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Abstract 

Fine-grained function-level encrypted traffic classification is an essential approach to maintaining network security. 
Machine learning and deep learning have become mainstream methods to analyze traffic, and labeled dataset con-
struction is the basis. Android occupies a huge share of the mobile operating system market. Instant Messaging (IM) 
applications are important tools for people communication. But such applications have complex functions which fre-
quently switched, so it is difficult to obtain function-level labels. The existing function-level public datasets in Android 
are rare and noisy, leading to research stagnation. Most labeled samples are collected with WLAN devices, which can-
not exclude the operating system background traffic. At the same time, other datasets need to obtain root permission 
or use scripts to simulate user behavior. These collecting methods either destroy the security of the mobile device 
or ignore the real operation features of users with coarse-grained. Previous work (Chen et al. in Appl Sci 12(22):11731, 
2022) proposed a one-stop automated encrypted traffic labeled sample collection, construction, and correlation 
system, A3C, running at the application-level in Android. This paper analyzes the display characteristics of IM and pro-
poses a function-level low-overhead labeled encrypted traffic datasets construction method for Android, F3L. The 
supplementary method to A3C monitors UI controls and layouts of the Android system in the foreground. It selects 
the feature fields of attributes of them for different in-app functions to build an in-app function label matching library 
for target applications and in-app functions. The deviation of timestamp between function invocation and label iden-
tification completion is calibrated to cut traffic samples and map them to corresponding labels. Experiments show 
that the method can match the correct label within 3 s after the user operation.

Keywords Encrypted traffic, Deep learning, Android, Labeled dataset

Introduction
Accurate and efficient traffic classification, especially 
fine-grained, can assist Internet Service Providers (ISPs) 
in providing reasonable resource allocation and opti-
mization for different Internet services. It is also the 

primary method for regulators to protect cyber security. 
However, encryption technology has been widely used in 
traffic transmission to deal with privacy risks, making the 
traditional Deep Packet Inspection (DPI) method of ana-
lyzing plaintext payload no longer applicable (Yang and 
Liu 2019). The Google Transparency Report “Percent-
age of pages loaded over HTTPS in Chrome by platform” 
shows that among all Chrome users, the proportion of 
web pages loaded using the HTTPS protocol reached 99% 
in December 2022, and this proportion is as high as 97% 
on the Android. Encrypted traffic has been widely used 
in various applications such as IM (Instant Messaging), 
game, and shopping and has become an unavoidable 
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problem in network traffic analysis. As of June 2022, the 
number of mobile Internet users in China has reached 
1.047 billion, and the proportion of Internet users using 
mobile phones to access the Internet has reached 99.6% 
(CNNIC 2022). Meanwhile, as of the fourth quarter of 
2022, the market share of the Android system in mobile 
networking devices is as high as 71.1% , occupying a sig-
nificant position in the mobile operating system (Statista 
2022). In recent years, the number of mobile applications 
has shown explosive growth. The design of many popu-
lar mobile applications is evolving in integration and 
complexity, leading to the demand for fine-grained func-
tional-level mobile encrypted traffic classification.

As machine learning and deep learning methods have 
become the mainstream of traffic classification (Velan 
et al. 2015), the labeled datasets, regarded as the basis of 
these two methods, are significant. The volume and cov-
erage of the dataset will directly affect the generalization 
and robustness of models; the imbalance of samples in 
the dataset or excessive noise will affect the accuracy of 
the classification results, resulting in unacceptable traffic 
classification errors. In the current field of encrypted traf-
fic classification, most of the labeled datasets used are a 
small number of public datasets, such as the ISCX VPN-
nonVPN dataset (Draper-Gil et al. 2016) released in 2016, 
or private datasets collected by researchers themselves. 
However, the public labeled datasets have old samples 
that have yet to be updated in time, the number of sam-
ples is small, and the coverage needs to be improved. 
Their collection method with PC and WLAN devices 
throughout construction cannot eliminate background 
traffic. The accuracy of the trained models needs to be 
improved. It is difficult to apply them to the real Internet 
traffic classification scenario with rapid development and 
change, even using models trained by private datasets 
lacking updates. There are fewer public datasets on the 
mobile terminal, and the private datasets collected by the 
researchers have different sample collection methods and 
need a unified operating standard. Most private datasets 
are not disclosed due to the risk of leaking user privacy, 
making it difficult for other researchers to verify whether 
there is traffic mixing. Unbalanced samples may lead to 
problems such as a sharp decline in model versatility 
and robustness. At the same time, although the Android 
system is implemented based on Linux, it has a different 
security policy from Linux. Some operations that can be 
efficiently completed in the Linux system need to obtain 
root permission in the Android system. However, obtain-
ing root permission means irreversible damage to the 
Android system, causing unknown risks and threatening 
user privacy and security.

To solve these problems, based on the A3C system 
(Chen et  al. 2022), this paper proposes a function-level 
low-overhead labeled encrypted traffic datasets construc-
tion method for Android (F3L). With the IM and Android 
system analysis, this paper determines how to identify in-
app functions in the foreground by monitoring UI (User 
Interface) controls and layouts. Field features of attrib-
utes of them are selected to build an in-app function label 
matching library to guarantee the accuracy and rapidity 
of identification. After that, since label matching takes 
time and causes partial traffic loss, the timestamp series 
generated from traffic samples are calibrated to make the 
function-level labels correspond entirely to the traffic.

The main contributions of this paper are as follows. 

