMA block both have two
CNOT gates and one Toffoli gate

Page 7 of 27Liu et al. Cybersecurity (2023) 6:48

(II). Quantum circuits for comparison
Now we also use two circuits, 1-Compy and 2-Compy ,

to perform the comparison. Compare x and y by
checking whether the highest qubit of x − y is 0 or 1.
When the highest qubit is 0, then x − y > 0 ; other-
wise, x − y < 0 . The difference between these two cir-
cuits is that 1-Compy applies to the case where y is a
known constant, while 2-Compy can be used either for
y known or for y unknown. We use 2-Compy for all the
comparisons covered in this paper and details of the
two circuits are shown below.

1 First version of the quantum circuit for comparison,
1-Compy . 1-Compy in Fig. 6 is obtained by modify-
ing 1-Addy so that it outputs only the highest qubit
of |x − y� (Markov and Saeedi 2012). But the premise
is that the input is −y+ 2n instead of y, which means
this way only works if y is a known constant instead
of an unknown quantum state. When y is known,
the MAJ can be simplified to Fig. 7, that is, one MAJ
contains 1 Toffoli. Thus the number of CNOT in
1-Compy is 12n+ 1.

Fig. 2 The controlled version of 1-Addy

Page 8 of 27Liu et al. Cybersecurity (2023) 6:48

Fig. 3 The second quantum circuits of addition 2-Add , where the blocks of CARRY and SUM are shown in the first row of Fig. 4

Fig. 4 The first row gives the versions of CARRY and SUM when y is an unknown quantum state. The last two rows show the versions of CARRY
and SUM when y is known

Page 9 of 27Liu et al. Cybersecurity (2023) 6:48

2 Second version of quantum circuit for comparison,
2-Compy . Although the 1-Compy does not work
when the minus y is an unknown quantum state, it
can be modified to not precompute −y+ 2n . The
specific steps are as follows. Firstly, input x, y and

flip each of the x bits to get 2n − 1− x . Then use
1-Compy to get the highest qubit of 2n − 1− x + y .
Finally, flip each of the x bits and the highest qubit of
2n − 1− x + y to recover x and get (x − y)n , which
represents the highest qubit of x − y . Following the

Fig. 5 The original controlled version of 2-Addy and the new controlled form of 2-Addy when y is known

Fig. 6 1− Compy . The y is a known constant

Fig. 7 The form of MAJ when y is known

Page 10 of 27Liu et al. Cybersecurity (2023) 6:48

Fig. 8 2-Compy . The y can be either known or unknown

Fig. 9 The controlled version of 2-Compy

Page 11 of 27Liu et al. Cybersecurity (2023) 6:48

above steps we obtain the circuit 2-Compy shown
in Fig. 8. We see that 2-Compy not only applies to
where y is a known constant but also applies to an
unknown quantum state. The CNOT-count in the
former is 12n+ 1 , which is the same as 1-Compy ,
and the latter is 16n+ 1 . Figure 9 is the controlled
version of 2-Compy . The corresponding CNOT-
counts are 12n+ 7 and 16n+ 7 , respectively.

After showing the circuits of addition and com-
parison in steps (I) and (II), we design the constant
modular subtraction circuit ModAdd−1(·) in Fig. 10,
which contains one 2-Add−1

y , one CNOT, one 1-Add ,
one 2-Compp−y with the known constant p− y , and
two circuits of encoding p. Thus we conclude that
the CNOT-count of ModAdd−1(·) is 43n− 2.5 . Cal-
culate |(x + y) mod p� using the reverse circuit of
ModAdd−1(·) , which is denoted by ModAdd(·).

The quantum state modular addition circuit ModAdd
can be obtained in a similar way, which is shown in
Fig. 11. Different from the constant modular addi-
tion, ModAdd contains one 1-Add , two 2-Compy with

the known constant y, two CNOTs, one 1-Add−1 , and
two circuits of encoding p. Thus, we conclude that
the CNOT-count of ModAdd is 61n+ 6 . Furthermore,
using the reverse circuit of ModAdd we can calculate
quantum state modular subtraction.

The controlled version of ModAdd−1(·) and ModAdd
are shown in Figs. 12 and 13, respectively. The corre-
sponding CNOT-counts are 46n+ 11 and 71n+ 17 ,
respectively.

Negation
Given the value of x mod p , it is easy to calculate
−x mod p algebraically. However, performing this cal-
culation using a quantum circuit is difficult. In order to
solve this problem, Markov and Saeedi (2012) showed
that it can be done by first flipping each of the bits x to
get (2n − 1− x) and then subtracting (2n − 1− p) from
2-Add−1 to get the result. According to these two steps,
Fig. 14 shows the circuit of calculating −x mod p and
Fig. 15 is its controlled version. The CNOT-count in
NegMod is equal to that of 2-Add−1 , i.e. 14n− 5.5 , while
in the controlled circuit is 18n+ 1.

Fig. 10 Circuit of the constant modular subtraction ModAdd−1(·) . Since addition is the inverse operation of subtraction and y is a known constant,
we can use the reverse circuit of 2-Addy to compute |x − y� and denote it 2-Add−1

y . The black triangle symbols in this figure as well as all the other
figures in this paper indicate that the corresponding qubit registers are modified and hold the results of the computation

Fig. 11 Circuit of the quantum state modular addition ModAdd . Since addition is the inverse operation of subtraction, we can use the reverse
circuit of 1-Add to compute |x − y� and denote it 1-Add−1

Page 12 of 27Liu et al. Cybersecurity (2023) 6:48

Modular shift
For constructing the circuit of modular shift, i.e.,
|x mod p� → |2x mod p� , we first show the circuits of
the binary shift. The functions of the binary shift are as
follows.

