
Yang et al. Cybersecurity (2023) 6:50
https://doi.org/10.1186/s42400-023-00182-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Evicting and filling attack for linking multiple
network addresses of Bitcoin nodes
Huashuang Yang1, Jinqiao Shi1, Yue Gao2* , Xuebin Wang3, Yanwei Sun1, Ruisheng Shi1 and Dongbin Wang1

Abstract

Bitcoin is a decentralized P2P cryptocurrency. It supports users to use pseudonyms instead of network addresses
to send and receive transactions at the data layer, hiding users’ real network identities. Traditional transaction tracing
attack cuts through the network layer to directly associate each transaction with the network address that issued
it, thus revealing the sender’s network identity. But this attack can be mitigated by Bitcoin’s network layer privacy
protections. Since Bitcoin protects the unlinkability of Bitcoin addresses and there may be a many-to-one relation-
ship between addresses and nodes, transactions sent from the same node via different addresses are seen as com-
ing from different nodes because attackers can only use addresses as node identifiers. In this paper, we proposed
the evicting and filling attack to expose the correlations between addresses and cluster transactions sent from different
addresses of the same node. The attack exploited the unisolation of Bitcoin’s incoming connection processing mecha-
nism. In particular, an attacker can utilize the shared connection pool and deterministic connection eviction strategy
to infer the correlation between incoming and evicting connections, as well as the correlation between releasing
and filling connections. Based on inferred results, different addresses of the same node with these connections can be
linked together, whether they are of the same or different network types. We designed a multi-step attack procedure,
and set reasonable attack parameters through analyzing the factors that affect the attack efficiency and accuracy. We
mounted this attack on both our self-run nodes and multi-address nodes in real Bitcoin network, achieving an aver-
age accuracy of 96.9% and 82%, respectively. Furthermore, we found that the attack is also applicable to Zcash,
Litecoin, Dogecoin, Bitcoin Cash, and Dash. We analyzed the cost of network-wide attacks, the application scenario,
and proposed countermeasures of this attack.

Keywords Security and privacy, Bitcoin, Address linking

Introduction
Bitcoin is a decentralized P2P cryptocurrency that has
gained widespread attention over the past decade (Hou
2017; Cai et al. 2021; Nadeem et al. 2021). The most
attractive highlight of Bitcoin is its protection for the
anonymity and privacy of Bitcoin users, which is mainly

achieved from the data and network layers (Reid and
Harrigan 2013; Ober et al. 2013; Khalilov and Levi 2018).
At the data layer, Bitcoin supports users to create any
number of random-looking Bitcoin pseudonyms. These
pseudonyms can be used instead of users’ real identities
to send and receive cryptocurrency transactions. Such a
pseudonym mechanism prevents user transactions from
being directly linked to the user’s real identity, thus pro-
tecting the anonymity of users. But there have been many
researches on breaking pseudo-anonymity. One type of
attack they proposed is pseudonym clustering that links
multiple Bitcoin pseudonyms belonging to the same
user and analyzes the user’s transaction behaviors. For

*Correspondence:
Yue Gao
gaoyue2017@126.com
1 School of Cyberspace Security, Beijing University of Posts
and Telecommunications, Beijing, China
2 Tsinghua University, Beijing 100084, China
3 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00182-9&domain=pdf
http://orcid.org/0009-0003-6302-2194

Page 2 of 20Yang et al. Cybersecurity (2023) 6:50

example, Androulaki et al. (2013) proposed two heuris-
tic rules, multi-input transactions (the multiple input
pseudonyms of a single transaction belong to the same
user) and “shadow” pseudonyms (the new pseudonym
that is used to collect back the “change” is the “shadow”
pseudonym, which most likely belongs to the sender),
for clustering Bitcoin pseudonyms. To identify change
pseudonyms more accurately, Meiklejohn et al. (2013)
introduced four identification conditions: FirstAppear-
ance, NotACoinGeneration, NoSelfchangeAddress, and
UniqueNewOutputAddress. Other pseudonym cluster-
ing works include TransferAmountFeature (Wang et al.
2020), coinbase pseudonyms and mining pool pseudonyms
(Zheng et al. 2020), blockchain browser WalletExplorer.
com (2023), and Blockchair.com (2023). Another type of
attack is transaction tracing attack, which can directly
correlate each transaction with the network identity of
its user. This attack cuts through the network layer by
deploying eavesdropper nodes in the Bitcoin network
and analyzing the traffic to find the originating network
address1 that sent one transaction into the network. Such
an address is usually the network identity of the transac-
tion holder (Koshy et al. 2014; Biryukov et al. 2014; Fanti
and Viswanath 2017; Gao et al. 2018). This attack seems
more destructive than pseudonyms clustering since it
exposes the user’s real network identity. To mitigate
the transaction tracing attack, Bitcoin community has
paid lots of attention to privacy protection in the net-
work layer. Bitcoin community supports the configura-
tion of multiple network addresses for a single node and
has not provided a unique global node identifier to link
these addresses together. In this way, users can configure
multiple addresses for their nodes and send transactions
through different addresses, which can be of the same
network type, such as IPv4 or IPv6, or of different net-
work types, such as IPv4 and IPv6. Thus, each transac-
tion can only be traced to the address that generate it,
while transactions from the same user are seen as coming
from different users with the address as the node identi-
fier. Meanwhile, Bitcoin community encourages users to
run their node as an onion/I2P service, which can only
be reachable from Tor/I2P network (Community 2023a,
b). With the anonymity of these networks, tracing attacks
can only trace transactions to anonymous addresses
which cannot be associated with clear network addresses,
i.e. the user’s identity is not exposed.

Ensuring address unlinkability of the network layer is
of great significance, as it mitigates transaction tracing

attacks. However, achieving this goal is not easy. This is
because node addresses have been used without distinc-
tion in various network mechanisms from the beginning
of Bitcoin design. Researches show that attackers may
exploit the common characteristics or apparent behav-
iors of network mechanisms to expose the correlations
among addresses, thus linking different addresses of the
same node (Pieter 2020; practicalswift 2020; Grundmann
et al. 2022). We call this address linking attack. Based on
this attack, attackers who have the transaction tracing
ability can not only trace each transaction to the originat-
ing address but also further cluster all transactions from
different addresses of the same node if these addresses are
linked. For Bitcoin nodes running both clear and anony-
mous network addresses on a dual stack, this attack can
associate their clear and anonymous addresses, which
defeats the effort of the Bitcoin developing community to
improve user privacy with the anonymity network.

Address linking attacks have been the focus of
researchers for a long time. Biryukov et al. (2014) linked
addresses of the same node by the common entry nodes
set (all nodes to which the target node has established
outgoing connections) across different addresses. Miller
et al. (2015) followed a similar idea. Biryukov and Pusto-
garov (2015) tried to link different addresses of the target
node by actively emitting a unique combination of pos-
sibly fake addresses (address cookie) to the address data-
base (a database that stores all known Bitcoin addresses
of non-local nodes) of the target node from one address
and checking the cookie from other addresses. Mas-
tan and Paul (2018) argued that a passive attacker who
can monitor the traffic of Bitcoin nodes has the abil-
ity to link addresses of the same node by analyzing the
block requests made by different addresses in a Bitcoin
session graph. Pieter (2020) notes that addresses of the
same network type of the same node share the common
address cache (cached address information that is stored
in the cache map of the target node and used to respond
to address query requests) in the specific Bitcoin v22.0,
through which node addresses of the same network type
can be linked. Since Bitcoin developers have been con-
cerned about address unlinkability, they fix vulnerabili-
ties that have been disclosed each time the client updates.
Therefore, against the updated Bitcoin version2, all exist-
ing address linking attacks are ineffective.

While address linking attacks and related vulnerabil-
ity fixes is a game of cat and mouse, Bitcoin develop-
ers currently do not conduct a systematic analysis of

1 To avoid confusion, we use pseudonyms to refer to Bitcoin transaction
addresses used to send and receive cryptocurrency transactions, address to
represent the network address (IPv4/IPv6/Onion) and node address for all
addresses that belong to the same node in this paper.

2 In this article, we experiment with Bitcoin version 22.0 (the official C++
implementation). Despite of the short update cycle of Bitcoin, our attack
still work in newer releases (see Sect. “Impact and countermeasure”) while
attack (Pieter 2020) fails.

Page 3 of 20Yang et al. Cybersecurity (2023) 6:50

the unisolated usage of local addresses in all network
mechanisms. In this paper, we propose a new effective
address linking attack that exploited the unisolation of
the incoming connection processing mechanism. First,
through source code inspection, we find that all network
addresses across network types (IPv4/IPv6/Tor) of a Bit-
coin node share one common connection pool (a pool
that stores all incoming connections established), and
the connection pool size is fixed (115 in default). Second,
we find that the connection eviction strategy (a strategy
for selecting an existing connection to evict in order to
accept new incoming connection when the connection
pool is full) is deterministic, which means that when a
new incoming connection arrives at a full connection
pool, the connection to be evicted in the pool is spe-
cific. For two addresses that belong to the same node, the
attacker can emit elaborately designed incoming connec-
tions from one of them and achieve predictable evicting
connections from the other. Also, the attacker can release
connections from one of them and achieve predictable
incoming connections from the other. Thus by mount-
ing such evicting and filling attack, the attacker can use
the two characteristics to link Bitcoin addresses of both
the same or different network types, with high accuracy.
Applying this attack to the result of the transaction trac-
ing attack will further disclose users who disguise them-
selves with multiple addresses. Our main contributions
are as follows:

1. We introduce the evicting-filling attack based on the
unisolation of Bitcoin incoming connection process-
ing mechanism, which is effective in linking node
addresses of (a) both same and different network
types, (b) all Bitcoin versions to date, and (c) main-
stream Bitcoin forks.