(1) This paper proposes that fine-grained encrypted 
traffic classification is an essential method for 
future network security and points out that the 
lack and impurity of current datasets bring difficul-
ties for research. Hence, this paper proposes F3L to 
automatedly collect and label functional-level traffic 
samples in an Android system without root permis-
sion in a secure and efficient method way low con-
sumption.

(2) Further, this paper considers the errors between 
label completion time and traffic generation time. 
Through enough experiments, this paper proves 
that the time threshold between user operation and 
F3L matching the in-app function label presents a 
fixed range of distribution in terms of application 
and in-app functions, which can be calibrated to 
eliminate.

Related work
Encrypted traffic classification
Encrypted traffic makes DPI methods for plaintext inef-
fective. In contrast, the encrypted traffic still has features 
that can be captured, so the researchers applied machine 
learning and deep learning methods to traffic classifica-
tion. Currently, the research for encrypted traffic classifi-
cation is divided into the following directions. 

(1) Feature Extracting appropriate features from data 
and summarizing patterns is essential in machine 
learning and deep learning. Maonan et  al. (2021) 
proposed a method based on ResNet and AutoEn-
coder to extract comprehensive information. 
Satrabhandhu and Tritilanunt (2021) focused on 
traditional machine learning and proposed a bidi-
rection flow non-zero payload flow data extraction 
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scheme and bi-direction flow payload ratio fea-
ture. Shen et al. (2020) considered the cost of fine-
grained classification, only using length features 
and traditional machine learning models to reduce 
overhead. Vasudevan et al. (2021) focused on appli-
cation layer features, which a small number of could 
get better results. Chen et  al. (2020) innovatively 
take the differences among encryption network 
protocol stacks into account, making feature extrac-
tion faster with multi-PDU lengths. Zhang et  al. 
(2021) applied deep learning to feature engineering 
to explore deeper features in the traffic. Cai et  al. 
(2021) mined the hidden topological information of 
the flow with Markov chains.

(2) Model With machine learning and deep learning 
development, more models are applied to encrypt 
traffic classification. Zhao et al. (2021) used HMM 
and LSTM. Aceto et  al. (2021) explored multi-
task traffic classification to optimize the perfor-
mance of the deep learning model. Lin et al. (2022) 
designed the model structure combined with CNN 
and Bi-GRU. Wang et  al. (2020) implemented a 
framework with CNN and SAE. Sun et  al. (2020) 
proposed a method including the benefits of GCN 
and the autoencoder, so only a few labeled data 
were needed. Banihashemi and Aktharkavan (2022) 
designed an algorithm based on DNN. Zhou et al. 
(2021) proposed a 2D-CNN model and introduced 
image recognition into encrypted traffic classifica-
tion. Yao et al. (2019) used RNN to model network 
traffic, while LSTM and HAM were introduced to 
assist classification.

(3) Dataset Nowadays, most encrypted traffic classifi-
cation research adopts the ISCX VPN-onVPN data-
set. However, the Internet is developing rapidly, and 
the dataset in the past has had serious data-drifting 
problems. The high classification accuracy depends 
on high-quality datasets. However, collecting traf-
fic samples is often time-consuming, and it is not 
easy to ensure the balance and purity of the dataset. 
Therefore, some researchers tried to optimize data 
acquisition and solve the imbalance problem. Sha-
rif and Moein (2021) proposed a cost-sensitive deep 
learning approach. Considering the same trouble, 
Wang et  al. (2020) proposed the approach of data 
augmenting to generate samples to achieve data 
balancing.

Current research on encrypted traffic classification 
mainly focuses on machine learning and deep learning 
methods. With the development of models and algo-
rithms, more and more new models are being applied in 

the field of encrypted traffic classification. However, as 
the basis of the supervised learning problem, the pub-
lic dataset of encrypted traffic is still scarce. Most stud-
ies still use the ISCX VPN-nonVPN dataset released in 
2016. However, the update speed of network protocols 
is breakneck, and old datasets cannot reflect the actual 
situation of the current internet. The research of improv-
ing and generating encrypted traffic labeled datasets 
can only improve the imbalance and other issues in the 
dataset. It cannot introduce new features of real internet 
encrypted traffic. Therefore, it is necessary to study accu-
rate and efficient methods for constructing high-quality 
encrypted traffic labeled datasets.

Function‑level labeled dataset construction
Although the mobile Internet has received widespread 
attention, gaps in related research still need to be filled. 
Currently, most mobile Internet encrypted traffic classi-
fication research focuses on the model optimization and 
feature engineering of machine learning and deep learn-
ing. However, the construction of datasets is the basis 
of machine learning and deep learning. Since the popu-
larity of mobile networking devices is much later than 
Windows, the public datasets in this field are very scarce, 
and most of them are old and have yet to be updated in 
time. It is not easy to match the ever-changing mobile 
applications and their diverse in-app functions, so most 
researchers collect traffic by themselves and construct 
private datasets.

In the previous work, the A3C system implements 
application-level traffic collection in Android. Based on 
VPN Service, A3C changed the traffic path of the tar-
get application without root permission, and labeled the 
encrypted traffic with the application name. However, 
the sample label granularity of A3C is at the application-
level and cannot separate the traffic of different in-app 
functions.