The original method, as shown in Fig. 16, uses SWAP
gates to implement. However, we note that there is no

Left shiftl-shift : |0xn−1 · · · x1x0� −→ |xn−1 · · · x1x00�;
Right shiftr-shift : |xn−1 · · · x1x00� −→ |0xn−1 · · · x1x0�.

Fig. 12 The controlled version of ModAdd−1(·)

Fig. 13 The controlled version of ModAdd

Fig. 14 The circuit of negation NegMod

Fig. 15 The controlled version of NegMod

Page 13 of 27Liu et al. Cybersecurity (2023) 6:48

need to swap two qubits with a SWAP operation if a
qubit is known to be in the state of |0� . Hence, we recon-
struct the modular shift circuit for an n-qubit quantum
register to reduce the CNOT-count, which is shown in
Fig. 17.

1 The original shift method shown in Fig. 16 requires
3n CNOTs. The controlled version of the second

method needs to use one qubit to control the middle
CNOT in each SWAP gate. Then the circuit requires
2n CNOTs and n Toffoli gates in total, that is, 8n
CNOTs.

2 Our shift method shown in Fig. 17 requires 2n
CNOTs and the controlled version uses one control
qubit to control each CNOT, which needs 2n Toffoli
gates, that is, 12n CNOTs.

Fig. 16 First method to perform binary shift, l-shift and r-shift , respectively

Fig. 17 Second method to perform binary shift, l-shift and r-shift , respectively

Fig. 18 Circuit of the modular shift, ShiftMod

Page 14 of 27Liu et al. Cybersecurity (2023) 6:48

Based on the above two methods to perform modular
shift, we can choose an appropriate circuit to minimize
the CNOT-count, that is, choose the original when a
controlled mode is involved, and choose our method
otherwise.

As shown in Fig. 18, we improve the modular shift
by replacing the subtraction of the constant p with a
comparison of the constant p. The CNOT-count of our
modular shift is 31n+ 15 by selecting the appropriate
binary shift method.

Modular multiplication
There are three kinds of modular multiplication methods:
fast modular multiplication, Montgomery modular mul-
tiplication, and direct modular multiplication. The first
way is to compute by repeating modular and conditional
modular additions. The second way is often the most effi-
cient choice for modular multiplication when modular p
is not close to a power of 2. The last method is to calcu-
late it in the most direct way, that is, first do the binary
multiplication and then subtract multiples of p.

Fast modular multiplication
Proos and Zalka (2003), fast modular multiplication
is used to calculate the modular multiplication, and
the circuit of this method is designed in detail in sec-
tion 3.3 of Ref. Roetteler et al. (2017), which requires
104n2 − 86.5n− 11.5 CNOTs. Furthermore, modular
addition and modular shift in the fast modular multi-
plication apply to the circuits mentioned earlier in this
paper.

Montgomery modular multiplication
According to the Montgomery algorithm (Kaliski 1995),
inputting x and y, we can obtain (x · y · 2−n mod p) ,
where 2n−1 < p < 2n and Roetteler et al. (2017) gave
a specific quantum circuit. With the circuits of basic
arithmetic operations improved earlier in this paper,

we obtain the Montgomery modular quantum circuit
in Fig. 19. The result in M-Mul is (x · y · 2−n mod p) ,
where Add is 1-Add , and Add−1 is the constant subtrac-
tion 2-Add−1 . The reverse operation of M-Mul , which
is denoted by M-Mul−1 , is used to restore the auxiliary
bits. The entire quantum circuit of Montgomery modular
multiplication is a combination of M-Mul and M-Mul−1
with a CNOT-count of 90n2 + 78n− 9 . Actually, to
obtain the value (x · y · 2−n mod p) , we still need to set
n CNOTs to encode the value into extra n-qubit auxiliary
qubits before performing M-Mul−1.

Direct modular multiplication
Now we give a method to construct the circuit of mod-
ular multiplication according to its calculation. Observe
that x · y = kp+ (x · y mod p) , where k = ⌊ x·yp ⌋ and
1 < x, y < p . Thus we can rewrite

where the second equality follows from x · y < p2 < 2np .
The target result is then obtained by comparing the sizes
of x · y and 2ip . Since this method is constructed directly
according to the calculation, we call it direct modular
multiplication. More specifically, this method is divided
into the following three steps.

1 Calculate the value of x · y.
2 For each i from n− 1 to 0, calculate the value of

x · y− 2ip , i.e., (xy)i · · · (xy)n+i − p . If the highest
qubit of the result is 1, then add p to the result.

3 The circuit for steps 1 and step 2 is shown in Fig. 20.
Run the reverse of this circuit to recover the auxiliary
qubits.

x · y mod p = x · y− kp

=
n−1
∑

i=0

2ixi · y−
n−1
∑

i=0

2ikip, ki ∈ {0, 1},

Fig. 19 The partial quantum circuit of Montgomery modular multiplication M-Mul : |x�|y�|0� → |x�|y�|x · y · 2−1
mod p�

Page 15 of 27Liu et al. Cybersecurity (2023) 6:48

According to the first two steps, we can obtain the fol-
lowing partial quantum circuit D-Mul . The circuit
of step 3 to restore the auxiliary qubits is denoted by
D-Mul−1 , i.e. the reverse of D-Mul , where the Add and
Addp are 1-Add and 2-Add respectively in Fig. 20. Thus
the whole quantum circuit of direct modular multipli-
cation needs 114n2 + 5n CNOTs. Similar to the Mont-
gomery modular multiplication, to obtain the value
(x · y mod p) we still need to apply n CNOTs to encode
the value into extra n-qubit auxiliary qubits before per-
forming D-Mul−1.

