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Abstract 

Bitcoin is a decentralized P2P cryptocurrency. It supports users to use pseudonyms instead of network addresses 
to send and receive transactions at the data layer, hiding users’ real network identities. Traditional transaction tracing 
attack cuts through the network layer to directly associate each transaction with the network address that issued 
it, thus revealing the sender’s network identity. But this attack can be mitigated by Bitcoin’s network layer privacy 
protections. Since Bitcoin protects the unlinkability of Bitcoin addresses and there may be a many-to-one relation-
ship between addresses and nodes, transactions sent from the same node via different addresses are seen as com-
ing from different nodes because attackers can only use addresses as node identifiers. In this paper, we proposed 
the evicting and filling attack to expose the correlations between addresses and cluster transactions sent from different 
addresses of the same node. The attack exploited the unisolation of Bitcoin’s incoming connection processing mecha-
nism. In particular, an attacker can utilize the shared connection pool and deterministic connection eviction strategy 
to infer the correlation between incoming and evicting connections, as well as the correlation between releasing 
and filling connections. Based on inferred results, different addresses of the same node with these connections can be 
linked together, whether they are of the same or different network types. We designed a multi-step attack procedure, 
and set reasonable attack parameters through analyzing the factors that affect the attack efficiency and accuracy. We 
mounted this attack on both our self-run nodes and multi-address nodes in real Bitcoin network, achieving an aver-
age accuracy of 96.9% and 82%, respectively. Furthermore, we found that the attack is also applicable to Zcash, 
Litecoin, Dogecoin, Bitcoin Cash, and Dash. We analyzed the cost of network-wide attacks, the application scenario, 
and proposed countermeasures of this attack.
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Introduction
Bitcoin is a decentralized P2P cryptocurrency that has 
gained widespread attention over the past decade (Hou 
2017; Cai et  al. 2021; Nadeem et  al. 2021). The most 
attractive highlight of Bitcoin is its protection for the 
anonymity and privacy of Bitcoin users, which is mainly 

achieved from the data and network layers (Reid and 
Harrigan 2013; Ober et al. 2013; Khalilov and Levi 2018). 
At the data layer, Bitcoin supports users to create any 
number of random-looking Bitcoin pseudonyms. These 
pseudonyms can be used instead of users’ real identities 
to send and receive cryptocurrency transactions. Such a 
pseudonym mechanism prevents user transactions from 
being directly linked to the user’s real identity, thus pro-
tecting the anonymity of users. But there have been many 
researches on breaking pseudo-anonymity. One type of 
attack they proposed is pseudonym clustering that links 
multiple Bitcoin pseudonyms belonging to the same 
user and analyzes the user’s transaction behaviors. For 
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example, Androulaki et  al. (2013) proposed two heuris-
tic rules, multi-input transactions (the multiple input 
pseudonyms of a single transaction belong to the same 
user) and “shadow” pseudonyms (the new pseudonym 
that is used to collect back the “change” is the “shadow” 
pseudonym, which most likely belongs to the sender), 
for clustering Bitcoin pseudonyms. To identify change 
pseudonyms more accurately, Meiklejohn et  al. (2013) 
introduced four identification conditions: FirstAppear-
ance, NotACoinGeneration, NoSelfchangeAddress, and 
UniqueNewOutputAddress. Other pseudonym cluster-
ing works include TransferAmountFeature (Wang et  al. 
2020), coinbase pseudonyms and mining pool pseudonyms 
(Zheng et  al. 2020), blockchain browser WalletExplorer.
com (2023), and Blockchair.com (2023). Another type of 
attack is transaction tracing attack, which can directly 
correlate each transaction with the network identity of 
its user. This attack cuts through the network layer by 
deploying eavesdropper nodes in the Bitcoin network 
and analyzing the traffic to find the originating network 
address1 that sent one transaction into the network. Such 
an address is usually the network identity of the transac-
tion holder (Koshy et al. 2014; Biryukov et al. 2014; Fanti 
and Viswanath 2017; Gao et al. 2018). This attack seems 
more destructive than pseudonyms clustering since it 
exposes the user’s real network identity. To mitigate 
the transaction tracing attack, Bitcoin community has 
paid lots of attention to privacy protection in the net-
work layer. Bitcoin community supports the configura-
tion of multiple network addresses for a single node and 
has not provided a unique global node identifier to link 
these addresses together. In this way, users can configure 
multiple addresses for their nodes and send transactions 
through different addresses, which can be of the same 
network type, such as IPv4 or IPv6, or of different net-
work types, such as IPv4 and IPv6. Thus, each transac-
tion can only be traced to the address that generate it, 
while transactions from the same user are seen as coming 
from different users with the address as the node identi-
fier. Meanwhile, Bitcoin community encourages users to 
run their node as an onion/I2P service, which can only 
be reachable from Tor/I2P network (Community 2023a, 
b). With the anonymity of these networks, tracing attacks 
can only trace transactions to anonymous addresses 
which cannot be associated with clear network addresses, 
i.e. the user’s identity is not exposed.

Ensuring address unlinkability of the network layer is 
of great significance, as it mitigates transaction tracing 

attacks. However, achieving this goal is not easy. This is 
because node addresses have been used without distinc-
tion in various network mechanisms from the beginning 
of Bitcoin design. Researches show that attackers may 
exploit the common characteristics or apparent behav-
iors of network mechanisms to expose the correlations 
among addresses, thus linking different addresses of the 
same node (Pieter 2020; practicalswift 2020; Grundmann 
et al. 2022). We call this address linking attack. Based on 
this attack, attackers who have the transaction tracing 
ability can not only trace each transaction to the originat-
ing address but also further cluster all transactions from 
different addresses of the same node if these addresses are 
linked. For Bitcoin nodes running both clear and anony-
mous network addresses on a dual stack, this attack can 
associate their clear and anonymous addresses, which 
defeats the effort of the Bitcoin developing community to 
improve user privacy with the anonymity network.

Address linking attacks have been the focus of 
researchers for a long time. Biryukov et al. (2014) linked 
addresses of the same node by the common entry nodes 
set (all nodes to which the target node has established 
outgoing connections) across different addresses. Miller 
et al. (2015) followed a similar idea. Biryukov and Pusto-
garov (2015) tried to link different addresses of the target 
node by actively emitting a unique combination of pos-
sibly fake addresses (address cookie) to the address data-
base (a database that stores all known Bitcoin addresses 
of non-local nodes) of the target node from one address 
and checking the cookie from other addresses. Mas-
tan and Paul (2018) argued that a passive attacker who 
can monitor the traffic of Bitcoin nodes has the abil-
ity to link addresses of the same node by analyzing the 
block requests made by different addresses in a Bitcoin 
session graph. Pieter (2020) notes that addresses of the 
same network type of the same node share the common 
address cache (cached address information that is stored 
in the cache map of the target node and used to respond 
to address query requests) in the specific Bitcoin v22.0, 
through which node addresses of the same network type 
can be linked. Since Bitcoin developers have been con-
cerned about address unlinkability, they fix vulnerabili-
ties that have been disclosed each time the client updates. 
Therefore, against the updated Bitcoin version2, all exist-
ing address linking attacks are ineffective.