At present, researchers construct functional-level 
encrypted traffic labeled datasets on mobile terminals 
mainly in the following ways: 

(1) Use tools such as Tcpdump to collect traffic in the 
root permission environment, monitor and record 
user operations and then replay them. Huabing 
et al. (2021) used dSploit, an Android system analy-
sis tool, to collect traffic under root permission and 
selected traffic by adding packet filtering rules. Wei 
et al. (2012) built a multi-layer Android application 
analysis system. At the network layer, Tcpdump 
was suitable for Android collecting network traf-
fic; system calls were monitored at the operating 
system layer; and user behavior such as clicking 
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and long-pressing the screen was monitored at the 
user layer with ADB to record, and network traffic 
was collected for analysis by replaying the recorded 
user behavior. Dai et  al. (2013) proposed a heu-
ristic UI path generation method to automatedly 
run the application in the simulator and automat-
edly explore the usage of the application, thereby 
simulating user operations and generating network 
interaction. The Android tool monkeyrunner was 
used to record and replay the coordinates and con-
trols of the screen of the users’ operations, and Tcp-
dump was used to capture the traffic. The labels of 
applications were identified by PID (Process Iden-
tification) of the applications by reading network 
calls. Among them, monitoring the user’s operation 
on screen needs to obtain root permission.

(2) Cooperate with wireless AP (Access Point) and 
other devices, use tools such as Wireshark to col-
lect traffic, and record labels manually. This method 
inevitably introduces irreducible background traf-
fic and systematic errors into the dataset, so related 
research focuses more on reducing the noise of 
the datasets. Saltaformaggio et  al. (2016) and 
Shafiq et  al. (2016) reduced the noise of the sam-
ple datasets by only accessing specified devices and 
performing specified behaviors. Fu et  al. (2016) 
recorded user behavior manually as labels and 
built a pure target application traffic environment 
by uninstalling non-target applications and set-
ting Android firewalls. Deng et  al. (2017) focused 
on the traffic research of WeChat and extracted 
the traffic belonging to WeChat through plain-
text field matching in the cellular network traf-
fic, but SNI (Server Name Indication) can tamper, 
and with the development and popularization of 
ESNI (Encrypted SNI) and ECH (Encrypted Cli-
ent Hello) (IETF 2022), the methods of using plain 
text will be completely invalid. Yan et al. (2018) also 
took WeChat as the research target and reduced 
system errors by limiting the networking capabili-
ties of other applications. Wu et  al. (2021) manu-
ally recorded function switching when collecting 
function-level labeled traffic for labeling. Bartolec 
et al. (2020) researched on YouTube, using wireless 
AP to capture traffic and OCR (Optical Character 
Recognition) technology to identify video informa-
tion to form labels. Loh et al. (2022) also collected 
YouTube traffic, combined with the wireless AP and 
ADB connection, and the information provided by 
the YouTube application to label the sample traffic. 
Afzal et  al. (2021) took Signal Messenger as their 

research object and filtered the traffic of the speci-
fied application by setting up firewall rules, and its 
different functions in the application were operated 
manually.

(3) Simulate user behavior with scripts. Conti et  al. 
(2015) used ADB to run scripts to automate the 
application operation, recorded the timestamp of 
each operation, marked the traffic after the times-
tamp as generated by the operation, and mapped 
for the corresponding function label accordingly. 
Regarding target application traffic filtering, the 
IP is filtered based on WHOIS, and only the flows 
related to the application were considered. Cap-
turing traffic was carried out at the wireless AP 
through Wireshark. Afterward, Conti et  al. (2015) 
made further improvements to the scripts, adding 
randomness to filling text in the edit box, not using 
static text, and using randomly selected from a large 
number of sentences instead. However, this type of 
scripting method still needs the features of real user 
operations. Bahuguna et al. (2021) used Appium to 
write scripts, operated specified application func-
tions at fixed timestamps, used tshark to capture 
traffic, cut and formed labeled sample datasets 
according to specified timestamps, and obtained 
adequate flows based on filtered with SNI and DNS 
query. This type of method replaces real users with 
scripts, loses the real operation features of users, 
and obtains labeled datasets that do not conform to 
the actual usage scenario of the applications.

To sum up, the current construction method of function-
level labeled datasets for encrypted traffic on mobile 
devices mainly has the following problems: (1) The acqui-
sition of root permission destroys the native system of 
mobile devices, which has security risks; (2) The collec-
tion methods with wireless AP or other devices are com-
plex, inefficient, and will introduce system errors that 
cannot be eliminated; (3) The real operation features 
of users are lost in the way of script simulation, which 
does not conform to the actual usage scenario of the 
applications.

Analysis of IM in Android
As one of the most popular mobile operating systems 
today, Android has a complete architecture and com-
ponents to give users an excellent visual and interac-
tive experience. Activity is responsible for displaying 
the user interface, and all of the UI controls and lay-
outs in the application are deployed in the Activity. 
Since an application may have multiple Activitys, in 
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non-split-screen mode, only one Activity in the fore-
ground can interact with the user and give user opera-
tion feedback. Regardless of complex situations such as 
split-screen mode and multi-screen collaboration, in 
the general usage scenario of the Android system, the 
life cycle of an Activity is divided into Running state, 
Paused state, Stopped state, and Killed state. When the 
Activity is in the foreground, it is visible to the user and 
can interact with the user, which means the Activity is 
Running. The user’s operation can also be carried out 
on this Activity to generate calls to in-app functions 
and provide feedback to the user. Therefore, the identi-
fication and mapping of the function-level labels in the 
application should also be completed when the appli-
cation and its Activity where the in-app functions are 
deployed are in the foreground.

In order to implement a variety of in-app functions, 
the Android system provides many UI controls to sup-
port a rich interactive experience, as shown in Table 1. 
A complex user interface can be formed by combin-
ing and arranging many UI controls natively provided 
by the Android system and customized by application 
developers. In order to make the display of the user 
interface logical and beautiful, the Android system pro-
vides layout as the container for UI controls. It forms 
a multi-layer nested hierarchical relationship with UI 
controls and has certain regularity. With the help of 
hierarchical nesting of layouts and UI controls, the 
application’s interface in the Android system realizes 
a rich and diverse interaction mechanism with users, 
which can logically display various information and 
give users feedback on operations.