Modular inverse
The most common method of the modular inverse is the
extended Euclidean algorithm (EEA). Proos and Zalka
(2003) described the idea of using EEA to calculate
modular inverse and it required O(n) times of division in
total and each step was performed O(n2) times. However,
implementing the EEA in a quantum circuit is greatly
complicated. Thus we consider using the Montgomery
inversion algorithm described in detail in Roetteler et al.
(2017). The algorithm repeats the Montgomery-Kaliski
round function 2n times to get x−1R mod p . Subse-
quently, Häner et al. (2020) improved this algorithm.
The improved circuit uses fewer CNOTs, but the modu-
lar inverse part is the same. In this paper, we choose the
improved algorithm in Häner et al. (2020) as the round
function and redesign a simpler circuit to calculate the
modular inverse.

For inputs x, p, and n such that p > x > 0 and
2n−1 < x < 2n , the Montgomery-Kaliski algorithm
consists of two steps. First, calculate gcd(x, p) and
x−1 · 2k mod p . Second, calculate x−1 · 2n mod p .
When the input quantum state is a superposition state,
the number of iterations k in the first step is related to
the integer x corresponding to a certain ground state.
Considering all possible ground states in the superposi-
tion state, the first step requires 2n rounds of iteration.
However, before each round, it is necessary to judge
whether the iteration process in the corresponding
ground state has ended by determining whether v is 0, so
as to determine whether this round is really iterated. Due
to k > n , all ground states of the input superposition
state need to go through the first n rounds of iteration
and only need to judge whether v is 0 before the iteration
of the last n rounds. In the second step, the intermedi-
ate result x−1 · 2k mod p is shifted to the right by k − n
qubits. In the last n-round iteration of the first step, the
results of the subsequent ShiftMod of the second step
are stored in the auxiliary qubit and x−1 · 2n mod p is
obtained.

Combining the round function circuit of Fig. 6b in
Häner et al. (2020) with the above algorithm steps, the
quantum circuit of the modular inverse Inv in Fig. 21
is obtained. The quantum circuit for restoring the
auxiliary bits is Inv−1 , i.e. the reverse of Inv , and the
complete quantum circuit is a combination of Inv and
Inv−1.

Fig. 20 The partial quantum circuit of direct modular multiplication D-Mul : |x�|y�|0� → |x�|y�|x · y mod p�

Page 16 of 27Liu et al. Cybersecurity (2023) 6:48

According to Inv , we conclude that the whole quan-
tum circuit of modular inverse needs 578n2 + 283n− 13
CNOTs.

Windowed arithmetic
In this section, we use the window form described in
Gidney (2019)to design quantum circuits that attack
ECDLP, reducing the CNOT-count N from O(n3) to
O(n2) < N < O(n3).

The general method to calculate aP by a quantum cir-
cuit is to express a in its binary expansion and control the
operation of P by using each bit of a respectively, i.e.,

aP =
(

2n−1an−1 + 2n−2an−2 + · · · + 2a1 + a0

)

P

= 2n−1an−1P + 2n−2an−2P + · · · + 2a1P + a0P.

The circuit is shown in Fig. 22a.
It is pointed out that m different ai can be selected

first and the 2m cases, a′P represented by m ai , can
be calculated and stored in an n-qubit register, where
a′ =

∑m
j=1 2

ij aij (Häner et al. 2020). Then a′P is used to
perform the point addition operation on the group of
elliptic curves. This method is called windowed arithmetic
as shown in Fig. 22b, and m is the size of the window. The
left circuit in Fig. 23 shows the situation of m = 2 , where
Ti represents each of the four cases of a′ . Only the abscissa
of point P(x, y) is shown in the figure and n2 CNOTs are
required on average. Therefore, it is estimated that a total
of 8 Toffoli and 4n CNOTs are needed for the calculation
point P(x, y), i.e., (4n+ 48) CNOTs in all.

For general m, 2m+1 m-controlled CNOTs (i.e.,
2m+1(2m− 3) Toffoli gates) and 2mn CNOTs are required
in the circuit, so a total of (24m+ n− 36) · 2m CNOTs

Fig. 21 The partial quantum circuit of modular inverse Inv : |x mod p�|0� → |x�|x−1 · 2n mod p�

Fig. 22 a is a general method for calculating aP using the quantum circuit. b is the quantum circuit using windowed arithmetic to calculate aP,
where m is the size of the window and Ti is 2m pre-calculated values. Here is just a simple schematic diagram of the window technique to show its
principle. We omit the process of point operation and recovery of auxiliary qubits. For more specific circuits see Fig. 33

Page 17 of 27Liu et al. Cybersecurity (2023) 6:48

are required. However, we improve the circuit above to
the right one in Fig. 23. Specifically, taking m = 2 as an
example, we combine the second and the third Toffoli
gates in the original method into one CNOT. At the same
time, the sixth and the seventh Toffoli gates are merged
into one CNOT. Thus we just need (4n+ 26) CNOTs
when m = 2.

Figures 24 and 25 give the improved circuits of situ-
ations for m = 3 and m = 4 , respectively, in a similar
way to the method of combining Toffoli gates at m = 2 .
According to the recursive formula, (2m+1 − 4) Toffoli

and [(n+ 1) · 2m − 2] are required for m with m ≥ 3 .
Thus the CNOT-count is reduced to [(n+ 13) · 2m − 26].

Quantum circuits of point addition on elliptic curve
groups
Above, we describe the construction of basic arith-
metic operations used in point addition on the elliptic
curve groups. In this section, we design a new algo-
rithm to calculate point addition reversibly out-of-
place (storing the results in a new register), which
reduces the CNOT-counts of modular inverse and

Fig. 23 Quantum circuits of windowed arithmetic at m = 2 . Circuit of right one is the simplified of left one

Fig. 24 The simplified circuit at m = 3

Fig. 25 The simplified circuit at m = 4

Page 18 of 27Liu et al. Cybersecurity (2023) 6:48

modular multiplication compared to the in-place
method (replacing the input value by the sum) given
by Roetteler et al. (2017), while using O(n2) qubits.
Based on the new approach for point addition, this
section gives the schematic circuit of the over-
all extended Shor’s algorithm for ECDLP and then
applies windowed arithmetic (Gidney 2019) to obtain
the windowed scalar multiplication of the given point
on elliptic curves.