While address linking attacks and related vulnerabil-
ity fixes is a game of cat and mouse, Bitcoin develop-
ers currently do not conduct a systematic analysis of 

1 To avoid confusion, we use pseudonyms to refer to Bitcoin transaction 
addresses used to send and receive cryptocurrency transactions, address to 
represent the network address (IPv4/IPv6/Onion) and node address for all 
addresses that belong to the same node in this paper.

2 In this article, we experiment with Bitcoin version 22.0 (the official C++ 
implementation). Despite of the short update cycle of Bitcoin, our attack 
still work in newer releases (see Sect. “Impact and countermeasure”) while 
attack (Pieter 2020) fails.
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the unisolated usage of local addresses in all network 
mechanisms. In this paper, we propose a new effective 
address linking attack that exploited the unisolation of 
the incoming connection processing mechanism. First, 
through source code inspection, we find that all network 
addresses across network types (IPv4/IPv6/Tor) of a Bit-
coin node share one common connection pool (a pool 
that stores all incoming connections established), and 
the connection pool size is fixed (115 in default). Second, 
we find that the connection eviction strategy (a strategy 
for selecting an existing connection to evict in order to 
accept new incoming connection when the connection 
pool is full) is deterministic, which means that when a 
new incoming connection arrives at a full connection 
pool, the connection to be evicted in the pool is spe-
cific. For two addresses that belong to the same node, the 
attacker can emit elaborately designed incoming connec-
tions from one of them and achieve predictable evicting 
connections from the other. Also, the attacker can release 
connections from one of them and achieve predictable 
incoming connections from the other. Thus by mount-
ing such evicting and filling attack, the attacker can use 
the two characteristics to link Bitcoin addresses of both 
the same or different network types, with high accuracy. 
Applying this attack to the result of the transaction trac-
ing attack will further disclose users who disguise them-
selves with multiple addresses. Our main contributions 
are as follows: 

1. We introduce the evicting-filling attack based on the 
unisolation of Bitcoin incoming connection process-
ing mechanism, which is effective in linking node 
addresses of (a) both same and different network 
types, (b) all Bitcoin versions to date, and (c) main-
stream Bitcoin forks.

2. We analyzed the factors that affect the attack effi-
ciency and accuracy, including the number of avail-
able connection slots of the victim, the frequency of 
evictions caused by normal nodes during the attack 
duration, and the fluctuation of available slots num-
ber. We obtained empirical values of these factors 
through measurements in the Mainnet and suggested 
reasonable attack parameters.

3. We designed a multi-step attacking procedure and 
verified against our self-run nodes and real-world 
multi-address nodes in the Mainnet, achieving an 
average accuracy of 82% after one round attacking, 
which can be up to more than 95% after four rounds.

4. We proposed two acceleration methods for directly 
applying this attack on the whole network and ana-
lyzed the time and economic cost of such a network-
wide attack.

5. We described the application of our evicting-filling 
attack, and gave countermeasures from two aspects 
of connection pool isolation and random disconnec-
tion time.

The remainder of this paper proceeds as follows: Sect. 
“Related works” summarizes the related studies on Bit-
coin address linking. Section “Background”   presents 
necessary background information. Section “Our link-
ing attack”   specifies our attack and attack parameters. 
The experiments are provided in Sect. “Experiments”  . 
Section “Attack cost”   analyzes the attack cost and Sect. 
“Application”   discusses the attack application scenario. 
The attack impacts, and countermeasures are gaven in 
Sect. “Impact and countermeasure”. Section “Conclusion”  
concludes the paper and discusses our future work.

Related works
Many Bitcoin de-anonymization works attempt to break 
the unlinkability of network addresses. In 2014, Biryu-
kov et al. (2014) attempted to link addresses of the same 
node through the set of entry nodes. This set is cross-
address and can be passively learned because when each 
address is connecting to the network, its entry nodes 
are always the first to relay its address in the network. 
However, due to the frequent network communications 
between nodes, the entry-node set of each node contin-
ues to change, making this attack inaccurate. Similarly, 
Miller et  al. (2015) used the common set of neighbor-
ing nodes (all nodes that connects with the target node) 
to link addresses. They actively inferred neighboring 
nodes of each address by repeatedly sending GETADDRs 
and catching the updates of the timestamps attached to 
neighboring nodes in responded ADDRs. But counter-
measures Community (2015b), Community (2015c) and 
Community (2020) have prevented this attack by remov-
ing the updates of the attached timestamps and making 
the neighboring nodes not inferable. In 2015, Biryukov 
and Pustogarov (2015) correlated different addresses of 
the same node by actively emitting an address cookie 
to the common address database from one address 
and checking the cookie from other addresses. But the 
addr-response-caching mechanism (Community 2020) 
introduced by Bitcoin developers makes the cookie eas-
ily to be overwritten or propagated out during the link-
ing, invalidating this attack. In 2018, Mastan and Paul 
(2018) proposed an address linking attack for attackers 
who can passively monitor the Bitcoin network traffic. In 
this attack, different addresses of the same node can be 
linked by analyzing their block requests in a Bitcoin ses-
sion graph. But the attack can only be launched by gate-
way-level attackers and the attacking scope relies on the 
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coverage of the monitoring traffic. In 2021, Pieter (2020) 
pointed out that addresses of the same Bitcoin v22.0 node 
with the same network type share the common address 
cache. Thus addresses can be linked based on address 
cache collisions (also called cache map collisions). But 
this attack is only applicable in same-network linking 
against Bitcoin v22.0. In 2022, Grundmann et al. (2022) 
noted that Bitcoin forwards addresses through different 
IP addresses. Attacks can send a batch of spam addresses 
with the same timestamp to a specific node and then 
node addresses relaying subsets of the spam addresses 
should be grouped to the same node. But this is a theo-
retical model. Bitcoin network will constantly forward 
these spam addresses, making it difficult to distinguish 
between source forwarding addresses and intermediate 
forwarding addresses, while the author does not men-
tion attack parameters and accuracy. Besides, this attack 
exploits the shared relayed addresses in the address relay 
mechanism, which is consistent with our argument for 
the non-isolation in network mechanisms.

The Bitcoin developing community has taken many 
measures against address linking. They restricted 
requests to non-main-chain blocks to make the poten-
tial linking based on chain tip blocks (Community 2015a) 
prohibitively costly. They introduced the addr-response-
caching mechanism (Community 2020) along with the 
cache map to prevent connection leakage and invalidate 
linking based on neighboring nodes. They added ran-
domness on every cycle for transaction forwarding and 
cache updates to avoid potential linking based on the tim-
ing of node cyclical behavior (Community 2022b). They 
required all nodes to respond the same when receiving 
deliberately designed HEADERS from malicious nodes 
and prevented their local block information from being 
inferred through different responses, since some nodes 
may contain unique local blocks that others do not have 
and these blocks can be used as fingerprints (Community 
2022g). They indexed the cache map (Community 2020) 
by network type to prevent potential linking against node 
addresses of different networks (practicalswift 2020). In 
versions after v22.0, they added a second index by local 
socket addresses to the cache map, thus preventing link-
ing against node addresses of the same network based on 
cache map collisions (Pieter 2020).