With the rapid development of the mobile Internet, 
many popular applications, such as Alipay, integrate 
many functions in a single application, providing users 
with many services, including online payment, financial 
planning, health code, and so on. Although these in-
app functions belong to the same application, their traf-
fic features are changeful and often even use different 

protocols for network communication. In IM, it is also 
widespread that different in-app functions of the same 
application use different transport and application layer 
protocols. Taking WeChat of the Android system as an 
example, it uses TCP, TLS, HTTP, MMTLS, and many 
other public and private protocols when transmitting 
text, pictures, files, and diverse information.

Different from the in-app functions integration 
method that provides different services by switching 
the entire foreground interface, the function switch-
ing in the chat window of the IM is more frequent. In 
extreme cases, whenever a user sends a message, it is 
possible to call a different network protocol using a dif-
ferent in-app function. Generally speaking, the in-app 
functions provided in the chat window of popular IM 
are shown in Table 2.

Compared with other types of applications, most of the 
functions of IM are frequently switched in daily usage 
scenarios. Hou et  al. (2018) put forward a clear condi-
tional hypothesis in their research: two different func-
tions are performed sequentially, not concurrently. When 
the user uses the IM, the messages are also sent serially 
instead of in parallel. Therefore, this paper also assumes 
that the traffic generated by different in-app functions 
does not overlap; it belongs to the time interval of the 
function call in the application. The collected network 
traffic belongs only to the function and its background 
traffic that cannot be eliminated and will not be mixed 
with traffic generated by other functions. This assump-
tion provides the possibility for labeling and mapping 
function-level samples. Looking further at various IM, it 
can be found that the visual feedback after the function 
call of this type of application follows the same interac-
tive logic. The newly sent or received message is located 
at the bottom of the display area that belongs to this type 
of function in the Activity in Running state. When a new 
message appears, and there is no remaining display space 
in this area, the interface is automatedly scrolled up, and 
the new message is kept at the bottom of the display area.

Table 1 Common UI controls in Android

Name Function

TextView Display a text message

EditText Allow users to input and edit content

Button Display a button

ImageView Display an image

ProgressBar Display a progress bar

ProgressDialog Pop up a dialog box and block other UI controls

AlertDialog Pop up a dialog box and block other UI controls

... ...

Table 2 Popular in-app functions in IM

In‑app function Abbreviation

Send and receive text message Text

Send and receive picture Picture

Send and receive video Video

Send and receive voice message Voice

Send and receive file File

Audio and video call –

... ...
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Function‑level label identification and matching
In previous work (Chen et al. 2022), the A3C system was 
proposed to complete the automatic and pure applica-
tion-level traffic collection. Based on A3C, this paper 
studies the function-level label of traffic to make samples 
more fine-grained. Cooperating with the A3C system to 
collect encrypted traffic, F3L is targeted to identify and 
cut the application-level traffic into samples with func-
tion-level labels. Since past researchers need to obtain 
root permission to monitor users’ operation on the 
screen, F3L is based on Accessibility Service to monitor 
for changes in UI controls and layouts in the foreground 
to identify user operation, bypassing the limitation of 
root permission. In addition, F3L only listens instead of 
simulating user operation, and its listening content is 
still real user behavior, thus avoiding the loss of real user 
features.

System overview
In order to identify the in-app functions in the IM with 
frequent switching in the Android system with non-
root permission and correctly label the traffic samples in 
time, this paper proposes a function-level low-overhead 
labeled encrypted traffic datasets construction method 
for Android, F3L, which monitors the UI controls and 
layouts in the foreground without interfering normal 
usage. The overall architecture of the system is shown in 
Fig. 1. The in-app function label matching library is the 
core module of F3L. Different IM have different UI con-
trols and layouts. Even if the same manufacturer develops 
them, different teams are responsible for the develop-
ment and implementation. There are general differences 
in the audio-visual feedback and attributes of UI controls 

and layouts, which allows for building a specific in-app 
function label matching library. The feature fields of UI 
controls and layouts attributes are selected to build an in-
app function label matching library, which can map the 
attribute changes of the UI controls and layouts with the 
corresponding in-app functions and accurately complete 
the function-level label matching within the shortest time 
threshold. The core of this module adopts the Accessibil-
ity Service interface in the Android system to provide the 
accessibility service. This interface has been supported 
since Android 1.6 and has been greatly improved in 
Android 4.0. It can collect interaction information about 
Activity in the foreground (Developers 2022).

The detailed process of the method is shown in Algo-
rithm 1. After detecting and confirming that the Activ-
ity currently in the foreground belongs to the target 
application, the UI controls and layouts are scanned 
to form a snapshot. Unlike monitoring user operations 
on the screen, this step can be realized in a non-root 
environment. According to the in-app function label 
matching library, the content fields of each attribute of 
the UI controls and layouts are regularly matched with 
preset rules. Then the coordinates of the feature UI 
controls and layouts are read and compared to get the 
UI control and layout at the bottom of the Activity in 
the foreground. Since the latest in-app function is clear, 
the current in-app function-level label is obtained. 
Finally, the current label is compared with the last 
recorded label. If they are different, the latest in-app 
function in the target application has changed. There-
fore, the new label and its timestamp must be recorded 
in the function-level label log to prepare for subsequent 
traffic cutting and mapping.