2. We analyzed the factors that affect the attack effi-
ciency and accuracy, including the number of avail-
able connection slots of the victim, the frequency of
evictions caused by normal nodes during the attack
duration, and the fluctuation of available slots num-
ber. We obtained empirical values of these factors
through measurements in the Mainnet and suggested
reasonable attack parameters.

3. We designed a multi-step attacking procedure and
verified against our self-run nodes and real-world
multi-address nodes in the Mainnet, achieving an
average accuracy of 82% after one round attacking,
which can be up to more than 95% after four rounds.

4. We proposed two acceleration methods for directly
applying this attack on the whole network and ana-
lyzed the time and economic cost of such a network-
wide attack.

5. We described the application of our evicting-filling
attack, and gave countermeasures from two aspects
of connection pool isolation and random disconnec-
tion time.

The remainder of this paper proceeds as follows: Sect.
“Related works” summarizes the related studies on Bit-
coin address linking. Section “Background” presents
necessary background information. Section “Our link-
ing attack” specifies our attack and attack parameters.
The experiments are provided in Sect. “Experiments” .
Section “Attack cost” analyzes the attack cost and Sect.
“Application” discusses the attack application scenario.
The attack impacts, and countermeasures are gaven in
Sect. “Impact and countermeasure”. Section “Conclusion”
concludes the paper and discusses our future work.

Related works
Many Bitcoin de-anonymization works attempt to break
the unlinkability of network addresses. In 2014, Biryu-
kov et al. (2014) attempted to link addresses of the same
node through the set of entry nodes. This set is cross-
address and can be passively learned because when each
address is connecting to the network, its entry nodes
are always the first to relay its address in the network.
However, due to the frequent network communications
between nodes, the entry-node set of each node contin-
ues to change, making this attack inaccurate. Similarly,
Miller et al. (2015) used the common set of neighbor-
ing nodes (all nodes that connects with the target node)
to link addresses. They actively inferred neighboring
nodes of each address by repeatedly sending GETADDRs
and catching the updates of the timestamps attached to
neighboring nodes in responded ADDRs. But counter-
measures Community (2015b), Community (2015c) and
Community (2020) have prevented this attack by remov-
ing the updates of the attached timestamps and making
the neighboring nodes not inferable. In 2015, Biryukov
and Pustogarov (2015) correlated different addresses of
the same node by actively emitting an address cookie
to the common address database from one address
and checking the cookie from other addresses. But the
addr-response-caching mechanism (Community 2020)
introduced by Bitcoin developers makes the cookie eas-
ily to be overwritten or propagated out during the link-
ing, invalidating this attack. In 2018, Mastan and Paul
(2018) proposed an address linking attack for attackers
who can passively monitor the Bitcoin network traffic. In
this attack, different addresses of the same node can be
linked by analyzing their block requests in a Bitcoin ses-
sion graph. But the attack can only be launched by gate-
way-level attackers and the attacking scope relies on the

Page 4 of 20Yang et al. Cybersecurity (2023) 6:50

coverage of the monitoring traffic. In 2021, Pieter (2020)
pointed out that addresses of the same Bitcoin v22.0 node
with the same network type share the common address
cache. Thus addresses can be linked based on address
cache collisions (also called cache map collisions). But
this attack is only applicable in same-network linking
against Bitcoin v22.0. In 2022, Grundmann et al. (2022)
noted that Bitcoin forwards addresses through different
IP addresses. Attacks can send a batch of spam addresses
with the same timestamp to a specific node and then
node addresses relaying subsets of the spam addresses
should be grouped to the same node. But this is a theo-
retical model. Bitcoin network will constantly forward
these spam addresses, making it difficult to distinguish
between source forwarding addresses and intermediate
forwarding addresses, while the author does not men-
tion attack parameters and accuracy. Besides, this attack
exploits the shared relayed addresses in the address relay
mechanism, which is consistent with our argument for
the non-isolation in network mechanisms.

The Bitcoin developing community has taken many
measures against address linking. They restricted
requests to non-main-chain blocks to make the poten-
tial linking based on chain tip blocks (Community 2015a)
prohibitively costly. They introduced the addr-response-
caching mechanism (Community 2020) along with the
cache map to prevent connection leakage and invalidate
linking based on neighboring nodes. They added ran-
domness on every cycle for transaction forwarding and
cache updates to avoid potential linking based on the tim-
ing of node cyclical behavior (Community 2022b). They
required all nodes to respond the same when receiving
deliberately designed HEADERS from malicious nodes
and prevented their local block information from being
inferred through different responses, since some nodes
may contain unique local blocks that others do not have
and these blocks can be used as fingerprints (Community
2022g). They indexed the cache map (Community 2020)
by network type to prevent potential linking against node
addresses of different networks (practicalswift 2020). In
versions after v22.0, they added a second index by local
socket addresses to the cache map, thus preventing link-
ing against node addresses of the same network based on
cache map collisions (Pieter 2020).

Although the Bitcoin developing community has taken
effective countermeasures against address linking, the
complexity of multi-address support for IPv6, Onion,
and I2P, and the complexity of network mechanisms such
as the addr-response-caching mechanism, the address
relay mechanism, the incoming connection processing
mechanism, and etc, make it a quite difficult problem
to thoroughly ensure the unlinkability among network
addresses.

Background
This section introduces the necessary background of the
Bitcoin network and address management.

Bitcoin network
The Bitcoin network is a fully distributed p2p network.
Nodes in the network communicate with each other by
directly establishing peer-to-peer connections. The con-
nections can be divided into incoming connections,
which are initiated by non-local nodes to the local node,
and outgoing connections, which are initiated by the
local node to non-local nodes. Each node with public
network addresses (public node) can establish 10 outgo-
ing connections and accept up to 115 incoming connec-
tions by default3 (Community 2022d). While each node
without public addresses (behind NATs and firewalls)
does not accept incoming connections and relays on 10
randomly selected public nodes for outgoing connections
to access the network (Biryukov et al. 2014; Wang and
Pustogarov 2017; Franzoni and Daza 2020). It can be seen
that public nodes are the backbone of Bitcoin network.
For these nodes, more incoming connections than 115
will result in the eviction of existing connections, and the
selection of evicting connections follows the connection
eviction stategy (Community 2022c).

Bitcoin address management
Bitcoin nodes support four network types: IPv4, IPv6,
Onion and I2P (though Bitcoin claimed support for I2P
anonymity network from v22.0, there are no nodes of
such network type currently (Foundation 2010)). Such
support for multiple network types means that each node
can use address combinations of four types of network,
such as IPv4+IPv6 and IPv4+Onion, or just one type of
network for communication. The multi-address con-
figuration can be achieved by passing in Bitcoin startup
parameters, which is shown in Fig. 1.

Each Bitcoin node customizes a key-value pair con-
tainer mapLocalHost (Community 2022e) to store all its
network address information (local addresses), which
takes each address as a key and stores the correspond-
ing running port for that address as the key value. Users
can obtain multiple network addresses for their nodes
at least in these ways: (a) run a dual stack and add more
addresses of different network types by accessing the IPv6
network and/or creating local Bitcoin Onion services, (b)
map more addresses of the same network type through
host proxies, port forwarding, and multiple NICs. In
fact, Bitcoin connections are established between two

3 Bitcoin Core is configured default with a maximum number of incoming
connections DEFAULT_MAX_PEER_CONNECTIONS(125)−MAX_OUTBOUND_

FULL_RELAY_CONNECTIONS(8)−MAX_BLOCK_RELAY_ONLY_CONNECTIONS(2) = 115.

Page 5 of 20Yang et al. Cybersecurity (2023) 6:50

“addresses”, as two neighbors do not know each other’s
more addresses.

Each Bitcoin node stores all known address informa-
tion of other nodes (non-local addresses) in its address
database CAddrMan (Community 2022i). Due to no
node identifier, the address database is managed using
address as the identifier and it may contain multiple
addresses of the same node. Each time a node has estab-
lished an outgoing connection with one other node, it
will send a GETADDR message to this new neighbor to
query more addresses of others. In versions older than
v22.0, the neighbor will respond with no more than
2,500 randomly selected addresses from its CAddrMan,
and every 1000 addresses are packaged into one ADDR.
In v22.0, to avoid the neighbor’s CAddrMan potentially
being scraped quickly by responding to many maliciously
repeated GETADDRs from attackers, the number of
addresses that respond is reduced to 1000. Meanwhile,
the chosen addresses being responded are cached into
the cache map and returned to any GETADDR requests
within a period of 21–27 h. This is the addr-response-
caching mechanism (Community 2020). To prevent
address linking across networks, the cache map is indexed
by the network types to which local addresses belong.
The second index by local socket addresses to prevent
address linking in the same network is added in versions
after v22.0.