Controlled point addition
The algorithm of controlled point addition on an
elliptic curve operates on a quantum register hold-
ing the point P1 = (x1, y1) �= ∅ , a control qubit
ctrl, and ten auxiliary qubits ci . The second point
P2 = (x2, y2) �= ∅,P2 �= ±P1 is assumed to be a pre-
calculated classical constant. If ctrl = 1 , the algorithm
correctly calculates c9 ← x1 + x2, c10 ← y1 + y2 ; if
ctrl = 0, c9 ← x1, c10 ← y1.

Tables 1 and 2 describe the process of calculating
P1 + P2 and restoring auxiliary bits, respectively. Fig-
ures 26 and 27 show quantum circuits corresponding
to Tables 1 and 2. The quantum registers all consist of n
logical qubits, whereas |ctrl� is a single logical qubit. Thus
the CNOT-count is 896n2 + 1064n+ 14.

After each calculation of P1 + P2 , the result will be
used as the next input P1 for a new calculation and then
will be restored as an auxiliary qubit. However, the result
of the last calculation should be kept in the auxiliary reg-
ister without any need to be restored. Thus, the circuit of
the last calculation is modified as shown in Fig. 28. And
the CNOT-count is 886n2 + 783.5n− 18.5.

Therefore, the schematic quantum circuit yin Fig. 29 of
the overall extended Shor’s algorithm for ECDLP can be
obtained by combining Figs. 26, 27 and 28.

Windowed point addition
The algorithm of windowed point addition on the ellip-
tic curve operates on a quantum register holding the
point P1 = (x1, y1) �= ∅ , P2(x2, y2) = ∅,P2 = ±P1 , and
eight auxiliary qubits. In this form, the second point P2
is stored in the quantum register as a quantum state and
cannot be precomputed as a classical constant.

Table 1 The steps from (x1, y1) to (x3, y3) by point addition. Symbols |·�1 and |·�0 respectively represent the state when the control bit is 1
and 0. The states in the table represent the change of the quantum registers corresponding to each step and the unwritten states are
the same as the states in the previous step

Process The change in value

1.1 CNOTc1, c2, x1, y1 c1 ← x1; c2 ← y1

2.1 ctrl-CNOTc3, c4, x1, y1,ctrl c3 ← [x1]1, [0]0; c4 ← [y1]1, [0]0
3.1 ModAdd−1(·) x1, y1, x2, y2 x1 ← x1 − x2; y1 ← y1 − y2

4.1 Inv c5, x1 c5 ← 1
x1−x2

5.1 M-Mul c6, y1, c5 c6 ← �

6.1 D-Mul c8, c6, c7 c7 ← �; c8 ← �
2

7.1 ctrl-CNOTc9, c8,ctrl c9 ← [�2]1, [0]0
8.1 ModAdd−1

c9, c3 c9 ← [�2 − x1]1, [0]0
9.1 ctrl− ModAdd−1(·) c9, x2,ctrl c9 ← [�2 − x1 − x2 = x3]1, [0]0
10.1 ModAdd−1

c3, c4 c3 ← [x1 − x3]1, [0]0
11.1 D-Mul c10, c3, c7 c10 ← [�(x1 − x3)]1, [0]0
12.1 ModAdd−1

c10, c4 c10 ← [�(x1 − x3)− y1 = y3]1, [0]0
13.1 ctrl-CNOTc9, c10, c1, c2,ctrl c9 ← [x3]1, [x1]0; c10 ← [y3]1, [y1]0

Table 2 The steps to restore the ancillary bits. Symbols |·�1 and
|·�0 respectively represent the state when the control bit is 1 and
0. The states in the table represent the change of the quantum
registers corresponding to each step and the unwritten states are
the same as the states in the previous step

Process The change in value

13.2 ctrl-CNOTc9, c10, c1, c2,ctrl c9 ← [x3]1, [0]0; c10 ← [y3]1, [0]0
12.2 ModAdd c10, c4 c10 ← [�(x1 − x3)]1, [0]0
11.2 D-Mul−1

c10, c3, c7 c10 ← 0

10.2 ModAdd c3, c4 c3 ← [x1]1, [0]0
9.2 ctrl− ModAdd(·) c9, x2,ctrl c9 ← [�2 − x1]1, [0]0
8.2 ModAdd c9, c3 c9 ← [�2]1, [0]0
7.2 ctrl-CNOTc9, c8,ctrl c9 ← 0

6.2 D-Mul−1
c8, c6, c7 c7 ← 0; c8 ← 0

5.2 M-Mul−1
c6, y1, c5 c6 ← 0

4.2 Inv−1
c5, x1 c5 ← 0

3.2 ModAdd(·) x1, y1, x2, y2 x1 ← x1; y1 ← y1

2.2 ctrl-CNOTc3, c4, x1, y1,ctrl c3 ← 0; c4 ← 0

1.2 CNOTc1, c2, x1, y1 c1 ← 0; c2 ← 0

Page 19 of 27Liu et al. Cybersecurity (2023) 6:48

Fig. 26 The circuit for calculating (P1 + P2) mod p in controlled point addition

Fig. 27 The circuit for restoring the auxiliary bits in controlled point addition

Fig. 28 The circuit of the PointAddlast block in Fig. 29

Page 20 of 27Liu et al. Cybersecurity (2023) 6:48

Tables 3 and 4 describe the process of calculating
P1 + P2 by windowed arithmetic and restoring auxiliary
bits, respectively.

Figures 30 and 31 show quantum circuits corre-
sponding to Tables 3 and 4. The quantum registers all
consist of n logical qubits. Thus the CNOT-count is
896n2 + 1108n+ 36.