 
 

Fig. 1 The architecture of F3L
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F3L applies to the function of the UI controls and lay-
outs that can be obtained by scanning in the Activity 
in the foreground. Therefore, any in-app function that 
causes the changes in UI controls and layouts in the fore-
ground can adopt the same principle for label identifica-
tion and matching and only needs to add content fields of 
feature attributes to the in-app function label matching 
library to expand the preset rules.

However, as the audio and video call function attached 
to most IM, it reminds users of incoming calls in the 
form of floating windows or full-screen pop-up win-
dows in many cases, and no UI control or layout can be 
directly scanned and obtained. It does not belong to the 
applicable scope of the in-app function label matching 
library. This paper proposes monitoring system noti-
fication as a supplement to F3L. The notification of the 
Android system is outside the UI and is used to display 
message reminders. In Android 4.3, Google provides the 
Notification Listener Service interface to allow listen-
ing to notifications, through which information such as 
the notification source’s application and the notification 
content can be obtained. This paper also constructs an 
extensible notification label matching library, introduc-
ing the content of audio and video call notifications. A 

regular matching method is adopted to identify the audio 
and video call. The in-app function label is recorded in 
the function-level label log. This module does not need to 
confirm that the Activity in the foreground belongs to the 
target application. Even when the target application is in 
the background, F3L can also record this label.

Calibration of function‑level label timestamp
For general users, sending and receiving messages in IM 
is a complex thinking activity. This paper assumes that 
the operation interval between different in-app functions 
should be greater than or equal to 1  s when users send 
and receive each message. Therefore, 500 ms is selected 
as the time interval for F3L to take every snapshot. Too 
high a frequency of snapshot generation will lead to 
unnecessary performance consumption. At the same 
time, too low a frequency will lead to the loss of some 
inappropriate sample labels. Since 500 ms is the median 
of 1 s, there must be a snapshot between two user opera-
tions, which allows for accuracy and performance.

This paper assumes that at timestamp tA , the matched 
in-app function is A, and at subsequent timestamp tB , the 
matched in-app function is B. Therefore, the traffic from 
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timestamp tA to tB is mapped to label A, and the traffic 
after tB is mapped to label B.

In an ideal state, F3L can immediately identify and 
update the function-level label after the user oper-
ates the in-app function. However, it takes time for the 
application to respond and give feedback. With a script 
to simulate user operations and A3C collecting traffic 
simultaneously, F3L identifies the in-app function labels. 
The three types of timestamps are recorded as shown in 
Fig. 2. Every green dot represents a packet. The darker the 
green is, the denser the packets are at this time point. So 
it is evident that after the user operates the functions in 
the target application, the application generates network 
interaction traffic first. After a while, the function-level 
label matching is completed. Hence, after the operation, 
the specified in-app function is called first, and the net-
work interaction required by the in-app function starts, 
which leads to network traffic generation. Then in the 
foreground, UI controls, and layouts in the Activity are 
refreshed to give the user the necessary feedback on the 
operation. Currently, F3L can perceive the changes in the 
UI controls and layouts, compare them with the in-app 
function label matching library, and write the matching 
result into the function-level label log. Therefore, a time 
difference exists between user operation, network traffic 
generation, and label matching completion. To solve the 
problem that may lead to the dislocation of traffic cutting, 
this paper proposes to take advantage of the existence of 
Think Time (Microsoft 2012) to calibrate the timestamp 
of the function-level label. Otherwise, when an in-app 
function is triggered, the traffic may be omitted. Think 
Time is when users switch between different applica-
tions and functions and perform different operations in 
the load test. Since users need to spend a certain amount 
of time thinking before they operate in-app functions in 
actual usage scenarios, when the user switches to differ-
ent in-app functions, there is a time interval that provides 
a time threshold for cutting labeled samples, which pro-
vides possibilities for accurate mapping of function-level 
labeled samples. Thanks to the high-speed Internet and 
manufacturers’ demand for user experience, the time for 
feedback will be brief. Through enough experiments, the 

calibration threshold can be determined to match diverse 
in-app functions.

Feature attribute selection
This paper takes QQ, WeChat, and Telegram, three pop-
ular IM, as examples to analyze, considering text, picture, 
video, voice, and file, five in-app functions to introduce 
in-app function label matching library building steps. 
Both QQ and WeChat are Internet IM tools provided by 
Tencent, while Telegram is an IM that provides end-to-
end encrypted communications.

Using the Android UI control analysis tool to scan the 
Activity of the three IM, it can find that their UI controls 
and layouts present a hierarchical pattern. The central 
part of the user interface of WeChat and Telegram is 
RecycleView, a component like a list. In contrast, QQ’s 
central part is a custom component named AbsListView, 
which plays the same role. In order to support diversified 
visual effects and interactive experiences, these UI con-
trols and layouts have complex multi-dimensional attrib-
utes, which can be used as features to identify different 
in-app functions, as shown in Table  3. These attributes 
include interactivity, visual effects, drawing order, and 
hierarchical relationship of the UI controls and layouts.

Because attributes are multi-dimensional and com-
plex, even changing, this paper proposes that the follow-
ing principles should be followed when selecting feature 
attributes: 

(1) Specificity Since different in-app functions are in the 
same application, their corresponding UI controls 
and layouts must be similar. If the selected feature 
attributes lack specificity, it will lead to misidenti-
fication, making it impossible to obtain the correct 
function-level label.