Our linking attack
In this section, we will introduce the basic idea, attacking
procedure, and attack parameters of our linking attack.

Basic idea
The Bitcoin incoming connection processing is witnessed
in the code (Community 2022a, also simplified in Algo-
rithm 1). By binding to the local running port, each Bit-
coin node listens for incoming connections from others.

Once receiving an incoming connection, the node first
checks whether the remote address that initiates the
connection is malicious, i.e. if it has ever delivered inva-
lid or erroneous blocks in the network. If it hasn’t, the
node then counts the number of incoming connections
itself has held. If there are no more than 115 connections
established, the node will directly accept the new incom-
ing connection and store it in a built-in array vNodes4
(Community 2022j). Otherwise, the node will execute the
connection eviction strategy to try to select one existing
connection to disconnect and then accept the new one.
If no existing connection meets the eviction criteria, the
new connection will be rejected (Community 2022a).

From this processing, we can see that Bitcoin does not
check the local address it uses to receive a new incom-
ing connection and directly stores all accepted con-
nections that may be associated with different local
addresses into the common array vNodes. We refer to this
array as Bitcoin’s connection pool with default size (115
slots, the maximum number of incoming connections).
And it can be concluded that all local addresses of both
same and different network types share the common con-
nection pool.

We now drive into the connection eviction strategy to
see what kind of connections are preferred to be evicted.
As shown in the code (Community 2022c, simplified
in Algorithm 2), Bitcoin first preserves connections
established with specific remote addresses to which the
user has granted special privileges (NoBan privilege,

Fig. 1 Examples of command-line arguments in Bitcoin Core
that support multi-address configuration (Community 2023b)

4 In most recent v24.0, this array is renamed m_nodes and is also shared.

Page 6 of 20Yang et al. Cybersecurity (2023) 6:50

Community 2022f), as well as connections that are about
to be disconnected. Then among all the remaining con-
nections, Bitcoin follows the steps below to select a spe-
cific one for eviction:

(1) Select 4 peers to protect by netgroup (the network
group is determined by the prefix of each connec-
tion’s remote address5).

(2) Protect 8 connections with the lowest minimum
ping time.

(3) Protect 4 connections that most recently sent novel
transactions accepted into mempool.

(4) Protect up to 8 non-transaction-relay connections
that have sent novel blocks.

(5) Protect 4 connections that most recently sent novel
blocks.

(6) Protect half of the remaining eviction candidates
according to their network types and connection
duration.

(7) Identify the network group with the most con-
nections and youngest member and evict a most
recently established connection from it.

We refer to the first six steps simply as the special con-
nection protection policy. This policy is used to protect
some potentially secure connections with certain char-
acteristics (Community 2022h), such as belonging to one
of the network groups randomly selected, maintaining
a minimum ping time with the node, having relayed the
latest block or transaction to the node, or being initiated
from an Onion address or an I2P address. Assuming that
an attacker can establish many connections to the node,
then even if his 4 connections are protected due to their
network group being selected, there are still plenty of
attacking connections left. If the attacker can only estab-
lish a few connections with the node, it means that the
node’s connection pool is nearly full and there are no
groups that contain more connections to evict. In that
case, the number of distinct groups in the pool is large,
and the probability of the attacker’s group being selected
is extremely low. Besides, having a minimum ping time
with the node can be avoided easily by adding a little
response delay. The attacker can also bypass the rest con-
ditions by initiating connections from a standard IPv4
address and not relaying recent blocks or transactions to
the node. Thus, the attacker can circumvent the special
connection protection policy by constructing connec-
tions with no certain characteristics. And these attack-
ing connections can reach the last step of the eviction
strategy, becoming the connections that are preferred
to be evicted. In order to avoid other non-attacking

connections remaining in the pool for preferred eviction,
these attacking connections can reach the maximum size
of the fixed connection pool (115) in number and are all
from the same network group. Then these connections
will continue to evict existing connections that can be
evicted until the attacking group becomes the group with
the highest priority for eviction. We can conclude that
evicting connections are predictable and controllable.

Based on the above two findings, an attacker can first emit
elaborately designed incoming connections to one address of
the target node, in order to a) fill up its connection pool and
push the node into the connection eviction phase, b) make
these attacking connections become connections with the
highest priority to be evicted. Then, the attacker can initiate
more incoming connections to another address of the same
node and observe whether his connections with the former
address are being evicted. Note that the number of success-
fully established connections with the latter address should
be equal to the number of evicting connections with the for-
mer address. We call this an incoming-evicting test.

Since the incoming-evicting change, i.e. the number of
accepted or evicted connections, may be too small due to
the high network delay in the real world and the victim
continuously evicting the last few emitted connections. We
proposed another releasing-filling test, in which once the
attacker releases some connections with one address of the
target node, he can fill up these released connection slots
through another address of the same node.

The two tests can be used to link Bitcoin network
addresses. We designed a precise multi-step attacking proce-
dure, combining these two tests in parallel to ensure attack
efficiency and accuracy.

5 The selected network groups are unpredictable for attackers.

Page 7 of 20Yang et al. Cybersecurity (2023) 6:50

Attacking procedure for one pair addresses
We now present the attack model, attacking procedure
for one pair addresses and attacking procedure for mul-
tiple addresses.

Attack model
Our attack model assumes that the victim node V is a
Bitcoin node accepting incoming connections, with mul-
tiple local addresses that may belong to the same net-
work type or different network types (see Fig. 2). For any
two addresses A and B of node V, our goal is to verify
if they belong to the same node. As for the attacker, we
assume that he controls one or more attacking nodes.
Each attacking node owns a public network address for
establishing connections with the victim and the address
is of the same network group as other attacking nodes.
No attacking node needs to maintain a blockchain, but
instead executes a lightweight script with the following
functions: a) supporting up to 2306 parallel outgoing con-
nections, b) not relaying new transactions and blocks to

the victim, c) adding a little response delay (0.2s) each
time responding to PING from the victim, d) for each
connection successfully established, initiating a heartbeat
test once every two minutes to keep alive. For simplicity,
we suppose that the attacker controls one attacking node
S whose public address is PS here.

Attacking procedure
Our evicting-filling attack consists of two phases.

First phase - step a As shown in Fig. 3(1-a) (also simpli-
fied in Algorithm 3), the attacker fills up the connection
pool of victim V through address A by initiating 115 Bit-
coin connections without characteristics from the same
IPv4 address PS.7 Notice that Bitcoin allows multiple
connections from one single address (Saad et al. 2021).
This property significantly reduces the attack cost. If the
connection pool is not full, node V will accept the incom-
ing connections in turn until its pool becomes full. Then
for the remaining pending connections received, node V
will continuously evict as many connections as possible
from all existing connections and try to accept them. If
the connection pool is full, node V will directly enter the
connection eviction phase. From the attacker’s view, he
will eventually establish a certain number of connections
with address A after all his connections are responded to
or timeout disconnected. This is the number of connec-
tions available to address A and we assume it to be AF1 .
At this moment, the AF1 connections will have the high-
est priority for eviction.

First phase—step b As shown in Fig. 3(1-b), the
attacker emits more incoming connections through
address B by initiating 115 connections from address
PS.8 Meanwhile, the attacker monitors evicting connec-
tions with address A. Since the above AF1 connections
associated with A have the highest eviction priority,
V will evict the most recently established connection
or connections from the AF1 connections to accept
incoming connections. From the attacker’s perspective,
he will observe that the number of connections estab-
lished with address B gradually stabilizes (we assume
this number to be BF), and the original AF1 connections
with address A are decreased to AF2 . The equivalence
between the evicting connections count and accepted
incoming connections count is our first expected behav-
ioral characteristic, i.e. AF1 = BF + AF2.

Second phase As shown in Fig. 3(2), the attacker
disconnects actively all connections established with
address A and address B in the first phase. And then he

6 If the two victim addresses do not belong to the same node, filling up their
connection pools needs at most 230 connections.

7 In fact, it is not mandatory to be the same address, the addresses belong-
ing to the same network group are sufficient. But using a single address
reduces the cost of the attack.
8 Using addresses of the same network group with PS is actually sufficient,
but not the cheapest.

Page 8 of 20Yang et al. Cybersecurity (2023) 6:50

fills up the connection pool through address B by initi-
ating 115 connections. After these connections are all
responded to or timeout disconnected, he will record
the number of successfully established connections, BS,

which is the number of connections available to
B. The equivalence between the released connection
slots count and the number of connections success-
fully established with address B is our second expected
behavioral characteristic, i.e. AF1 = BS.