After each calculation of P1 + P2 , the result will be
used as the next input P1 for a new calculation and

then will be restored as an auxiliary qubit. However,
the result of the last calculation should be kept in the
auxiliary register without any need to be restored and
the coefficients of P and Q are different in the extended
Shor’s quantum algorithm. Therefore, the window
arithmetic cannot be used in the last calculation,
and the circuit is modified as shown in Fig. 32 with
886n2 + 833.5n+ 9.5 CNOTs.

Figure 33 is the schematic quantum circuit to cal-
culate ECDLP by the extended Shor’s algorithm using

Fig. 29 Schematic quantum circuit of overall extended Shor’s algorithm for ECDLP

Table 3 The steps from (x1, y1) to (x3, y3) using windowed
arithmetic by point addition. The states in the table represent
the change of the quantum registers corresponding to each
step and the unwritten states are the same as the states in the
previous step

Process The change in value

1.1 CNOTw1,w2, x1, y1 w1 ← x1,w2 ← y1

2.1 ModAdd−1
x1, y1, x2, y2 x1 ← x1 − x2, y1 ← y1 − y2

3.1 Inv w3, x1 w3 ← 1
x1−x2

4.1 M-Mul w4, y1,w3 w4 ← �

5.1 D-Mul w6,w4,w5 w6 ← �
2

6.1 CNOTw7,w6 w7 ← �
2

7.1 ModAdd−1
w7,w1 w7 ← �

2 − x1

8.1 ModAdd−1
w7, x2 w7 ← �

2 − x1 − x2 = x3

9.1 ModAdd−1
w1,w7 w1 ← x1 − x3

10.1 D-Mul w8,w1,w4 w8 ← �(x1 − x3)

11.1 ModAdd−1
w8,w2 w8 ← �(x1 − x3)− y1 = y3

Table 4 The steps to restore the auxiliary bits. The states
in the table represent the change of the quantum registers
corresponding to each step and the unwritten states are the
same as the states in the previous step

Process The change in value

11.2 ModAdd w8,w2 w8 ← �(x1 − x3)

10.2 D-Mul−1
w8,w1,w4 w8 ← 0

9.2 ModAdd w1,w7 w1 ← x1

8.2 ModAdd w7, x2 w7 ← �
2 − x1

7.2 ModAdd w7,w1 w7 ← �
2

6.2 CNOTw7,w6 w7 ← 0

5.2 D-Mul−1
w6,w4,w5 w6 ← 0

4.2 M-Mul−1
w4, y1,w3 w4 ← 0

3.2 Inv−1
w3, x1 w3 ← 0

2.2 ModAdd x1, y1, x2, y2 x1 ← x1, y1 ← y1

1.2 CNOTw1,w2, x1, y1 w1 ← 0,w2 ← 0

Page 21 of 27Liu et al. Cybersecurity (2023) 6:48

Fig. 30 Windowed point addition

Fig. 31 The inverse operation of windowed point addition to restore the auxiliary bits

Fig. 32 The last full round of windowed point addition

Page 22 of 27Liu et al. Cybersecurity (2023) 6:48

windowed arithmetic, where the Lookup is a situation
where several controlled operations can be merged into
a single operation acting on a value produced by a small
QROM lookup (Gidney 2019) and the point addition is
the circuit introduced in Figs. 30, 31 and 32.

According to the process of calculating point addi-
tion, the CNOT-count of the first 2n− 1 point addition is
896n2 + 1064n+ 14 (including the circuits for recovering
auxiliary qubits) and the 2n-th has 886n3 + 783.5n− 18.5
CNOTs. Therefore, the CNOT-count to calculate the
point addition of ECDLP using controlled point addi-
tion is 1792n3 + 2118n2 − 252.5n− 32.5 . When using
the windowed version, the modular subtraction of a
constant is changed to ModAdd−1 and the CNOT-count
increases from 43n− 2.5 to 61n+ 6 . At the same time,
the CNOT-count of the controlled circuit increases
from 46n+ 11 to 71n+ 17 . Thus the CNOT-count of
the first n− 1 point addition is 896n2 + 1108n+ 36
and the n-th has 886n3 + 833.5n+ 9.5 CNOTs in
calculating (a+ k)P mod p . Hence the CNOT-
count to calculate the point addition of ECDLP
using the windowed version with window size m is
N (n,m) = 2⌈ n

m
⌉[(n+ 13) · 2m+1 + 896n2 + 1108n+ 4]

−20n2 − 549n− 53.
Now we analyze the whole circuit of the extended Shor’s

algorithm to obtain a specific CNOT-count. In order
to minimize the CNOT-count, we find that the growth
rate of the CNOT-count is polynomial with n only when
m = O(log n) , while the other cases are exponential. So

we further fit N(n, m) to find a suitable value of m to
make the CNOT-count as low as possible. To be spe-
cific, we calculate ∂N (n,m)

∂m , and for each ni ∈ (128, 521) ,
we use Matlab to approximate the zero mi of ∂N (ni ,m)

∂m to
obtain a pair (ni,mi) . Because m should be an integer, we
round each mi up and down to get m′

i and m′′
i , respec-

tively. Then letting Nimin = min(N (ni,m
′
i),N (ni,m

′′
i))

for each i and fitting N with respect to n based on all the
pairs (ni,Nimin) , we obtain N = 1237n3/ log n . Plus the
2n2 + n CNOTs used for two QFTn , the total CNOT-
count of the extended Shor’s algorithm for ECDLP is
N = 1237n3/ log n+ 2n2 + n . The lower limit of time
for executing a CNOT gate on an ion trap quantum com-
puter is about 2.85× 10−4s (Yang and Zhou 2013). Com-
bined with the CNOT-count to run the extend Shor’s
algorithm, the time to break 512-bit ECDLP is at least 51
years after three levels of coding.