Although the Bitcoin developing community has taken 
effective countermeasures against address linking, the 
complexity of multi-address support for IPv6, Onion, 
and I2P, and the complexity of network mechanisms such 
as the addr-response-caching mechanism, the address 
relay mechanism, the incoming connection processing 
mechanism, and etc, make it a quite difficult problem 
to thoroughly ensure the unlinkability among network 
addresses.

Background
This section introduces the necessary background of the 
Bitcoin network and address management.

Bitcoin network
The Bitcoin network is a fully distributed p2p network. 
Nodes in the network communicate with each other by 
directly establishing peer-to-peer connections. The con-
nections can be divided into incoming connections, 
which are initiated by non-local nodes to the local node, 
and outgoing connections, which are initiated by the 
local node to non-local nodes. Each node with public 
network addresses (public node) can establish 10 outgo-
ing connections and accept up to 115 incoming connec-
tions by default3 (Community 2022d). While each node 
without public addresses (behind NATs and firewalls) 
does not accept incoming connections and relays on 10 
randomly selected public nodes for outgoing connections 
to access the network (Biryukov et  al. 2014; Wang and 
Pustogarov 2017; Franzoni and Daza 2020). It can be seen 
that public nodes are the backbone of Bitcoin network. 
For these nodes, more incoming connections than 115 
will result in the eviction of existing connections, and the 
selection of evicting connections follows the connection 
eviction stategy (Community 2022c).

Bitcoin address management
Bitcoin nodes support four network types: IPv4, IPv6, 
Onion and I2P (though Bitcoin claimed support for I2P 
anonymity network from v22.0, there are no nodes of 
such network type currently (Foundation 2010)). Such 
support for multiple network types means that each node 
can use address combinations of four types of network, 
such as IPv4+IPv6 and IPv4+Onion, or just one type of 
network for communication. The multi-address con-
figuration can be achieved by passing in Bitcoin startup 
parameters, which is shown in Fig. 1.

Each Bitcoin node customizes a key-value pair con-
tainer mapLocalHost (Community 2022e) to store all its 
network address information (local addresses), which 
takes each address as a key and stores the correspond-
ing running port for that address as the key value. Users 
can obtain multiple network addresses for their nodes 
at least in these ways: (a) run a dual stack and add more 
addresses of different network types by accessing the IPv6 
network and/or creating local Bitcoin Onion services, (b) 
map more addresses of the same network type through 
host proxies, port forwarding, and multiple NICs. In 
fact, Bitcoin connections are established between two 

3 Bitcoin Core is configured default with a maximum number of incoming 
connections DEFAULT_MAX_PEER_CONNECTIONS(125)−MAX_OUTBOUND_

FULL_RELAY_CONNECTIONS(8)−MAX_BLOCK_RELAY_ONLY_CONNECTIONS(2) = 115.
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“addresses”, as two neighbors do not know each other’s 
more addresses.

Each Bitcoin node stores all known address informa-
tion of other nodes (non-local addresses) in its address 
database CAddrMan (Community 2022i). Due to no 
node identifier, the address database is managed using 
address as the identifier and it may contain multiple 
addresses of the same node. Each time a node has estab-
lished an outgoing connection with one other node, it 
will send a GETADDR message to this new neighbor to 
query more addresses of others. In versions older than 
v22.0, the neighbor will respond with no more than 
2,500 randomly selected addresses from its CAddrMan, 
and every 1000 addresses are packaged into one ADDR. 
In v22.0, to avoid the neighbor’s CAddrMan potentially 
being scraped quickly by responding to many maliciously 
repeated GETADDRs from attackers, the number of 
addresses that respond is reduced to 1000. Meanwhile, 
the chosen addresses being responded are cached into 
the cache map and returned to any GETADDR requests 
within a period of 21–27  h. This is the addr-response-
caching mechanism (Community 2020). To prevent 
address linking across networks, the cache map is indexed 
by the network types to which local addresses belong. 
The second index by local socket addresses to prevent 
address linking in the same network is added in versions 
after v22.0.

Our linking attack
In this section, we will introduce the basic idea, attacking 
procedure, and attack parameters of our linking attack.

Basic idea
The Bitcoin incoming connection processing is witnessed 
in the code (Community 2022a, also simplified in Algo-
rithm 1). By binding to the local running port, each Bit-
coin node listens for incoming connections from others. 

Once receiving an incoming connection, the node first 
checks whether the remote address that initiates the 
connection is malicious, i.e. if it has ever delivered inva-
lid or erroneous blocks in the network. If it hasn’t, the 
node then counts the number of incoming connections 
itself has held. If there are no more than 115 connections 
established, the node will directly accept the new incom-
ing connection and store it in a built-in array vNodes4 
(Community 2022j). Otherwise, the node will execute the 
connection eviction strategy to try to select one existing 
connection to disconnect and then accept the new one. 
If no existing connection meets the eviction criteria, the 
new connection will be rejected (Community 2022a).

From this processing, we can see that Bitcoin does not 
check the local address it uses to receive a new incom-
ing connection and directly stores all accepted con-
nections that may be associated with different local 
addresses into the common array vNodes. We refer to this 
array as Bitcoin’s connection pool with default size (115 
slots, the maximum number of incoming connections). 
And it can be concluded that all local addresses of both   
same and different network types share the common con-
nection pool.

We now drive into the connection eviction strategy to 
see what kind of connections are preferred to be evicted. 
As shown in the code (Community 2022c, simplified 
in Algorithm  2), Bitcoin first preserves connections 
established with specific remote addresses to which the 
user has granted special privileges (NoBan privilege, 

Fig. 1 Examples of command-line arguments in Bitcoin Core 
that support multi-address configuration (Community 2023b)

4 In most recent v24.0, this array is renamed m_nodes and is also shared.
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Community 2022f), as well as connections that are about 
to be disconnected. Then among all the remaining con-
nections, Bitcoin follows the steps below to select a spe-
cific one for eviction: 

(1) Select 4 peers to protect by netgroup (the network 
group is determined by the prefix of each connec-
tion’s remote address5).

(2) Protect 8 connections with the lowest minimum 
ping time.

(3) Protect 4 connections that most recently sent novel 
transactions accepted into mempool.

(4) Protect up to 8 non-transaction-relay connections 
that have sent novel blocks.

(5) Protect 4 connections that most recently sent novel 
blocks.

(6) Protect half of the remaining eviction candidates 
according to their network types and connection 
duration.

(7) Identify the network group with the most con-
nections and youngest member and evict a most 
recently established connection from it.