To figuratively show the two behavioral character-
istics, we mounted the entire attack against a Bitcoin
multi-address node built on our server and plotted
Fig. 4. In the first phase (from moment a to b), the
number of connections available to address A, AF1
(106), was first measured. Then 115 connections were
initiated to address B and BF (46) connections were
eventually established, while connections with address
A dropped to AF2 (59). We can see that AF1 is highly
close to BF + AF2 . In the second phase (from moment
b to c), we disconnected all connections with addresses
A and B. Then measured the number of connections
available to address B, BS (106). We can see that AF1 is
highly close to BS. Thus, we can successfully conclude
that addresses A and B belong to the same node.

Attacking process for multiple addresses
An attacker can in-depth use the above linking attack
for two addresses to link all node addresses within a
network, thus achieving a certain scale of privacy leak-
age. The whole process is as follows (also simplified in
Algorithm 4):

• Obtaining the set T of all Bitcoin addresses within
the network.

• Enumerating all possible combinations of addresses
in T.

Fig. 2 Victim model for the linking attack

Fig. 3 Attacking procedure of the linking attack

Page 9 of 20Yang et al. Cybersecurity (2023) 6:50

• Mining the correlation between each pair of
addresses via the evicting-filling attack for two
addresses.

• Clustering associated addresses into nodes.

Finally, the attacker will get a list I = {(IP1, IP2,O − nion · · ·), · · · } ,
where IP1 , IP2 , and Onion are all addresses of the same
node. Based on the results, attackers can link transac-
tions from different addresses of the same node together
to analyze the user’s transaction behavior.

Attack parameters
We note that three factors will affect the attack efficiency
and accuracy, including the number of available connec-
tion slots of the victim, the frequency of evicting connec-
tions caused by normal nodes during the attack duration,
and the fluctuation of available connection slots number.
These factors have a high probability of causing AF1 and
BF + AF2 to be unequal, as well as AF1 and BS. Thus,

we analyze these factors and obtain empirical values for
them through measurements.

Dataset
To facilitate experiments, we construct a dataset consist-
ing of self-run and real-world nodes.

We deployed five self-run nodes on the Bitcoin
Mainnet. Each node is a v22.0 Bitcoin Core running
with default parameters and configured with multi-
ple addresses of various combinations of three network
types, IPv4, IPv6, and Onion (as shown in Table 1).

As mentioned earlier, the linking attack based on
cache map collisions (Pieter 2020) can be launched in
v22.0, through which we also captured some real-world
nodes with multiple addresses of the same network in
the Mainnet. Note that there is currently no quantita-
tive analysis of cache map collision linking, so we sup-
plement this content in Appendix to better explain this
attack. Below, we only present the collection process and
results of Mainnet nodes. From February 20 to February
26, 2022, we obtained all reachable addresses running
v22.0 clients in the Mainnet each day by using an open-
source crawler (Foundation 2010) and captured their
address cache by sending address query requests. During
the daily address cache collecting, we found that some
addresses accept connections but do not respond ADDR
to our GETADDR. So we could not collect all caches
for these addresses and the final number we collected is
shown in Table 3, averaging 3,943 per day. After applying
SimHash (Wikipedia 2022b) and cosine similarity algo-
rithm (Wikipedia 2022a), we considered address caches
with the same SimHash signatures and cosine similar-
ity higher than 90% to be identical.9 Addresses with the
same address cache are clustered on the same node. The
number of collided caches and corresponding clustered
nodes we collected is also shown in Table 3, with a total
of 404 caches and 179 nodes.

The number of available connection slots of the victim
To estimate this number, we crawled 8,601 reachable
addresses in the Mainnet on March 2, 2022. We initiated
115 parallel connections to each address and recorded
the number of eventually established connections. Fig-
ure 5 shows the result. It can be seen that 95% of these
addresses accept incoming connections. 52% accept 5 or
more connections, and 20% accept up to 30 connections.
Only a few nodes do not accept connections, and even
if we can not establish a sufficient number of connec-
tions with them immediately, we can wait a long time to
establish enough connections since the number of their

Fig. 4 Illustrative diagram of two behavioral characteristics. The two
behavioral characteristics: AF1 = AF2 + BF ; AF1 = BS

9 Although the cached addresses are fixed, we found that caches in each
response of the same node varied slightly, mainly due to the IPv6 address
zero compression. So we do not request them to be entirely identical.

Page 10 of 20Yang et al. Cybersecurity (2023) 6:50

available connection slots is continuously and dynami-
cally changing (according to Fig. 9). In addition, although
43% addresses can only accept less than 5 connections,
the multi-address nodes within them can still satisfy two
behavioral characteristics if the 5 connections are not
affected by other factors and only change with the attack
behaviors.

The frequency of evictions caused by normal nodes
during the attack duration
We launched multiple rounds of our evicting-filling
attacks on both self-run and real-world nodes and calcu-
lated the attack duration. Our results are shown in Figs. 6
and 7. Taking the median as a reference value, the attack
time required for the first attacking phase is distributed
between 56 and 157 s, and the attack time required for
whole attack is distributed between 65 and 290 s.

We also measured the frequency of evictions caused by
normal nodes by establishing lots of connections with our
node set and monitoring the change in the number of con-
nections over time. Assume that the attack time required
for the first attacking phase is �t . Figure 8 shows that the
number of evicted connections is no more than 8 in 95% of
the experiments during the �t from 60 to 180 s which cov-
ers the time required for the first phase.

The fluctuation of available connection slots number
Assume that the attack time required for the whole attack
is �t . Since the number of all connection slots is fixed, the
number of available connection slots mainly depends on
the number of existing connections. Thus, we monitored
our self-run nodes in March 2022 and recorded the num-
ber of their existing connections every minute. Figure 9
shows that in the interval �t between 60 s and 360 s that
covers the time required for the whole attacking procedure,
the number does not exceed 7 in 95% of the experiments.

Selection of attack parameters
Considering the impact of the above factors on the attack,
we set two thresholds, TH1 and TH2 , to balance attack
accuracy and efficiency. If the difference between AF1 and
BF + AF2 is less than TH1 , and the difference between AF1
and BS is less than TH2 , we take the address pair as satisfy-
ing two behavioral characteristics.

Since the number of evictions caused by normal nodes
has a 95% probability of not exceeding 8 within the interval
�t from 60 to 180 s, we set the attack parameter TH1 = 8 .
Since there is a 95% probability that the fluctuation of avail-
able connection slots number does not exceed 7 within the
interval �t between 60 and 360 s, we set the attack param-
eter TH2 = 7.

We suppose that there is an interfering address X unre-
lated to address A, with x number of available slots. In the
worst situation, AF1 − 8+ x = AF1 + 8 (AF2 = AF1 − 8)
and x = AF1 ± 7 , thus X will be wrongly linked with
address A. We can solve for x at such situation to be 16 and
AF1 = 23 . In fact, the smaller the number of available con-
nection slots of the victim address, the greater the inter-
ference of the normally evicting frequency. Therefore, we
set a smaller threshold value TH1 = AF1 × α(α < 1) for
AF1 ≤ 23 to ensure the attack accuracy (Based on practical
experience, we set α = 0.2 in our experiments). Similarly,
we set a smaller threshold value TH2 = AF1 × β(β < 1)
for AF2 ≤ 7 (Based on practical experience, we set β = 0.2
in our experiments). In general, the thresholds are set as
follows:

Fig. 5 Distribution of available connection slots number of Mainnet
addresses

Fig. 6 Distribution of attack time required for the first attacking
phase (The dashed line is the median line)

Page 11 of 20Yang et al. Cybersecurity (2023) 6:50

Experiments
With the above two attack parameters, we mounted the
self-run nodes verification experiment and the Mainnet
nodes verification experiment from February 20 to Feb-
ruary 26, 2022, to verify the feasibility of our attack.

Self‑run nodes verification
We conducted a week-long experiment on the eleven
addresses of five self-run nodes. Our goal was to link
all associated addresses and identify the correspond-
ing multi-address nodes on a daily basis without know-
ing the correlations between these addresses at all. As
a small-scale validation experiment, we directly used
these addresses as the set T for linking and then verified
the fifty-five possible combinations of these addresses
sequentially by evicting-filling attacks. our results are
shown in Table 2.

The true positive rate and true negative rate are
extremely high, showing that our method performs
well and one run of attacks can accurately cluster the
addresses of all self-run nodes on most days. Especially,
the false positive rates are 0%, which means that there
were no unrelated address pairs being clustered to the
same node and reflects the strong identity of the two
behavioral characteristics we designed. The false nega-
tive rates showed there were some misjudgments in the
attacks of February 24 and February 26, which means
address pairs belonging to the same nodes were judged

TH1 =
8 AF1 > 23

AF1 × 0.2 AF1 ≤ 23

TH2 =
7 AF1 > 7

AF1 × 0.2 AF1 ≤ 7

as unassociated. The possible reason is that the connec-
tion pool fluctuations of misjudging nodes during that
attack duration exceed the limit of our attack parameters,
including the temporary full-state of the victim connec-
tion pool, the frequency of evicting connections caused
by normal nodes, and the fluctuating number of exist-
ing connections. To validate this, we conducted a second
round of attacks, and these misjudgments were resolved
successfully. In short, this experiment verifies that our
evicting-filling attack is feasible for both same-network
and cross-network address linking, with an average accu-
racy of 96.9% for one round of attacks.