(2) Stability First, feature attributes must be stable in 
the same application version. For example, bounds 
and depth will change with the sliding page, while 
the className and other attributes of the same type 
of UI controls will remain unchanged. Secondly, 
feature attributes should also be robust in different 

Fig. 2 The process of application traffic transmission
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versions of applications. For example, in multiple 
versions of QQ, the id of the dialog box is “qq_aio_
ptt_time_tv”. In contrast, in WeChat, the id of the 
dialog box is iterated with the version, which brings 
costs for updating the in-app function label match-
ing library.

(3) Availability Compared with attributes such as id, 
which can directly regularly match content fields, 
the attributes of child UI controls involve the hier-
archical nesting relationship between UI controls 
and layouts. A second search is required in the 
results of the first round of searches, which will 
burden the performance of F3L. Therefore, simple 
attributes that do not involve nested relationships 
should be selected as feature attributes preferen-
tially unless a single attribute is not specific.

Finally, after updating iterations of multiple applica-
tion versions, the relatively stable feature attributes of 
the five in-app functions in the three applications are 
selected, as shown in Table 4. Among the three IM, the 
five functions of QQ can all be identified accurately 
with a regular match through the content fields of the 
four attributes of className, id, desc, and text. The 
situation with WeChat is more complicated. According 
to the results of scanning and analysis, the id attributes 
of the layouts and UI controls in WeChat are volatile 
in the iterative update of the version. As the manufac-
turer continues to push new versions, the function label 
matching library in the application needs to be updated 
continuously, making the method’s robustness not 
satisfied.

Moreover, due to the lack of a stable id in WeChat, 
when users operate the interface in the foreground, the 
UI controls and layouts that have nothing to do with the 
target function will also show a high degree of similarity 

with those that serve as the feedback of the function. If 
selected feature fields are not specific, it may disturb the 
recognition results and reduce the accuracy. Therefore, 
compared with QQ, WeChat’s function label match-
ing library introduces attributes of child-controls and 
matching mechanisms related to application interac-
tion to maintain the stability of feature attributes in the 
matching library and reduce the cost it needs to pay after 
the iteration of the application version. Compared with 
QQ and WeChat, which have complex structures of user 
interface and display rich visual effects, the UI controls 
and layouts in Activity of Telegram are more concise and 
have fewer nesting layers. The five functions in the chat 
window use the same UI controls and layouts packaging 
logic. The information received and sent by the user can 
also be directly obtained by reading the content field in 
the attributes of the UI controls and layouts to simplify 
the above algorithm. The feature UI control at the bot-
tom of the chat window can be obtained directly to read 
its attributes, which can be matched with the feature con-
tent field in the matching library to determine whether to 
update the in-app function label.

Experiments and results
In the actual usage scenario of IM daily, various in-app 
functions switch frequently. In order to ensure that the 
function-level labels are correct and the mapping with 
the traffic samples is entirely accurate and to provide 
support for the following encryption traffic classifica-
tion method based on machine learning and deep learn-
ing, this paper verifies the accuracy and rapidity of F3L. 
This paper selects an Android smartphone equipped with 
a Qualcomm Snapdragon 730  G processor and 8GB of 
memory as the experimental device. Considering sending 
and receiving text messages, pictures, videos, voice mes-
sages, and files of three IM, which are WeChat, QQ, and 
Telegram, five popular in-app functions are included in 
the experiments.

Table 3 Attributes of layouts and UI controls in Android

Name Function

className The name of class

id Identity document

desc Description

text Text content

bounds Coordinates

depth Layer

clickable Whether to allow to click

longClickable Whether to allow to long press

... ...

Table 4 Feature attributes of in-app functions in matching 
library

In‑app functions QQ WeChat Telegram

Text id, className longClickable, className, 
text

text, desc

Picture id, className desc, className text, desc

Video desc clickable, className, 
childCount

text, desc

Voice id, text text text, desc

File text className, desc text, desc
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Accuracy of function‑level labels identification
This paper adopts the method of manually sending five 
types of IM messages. It sends each type of message 
alternately 100 times in a fixed order of picture, video, 
text, file, and voice, records that each type of message is 
sent once as a round, and compares the result of label 
identification and matching with the real label to obtain 
its accuracy rate. The result is shown in Fig. 3a.

The experimental results show that after sending 100 
rounds of messages, WeChat has many misidentifica-
tions. However, each message is accurately matched, 
and the locations of the misidentification phenomenon 
are shown in Fig.  3b. It is shown that the phenomenon 
mainly occurs when sending pictures, videos, and files. 
This is because when users send these three types of mes-
sages when viewing pictures, videos, and files, WeChat 
will play a sliding window animation to switch the Activ-
ity, and during the switching process, the UI controls and 
layouts related to sending and receiving messages in the 
chat window in the Activity are partially blocked, result-
ing in the incomplete layouts and UI controls scanned, 
so that the identification of the latest in-app function 
makes errors. The nature of recognition of UI controls 
and layouts is similar to that of OCR, and such problems 
are unavoidable errors due to the complexity of screen 
display content. Nevertheless, after the user sends a new 
message, the Activity on the interface for sending and 
receiving messages will return to the correct position and 
will not interfere with the following identification of the 
label of the in-app function.

Due to the slow upload speed of videos, this paper 
simulates the operation of WeChat’s four in-app func-
tions by the script and carries out five rounds in the 
order of picture, text, file, and voice. After calibrating 

the label timestamp with the threshold in Sec. 5.2, the 
labels recorded in the function-level label log are shown 
in Table 5. After cutting the traffic collected by A3C, the 
number of packets corresponding to each function-level 
label is also shown below, where (*) means misidentifica-
tion. In order to avoid errors caused by closing scripts, 
A3C and F3L at the end of the collection, the tail samples 
are discarded. It can prove that since the time threshold 
of wrong labels recorded by misidentification is mostly 
very short, and in WeChat when there is no operation 
of sending and receiving messages, there is often no 
network traffic interaction. So when traffic cutting and 
mapping are performed later, the corresponding traffic 
samples in the time threshold are empty and can be dis-
carded directly, so such misidentification will not affect 
the construction of the encrypted traffic function-level 
labeled dataset.