We refer to the first six steps simply as the special con-
nection protection policy. This policy is used to protect 
some potentially secure connections with certain char-
acteristics (Community 2022h), such as belonging to one 
of the network groups randomly selected, maintaining 
a minimum ping time with the node, having relayed the 
latest block or transaction to the node, or being initiated 
from an Onion address or an I2P address. Assuming that 
an attacker can establish many connections to the node, 
then even if his 4 connections are protected due to their 
network group being selected, there are still plenty of 
attacking connections left. If the attacker can only estab-
lish a few connections with the node, it means that the 
node’s connection pool is nearly full and there are no 
groups that contain more connections to evict. In that 
case, the number of distinct groups in the pool is large, 
and the probability of the attacker’s group being selected 
is extremely low. Besides, having a minimum ping time 
with the node can be avoided easily by adding a little 
response delay. The attacker can also bypass the rest con-
ditions by initiating connections from a standard IPv4 
address and not relaying recent blocks or transactions to 
the node. Thus, the attacker can circumvent the special 
connection protection policy by constructing connec-
tions with no certain characteristics. And these attack-
ing connections can reach the last step of the eviction 
strategy, becoming the connections that are preferred 
to be evicted. In order to avoid other non-attacking 

connections remaining in the pool for preferred eviction, 
these attacking connections can reach the maximum size 
of the fixed connection pool (115) in number and are all 
from the same network group. Then these connections 
will continue to evict existing connections that can be 
evicted until the attacking group becomes the group with 
the highest priority for eviction. We can conclude that 
evicting connections are predictable and controllable.

Based on the above two findings, an attacker can first emit 
elaborately designed incoming connections to one address of 
the target node, in order to a) fill up its connection pool and 
push the node into the connection eviction phase, b) make 
these attacking connections become connections with the 
highest priority to be evicted. Then, the attacker can initiate 
more incoming connections to another address of the same 
node and observe whether his connections with the former 
address are being evicted. Note that the number of success-
fully established connections with the latter address should 
be equal to the number of evicting connections with the for-
mer address. We call this an incoming-evicting test.

Since the incoming-evicting change, i.e. the number of 
accepted or evicted connections, may be too small due to 
the high network delay in the real world and the victim 
continuously evicting the last few emitted connections. We 
proposed another releasing-filling test, in which once the 
attacker releases some connections with one address of the 
target node, he can fill up these released connection slots 
through another address of the same node.

The two tests can be used to link Bitcoin network 
addresses. We designed a precise multi-step attacking proce-
dure, combining these two tests in parallel to ensure attack 
efficiency and accuracy.

5 The selected network groups are unpredictable for attackers.
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Attacking procedure for one pair addresses
We now present the attack model, attacking procedure 
for one pair addresses and attacking procedure for mul-
tiple addresses.

Attack model
Our attack model assumes that the victim node V is a 
Bitcoin node accepting incoming connections, with mul-
tiple local addresses that may belong to the same net-
work type or different network types (see Fig. 2). For any 
two addresses A and B of node V, our goal is to verify 
if they belong to the same node. As for the attacker, we 
assume that he controls one or more attacking nodes. 
Each attacking node owns a public network address for 
establishing connections with the victim and the address 
is of the same network group as other attacking nodes. 
No attacking node needs to maintain a blockchain, but 
instead executes a lightweight script with the following 
functions: a) supporting up to 2306 parallel outgoing con-
nections, b) not relaying new transactions and blocks to 

the victim, c) adding a little response delay (0.2s) each 
time responding to PING from the victim, d) for each 
connection successfully established, initiating a heartbeat 
test once every two minutes to keep alive. For simplicity, 
we suppose that the attacker controls one attacking node 
S whose public address is PS here.

Attacking procedure
Our evicting-filling attack consists of two phases.

First phase - step a As shown in Fig. 3(1-a) (also simpli-
fied in Algorithm 3), the attacker fills up the connection 
pool of victim V through address A by initiating 115 Bit-
coin connections without characteristics from the same 
IPv4 address PS.7 Notice that Bitcoin allows multiple 
connections from one single address (Saad et  al. 2021). 
This property significantly reduces the attack cost. If the 
connection pool is not full, node V will accept the incom-
ing connections in turn until its pool becomes full. Then 
for the remaining pending connections received, node V 
will continuously evict as many connections as possible 
from all existing connections and try to accept them. If 
the connection pool is full, node V will directly enter the 
connection eviction phase. From the attacker’s view, he 
will eventually establish a certain number of connections 
with address A after all his connections are responded to 
or timeout disconnected. This is the number of connec-
tions available to address A and we assume it to be AF1 . 
At this moment, the AF1 connections will have the high-
est priority for eviction.

First phase—step b As shown in Fig.  3(1-b), the 
attacker emits more incoming connections through 
address B by initiating 115 connections from address 
PS.8 Meanwhile, the attacker monitors evicting connec-
tions with address A. Since the above AF1 connections 
associated with A have the highest eviction priority, 
V will evict the most recently established connection 
or connections from the AF1 connections to accept 
incoming connections. From the attacker’s perspective, 
he will observe that the number of connections estab-
lished with address B gradually stabilizes (we assume 
this number to be BF), and the original AF1 connections 
with address A are decreased to AF2 . The equivalence 
between the evicting connections count and accepted 
incoming connections count is our first expected behav-
ioral characteristic, i.e. AF1 = BF + AF2.

Second phase As shown in Fig.  3(2), the attacker 
disconnects actively all connections established with 
address A and address B in the first phase. And then he 

6 If the two victim addresses do not belong to the same node, filling up their 
connection pools needs at most 230 connections.

7 In fact, it is not mandatory to be the same address, the addresses belong-
ing to the same network group are sufficient. But using a single address 
reduces the cost of the attack.
8 Using addresses of the same network group with PS is actually sufficient, 
but not the cheapest.
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fills up the connection pool through address B by initi-
ating 115 connections. After these connections are all 
responded to or timeout disconnected, he will record 
the number of successfully established connections, BS,

which is the number of connections available to 
B. The equivalence between the released connection 
slots count and the number of connections success-
fully established with address B is our second expected 
behavioral characteristic, i.e. AF1 = BS.

To figuratively show the two behavioral character-
istics, we mounted the entire attack against a Bitcoin 
multi-address node built on our server and plotted 
Fig.  4. In the first phase (from moment a to b), the 
number of connections available to address A, AF1 
(106), was first measured. Then 115 connections were 
initiated to address B and BF (46) connections were 
eventually established, while connections with address 
A dropped to AF2 (59). We can see that AF1 is highly 
close to BF + AF2 . In the second phase (from moment 
b to c), we disconnected all connections with addresses 
A and B. Then measured the number of connections 
available to address B, BS (106). We can see that AF1 is 
highly close to BS. Thus, we can successfully conclude 
that addresses A and B belong to the same node.

Attacking process for multiple addresses
An attacker can in-depth use the above linking attack 
for two addresses to link all node addresses within a 
network, thus achieving a certain scale of privacy leak-
age. The whole process is as follows (also simplified in 
Algorithm 4):

• Obtaining the set T of all Bitcoin addresses within 
the network.

• Enumerating all possible combinations of addresses 
in T.

Fig. 2 Victim model for the linking attack

Fig. 3 Attacking procedure of the linking attack
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• Mining the correlation between each pair of 
addresses via the evicting-filling attack for two 
addresses.

• Clustering associated addresses into nodes.

Finally, the attacker will get a list I = {(IP1, IP2,O − nion · · · ), · · · } , 
where IP1 , IP2 , and Onion are all addresses of the same 
node. Based on the results, attackers can link transac-
tions from different addresses of the same node together 
to analyze the user’s transaction behavior.