Mainnet nodes verification
In this experiment, our goal was to verify the correla-
tions between real-world addresses. During the verifica-
tion, we found that there were some dynamic addresses

Fig. 7 Distribution of attack time required for the whole attack (The
dashed line is the median line)

Fig. 8 Probability density of normally evicted connections number
for multi-address nodes

Fig. 9 Probability density of fluctuating number of existing
connections

Page 12 of 20Yang et al. Cybersecurity (2023) 6:50

among the dataset. The caches of such addresses collided,
but they were active in the Bitcoin network successively,
with no overlap in time. The possible reason could be that
these nodes switched their proxies or their hosts used
DHCP. Our attack cannot link these addresses, as they
do not share the connection pool simultaneously. Mean-
while, we found that there were also some addresses of
supernodes. The clients of such nodes are often specially
modified by their users, making their connection pool
very large while the exact size is unknown to us. It’s hard
to fill their pools up, so our attack is also not applicable
to them. For the remaining node addresses, we verified
them by our evicting-filling attacks, and the results are
shown in Table 3.

After one round of attacks, we get an average true posi-
tive rate of 82% and an average false negative rate of 18%
after one round of attacks. This true positive rate is lower
than that of self-run nodes and the false negative rate is
higher than that of self-run nodes, which may be because
the standard connection evictions and connection pools
of real-world nodes fluctuate more volatile. To validate
this, we conducted more consecutive rounds of attacks.
As shown in Fig. 10, the false negative rate significantly
decreases as the number of attacking rounds increases.
This experiment was conducted against real-world nodes.
Although the cache map was used to collect experimen-
tal addresses, we did not use this property throughout
our verification. The high true positive rate and low false
negative rate show that our evicting-filling attack still has
strong feasibility and high accuracy in the real world.

In addition, we classified the local network types of the
105 multi-address nodes collected and showed results in
Table 4.10 This classification result confirms the diver-
sity and complexity of the multi-address nodes in the
real world. Since the same-network linking attack based
on cache map collisions can only be applied in v22.0, we
believe that our attack is better in cross-network linking
and same-network linking against all versions as there has
no attention been given to the unisolation in incoming
connection processing mechanism yet.

More details
Conducting multiple rounds of attacks is a way to
improve the accuracy rate by avoiding misjudgment
caused by accidental connection pool fluctuations, which
include the temporary full-state of the victim connec-
tion pool, the frequency of evicting connections caused
by normal nodes, and the fluctuation number of existing
connections. In our experiments, self-run nodes verifica-
tion and Mainnet nodes verification, we did not modify

our attack parameters since the probability of each fluc-
tuation occurring is small (only about 5%) and our
parameters (obtained from long-term measurements)
cover 95% of our measurement experiments. Instead,
we took advantage of the time interval among multiple
rounds of attacks since one round of our attacks lasted
about two hours. Such time interval plays a role in avoid-
ing accidental connection pool fluctuations, as the fluc-
tuations depend on how busy the Bitcoin network is and
the timing of multiple attacks may cover the network
state from busy to non-busy.

Fig. 10 False negative rate decreases with increasing number
of attack rounds

Table 1 Address configuration for self-run nodes

Node Addresses count Network types
of addresses

Node 1 2 IPv4/IPv6

Node 2 2 IPv4/IPv4

Node 3 2 IPv4/Onion

Node 4 3 IPv4/IPv6/Onion

Node 5 2 Onion/Onion

Table 2 Self-run nodes verification results

Date Attacks
count
(%)

True
positive
(%)

True
negative
(%)

False
positive
(%)

False
negative
(%)

2022-02-20 55 100 100 0 0

2022-02-21 55 100 100 0 0

2022-02-22 55 100 100 0 0

2022-02-23 55 100 100 0 0

2022-02-24 55 85.7 100 0 14.3

2022-02-25 55 100 100 0 0

2022-02-26 55 71.4 100 0 28.6

10 We unexpectedly found that eleven nodes are across network types,
which may be because their users did not use the addr-response-caching
mechanism properly.

Page 13 of 20Yang et al. Cybersecurity (2023) 6:50

There is another way to mitigate the impact of acciden-
tal connection pool fluctuations. The attack parameters
we suggested in this paper are empirical values obtained
from long-term measurements of three factors that cor-
respond to these fluctuations, but these fluctuations are
in real-time. Thus, it is recommended to deploy some
sampling nodes in the Bitcoin network and measure
these three factors in real time. Based on the collected
real-time data, we can statistics the distribution of avail-
able connection slots number of Mainnet addresses, and
calculate the probability density of normally evicted con-
nections number for multi-address nodes and fluctuating
number of existing connections. According to the analy-
sis, we can choose reasonable values of attack parameters
that can cover most measurements. Such instant val-
ues reflect how busy the network is, thus mitigating the
impact of fluctuations on attacks.

Attack cost
For ethical reasons, we do not conduct a network-
wide attack and only analyze the cost of it here. Sup-
pose the number of all public Bitcoin addresses in the
network is N and the time required for one attack is t.
Verifying whether any address A∗ in the network is asso-
ciated with a given address, A, requires N − 1 attacks
and lasts T0 = t(N − 1) . And verifying any addresses
A and A

∗ requires C2
N
=

(N (N−1))
2

 attacks and lasts

T = t ×
(N (N−1))

2
 . It can be seen that the time cost of a

network-wide attack is high. In order to solve this prob-
lem, we propose two acceleration methods to filter out
definitely unassociated address pairs before evicting-fill-
ing attacks as follows:

Unassociated address pair filtering based on basic
node information After a TCP connection is established
between Bitcoin addresses, VERSION messages are first
sent to exchange their basic node information, which
includes version, services, user_agent, start_height, relay
fields (Wiki 2021). Among them, version identifies the
protocol version used by the corresponding node, ser-
vices identifies the functions it supported, user_agent
identifies its user agent information, start_height iden-
tifies its synchronization height, and relay identifies
whether the node is involved in transaction forwarding.
Since the basic information of the same node is identi-
cal, an attacker can determine that addresses A and A∗
with different basic node information ([version, services,
user_agent, start_height, relay]) are unassociated.

Unassociated address pair filtering based on synchro-
nized blocks Block synchronization of Bitcoin nodes is
realized through three messages INV, GETDATA, and
BLOCK (Developer 2022). After a block is received or
created by address A, the transaction hash is first sent
to address B via an INV message. If address B has not
received the block before, it will send back a GETDATA
message, and address A will return the complete block
information via a BLOCK message. Since the blocks
synchronized by the same node are identical, when an
attacker receives an INV from address A, he can imme-
diately send a GETDATA to address A∗ . If address A∗
returns a BLOCK, it may be associated with A. Other-
wise, they must not belong to the same node.

To simply verify the two methods, we conducted
the following experiment. Through network snapshots
crawled from Bitnodes between July 12 and July 16, 2022,
we calculated 4593 unique Bitcoin Onion addresses

Table 3 Mainnet nodes verification results

CN means clustered nodes, DN means dynamic nodes, SN means supernodes, AN means remaining nodes to be attacked

Date Address caches Collisions
count

CN DN SN AN Attack counts True‑positive
(%)

False‑
negative
(%)

2022-02-20 3910 69 31 11 4 16 28 87.5 12.5

2022-02-21 3894 50 23 5 2 16 23 75 25

2022-02-22 3889 54 24 8 2 14 21 78.6 21.4

2022-02-23 3937 67 32 13 2 17 21 82.4 17.6

2022-02-24 4008 61 23 8 2 13 71 92.3 7.7

2022-02-25 3983 52 24 7 2 15 21 73.3 26.7

2022-02-26 3980 51 22 6 1 15 23 86.7 13.3

Table 4 Network type combinations of multi-address nodes

Network type Number
of nodes

IPv4/IPv4 59

IPv6/Ipv6 10

Onion/Onion 25

IPv4/IPv6 2

IPv4/Onion 1

IPv4/IPv6/Onion 8

Page 14 of 20Yang et al. Cybersecurity (2023) 6:50

remaining persistently online and targeted them for link-
ing. Before acceleration, the original number of address
pairs that need to be attacked is C2

4593 = 10, 545, 528 .
According to the 1093 network snapshots during these
four days, we screened out address pairs with differ-
ent basic node information or different synchroniza-
tion heights at the same time. To accommodate the not
entirely real-time snapshots,11 we require that the block
heights of candidate address pairs differ by two or less
in the same snapshot, not exactly equal. The result is
shown in Fig. 11, it can be seen that 10,464,488 (99%)
address pairs are filtered out after applying all snapshots.
Through analyzing the remaining pairs, we get 4,072
addresses and each of them has an average of ≈ 40 poten-
tially associated addresses, with a maximum of 2,482 and
a minimum of 1. Thus in the worst case, 2,482 attacks are
required for a given address, which are lasting only about
2, 482× 290s ≈ 8.3 days for one attacking node. Moreo-
ver, the total time for all 4593 Onion addresses can be
reduced to 81040× 290s ÷ 10 ≈ 27 days for ten attack-
ing nodes. In fact, this attack time will be much shorter
if these addresses are a mixture of IPv4, IPv6 and Onion.