Similar to the results of WeChat, a few misidentifica-
tions also occurred in QQ. The results are shown in Fig. 3 
too. The reason is also that the UI animation blocks the 
UI controls and layouts, resulting in incomplete snap-
shots obtained by scanning, then identification goes 
wrong. However, the UI animation in QQ is smoother 
and faster than in WeChat, and the time threshold is 
smaller. The probability of misidentification is lower, and 
the impact on subsequent labeled sample cutting and 
mapping is also weaker.

Compared with WeChat and QQ, which have com-
plex interfaces and rich animation effects, Telegram, 
due to the simplicity of its UI controls and layouts, 
makes the matching results of function-level labels in 
its applications extremely accurate, as shown in Fig.  3a, 
almost reaching 100% . According to the test, when the 
user’s operation speed is too fast, which means after the 

Fig. 3 The matching results of function-level labels
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feedback with UI controls and layouts is generated, the 
user stays on the interface to be scanned and identified 
for less than the interval threshold between two scans of 
the screen, making the method unable to recognize the 
changes in the in-app functions in the two snapshots 
before and after the UI controls and layouts refreshed, 
resulting in failure to match function-level labels.

Therefore, according to the experimental results, the 
accuracy of label matching at the in-app function-level 
can lay the foundation for subsequent traffic cutting and 
mapping, thereby ensuring the accuracy of labeled sam-
ples. Since encrypted traffic classification is a typical 
supervised learning problem, and the dataset is its basis. 
In principle, the noiseless and accurate dataset collected 
by F3L is helpful for model training and prediction. As 
for experiments, it should be persuasive to compare with 
other function-level datasets, but the same type of public 
datasets in this area are rare.

Calibration threshold measurement and selection
In order to obtain the timestamps of user operations of 
applications and in-app functions, this paper uses auto-
mated scripts to simulate user operations. It records 
the timestamp tx of the five types of messages sent 
by the scripts. The timestamp tc of the function-level 
label matching completed and compares the difference 
between the two �t is used as the calibration threshold 
due to the applications and functions response and the 
time-consuming of label identification and matching. 
According to enough multiple experimental results, the 
function-level label timestamp calibration threshold tm is 
selected. In order to ensure the reliability and accuracy 
of the selected in-app functions calibration thresholds, 
pictures, videos, text messages, files, and voice messages 
are sent alternately in a fixed order, recording that each 
type of message is sent once as a round, and discarded 
300 rounds of experiments were carried out. The results 

are shown in Fig.  4,  5 and 6. It can be seen that the �t 
of different in-app functions has a relatively stable distri-
bution range, which provides feasibility for the selection 
of tm . Because F3L is based on the UI controls and lay-
outs in Activity in the foreground, the complexity of the 
UI controls and layouts will greatly affect the matching 
speed of function-level labels. Among them, since the 
information carried by the text and voice messages is rel-
atively simple, �t is generally small. However, due to the 
greater information entropy, pictures, videos, and files 
also need to meet users’ complex needs, such as click-
ing to view, clicking to play, and clicking to download, 
resulting in more complex UI controls and layouts for 
more feedback. More complex hierarchical relationships 
also require longer loading times. These reasons lead to 
the increase of �t . Compared with WeChat and QQ, Tel-
egram’s UI controls and layouts have fewer layers and a 
more concise combination. Therefore, label identification 
and matching speed are higher than that of WeChat and 
QQ, and the distribution of �t is more concentrated.

When selecting tm , it is considered that when tm is too 
small, it may cause a large loss of head traffic during sam-
ple cutting and mapping, making the traffic correspond-
ing to the in-app functions incomplete. When tm is too 
large, it may cause the tail traffic of the previous function 
to be incorrectly mapped to the current function-level 
label. After discarding the extreme values beyond the dis-
tribution range of most �t , tm is chosen. In this paper, C 
is defined as the ratio between the number of �t less than 
tm and the number of all �t measured through experi-
ments. The final results of tm and C of different applica-
tions and in-app functions are shown in Table 6. It can be 
seen that C is average around 98% , proving that most �t 
can be calibrated.

The more concentrated the distribution of �t , the 
larger the C is. The simpler the UI controls and layouts 
are, the smaller the tm is. In addition, among the five 

Table 5 WeChat function-level traffic sample

Operation Picture Text File Voice

Log1 Picture Text File Voice

Packet number 51 4 35 5

Log2 Picture Text Voice* File Voice

Packet number 49 4 0 36 3

Log3 Picture Text File Voice

Packet number 52 4 36 5

Log4 Picture Text Picture* Text* File Voice

Packet number 46 4 0 0 36 5

Log5 Picture Text File Voice Voice*

Packet number 49 4 41 – –
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in-app functions of the three applications, the maximum 
tm is 2800 ms. Only the tm of WeChat and QQ file send-
ing and receiving exceeds 2000 ms. The rest of the in-app 
functions can complete label matching within 2000 ms, 
proving that F3L is fast and efficient.