Attack parameters
We note that three factors will affect the attack efficiency 
and accuracy, including the number of available connec-
tion slots of the victim, the frequency of evicting connec-
tions caused by normal nodes during the attack duration, 
and the fluctuation of available connection slots number. 
These factors have a high probability of causing AF1 and 
BF + AF2 to be unequal, as well as AF1 and BS. Thus, 

we analyze these factors and obtain empirical values for 
them through measurements.

Dataset
To facilitate experiments, we construct a dataset consist-
ing of self-run and real-world nodes.

We deployed five self-run nodes on the Bitcoin 
Mainnet. Each node is a v22.0 Bitcoin Core running 
with default parameters and configured with multi-
ple addresses of various combinations of three network 
types, IPv4, IPv6, and Onion (as shown in Table 1).

As mentioned earlier, the linking attack based on 
cache map collisions (Pieter 2020) can be launched in 
v22.0, through which we also captured some real-world 
nodes with multiple addresses of the same network in 
the Mainnet. Note that there is currently no quantita-
tive analysis of cache map collision linking, so we sup-
plement this content in Appendix to better explain this 
attack. Below, we only present the collection process and 
results of Mainnet nodes. From February 20 to February 
26, 2022, we obtained all reachable addresses running 
v22.0 clients in the Mainnet each day by using an open-
source crawler (Foundation 2010) and captured their 
address cache by sending address query requests. During 
the daily address cache collecting, we found that some 
addresses accept connections but do not respond ADDR 
to our GETADDR. So we could not collect all caches 
for these addresses and the final number we collected is 
shown in Table 3, averaging 3,943 per day. After applying 
SimHash (Wikipedia 2022b) and cosine similarity algo-
rithm (Wikipedia 2022a), we considered address caches 
with the same SimHash signatures and cosine similar-
ity higher than 90% to be identical.9 Addresses with the 
same address cache are clustered on the same node. The 
number of collided caches and corresponding clustered 
nodes we collected is also shown in Table 3, with a total 
of 404 caches and 179 nodes.

The number of available connection slots of the victim
To estimate this number, we crawled 8,601 reachable 
addresses in the Mainnet on March 2, 2022. We initiated 
115 parallel connections to each address and recorded 
the number of eventually established connections. Fig-
ure 5 shows the result. It can be seen that 95% of these 
addresses accept incoming connections. 52% accept 5 or 
more connections, and 20% accept up to 30 connections. 
Only a few nodes do not accept connections, and even 
if we can not establish a sufficient number of connec-
tions with them immediately, we can wait a long time to 
establish enough connections since the number of their 

Fig. 4 Illustrative diagram of two behavioral characteristics. The two 
behavioral characteristics: AF1 = AF2 + BF ; AF1 = BS

9 Although the cached addresses are fixed, we found that caches in each 
response of the same node varied slightly, mainly due to the IPv6 address 
zero compression. So we do not request them to be entirely identical.
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available connection slots is continuously and dynami-
cally changing (according to Fig. 9). In addition, although 
43% addresses can only accept less than 5 connections, 
the multi-address nodes within them can still satisfy two 
behavioral characteristics if the 5 connections are not 
affected by other factors and only change with the attack 
behaviors.

The frequency of evictions caused by normal nodes 
during the attack duration
We launched multiple rounds of our evicting-filling 
attacks on both self-run and real-world nodes and calcu-
lated the attack duration. Our results are shown in Figs. 6 
and 7. Taking the median as a reference value, the attack 
time required for the first attacking phase is distributed 
between 56 and 157  s, and the attack time required for 
whole attack is distributed between 65 and 290 s.

We also measured the frequency of evictions caused by 
normal nodes by establishing lots of connections with our 
node set and monitoring the change in the number of con-
nections over time. Assume that the attack time required 
for the first attacking phase is �t . Figure 8 shows that the 
number of evicted connections is no more than 8 in 95% of 
the experiments during the �t from 60 to 180 s which cov-
ers the time required for the first phase.

The fluctuation of available connection slots number
Assume that the attack time required for the whole attack 
is �t . Since the number of all connection slots is fixed, the 
number of available connection slots mainly depends on 
the number of existing connections. Thus, we monitored 
our self-run nodes in March 2022 and recorded the num-
ber of their existing connections every minute. Figure  9 
shows that in the interval �t between 60 s and 360 s that 
covers the time required for the whole attacking procedure, 
the number does not exceed 7 in 95% of the experiments.

Selection of attack parameters
Considering the impact of the above factors on the attack, 
we set two thresholds, TH1 and TH2 , to balance attack 
accuracy and efficiency. If the difference between AF1 and 
BF + AF2 is less than TH1 , and the difference between AF1 
and BS is less than TH2 , we take the address pair as satisfy-
ing two behavioral characteristics.

Since the number of evictions caused by normal nodes 
has a 95% probability of not exceeding 8 within the interval 
�t from 60 to 180 s, we set the attack parameter TH1 = 8 . 
Since there is a 95% probability that the fluctuation of avail-
able connection slots number does not exceed 7 within the 
interval �t between 60 and 360 s, we set the attack param-
eter TH2 = 7.

We suppose that there is an interfering address X unre-
lated to address A, with x number of available slots. In the 
worst situation, AF1 − 8+ x = AF1 + 8 ( AF2 = AF1 − 8 ) 
and x = AF1 ± 7 , thus X will be wrongly linked with 
address A. We can solve for x at such situation to be 16 and 
AF1 = 23 . In fact, the smaller the number of available con-
nection slots of the victim address, the greater the inter-
ference of the normally evicting frequency. Therefore, we 
set a smaller threshold value TH1 = AF1 × α(α < 1) for 
AF1 ≤ 23 to ensure the attack accuracy (Based on practical 
experience, we set α = 0.2 in our experiments). Similarly, 
we set a smaller threshold value TH2 = AF1 × β(β < 1) 
for AF2 ≤ 7 (Based on practical experience, we set β = 0.2 
in our experiments). In general, the thresholds are set as 
follows:

Fig. 5 Distribution of available connection slots number of Mainnet 
addresses

Fig. 6 Distribution of attack time required for the first attacking 
phase (The dashed line is the median line)
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Experiments
With the above two attack parameters, we mounted the 
self-run nodes verification experiment and the Mainnet 
nodes verification experiment from February 20 to Feb-
ruary 26, 2022, to verify the feasibility of our attack.

Self‑run nodes verification
We conducted a week-long experiment on the eleven 
addresses of five self-run nodes. Our goal was to link 
all associated addresses and identify the correspond-
ing multi-address nodes on a daily basis without know-
ing the correlations between these addresses at all. As 
a small-scale validation experiment, we directly used 
these addresses as the set T for linking and then verified 
the fifty-five possible combinations of these addresses 
sequentially by evicting-filling attacks. our results are 
shown in Table 2.