In our attack, the attacking nodes only need to be con-
figured with a public network address and capable of
running lightweight scripts. Thus, an attacker can simply
rent basic cloud virtual machines ($4 per month for one
VM (Ocean 2022)) and acquire static IP addresses (≈ $39
for one IPv4 address (Group 2022)). Since attacking one
network consisting of 4593 nodes lasts at most 27 days
for ten attacking nodes, the cost is ≈ $430 . If an attacker
wants to increase the attack accuracy to 95%, four rounds
attacking costs ≈ $550.

Application
In this section, we discuss our application scenarios in
detail.

As shown in Fig. 12, Bitcoin communicates at the net-
work layer using network addresses as identifiers and
trades at the data layer using pseudonyms. We see cor-
relating all transactions of a user as a breach of the
data layer pseudonym mechanism, which exposes the
user’s transaction behavior. And associating all network
addresses of a user is a violation of the network layer
address unlinkability, which completely discloses the
user’s network identities. Traditional transaction tracing
techniques can only correlate each transaction with the
source address that issued it, but cannot infer the asso-
ciation between each address and the user. Thus, while
it undermines Bitcoin’s anonymity to some extent, it
does not fully break through the anonymity protection

mechanisms at the data and network layers. The tradi-
tional pseudonym clustering technology can associate all
transactions of a user to break the anonymity protection
of the data layer, but it does not break through the net-
work layer.

To fill the gap where the association between addresses
and users cannot be inferred, we propose two solutions.
The first solution is to apply the pseudonym clustering
results to the transaction tracing results, associating dif-
ferent network addresses at the bottom layer through the
correlation of upper-layer transactions. There has been
no research work in this direction so far. We believe that
pseudonyms clustering is essentially achieved with the
help of heuristic rules, which have inherent limitations
in terms of both comprehensiveness and accuracy. The
second solution is the address linking attack. This attack
exploits flaws in the design and implementation of Bit-
coin network mechanisms, which can provide an intuitive
solution to the problem of unlinkability between network
addresses. In addition, the combination of address link-
ing attack and traditional transaction tracing technology
can cluster the upper-layer transactions based on the cor-
relation of the underlying addresses. In this way, the dou-
ble anonymity of the Bitcoin data layer and network layer
can also be destructed.

The complete deanonymization process of our evict-
ing-filling attack combined with transaction tracing tech-
nology is shown in Fig. 13. First, the attacker deploys
eavesdropper nodes in the network and establish connec-
tions with all online addresses. Once the eavesdropper
node receives transactions, such as txA and txB , it traces
them back to the earliest forwarded addresses, such as
A and B, according to the received time series. Next,
the node can check whether A and B belong to the same
node through the evicting-filling attack. If A and B are
linked, the transactions txA and txB can be clustered to a

Fig. 11 The number of filtered address pairs increases as the number
of overlay snapshots increases

11 According to our observations, Bitnodes saves one network snapshot
every 5 min and the node block heights it provides are not completely real-
time.

Page 15 of 20Yang et al. Cybersecurity (2023) 6:50

user whose network identity is (A, B). If A and B are not
linked, then transaction txA belongs to one user whose
network identity is (A) and transaction txB belongs to
another user whose network identity is (B).

Impact and countermeasure
Impacts
Through analysis of Bitcoin source code from v0.10.0 to
v24.0, we find that Bitcoin shares the connection pool
in all versions. More incoming connections are directly
dropped in versions v0.10.0-v0.13.0, which makes the
interference between address connectivity more obvi-
ous. The connection eviction strategy is introduced in
versions from v0.13.0, along with the idea of evicting
connections from the network group having the most
connections and youngest member. Thus, all versions
of Bitcoin are affected by the attack described in this
paper, even the latest released official version 24.0. Fig-
ure 14 shows source code comparison of the incoming
connection processing mechanisms for Bitcoin v22.0
and v24.0.

Besides, we have manually investigated mainstream
Bitcoin variants, Zcash, Litecoin, Dogecoin, Bitcoin
Cash, and Dash, from Github repositories. These cryp-
tocurrencies follow very similar network designs to Bit-
coin. We take Bitcoin Cash as an example and show the
source code comparison of the incoming connection
processing mechanisms for Bitcoin v22.0 and Bitcoin
Cash v26.0 in Fig. 15. For simplicity, we just position
associated locations of the shared connection pool and
deterministic eviction strategy in Table 5 for the rest
cryptocurrencies.

Countermeasures
Here we suggest two countermeasures for our linking.

Isolate the connection pool by different local addresses
Since our evicting-filling attack exploits Bitcoin shared
connection pool, thus the first measure is to check the
local address used to accept one new connection and
assigns a separate connection pool for each local address
when processing incoming connections. As for the size
of each connection pool, it can be set by either Bitcoin
developers or users. By using isolated pools, connections
associated with different local addresses lose the ability to
affect each other.

Reduce the predictability of evicting connections count
and the releasing empty slots count
Our linking attack needs to be completed in a short
time and depends on real-time changes in the number
of connections. If Bitcoin adds random time each time
it disconnects instead of disconnecting in real-time, the
attacker will have to wait a longer time to observe the
change in the number of connections, which makes the
attack more susceptible to three affecting factors. In this
way, the evicting connections count and releasing slots
count are difficult to be predicted.

From the point of our view, the previous works (Pie-
ter 2020; practicalswift 2020) actually exploited the flaw
of shared address cache in the addr-response-caching
mechanism and Grundmann et al. (2022) exploited
the flaw of shared relay addresses in the address relay
mechanism. These works explored the unisolation in
different network mechanisms but did not awaken

Fig. 12 Multi-dimensional linking view for Bitcoin

Page 16 of 20Yang et al. Cybersecurity (2023) 6:50

developers’ awareness of a comprehensive analysis
of unisolation. In addition to the problem of shared
connection pool in the incoming connection process-
ing mechanism, We also find that in the banning and
discouragement mechanism, all local addresses share
the banned and discouraged lists. For each address in
the banned list, incoming connections from it will be
rejected by all local addresses. For addresses in the dis-
couraged list, connections with them are preferred for
eviction no matter from which local address the new
incoming connection is received. These are all poten-
tial pitfalls that could be utilized to undermine address
unlinkability, so the Bitcoin developing community may
need to seriously analyze the isolation in all network
mechanisms in the next upgrade.

Conclusion
In this paper, we present the evicting-filling attack that
can link multiple addresses belonging to the same Bit-
coin node regardless of network type. The attack is a
new side channel attack, which is the first work to focus
on the shared connection pool and deterministic con-
nection eviction strategy of Bitcoin’s incoming connec-
tion processing mechanism. We design a multi-step
attacking procedure and mount this attack in the Main-
net, achieving high accuracy. To be noticed, this attack
can be combined with traditional transaction trac-
ing techniques for further de-anonymization against
both the data and network layers. In such an applica-
tion scenario, the attack can link transactions from dif-
ferent addresses and associate clear and anonymous
addresses of a dual-stack system, exposing the trans-
action behavior and real network identities of users.

By demonstrating the great harm that can be caused
by unisolation, We take this work as a stepping stone
and aim at awakening Bitcoin developers’ awareness of
comprehensive analysis for unisolation in all network
mechanisms.

In the future, we are planning to further utilize other
unisolated natures of existing network mechanisms, such
as shared banned and discouraged lists. And then do a
comparative analysis of the efficiency and accuracy of dif-
ferent address-linking attacks. In addition, we mention
combining transaction tracking and transaction clus-
tering as another solution for de-anonymization in this
paper. Our next step is to validate the feasibility of this
solution.

User safety and ethics
We disclosed the attack to Bitcoin Core developers before
the publishing of this article. To protect user privacy, we
restricted from linking in the whole Bitcoin Mainnet.
Although analyzing affecting factors requires us to con-
duct measurements on the Mainnet, we do not cause any
network anomalies. Moreover, we do not use our linking
results for further de-anonymization attacks or privacy
acquisition.

Appendix
Quantitative analysis for cache map collision linking
Bitcoin developers implemented addr-response-caching
mechanism through the cache map to prevent neighbor-
ing nodes leakage. The cache map stores cached addresses
that responded to address query requests. Cache map col-
lision refers to the phenomenon of two different Bitcoin
addresses with the same address cache. In v22.0 of Bitcoin,

Fig. 13 Complete deanonymization process for evicting-filling attack combined with transaction traceability technology

Page 17 of 20Yang et al. Cybersecurity (2023) 6:50

the cache map is indexed only by network types of local
addresses. Thus, addresses of the same node with the same
network type must collide on their cache maps. We now
demonstrate why addresses with conflicting cache maps
must belong to the same node.

