
Xu and Cheng Cybersecurity (2024) 7:1
https://doi.org/10.1186/s42400-023-00185-6

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

F3l: an automated and secure function-level
low-overhead labeled encrypted traffic dataset
construction method for IM in Android
Keya Xu1 and Guang Cheng1,2,3*

Abstract

Fine-grained function-level encrypted traffic classification is an essential approach to maintaining network security.
Machine learning and deep learning have become mainstream methods to analyze traffic, and labeled dataset con-
struction is the basis. Android occupies a huge share of the mobile operating system market. Instant Messaging (IM)
applications are important tools for people communication. But such applications have complex functions which fre-
quently switched, so it is difficult to obtain function-level labels. The existing function-level public datasets in Android
are rare and noisy, leading to research stagnation. Most labeled samples are collected with WLAN devices, which can-
not exclude the operating system background traffic. At the same time, other datasets need to obtain root permission
or use scripts to simulate user behavior. These collecting methods either destroy the security of the mobile device
or ignore the real operation features of users with coarse-grained. Previous work (Chen et al. in Appl Sci 12(22):11731,
2022) proposed a one-stop automated encrypted traffic labeled sample collection, construction, and correlation
system, A3C, running at the application-level in Android. This paper analyzes the display characteristics of IM and pro-
poses a function-level low-overhead labeled encrypted traffic datasets construction method for Android, F3L. The
supplementary method to A3C monitors UI controls and layouts of the Android system in the foreground. It selects
the feature fields of attributes of them for different in-app functions to build an in-app function label matching library
for target applications and in-app functions. The deviation of timestamp between function invocation and label iden-
tification completion is calibrated to cut traffic samples and map them to corresponding labels. Experiments show
that the method can match the correct label within 3 s after the user operation.

Keywords Encrypted traffic, Deep learning, Android, Labeled dataset

Introduction
Accurate and efficient traffic classification, especially
fine-grained, can assist Internet Service Providers (ISPs)
in providing reasonable resource allocation and opti-
mization for different Internet services. It is also the

primary method for regulators to protect cyber security.
However, encryption technology has been widely used in
traffic transmission to deal with privacy risks, making the
traditional Deep Packet Inspection (DPI) method of ana-
lyzing plaintext payload no longer applicable (Yang and
Liu 2019). The Google Transparency Report “Percent-
age of pages loaded over HTTPS in Chrome by platform”
shows that among all Chrome users, the proportion of
web pages loaded using the HTTPS protocol reached 99%
in December 2022, and this proportion is as high as 97%
on the Android. Encrypted traffic has been widely used
in various applications such as IM (Instant Messaging),
game, and shopping and has become an unavoidable

*Correspondence:
Guang Cheng
gcheng@njnet.edu.cn
1 School of Cyber Science and Engineering, Southeast University, Nanjing,
China
2 Jiangsu Province Engineering Research Center of Security for Ubiquitous
Network, Nanjing, China
3 Purple Mountain Laboratories, Nanjing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00185-6&domain=pdf

Page 2 of 16Xu and Cheng Cybersecurity (2024) 7:1

problem in network traffic analysis. As of June 2022, the
number of mobile Internet users in China has reached
1.047 billion, and the proportion of Internet users using
mobile phones to access the Internet has reached 99.6%
(CNNIC 2022). Meanwhile, as of the fourth quarter of
2022, the market share of the Android system in mobile
networking devices is as high as 71.1% , occupying a sig-
nificant position in the mobile operating system (Statista
2022). In recent years, the number of mobile applications
has shown explosive growth. The design of many popu-
lar mobile applications is evolving in integration and
complexity, leading to the demand for fine-grained func-
tional-level mobile encrypted traffic classification.

As machine learning and deep learning methods have
become the mainstream of traffic classification (Velan
et al. 2015), the labeled datasets, regarded as the basis of
these two methods, are significant. The volume and cov-
erage of the dataset will directly affect the generalization
and robustness of models; the imbalance of samples in
the dataset or excessive noise will affect the accuracy of
the classification results, resulting in unacceptable traffic
classification errors. In the current field of encrypted traf-
fic classification, most of the labeled datasets used are a
small number of public datasets, such as the ISCX VPN-
nonVPN dataset (Draper-Gil et al. 2016) released in 2016,
or private datasets collected by researchers themselves.
However, the public labeled datasets have old samples
that have yet to be updated in time, the number of sam-
ples is small, and the coverage needs to be improved.
Their collection method with PC and WLAN devices
throughout construction cannot eliminate background
traffic. The accuracy of the trained models needs to be
improved. It is difficult to apply them to the real Internet
traffic classification scenario with rapid development and
change, even using models trained by private datasets
lacking updates. There are fewer public datasets on the
mobile terminal, and the private datasets collected by the
researchers have different sample collection methods and
need a unified operating standard. Most private datasets
are not disclosed due to the risk of leaking user privacy,
making it difficult for other researchers to verify whether
there is traffic mixing. Unbalanced samples may lead to
problems such as a sharp decline in model versatility
and robustness. At the same time, although the Android
system is implemented based on Linux, it has a different
security policy from Linux. Some operations that can be
efficiently completed in the Linux system need to obtain
root permission in the Android system. However, obtain-
ing root permission means irreversible damage to the
Android system, causing unknown risks and threatening
user privacy and security.

To solve these problems, based on the A3C system
(Chen et al. 2022), this paper proposes a function-level
low-overhead labeled encrypted traffic datasets construc-
tion method for Android (F3L). With the IM and Android
system analysis, this paper determines how to identify in-
app functions in the foreground by monitoring UI (User
Interface) controls and layouts. Field features of attrib-
utes of them are selected to build an in-app function label
matching library to guarantee the accuracy and rapidity
of identification. After that, since label matching takes
time and causes partial traffic loss, the timestamp series
generated from traffic samples are calibrated to make the
function-level labels correspond entirely to the traffic.