The true positive rate and true negative rate are 
extremely high, showing that our method performs 
well and one run of attacks can accurately cluster the 
addresses of all self-run nodes on most days. Especially, 
the false positive rates are 0%, which means that there 
were no unrelated address pairs being clustered to the 
same node and reflects the strong identity of the two 
behavioral characteristics we designed. The false nega-
tive rates showed there were some misjudgments in the 
attacks of February 24 and February 26, which means 
address pairs belonging to the same nodes were judged 

TH1 =
8 AF1 > 23

AF1 × 0.2 AF1 ≤ 23

TH2 =
7 AF1 > 7

AF1 × 0.2 AF1 ≤ 7

as unassociated. The possible reason is that the connec-
tion pool fluctuations of misjudging nodes during that 
attack duration exceed the limit of our attack parameters, 
including the temporary full-state of the victim connec-
tion pool, the frequency of evicting connections caused 
by normal nodes, and the fluctuating number of exist-
ing connections. To validate this, we conducted a second 
round of attacks, and these misjudgments were resolved 
successfully. In short, this experiment verifies that our 
evicting-filling attack is feasible for both same-network 
and cross-network address linking, with an average accu-
racy of 96.9% for one round of attacks.

Mainnet nodes verification
In this experiment, our goal was to verify the correla-
tions between real-world addresses. During the verifica-
tion, we found that there were some dynamic addresses 

Fig. 7 Distribution of attack time required for the whole attack (The 
dashed line is the median line)

Fig. 8 Probability density of normally evicted connections number 
for multi-address nodes

Fig. 9 Probability density of fluctuating number of existing 
connections
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among the dataset. The caches of such addresses collided, 
but they were active in the Bitcoin network successively, 
with no overlap in time. The possible reason could be that 
these nodes switched their proxies or their hosts used 
DHCP. Our attack cannot link these addresses, as they 
do not share the connection pool simultaneously. Mean-
while, we found that there were also some addresses of 
supernodes. The clients of such nodes are often specially 
modified by their users, making their connection pool 
very large while the exact size is unknown to us. It’s hard 
to fill their pools up, so our attack is also not applicable 
to them. For the remaining node addresses, we verified 
them by our evicting-filling attacks, and the results are 
shown in Table 3.

After one round of attacks, we get an average true posi-
tive rate of 82% and an average false negative rate of 18% 
after one round of attacks. This true positive rate is lower 
than that of self-run nodes and the false negative rate is 
higher than that of self-run nodes, which may be because 
the standard connection evictions and connection pools 
of real-world nodes fluctuate more volatile. To validate 
this, we conducted more consecutive rounds of attacks. 
As shown in Fig. 10, the false negative rate significantly 
decreases as the number of attacking rounds increases. 
This experiment was conducted against real-world nodes. 
Although the cache map was used to collect experimen-
tal addresses, we did not use this property throughout 
our verification. The high true positive rate and low false 
negative rate show that our evicting-filling attack still has 
strong feasibility and high accuracy in the real world.

In addition, we classified the local network types of the 
105 multi-address nodes collected and showed results in 
Table  4.10 This classification result confirms the diver-
sity and complexity of the multi-address nodes in the 
real world. Since the same-network linking attack based 
on cache map collisions can only be applied in v22.0, we 
believe that our attack is better in cross-network linking 
and same-network linking against all versions as there has 
no attention been given to the unisolation in incoming 
connection processing mechanism yet.

More details
Conducting multiple rounds of attacks is a way to 
improve the accuracy rate by avoiding misjudgment 
caused by accidental connection pool fluctuations, which 
include the temporary full-state of the victim connec-
tion pool, the frequency of evicting connections caused 
by normal nodes, and the fluctuation number of existing 
connections. In our experiments, self-run nodes verifica-
tion and Mainnet nodes verification, we did not modify 

our attack parameters since the probability of each fluc-
tuation occurring is small (only about 5%) and our 
parameters (obtained from long-term measurements) 
cover 95% of our measurement experiments. Instead, 
we took advantage of the time interval among multiple 
rounds of attacks since one round of our attacks lasted 
about two hours. Such time interval plays a role in avoid-
ing accidental connection pool fluctuations, as the fluc-
tuations depend on how busy the Bitcoin network is and 
the timing of multiple attacks may cover the network 
state from busy to non-busy.

Fig. 10 False negative rate decreases with increasing number 
of attack rounds

Table 1 Address configuration for self-run nodes

Node Addresses count Network types 
of addresses

Node 1 2 IPv4/IPv6

Node 2 2 IPv4/IPv4

Node 3 2 IPv4/Onion

Node 4 3 IPv4/IPv6/Onion

Node 5 2 Onion/Onion

Table 2 Self-run nodes verification results

Date Attacks 
count 
(%)

True 
positive 
(%)

True 
negative 
(%)

False 
positive 
(%)

False 
negative 
(%)

2022-02-20 55 100 100 0 0

2022-02-21 55 100 100 0 0

2022-02-22 55 100 100 0 0

2022-02-23 55 100 100 0 0

2022-02-24 55 85.7 100 0 14.3

2022-02-25 55 100 100 0 0

2022-02-26 55 71.4 100 0 28.6

10 We unexpectedly found that eleven nodes are across network types, 
which may be because their users did not use the addr-response-caching 
mechanism properly.
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There is another way to mitigate the impact of acciden-
tal connection pool fluctuations. The attack parameters 
we suggested in this paper are empirical values obtained 
from long-term measurements of three factors that cor-
respond to these fluctuations, but these fluctuations are 
in real-time. Thus, it is recommended to deploy some 
sampling nodes in the Bitcoin network and measure 
these three factors in real time. Based on the collected 
real-time data, we can statistics the distribution of avail-
able connection slots number of Mainnet addresses, and 
calculate the probability density of normally evicted con-
nections number for multi-address nodes and fluctuating 
number of existing connections. According to the analy-
sis, we can choose reasonable values of attack parameters 
that can cover most measurements. Such instant val-
ues reflect how busy the network is, thus mitigating the 
impact of fluctuations on attacks.

Attack cost
For ethical reasons, we do not conduct a network-
wide attack and only analyze the cost of it here. Sup-
pose the number of all public Bitcoin addresses in the 
network is N and the time required for one attack is t. 
Verifying whether any address A∗ in the network is asso-
ciated with a given address, A, requires N − 1 attacks 
and lasts T0 = t(N − 1) . And verifying any addresses 
A and A

∗ requires C2
N
=

(N (N−1))
2

 attacks and lasts 

T = t ×
(N (N−1))

2
 . It can be seen that the time cost of a 

network-wide attack is high. In order to solve this prob-
lem, we propose two acceleration methods to filter out 
definitely unassociated address pairs before evicting-fill-
ing attacks as follows:

Unassociated address pair filtering based on basic 
node information After a TCP connection is established 
between Bitcoin addresses, VERSION messages are first 
sent to exchange their basic node information, which 
includes version, services, user_agent, start_height, relay 
fields (Wiki 2021). Among them, version identifies the 
protocol version used by the corresponding node, ser-
vices identifies the functions it supported, user_agent 
identifies its user agent information, start_height iden-
tifies its synchronization height, and relay identifies 
whether the node is involved in transaction forwarding. 
Since the basic information of the same node is identi-
cal, an attacker can determine that addresses A and A∗ 
with different basic node information ([version, services, 
user_agent, start_height, relay]) are unassociated.