Each Bitcoin address database contains a maximum of
81,920 addresses, and the actual size is typically smaller.
Thus, we counted the address database sizes of our five self-
run nodes that have been running on the Mainnet for two
weeks. As shown in Fig. 16, we can see that their address
database size is relatively stable, with an average of 65,731

Fig. 14 Example: Source code comparison of incoming connection processing mechanism for Bitcoin v22.0 and v24.0 (the left side is the code
of v22.0 and the right is of v24.0)

Page 18 of 20Yang et al. Cybersecurity (2023) 6:50

Fig. 15 Example: Source code comparison of incoming connection processing mechanism for Bitcoin v22.0 and Bitcoin Cash v26.0 (the left side
is the code of Bitcoin and the right is of Bitcoin Cash)

Table 5 Source code locations of two connection pool processing characteristics of mainstream Bitcoin variants

Cryptocurrency Version Shared connection pool Deterministic eviction strategy

Zcash 5.4.2 At line No.1091 of Zcash (2023) At line No.983 of Zcash (2023)

Litecoin 0.21 At line No.1157 of Litecoin (2022) At line No.1015 of Litecoin (2022)

Dogecoin 1.14.7 At line No.1107 of Dogecoin (2023) At line No.995 of Dogecoin (2023)

Bitcoin Cash 26.0 At line No.1099 of Cash (2023) At line No.947 of Cash (2023)

Dash 19.x At line No.1218 of Dash (2022) At line No.1147 of Dash (2022)

Page 19 of 20Yang et al. Cybersecurity (2023) 6:50

addresses. Meanwhile, we counted the number of overlap-
ping addresses with identical address information (network
address, running port, timestamp, service list, network type)
in the address database of any two nodes from March 2 to
March 18. As shown in Fig. 17, the number of overlapping
nodes stabilizes after a period of growth. The highest aver-
age number of overlapping addresses is on March 18, which
is 7,317. According to these measurements, the probability
of generating the same address cache containing 1000 iden-
tical addresses from two separate Bitcoin nodes is less than:

Thus, it is unlikely for the cache maps of different nodes
to collide and we believe that addresses with the same
address cache belong to the same node.

(

C
1000
7317

C
1000
65731

)2

=

(

7317!(65731− 1000)!

(7317− 1000)!65731!

)2

< 10−981

Acknowledgements
This work was supported by the Key Research and Development Program for
Guangdong Province under Grant 2019B010137003 and the Beijing Natural
Science Foundation under Grant M21037. Besides, we thank our anonymous
reviewers for their helpful feedback and guidance.

Author contributions
HY: investigation, methodology, materials, writing, editing, experiment, valida-
tion, review, resources. JS: discussion, review, supervision. YG, XW, RS, DW:
discussion, review. All authors read and approved the final manuscript.

Funding
This work was supported by the Key Research and Development Program for
Guangdong Province under Grant 2019B010137003 and the Beijing Natural
Science Foundation under Grant M21037.

Availability of data and materials
Our data and codes are provided at https:// github. com/ twink leluna/ Evict
ing- Filli ng/. For the multiple addresses belonging to the same node, we
desensitized them.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 4 May 2023 Accepted: 26 July 2023

References
Androulaki E, Karame GO, Roeschlin M, Scherer T, Capkun S (2013) Evaluating

user privacy in bitcoin. In: Financial cryptography and data security: 17th
international conference, FC 2013, Okinawa, Revised Selected Papers 17,
Springer, pp 34–51

Biryukov A, Pustogarov I (2015) Bitcoin over tor isn’t a good idea. In: 2015 IEEE
symposium on security and privacy, IEEE, pp 122–134

Biryukov A, Khovratovich D, Pustogarov I (2014) Deanonymisation of clients in
bitcoin p2p network. In: Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security, pp 15–29

Blockchair.com: Blockchair (2023). https:// block chair. com/. Accessed 27 Mar 2023
Cai L, Sun Y, Zheng Z, Xiao J, Qiu W (2021) Blockchain in China. Commun ACM

64(11):88–93
Cash B (2023) Shared connection pool and deterministic eviction logic in Bitcoin

Cash. https:// github. com/ bitco in- cash- node/ bitco in- cash- node/ blob/ v26.0.
0/ src/ net. cpp. Accessed 7 Mar 2023

Community BD (2015a) Better fingerprinting protection for non-main-chain
getdatas. https:// github. com/ bitco in/ bitco in/ commit/ 85da- 07a5a 001a5
63488 38243 5202b 74a3e 3e964a. Accessed 5 Mar 2023

Community BD (2015b) Ignore getaddr messages on Outbound connections.
https:// github. com/ bitco in/ bitco in/ commit/ dca79 9e1db 6e- 319fd d47e0
bfdb0 38eab 0efab b85. Accessed 5 Mar 2023

Community BD (2015c) Reduce fingerprinting through timestamps in ’addr’ mes-
sages. https:// github. com/ bitco in/ bitco in/ commit/ 9c- 27379 01b52 03f26
7d21d 72801 9d64b 46f1d 9f3. Accessed 5 Mar 2023

Community BD (2020) Cache responses to GETADDR to prevent topology leaks.
https:// github. com/ bitco in/ bitco in/ pull/ 18991. Accessed 5 Mar 2023

Community BD (2022a) AcceptConnection. https:// github. com/ bitco in/ bitco in/
blob/ v22.0/ src/ net. cpp. Accessed 2022

Community BD (2022b) Add randomness on every cycle to avoid the possibility
of P2P fingerprinting. https:// github. com/ bitco in/ bitco in/- blob/ master/ src/
net_ proce ssing. cpp. Accessed 5 Mar 2023

Community BD (2022c) AttemptToEvictConnection. https:// github. com/ bitco in/
bitco in/ blob/ v22.0/ src/ net. cpp. Accessed 2022

Fig. 16 Node address database size change

Fig. 17 Daily average number overlapping addresses in the address
database of self-run nodes

https://github.com/twinkleluna/Evicting-Filling/
https://github.com/twinkleluna/Evicting-Filling/
https://blockchair.com/
https://github.com/bitcoin-cash-node/bitcoin-cash-node/blob/v26.0.0/src/net.cpp
https://github.com/bitcoin-cash-node/bitcoin-cash-node/blob/v26.0.0/src/net.cpp
https://github.com/bitcoin/bitcoin/commit/85da-07a5a001a563488382435202b74a3e3e964a
https://github.com/bitcoin/bitcoin/commit/85da-07a5a001a563488382435202b74a3e3e964a
https://github.com/bitcoin/bitcoin/commit/dca799e1db6e-319fdd47e0bfdb038eab0efabb85
https://github.com/bitcoin/bitcoin/commit/dca799e1db6e-319fdd47e0bfdb038eab0efabb85
https://github.com/bitcoin/bitcoin/commit/9c-2737901b5203f267d21d728019d64b46f1d9f3
https://github.com/bitcoin/bitcoin/commit/9c-2737901b5203f267d21d728019d64b46f1d9f3
https://github.com/bitcoin/bitcoin/pull/18991
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.cpp
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.cpp
https://github.com/bitcoin/bitcoin/-blob/master/src/net_processing.cpp
https://github.com/bitcoin/bitcoin/-blob/master/src/net_processing.cpp
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.cpp
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.cpp

Page 20 of 20Yang et al. Cybersecurity (2023) 6:50

Community BD (2022d) Bitcoin v22.0. MAX_PEER_CONNECTIONS/MAX_-OUT-
BOUND_FULL_RELAY_CONNECTIONS/MAX_BLOCK_RELAY-_ONLY-_CON-
NECTIONS. https:// github. com/ bitco in/ bitco in/ blob/ v22.0/ src/ net.h.
Accessed 2022

Community BD (2022e) mapLocalHost. https:// github. com/ bitco in/ bitco in/ blob/
v22.0/ src/ net. cpp Accessed 19 Mar 2023

Community BD (2022f) Noban NetPermissionFlag. https:// github. com/- bitco in/
bitco in/ blob/ v22.0/ src/ net_ permi ssions. h# L31. Accessed 27 Aug 2022

Community BD (2022g) Prevent block index fingerprinting by sending additional
getheaders messages. https:// github. com/ bitco in/- bitco in/ pull/ 24571.
Accessed 27 Aug 2022

Community BD (2022h) Protect connections with certain characteristics. https://
github. com/ bitco in/ bitco in/ blob/ d571c f2d24 21c6f 8efb2 b61ca- 84403 4eaf2
30945/ src/ node/ evict ion. cpp# L180. Accessed 27 Aug 2022

Community BD (2022i) Stochastical (IP) address manager. https:// git- hub. com/
bitco in/ bitco in/ blob/ v22.0/ src/ addrm an.h. Accessed 19 Mar 2023

Community BD (2022j) vNodes. https:// github. com/ bitco in/ bitco in/ blob/ v22.0/
src/ net.h. Accessed 19 Mar 2023

Community BD (2023a) I2P support in Bitcoin Core. https:// github. com/ bitco in/
bitco in/ commi ts/ master/ doc/ i2p. md. Accessed 5 Mar 2023

Community BD (2023b) Tor support in Bitcoin Core. https:// github. com/ bitco in/
bitco in/ blob/ master/ doc/ tor. md. Accessed 5 Mar 2023

Dash: Shared connection pool and deterministic eviction logic in Dash (2022).
https:// github. com/ dashp ay/ dash/ blob/ v19.x/ src/ net. cpp. Accessed 7 Mar
2023