Performance and cost
In daily usage scenarios, the performance of Android 
devices is often lower than that of PCs, and its storage 
space and computing power have a large gap compared 
with PCs, so the performance and cost of the method 
must be addressed. High system cost will cause the 
Android system to have the risk of freezing, affecting the 
normal use of applications running in the foreground. 
It will also reduce the efficiency of the Android system 

itself, even causing errors in the identification and match-
ing results. For example, big games with high image ren-
dering accuracy can only run on PCs. When on Android, 
it is often necessary to sacrifice image accuracy and load-
ing time to adapt, leading to information loss.

This paper uses CPU usage and memory usage as 
indicators to evaluate the system performance. The 
specific experimental method enables F3L to run dur-
ing the normal use of the foreground IM and records 
the CPU usage and memory usage of F3L every second. 
The test lasts for one minute. F3L is a tool that runs in 
the background of Android and monitors and identi-
fies the UI controls and layouts of applications in the 
foreground. Since there is currently no function-level 
label identification tool of the same type, at the same 

Fig. 4 �t distribution of WeChat

Fig. 5 �t distribution of QQ
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time, the Android device is sufficient to support the 
normal usage of IM in the foreground while playing 
music in the background. Hence, this paper proposes 
to compare three popular music applications support-
ing background running to verify that F3L can match 
function-level labels without affecting the foreground 
IM application. The results are shown in Fig.  7. It can 
be seen that the CPU usage and memory usage of F3L 
is similar to those of background music players. When 
F3L runs, the average CPU usage is 7.22% , and the aver-
age memory usage is 249.04MB.

Meanwhile, this paper also measured CPU and mem-
ory usage when WeChat, QQ, and Telegram were in 
the foreground. The results are shown in Fig.  8. Gen-
erally speaking, the total cost of IM and F3L is within 
the acceptable range of Android devices. Therefore, the 
resource occupation of F3L is small and will not affect 
the normal use of the target IM. Since the traffic gener-
ation environment conforms to the users’ general usage 
scenarios, F3L ensures the authenticity and reliability 
of the labeled samples.

In addition, during the construction of the in-app 
function-level labeled dataset, A3C runs simultaneously 
with F3L. Their functional implementations are inde-
pendent and do not affect each other. However, since 
A3C and F3L run simultaneously on an Android device, 
evaluating their performance and cost is also necessary. 
The experimental method enables F3L and A3C to run 
simultaneously during the normal use of the foreground 
IM and records the CPU usage and memory usage of F3L 
every second. The test lasts for one minute. The experi-
mental results are shown in Fig.  9. It can be seen that 
excluding the performance peak caused by turning on 
A3C in the first second, the average CPU usage of A3C 
during normal operation is only 0.11% , and the average 
memory usage is 61.00 MB, which is much lower than 
that of F3L and other background music players. There-
fore, combining A3C and F3L for automated encrypted 
traffic labeled dataset construction is undoubtedly 
low-overhead.

Fig. 6 �t distribution of Telegram

Table 6 Function-level label timestamp calibration

Application WeChat QQ Telegram

Function tm/ms C/% tm/ms C/% tm/ms C/%

Text 1100 98.3 1500 99.0 450 99.0

Voice 1000 98.3 1800 98.0 650 99.3

Picture 1800 99.3 1600 99.0 800 100

Video 1600 98.7 1600 98.0 900 97.7

File 2500 99.0 2800 97.7 1100 100
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Limitation and discussion
The call of in-app functions is triggered by user behav-
ior. Ignoring user behavior and focusing solely on the 
in-app functions will result in losing the real user behav-
ior features in daily usage scenarios. F3L considers the 
feedback and display of in-app functions in UI controls 
and layouts, replacing simulation with monitoring. By 
constructing an in-app function label matching library, 
it identifies and records calls of in-app functions. This 
method suits in-app functions where UI controls and lay-
outs may change.

However, F3L still has limitations. For example, in 
gaming and video applications, screen graphics have 
changed, but the attributes of UI controls and layouts 
have remained the same, resulting in F3L’s inability to 

capture the in-app functions in these applications. For 
this type of problem, it may be possible to improve the 
universality of F3L by introducing a computer vision rec-
ognition model.

In addition, only IM experiments have shown that 
overly complex and sluggish UI animations can also 
affect the results of F3L. With the improvement of the 
integration of various IM applications and their increas-
ing demand for performance, higher requirements will 
be placed on the speed and simplicity of F3L algorithms. 
Furthermore, there are numerous and complex instant 
messaging applications on the market, and the in-app 
functions covered in this paper are only a part of the pop-
ular functions. Further experiments on the performance 
of F3L are needed on other in-app functions.

Fig. 7 Performance and cost of applications in the background

Fig. 8 Performance and cost of IM in the foreground
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Conclusion
Machine learning and deep learning methods have 
become the main methods of encrypted traffic classifica-
tion research, and constructing labeled datasets as their 
basis is still an urgent problem to be solved. In the cur-
rent situation of increasingly complex and integrated 
mobile applications, this paper proposes a function-level 
low-overhead labeled encrypted traffic datasets construc-
tion method for IM in Android, F3L, using the method 
of monitoring the UI controls and layouts in the fore-
ground, and building an in-app function label matching 
library, aims for different applications and in-app func-
tions to label and map network traffic. F3L retains the 
real user behavior features and conforms to the general 
scenarios of the users’ daily use of the applications.

This paper verifies the accuracy, performance, and 
cost of F3L, measures the calibration threshold of func-
tion-level label timestamp, and proves that it is a safe, 
accurate, efficient, and low-overhead method for con-
structing function-level encrypted traffic labeled data-
sets, which will provide data support for fine-grained 
encrypted traffic classification research. Since F3L has 
scalability and portability, it can be popularized for 
other mobile applications and in-app functions with 
UI controls and layouts changes as feedback in the 
foreground.
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