Unassociated address pair filtering based on synchro-
nized blocks Block synchronization of Bitcoin nodes is 
realized through three messages INV, GETDATA, and 
BLOCK (Developer 2022). After a block is received or 
created by address A, the transaction hash is first sent 
to address B via an INV message. If address B has not 
received the block before, it will send back a GETDATA 
message, and address A will return the complete block 
information via a BLOCK message. Since the blocks 
synchronized by the same node are identical, when an 
attacker receives an INV from address A, he can imme-
diately send a GETDATA to address A∗ . If address A∗ 
returns a BLOCK, it may be associated with A. Other-
wise, they must not belong to the same node.

To simply verify the two methods, we conducted 
the following experiment. Through network snapshots 
crawled from Bitnodes between July 12 and July 16, 2022, 
we calculated 4593 unique Bitcoin Onion addresses 

Table 3 Mainnet nodes verification results

CN means clustered nodes, DN means dynamic nodes, SN means supernodes, AN means remaining nodes to be attacked

Date Address caches Collisions 
count

CN DN SN AN Attack counts True‑positive 
(%)

False‑
negative 
(%)

2022-02-20 3910 69 31 11 4 16 28 87.5 12.5

2022-02-21 3894 50 23 5 2 16 23 75 25

2022-02-22 3889 54 24 8 2 14 21 78.6 21.4

2022-02-23 3937 67 32 13 2 17 21 82.4 17.6

2022-02-24 4008 61 23 8 2 13 71 92.3 7.7

2022-02-25 3983 52 24 7 2 15 21 73.3 26.7

2022-02-26 3980 51 22 6 1 15 23 86.7 13.3

Table 4 Network type combinations of multi-address nodes

Network type Number 
of nodes

IPv4/IPv4 59

IPv6/Ipv6 10

Onion/Onion 25

IPv4/IPv6 2

IPv4/Onion 1

IPv4/IPv6/Onion 8
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remaining persistently online and targeted them for link-
ing. Before acceleration, the original number of address 
pairs that need to be attacked is C2

4593 = 10, 545, 528 . 
According to the 1093 network snapshots during these 
four days, we screened out address pairs with differ-
ent basic node information or different synchroniza-
tion heights at the same time. To accommodate the not 
entirely real-time snapshots,11 we require that the block 
heights of candidate address pairs differ by two or less 
in the same snapshot, not exactly equal. The result is 
shown in Fig.  11, it can be seen that 10,464,488 (99%) 
address pairs are filtered out after applying all snapshots. 
Through analyzing the remaining pairs, we get 4,072 
addresses and each of them has an average of ≈ 40 poten-
tially associated addresses, with a maximum of 2,482 and 
a minimum of 1. Thus in the worst case, 2,482 attacks are 
required for a given address, which are lasting only about 
2, 482× 290s ≈ 8.3 days for one attacking node. Moreo-
ver, the total time for all 4593 Onion addresses can be 
reduced to 81040× 290s ÷ 10 ≈ 27 days for ten attack-
ing nodes. In fact, this attack time will be much shorter 
if these addresses are a mixture of IPv4, IPv6 and Onion.

In our attack, the attacking nodes only need to be con-
figured with a public network address and capable of 
running lightweight scripts. Thus, an attacker can simply 
rent basic cloud virtual machines ($4 per month for one 
VM (Ocean 2022)) and acquire static IP addresses ( ≈ $39 
for one IPv4 address (Group 2022)). Since attacking one 
network consisting of 4593 nodes lasts at most 27 days 
for ten attacking nodes, the cost is ≈ $430 . If an attacker 
wants to increase the attack accuracy to 95%, four rounds 
attacking costs ≈ $550.

Application
In this section, we discuss our application scenarios in 
detail.

As shown in Fig. 12, Bitcoin communicates at the net-
work layer using network addresses as identifiers and 
trades at the data layer using pseudonyms. We see cor-
relating all transactions of a user as a breach of the 
data layer pseudonym mechanism, which exposes the 
user’s transaction behavior. And associating all network 
addresses of a user is a violation of the network layer 
address unlinkability, which completely discloses the 
user’s network identities. Traditional transaction tracing 
techniques can only correlate each transaction with the 
source address that issued it, but cannot infer the asso-
ciation between each address and the user. Thus, while 
it undermines Bitcoin’s anonymity to some extent, it 
does not fully break through the anonymity protection 

mechanisms at the data and network layers. The tradi-
tional pseudonym clustering technology can associate all 
transactions of a user to break the anonymity protection 
of the data layer, but it does not break through the net-
work layer.

To fill the gap where the association between addresses 
and users cannot be inferred, we propose two solutions. 
The first solution is to apply the pseudonym clustering 
results to the transaction tracing results, associating dif-
ferent network addresses at the bottom layer through the 
correlation of upper-layer transactions. There has been 
no research work in this direction so far. We believe that 
pseudonyms clustering is essentially achieved with the 
help of heuristic rules, which have inherent limitations 
in terms of both comprehensiveness and accuracy. The 
second solution is the address linking attack. This attack 
exploits flaws in the design and implementation of Bit-
coin network mechanisms, which can provide an intuitive 
solution to the problem of unlinkability between network 
addresses. In addition, the combination of address link-
ing attack and traditional transaction tracing technology 
can cluster the upper-layer transactions based on the cor-
relation of the underlying addresses. In this way, the dou-
ble anonymity of the Bitcoin data layer and network layer 
can also be destructed.

The complete deanonymization process of our evict-
ing-filling attack combined with transaction tracing tech-
nology is shown in Fig.  13. First, the attacker deploys 
eavesdropper nodes in the network and establish connec-
tions with all online addresses. Once the eavesdropper 
node receives transactions, such as txA and txB , it traces 
them back to the earliest forwarded addresses, such as 
A and B, according to the received time series. Next, 
the node can check whether A and B belong to the same 
node through the evicting-filling attack. If A and B are 
linked, the transactions txA and txB can be clustered to a 

Fig. 11 The number of filtered address pairs increases as the number 
of overlay snapshots increases

11 According to our observations, Bitnodes saves one network snapshot 
every 5 min and the node block heights it provides are not completely real-
time.
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user whose network identity is (A, B). If A and B are not 
linked, then transaction txA belongs to one user whose 
network identity is (A) and transaction txB belongs to 
another user whose network identity is (B).

Impact and countermeasure
Impacts
Through analysis of Bitcoin source code from v0.10.0 to 
v24.0, we find that Bitcoin shares the connection pool 
in all versions. More incoming connections are directly 
dropped in versions v0.10.0-v0.13.0, which makes the 
interference between address connectivity more obvi-
ous. The connection eviction strategy is introduced in 
versions from v0.13.0, along with the idea of evicting 
connections from the network group having the most 
connections and youngest member. Thus, all versions 
of Bitcoin are affected by the attack described in this 
paper, even the latest released official version 24.0. Fig-
ure 14 shows source code comparison of the incoming 
connection processing mechanisms for Bitcoin v22.0 
and v24.0.