Developer B (2022) Bitcoin Block Synchronization. https:// devel oper. bitco in. org/
devgu ide/ p2p_ netwo rk. html Accessed 5 Mar 2023

Dogecoin: shared connection pool and deterministic eviction logic in Dogecoin
(2023). https:// github. com/ dogec oin/ dogec oin/ blob/1. 14.7- dev/ src/ net.
cpp. Accessed 7 Mar 2023

Fanti G, Viswanath, P (2017) Anonymity properties of the bitcoin p2p network.
Preprint arXiv: 1703. 08761

Foundation B (2010) Bitnodes: reachable Bitcoin nodes. https:// bitno des. io/.
Accessed 25 Mar 2023

Franzoni F, Daza V (2020) Improving bitcoin transaction propagation by leverag-
ing unreachable nodes. In: 2020 IEEE international conference on block-
chain (Blockchain), IEEE, pp 196–203

Gao F, Mao H, Wu Z, Shen M, Zhu L, Li Y (2018) Lightweight transaction tracing
technology for bitcoin. Chin J Comput 41:989–1004

Group IM (2022) IPv4 Transfer Pricing. https:// ipv4m arket group. com/ ipv4- prici ng/
Accessed 27 Aug 2022

Grundmann M, Baumstark M, Hartenstein H (2022) On the peer degree distribu-
tion of the bitcoin p2p network. In: 2022 IEEE international conference on
blockchain and cryptocurrency (ICBC), IEEE, pp 1–5

Hou H (2017) The application of blockchain technology in e-government in
china. In: 2017 26th international conference on computer communication
and networks (ICCCN), IEEE, pp 1–4

Khalilov MCK, Levi A (2018) A survey on anonymity and privacy in bitcoin-like
digital cash systems. IEEE Commun Surv Tutor 20(3):2543–2585

Koshy P, Koshy D, McDaniel P (2014) An analysis of anonymity in bitcoin using
p2p network traffic. In: Financial cryptography and data security: 18th
international conference, FC 2014, Christ Church, Revised Selected Papers
18, Springer, pp 469–485

Litecoin: Shared connection pool and deterministic eviction logic in Litecoin
(2022). https:// github. com/ litec oin- proje ct/ litec oin/ blob/0. 21/ src/ net. cpp.
Accessed 7 Mar 2023

Mastan ID, Paul S (2018) A new approach to deanonymization of unreachable
bitcoin nodes. In: Cryptology and network security: 16th international
conference, CANS 2017, Hong Kong, Revised Selected Papers 16, Springer,
pp 277–298

Meiklejohn S, Pomarole M, Jordan G, Levchenko K, McCoy D, Voelker GM, Savage
S (2013) A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the 2013 conference on internet measurement
conference, pp 127–140

Miller A, Litton J, Pachulski A, Gupta N, Levin D, Spring N, Bhattacharjee B (2015)
Discovering bitcoin’s public topology and influential nodes

Nadeem MA, Liu Z, Pitafi AH, Younis A, Xu Y (2021) Investigating the adoption
factors of cryptocurrencies-a case of bitcoin: empirical evidence from china.
SAGE Open 11(1):2158244021998704

Ober M, Katzenbeisser S, Hamacher K (2013) Structure and anonymity of the
bitcoin transaction graph. Future Internet 5(2):237–250

Ocean D (2022) Simple, predictable pricing for Basic Droplets. https:// www. digit
aloce an. com/ prici ng/ dropl ets. Accessed 27 Aug 2022

Pieter W (2020) Address linking in the same network based on cache map
collisions. https:// github. com/ bitco in/ bitco in/ pull/ 18991-# issue- comme nt-
66821 9345. Accessed 5 Mar 2023

practicalswift: address linking cross networks based on cache map collisions
(2020). https:// github. com/ bitco in/ bitco in/ pull/ 18991-# issue comme nt-
62974 5947. Accessed 5 Mar 2023

Reid F, Harrigan M (2013) An analysis of anonymity in the Bitcoin system. Springer
Saad M, Chen S, Mohaisen D (2021) Syncattack: double-spending in bitcoin

without mining power. In: Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, pp 1668–1685

WalletExplorer.com: WalletExplorer (2023). https:// www. walle texpl orer. com/.
Accessed 27 Mar 2023

Wang L, Pustogarov I (2017) Towards better understanding of bitcoin unreach-
able peers. Preprint arXiv: 1709. 06837

Wang M, Ichijo H, Xiao B (2020) Cryptocurrency address clustering and labeling.
Preprint arXiv: 2003. 13399

Wiki B (2021) Bitcoin VERSION Message. https:// en. bitco in. it/ wiki/ Proto col_
docum entat ion# versi on. Accessed 5 Mar 2023

Wikipedia: cosine similarity (2022a). https:// en. wikip edia. org/ wiki/ Cosine_ simil
arity. Accessed 7 Mar 2023

Wikipedia: SimHash (2022b). https:// en. wikip edia. org/ wiki/ SimHa sh. Accessed 7
Mar 2023

Zcash: Shared connection pool and deterministic eviction logic in Zcash (2023).
https:// github. com/ zcash/ zcash/ blob/ v5.4. 2/ src/ net. cpp. Accessed 7 Mar
2023

Zheng B, Zhu L, Shen M, Du X, Guizani M (2020) Identifying the vulnerabilities
of bitcoin anonymous mechanism based on address clustering. Sci China
Inf Sci 63:1–15

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.h
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.cpp
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.cpp
https://github.com/-bitcoin/bitcoin/blob/v22.0/src/net_permissions.h#L31
https://github.com/-bitcoin/bitcoin/blob/v22.0/src/net_permissions.h#L31
https://github.com/bitcoin/-bitcoin/pull/24571
https://github.com/bitcoin/bitcoin/blob/d571cf2d2421c6f8efb2b61ca-844034eaf230945/src/node/eviction.cpp#L180
https://github.com/bitcoin/bitcoin/blob/d571cf2d2421c6f8efb2b61ca-844034eaf230945/src/node/eviction.cpp#L180
https://github.com/bitcoin/bitcoin/blob/d571cf2d2421c6f8efb2b61ca-844034eaf230945/src/node/eviction.cpp#L180
https://git-hub.com/bitcoin/bitcoin/blob/v22.0/src/addrman.h
https://git-hub.com/bitcoin/bitcoin/blob/v22.0/src/addrman.h
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.h
https://github.com/bitcoin/bitcoin/blob/v22.0/src/net.h
https://github.com/bitcoin/bitcoin/commits/master/doc/i2p.md
https://github.com/bitcoin/bitcoin/commits/master/doc/i2p.md
https://github.com/bitcoin/bitcoin/blob/master/doc/tor.md
https://github.com/bitcoin/bitcoin/blob/master/doc/tor.md
https://github.com/dashpay/dash/blob/v19.x/src/net.cpp
https://developer.bitcoin.org/devguide/p2p_network.html
https://developer.bitcoin.org/devguide/p2p_network.html
https://github.com/dogecoin/dogecoin/blob/1.14.7-dev/src/net.cpp
https://github.com/dogecoin/dogecoin/blob/1.14.7-dev/src/net.cpp
http://arxiv.org/abs/1703.08761
https://bitnodes.io/
https://ipv4marketgroup.com/ipv4-pricing/
https://github.com/litecoin-project/litecoin/blob/0.21/src/net.cpp
https://www.digitalocean.com/pricing/droplets
https://www.digitalocean.com/pricing/droplets
https://github.com/bitcoin/bitcoin/pull/18991-#issue-comment-668219345
https://github.com/bitcoin/bitcoin/pull/18991-#issue-comment-668219345
https://github.com/bitcoin/bitcoin/pull/18991-#issuecomment-629745947
https://github.com/bitcoin/bitcoin/pull/18991-#issuecomment-629745947
https://www.walletexplorer.com/
http://arxiv.org/abs/1709.06837
http://arxiv.org/abs/2003.13399
https://en.bitcoin.it/wiki/Protocol_documentation#version
https://en.bitcoin.it/wiki/Protocol_documentation#version
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/SimHash
https://github.com/zcash/zcash/blob/v5.4.2/src/net.cpp

	Evicting and filling attack for linking multiple network addresses of Bitcoin nodes
	Abstract
	Introduction
	Related works
	Background
	Bitcoin network
	Bitcoin address management

	Our linking attack
	Basic idea
	Attacking procedure for one pair addresses
	Attack model
	Attacking procedure

	Attacking process for multiple addresses
	Attack parameters
	Dataset
	The number of available connection slots of the victim
	The frequency of evictions caused by normal nodes during the attack duration
	The fluctuation of available connection slots number
	Selection of attack parameters

	Experiments
	Self-run nodes verification
	Mainnet nodes verification
	More details

	Attack cost
	Application
	Impact and countermeasure
	Impacts
	Countermeasures
	Isolate the connection pool by different local addresses
	Reduce the predictability of evicting connections count and the releasing empty slots count

	Conclusion
	User safety and ethics
	Appendix
	Quantitative analysis for cache map collision linking

	Acknowledgements
	References