Discussion and conclusion
Although there have been many attempts to improve
the qubit number or the circuit depth of the extended
Shor’s algorithm for ECDLP, their focus has not been on
optimizing the CNOT-count, which greatly affects the
time to run the algorithm on an ion trap quantum com-
puter. In this paper, we improve the quantum circuits of
basic arithmetic operations, including modular subtrac-
tion, three different modular multiplication, modular

Fig. 33 Schematic quantum circuit of overall extended Shor’s algorithm for ECDLP using windowed arithmetic

Page 23 of 27Liu et al. Cybersecurity (2023) 6:48

inverse, and windowed arithmetic. Table 5 summarizes
the CNOT-counts of basic arithmetic operations using
the Clifford+Toffoli gate set, while Table 6 summa-
rizes the CNOT-counts of basic arithmetic operations
using the Clifford+T gate set. These improvements lead
to a reduced CNOT-count of the quantum circuit of
the extended Shor’s algorithm. We further reduce the
CNOT-count by choosing a suitable window size m
with the help of numerical fitting, lowering the CNOT-
count from O(n3) to O(n3/ log n) . The time required by
the extended Shor’s algorithm to attack 512-bit ECDLP is
estimated to be 51 years, which means it is hard to attack
ECDLP using an ion trap quantum computer in a reason-
able time. However, this estimated time does not take
into account the fault tolerance of the circuit, which we
will study in the future.

According to the results of the CNOT-count, we can
consider the lower bound of the CNOT-count required
by the extended Shor’s algorithm. If we assume that the
time required to run extended Shor’s algorithm is T,
the time required to execute a CNOT is t, and the lower
bound of the number of CNOTs is N, which is a function

of the number of qubits n. Then, the lower bound of
the running time of the extended Shor’s algorithm can
be expressed as T = N (n)t . The modular inverse can
be constructed using basic arithmetic operations, such
as modular addition. Therefore, the CNOT-count of
modular inverse must be greater than that required
for modular addition. Because the quantum circuit of
modular addition is a modular operation, the CNOT-
count of modular addition must be larger than that of
the addition circuit. For two n qubits x, y, we have that
ci+1 = xi + (xi + yi)(xi + ci), si = xi + yi + ci , where xi
and yi are the i-th bits of the binary representation of
x, y, ci+1 is the i-th carry. Therefore, each qubit addition
requires at least one Toffoli gate and three CNOTs. Thus,
the addition of n qubits requires at least 9n CNOTs. Here
we just give a lower bound of the circuit of an addition
operation. Although the whole circuit of the extended
Shor’s algorithm consists of many addition operations,
we have not obtained a tighter lower bound to run this
algorithm, which we plan to derive in our future work.

Table 5 The number of Toffoli gates and CNOT gates for
Clifford+Toffoli implementations

The basic arithmetic operations #Toffoli #CNOTs for
Clifford+Toffoli

1-Addy (unknown state y) 2n 4n+ 1

ctrl-1-Addy (unknown state y) 4n+ 1 2n

2-Addy (known constant y) 2n− 1 2n+ 0.5

ctrl-2-Addy 2n 5n+ 1

1-Comp 2n 1

2-Compy (known constant y) 2n 1

ctrl-2-Compy (known constant y) 2n+ 1 1

2-Compy (unknown state y) 2n 4n+ 1

ctrl-2-Compy (unknown state y) 2n+ 1 4n+ 1

ModSuby or ModAddy (known
constant y)

6n− 1 7n+ 3.5

ctrl-ModSuby (known constant y) 6n+ 1 10n+ 5

ModAddy (unknown state y) 8n 13n+ 6

ctrl-ModAddy (unknown state y) 10n+ 2 11n+ 5

Neg 2n− 1 2n− 0.5

ctrl-Neg 2n 6n+ 1

1-Shift - 2n

ctrl-1-Shift 2n -

2-Shift - 3n

ctrl-2-Shift n 2n

ShiftMod 4n 7n+ 3

M-Mul (half) 6n2 + 5n− 1 9n2 + 9n+ 0.5

D-Mul (half) 8n2 9n2 + 1.5

Table 6 The number of T gates and CNOT gates for Clifford+T
implementations

The basic arithmetic
operations

#T gates #CNOTs for
Clifford+T

1-Addy (unknown state y) 14n 16n+ 1

ctrl-1-Addy (unknown
state y)

28n+ 7 26n+ 6

2-Addy (known constant y) 14n− 7 14n− 5.5

ctrl-2-Addy 14n 17n+ 1

1-Comp 14n 12n+ 1

2-Compy (known constant y) 14n 12n+ 1

ctrl-2-Compy (known
constant y)

14n+ 7 12n+ 7

2-Compy (unknown state y) 14n 16n+ 1

ctrl-2-Compy (unknown
state y)

14n+ 7 16n+ 7

ModSuby or ModAddy (known
constant y)

42n− 7 43n− 2.5

ctrl-ModSuby (known
constant y)

42n+ 7 46n+ 11

ModAddy (unknown state y) 56n 61n+ 6

ctrl-ModAddy (unknown
state y)

70n+ 14 71n+ 17

Neg 14n− 7 14n− 5.5

ctrl-Neg 14n 18n+ 1

ctrl-1-Shift 14n 12n

ctrl-2-Shift 7n 8n

ShiftMod 28n 31n+ 15

M-Mul (half) 42n2 + 35n− 7 45n2 + 39n− 4.5

D-Mul (half) 56n2 57n2 + 2.5n

Page 24 of 27Liu et al. Cybersecurity (2023) 6:48

Appendix
We first prove in detail that whether the input state of
the third quantum register is |0� or |1� has no effect on
the measurement probability. Then, we give the specific
derivation process of the number of CNOT gates in the
n-controlled-NOT.