Besides, we have manually investigated mainstream 
Bitcoin variants, Zcash, Litecoin, Dogecoin, Bitcoin 
Cash, and Dash, from Github repositories. These cryp-
tocurrencies follow very similar network designs to Bit-
coin. We take Bitcoin Cash as an example and show the 
source code comparison of the incoming connection 
processing mechanisms for Bitcoin v22.0 and Bitcoin 
Cash v26.0 in Fig.  15. For simplicity, we just position 
associated locations of the shared connection pool and 
deterministic eviction strategy in Table  5 for the rest 
cryptocurrencies.

Countermeasures
Here we suggest two countermeasures for our linking.

Isolate the connection pool by different local addresses
Since our evicting-filling attack exploits Bitcoin shared 
connection pool, thus the first measure is to check the 
local address used to accept one new connection and 
assigns a separate connection pool for each local address 
when processing incoming connections. As for the size 
of each connection pool, it can be set by either Bitcoin 
developers or users. By using isolated pools, connections 
associated with different local addresses lose the ability to 
affect each other.

Reduce the predictability of evicting connections count 
and the releasing empty slots count
Our linking attack needs to be completed in a short 
time and depends on real-time changes in the number 
of connections. If Bitcoin adds random time each time 
it disconnects instead of disconnecting in real-time, the 
attacker will have to wait a longer time to observe the 
change in the number of connections, which makes the 
attack more susceptible to three affecting factors. In this 
way, the evicting connections count and releasing slots 
count are difficult to be predicted.

From the point of our view, the previous works (Pie-
ter 2020; practicalswift 2020) actually exploited the flaw 
of shared address cache in the addr-response-caching 
mechanism and Grundmann et  al. (2022) exploited 
the flaw of shared relay addresses in the address relay 
mechanism. These works explored the unisolation in 
different network mechanisms but did not awaken 

Fig. 12 Multi-dimensional linking view for Bitcoin
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developers’ awareness of a comprehensive analysis 
of unisolation. In addition to the problem of shared 
connection pool in the incoming connection process-
ing mechanism, We also find that in the banning and 
discouragement mechanism, all local addresses share 
the banned and discouraged lists. For each address in 
the banned list, incoming connections from it will be 
rejected by all local addresses. For addresses in the dis-
couraged list, connections with them are preferred for 
eviction no matter from which local address the new 
incoming connection is received. These are all poten-
tial pitfalls that could be utilized to undermine address 
unlinkability, so the Bitcoin developing community may 
need to seriously analyze the isolation in all network 
mechanisms in the next upgrade.

Conclusion
In this paper, we present the evicting-filling attack that 
can link multiple addresses belonging to the same Bit-
coin node regardless of network type. The attack is a 
new side channel attack, which is the first work to focus 
on the shared connection pool and deterministic con-
nection eviction strategy of Bitcoin’s incoming connec-
tion processing mechanism. We design a multi-step 
attacking procedure and mount this attack in the Main-
net, achieving high accuracy. To be noticed, this attack 
can be combined with traditional transaction trac-
ing techniques for further de-anonymization against 
both the data and network layers. In such an applica-
tion scenario, the attack can link transactions from dif-
ferent addresses and associate clear and anonymous 
addresses of a dual-stack system, exposing the trans-
action behavior and real network identities of users. 

By demonstrating the great harm that can be caused 
by unisolation, We take this work as a stepping stone 
and aim at awakening Bitcoin developers’ awareness of 
comprehensive analysis for unisolation in all network 
mechanisms.

In the future, we are planning to further utilize other 
unisolated natures of existing network mechanisms, such 
as shared banned and discouraged lists. And then do a 
comparative analysis of the efficiency and accuracy of dif-
ferent address-linking attacks. In addition, we mention 
combining transaction tracking and transaction clus-
tering as another solution for de-anonymization in this 
paper. Our next step is to validate the feasibility of this 
solution.

User safety and ethics
We disclosed the attack to Bitcoin Core developers before 
the publishing of this article. To protect user privacy, we 
restricted from linking in the whole Bitcoin Mainnet. 
Although analyzing affecting factors requires us to con-
duct measurements on the Mainnet, we do not cause any 
network anomalies. Moreover, we do not use our linking 
results for further de-anonymization attacks or privacy 
acquisition.

Appendix
Quantitative analysis for cache map collision linking
Bitcoin developers implemented addr-response-caching 
mechanism through the cache map to prevent neighbor-
ing nodes leakage. The cache map stores cached addresses 
that responded to address query requests. Cache map col-
lision refers to the phenomenon of two different Bitcoin 
addresses with the same address cache. In v22.0 of Bitcoin, 

Fig. 13 Complete deanonymization process for evicting-filling attack combined with transaction traceability technology
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the cache map is indexed only by network types of local 
addresses. Thus, addresses of the same node with the same 
network type must collide on their cache maps. We now 
demonstrate why addresses with conflicting cache maps 
must belong to the same node.

Each Bitcoin address database contains a maximum of 
81,920 addresses, and the actual size is typically smaller. 
Thus, we counted the address database sizes of our five self-
run nodes that have been running on the Mainnet for two 
weeks. As shown in Fig. 16, we can see that their address 
database size is relatively stable, with an average of 65,731 

Fig. 14 Example: Source code comparison of incoming connection processing mechanism for Bitcoin v22.0 and v24.0 (the left side is the code 
of v22.0 and the right is of v24.0)
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Fig. 15 Example: Source code comparison of incoming connection processing mechanism for Bitcoin v22.0 and Bitcoin Cash v26.0 (the left side 
is the code of Bitcoin and the right is of Bitcoin Cash)

Table 5 Source code locations of two connection pool processing characteristics of mainstream Bitcoin variants

Cryptocurrency Version Shared connection pool Deterministic eviction strategy

Zcash 5.4.2 At line No.1091 of Zcash (2023) At line No.983 of Zcash (2023)

Litecoin 0.21 At line No.1157 of Litecoin (2022) At line No.1015 of Litecoin (2022)

Dogecoin 1.14.7 At line No.1107 of Dogecoin (2023) At line No.995 of Dogecoin (2023)

Bitcoin Cash 26.0 At line No.1099 of Cash (2023) At line No.947 of Cash (2023)

Dash 19.x At line No.1218 of Dash (2022) At line No.1147 of Dash (2022)
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addresses. Meanwhile, we counted the number of overlap-
ping addresses with identical address information (network 
address, running port, timestamp, service list, network type) 
in the address database of any two nodes from March 2 to 
March 18. As shown in Fig. 17, the number of overlapping 
nodes stabilizes after a period of growth. The highest aver-
age number of overlapping addresses is on March 18, which 
is 7,317. According to these measurements, the probability 
of generating the same address cache containing 1000 iden-
tical addresses from two separate Bitcoin nodes is less than:

Thus, it is unlikely for the cache maps of different nodes 
to collide and we believe that addresses with the same 
address cache belong to the same node.

(

C
1000
7317

C
1000
65731

)2

=

(

7317!(65731− 1000)!

(7317− 1000)!65731!

)2

< 10−981
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