The value of the input state has no effect on the result

Proof (1) When the input state is |0� , we have

where a1 + b1m = l1 mod (p− 1) , so
a1 = l1 − b1m

−(p− 1)⌊ l1−b1m
p−1

⌋ , thus the probability of getting a
|c�|d�|y� is

so when taking all of |y� , the probability of |c�|d� is

|0�|0�|0� →
1

p− 1

p−2
∑

a1=0

p−2
∑

b1=0

|a1�|b1�|0�

→
1

p− 1

p−2
∑

a1=0

p−2
∑

b1=0

|a1�|b1�|(a1P + b1Q) mod p�

→
1

(p− 1)q

p−2
∑

a1,b1=0

q−1
∑

c1,d1=0

exp

[

2π i

q
(a1c1 + b1d1)

]

|c1�|d1�|(a1P + b1Q) mod p�

=
1

(p− 1)q

p−2
∑

a1,b1=0

q−1
∑

c1,d1=0

exp

[

2π i

q
(a1c1 + b1d1)

]

|c1�|d1�|(a1 + b1m)P mod p�,

∣

∣

∣

∣

∣

∣

1

(p− 1)1

p−2
∑

a1,b1=0

exp

[

2π i

q
(a1c1 + b1d1)

]

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b1=0

exp

[

2π i

q

(

l1c1 − b1c1m+ b1d1 − (p− 1)c1

⌊

l1 − b1m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

(12)

p−2
∑

l1=0

∣

∣

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b1=0

exp

[

2π i

q
(l1c1 − b1c1m+ b1d1 − (p− 1)c1

⌊

l1 − b1m

p− 1

⌋)]∣

∣

∣

∣

2

(2) When the input state is |kP� , we have

where a2 + k + b2m = l2 mod (p− 1) , so
a2 = l2 − k

−b2m− (p− 1)⌊ l2−k−b2m
p−1

⌋ , thus the probability of get-
ting a |c�|d�|y� is

so when taking all of |y� , the probability of |c�|d� is

|0�|0�|kP� →
1

p− 1

p−2
∑

a2=0

p−2
∑

b2=0

|a2�|b2�|kP�

→
1

p− 1

p−2
∑

a2=0

p−2
∑

b2=0

|a2�|b2�|((a2 + k)P + b2Q) mod p�

→
1

(p− 1)q

p−2
∑

a2,b2=0

q−1
∑

c2,d2=0

exp

[

2π i

q
(a2c2 + b2d2)

]

|c2�|d2�|((a2 + k)P + b2Q) mod p�

=
1

(p− 1)q

p−2
∑

a2,b2=0

q−1
∑

c2,d2=0

exp

[

2π i

q
(a2c2 + b2d2)

]

|c2�|d2�|((a2 + k)+ b2m)P mod p�,

∣

∣

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

a2,b2=0

exp

[

2π i

q
(a2c2 + b2d2)

]

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b2=0

exp

[

2π i

q
(l2c2 − b2c2m− kc2

+b2d2 − (p− 1)c2

⌊

l2 − k − b2m

p− 1

⌋)]∣

∣

∣

∣

2

(13)

p−2
∑

l2=0

∣

∣

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b2=0

exp

[

2π i

q
(l2c2 − b2c2m− kc2 + b2d2 − (p− 1)c2

⌊

l2 − k − b2m

p− 1

⌋)]∣

∣

∣

∣

2

Page 25 of 27Liu et al. Cybersecurity (2023) 6:48

(3) To prove that it doesn’t matter whether the input is |0�
or |kP� , just prove that (5) = (6) There has

p−2
∑

l1=0

∣

∣

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b1=0

exp

[

2π i

q

(

l1c1 − b1c1m+ b1d1 − (p− 1)c1

⌊

l1 − b1m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

=
p−2−k
∑

l1=0

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b1=0

exp

[

2π i

q

(

l1c1 − b1c1m+ b1d1 − (p− 1)c1

⌊

l1 − b1m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

+
p−2
∑

l1=p−1−k

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b1=0

exp

[

2π i

q

(

l1c1 − b1c1m+ b1d1 − (p− 1)c1

⌊

l1 − b1m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

= 1�+ 2�;
p−2
∑

l2=0

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b2=0

exp

[

2π i

q

(

l2c2 − b2c2m− kc2 + b2d2 − (p− 1)c2

⌊

l2 − k − b2m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

=
k−1
∑

l2=0

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b2=0

exp

[

2π i

q

(

l2c2 − b2c2m− kc2 + b2d2 − (p− 1)c2

⌊

l2 − k − b2m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

+
p−2
∑

l2=k

∣

∣

∣

∣

1

(p− 1)q

p−2
∑

b2=0

exp

[

2π i

q

(

l2c2 − b2c2m− kc2 + b2d2 − (p− 1)c2

⌊

l2 − k − b2m

p− 1

⌋)]

∣

∣

∣

∣

∣

∣

2

= 3�+ 4�.

Because c1 = c2, d1 = d2 , so we have 1� = 4�, 2� = 3� ,
then (5) = (6) . �

Page 26 of 27Liu et al. Cybersecurity (2023) 6:48

Fig. 35 The equivalent form of n-controlled-NOT

Fig. 34 n-controlled-NOT

The number of CNOT gates in n‑controlled‑NOT
The Fig. 34 is the quantum circuit of n-controlled-NOT,
which can be contrusted by n− 2 auxiliary qubits and
2n− 3 Toffoli. The quantum circuit is shown in Fig. 35.

Acknowledgements
We thank all reviewers for their comments and suggestions.

Author contributions
This work is completed by Xia Liu and Huan Yang under the supervision of
Prod. Li Yang. Xia Liu and Huan Yang discuss this problem in detail and con-
sider its application in cryptanalysis in this paper. Li Yang put forward many
meaningful ideas to help the work to be completed. Finally, the author(s) read
and approved the final manuscript. Because the funding contains relevant
author information, we also listed the fund here.

Funding
This work was supported by National Natural Science Foundation of China
(Grant No. 61672517) and National Natural Science Foundation of China (Key
Program, Grant No. 61732021).

Availability of data and materials
All data and materials are included in this paper.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 18 May 2023 Accepted: 21 July 2023

References
Banegas G, Bernstein DJ, van Hoof I, Lange T (2021) Concrete quantum crypta-

nalysis of binary elliptic curves. In: IACR transactions on cryptographic
hardware and embedded systems 451–472

Boneh D, Lipton RJ (1995) Quantum cryptanalysis of hidden linear functions.
In: Annual international cryptology conference. Springer, pp 424–437

Chiribella G, D’Ariano GM, Perinotti P (2008) Quantum circuit architecture. Phys
Rev Lett 101(6):060401

Cuccaro SA, Draper TG, Kutin SA, Moulton DP (2004) A new quantum ripple-
carry addition circuit. arXiv: quant- ph/ 04101 84

Dong D, Chen C, Jiang M, Wang L-C (2013) Quantum control and quantum
information technology. Hindawi

Eicher J, Opoku Y (1997) Using the quantum computer to break elliptic curve
cryptosystems

Gao W, Yang L, Zhang D, Liu X (2022) Quantum identity-based encryption
from the learning with errors problem. Cryptography 6(1):9

Gidney C (2019) Windowed quantum arithmetic. arXiv: 1905. 07682
Häner T, Jaques S, Naehrig M, Roetteler M, Soeken M (2020) Improved quan-

tum circuits for elliptic curve discrete logarithms. In: International confer-
ence on post-quantum cryptography. Springer, pp 425–444

Hasse H (1936) Zur theorie der abstrakten elliptischen funktionenkörper iii. die
struktur des meromorphismenrings. die riemannsche vermutung

Kaliski BS (1995) The Montgomery inverse and its applications. IEEE Trans
Comput 44(8):1064–1065

Kaye P, Zalka C (2004) Optimized quantum implementation of elliptic curve
arithmetic over binary fields. arXiv: quant- ph/ 04070 95

Kimura T, Shiba K, Chen C-C, Sogabe M, Sakamoto K, Sogabe T (2021) Vari-
ational quantum circuit-based reinforcement learning for POMDP and
experimental implementation. Math Probl Eng 2021:1–11

Knight P, Murao M, Plenio M, Vedral V (1999) Ion trap quantum gates, decoher-
ence and error correction

Koblitz N (1987) Elliptic curve cryptosystems. Math Comput 48(177):203–209
Liu X, Liu G, Huang J, Wang X (2022) Mitigating barren plateaus of variational

quantum eigensolvers. arXiv: 2205. 13539
Liu X, Yang H, Yang L (2021) CNOT-count optimized quantum circuit of the

Shor’s algorithm. arXiv: 2112. 11358
Markov IL, Saeedi M (2012) Constant-optimized quantum circuits for modular

multiplication and exponentiation. arXiv: 1202. 6614
Miller VS (1985) Use of elliptic curves in cryptography. In: Conference on

the theory and application of cryptographic techniques. Springer, pp
417–426

Miyaji A (1992) Elliptic curves over f p suitable for cryptosystems. In: Inter-
national workshop on the theory and application of cryptographic
techniques. Springer, pp 477–491

Nash B, Gheorghiu V, Mosca M (2020) Quantum circuit optimizations for NISQ
architectures. Quantum Sci Technol 5(2):025010

Nielsen MA, Chuang I (2002) Quantum computation and quantum informa-
tion. American Association of Physics Teachers

Proos J, Zalka C (2003) Shor’s discrete logarithm quantum algorithm for elliptic
curves. arXiv: quant- ph/ 03011 41

Roetteler M, Naehrig M, Svore K.M, Lauter K (2017) Quantum resource esti-
mates for computing elliptic curve discrete logarithms. In: International
conference on the theory and application of cryptology and information
security. Springer, pp 241–270

http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/1905.07682
http://arxiv.org/abs/quant-ph/0407095
http://arxiv.org/abs/2205.13539
http://arxiv.org/abs/2112.11358
http://arxiv.org/abs/1202.6614
http://arxiv.org/abs/quant-ph/0301141

Page 27 of 27Liu et al. Cybersecurity (2023) 6:48

Shor PW (1994) Algorithms for quantum computation: discrete logarithms
and factoring. In: Proceedings 35th annual symposium on foundations of
computer science. IEEE, pp 124–134

Shor PW (1999) Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Rev 41(2):303–332

Vedral V, Barenco A, Ekert A (1996) Quantum networks for elementary arithme-
tic operations. Phys Rev A 54(1):147

Yang L, Zhou R-R (2013) On the post-quantum security of encrypted key
exchange protocols. arXiv: 1305. 5640

Yao AC-C (1993) Quantum circuit complexity. In: Proceedings of 1993 IEEE
34th annual foundations of computer science. IEEE, pp 352–361

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1305.5640

	Minimizing CNOT-count in quantum circuit of the extended Shor’s algorithm for ECDLP
	Abstract
	Introduction
	Our contributions
	Outline

	Preliminaries
	Shor’s quantum algorithm for solving the DLP
	Discrete logarithms problem
	Shor’s quantum algorithm

	Extended Shor’s quantum algorithm for solving the ECDLP
	Elliptic curve discrete logarithms problem
	Extended Shor’s quantum algorithm

	Elliptic curve groups law

	Quantum circuits for algebraic problems
	Modular subtraction
	Negation
	Modular shift
	Modular multiplication
	Fast modular multiplication
	Montgomery modular multiplication
	Direct modular multiplication

	Modular inverse
	Windowed arithmetic

	Quantum circuits of point addition on elliptic curve groups
	Controlled point addition
	Windowed point addition

	Discussion and conclusion
	Appendix
	The value of the input state has no effect on the result
	The number of CNOT gates in n-controlled-NOT

	Acknowledgements
	References