The main contributions of this paper are as follows.

(1) This paper proposes that fine-grained encrypted
traffic classification is an essential method for
future network security and points out that the
lack and impurity of current datasets bring difficul-
ties for research. Hence, this paper proposes F3L to
automatedly collect and label functional-level traffic
samples in an Android system without root permis-
sion in a secure and efficient method way low con-
sumption.

(2) Further, this paper considers the errors between
label completion time and traffic generation time.
Through enough experiments, this paper proves
that the time threshold between user operation and
F3L matching the in-app function label presents a
fixed range of distribution in terms of application
and in-app functions, which can be calibrated to
eliminate.

Related work
Encrypted traffic classification
Encrypted traffic makes DPI methods for plaintext inef-
fective. In contrast, the encrypted traffic still has features
that can be captured, so the researchers applied machine
learning and deep learning methods to traffic classifica-
tion. Currently, the research for encrypted traffic classifi-
cation is divided into the following directions.

(1) Feature Extracting appropriate features from data
and summarizing patterns is essential in machine
learning and deep learning. Maonan et al. (2021)
proposed a method based on ResNet and AutoEn-
coder to extract comprehensive information.
Satrabhandhu and Tritilanunt (2021) focused on
traditional machine learning and proposed a bidi-
rection flow non-zero payload flow data extraction

Page 3 of 16Xu and Cheng Cybersecurity (2024) 7:1

scheme and bi-direction flow payload ratio fea-
ture. Shen et al. (2020) considered the cost of fine-
grained classification, only using length features
and traditional machine learning models to reduce
overhead. Vasudevan et al. (2021) focused on appli-
cation layer features, which a small number of could
get better results. Chen et al. (2020) innovatively
take the differences among encryption network
protocol stacks into account, making feature extrac-
tion faster with multi-PDU lengths. Zhang et al.
(2021) applied deep learning to feature engineering
to explore deeper features in the traffic. Cai et al.
(2021) mined the hidden topological information of
the flow with Markov chains.

(2) Model With machine learning and deep learning
development, more models are applied to encrypt
traffic classification. Zhao et al. (2021) used HMM
and LSTM. Aceto et al. (2021) explored multi-
task traffic classification to optimize the perfor-
mance of the deep learning model. Lin et al. (2022)
designed the model structure combined with CNN
and Bi-GRU. Wang et al. (2020) implemented a
framework with CNN and SAE. Sun et al. (2020)
proposed a method including the benefits of GCN
and the autoencoder, so only a few labeled data
were needed. Banihashemi and Aktharkavan (2022)
designed an algorithm based on DNN. Zhou et al.
(2021) proposed a 2D-CNN model and introduced
image recognition into encrypted traffic classifica-
tion. Yao et al. (2019) used RNN to model network
traffic, while LSTM and HAM were introduced to
assist classification.

(3) Dataset Nowadays, most encrypted traffic classifi-
cation research adopts the ISCX VPN-onVPN data-
set. However, the Internet is developing rapidly, and
the dataset in the past has had serious data-drifting
problems. The high classification accuracy depends
on high-quality datasets. However, collecting traf-
fic samples is often time-consuming, and it is not
easy to ensure the balance and purity of the dataset.
Therefore, some researchers tried to optimize data
acquisition and solve the imbalance problem. Sha-
rif and Moein (2021) proposed a cost-sensitive deep
learning approach. Considering the same trouble,
Wang et al. (2020) proposed the approach of data
augmenting to generate samples to achieve data
balancing.

Current research on encrypted traffic classification
mainly focuses on machine learning and deep learning
methods. With the development of models and algo-
rithms, more and more new models are being applied in

the field of encrypted traffic classification. However, as
the basis of the supervised learning problem, the pub-
lic dataset of encrypted traffic is still scarce. Most stud-
ies still use the ISCX VPN-nonVPN dataset released in
2016. However, the update speed of network protocols
is breakneck, and old datasets cannot reflect the actual
situation of the current internet. The research of improv-
ing and generating encrypted traffic labeled datasets
can only improve the imbalance and other issues in the
dataset. It cannot introduce new features of real internet
encrypted traffic. Therefore, it is necessary to study accu-
rate and efficient methods for constructing high-quality
encrypted traffic labeled datasets.

Function‑level labeled dataset construction
Although the mobile Internet has received widespread
attention, gaps in related research still need to be filled.
Currently, most mobile Internet encrypted traffic classi-
fication research focuses on the model optimization and
feature engineering of machine learning and deep learn-
ing. However, the construction of datasets is the basis
of machine learning and deep learning. Since the popu-
larity of mobile networking devices is much later than
Windows, the public datasets in this field are very scarce,
and most of them are old and have yet to be updated in
time. It is not easy to match the ever-changing mobile
applications and their diverse in-app functions, so most
researchers collect traffic by themselves and construct
private datasets.

In the previous work, the A3C system implements
application-level traffic collection in Android. Based on
VPN Service, A3C changed the traffic path of the tar-
get application without root permission, and labeled the
encrypted traffic with the application name. However,
the sample label granularity of A3C is at the application-
level and cannot separate the traffic of different in-app
functions.

At present, researchers construct functional-level
encrypted traffic labeled datasets on mobile terminals
mainly in the following ways:

(1) Use tools such as Tcpdump to collect traffic in the
root permission environment, monitor and record
user operations and then replay them. Huabing
et al. (2021) used dSploit, an Android system analy-
sis tool, to collect traffic under root permission and
selected traffic by adding packet filtering rules. Wei
et al. (2012) built a multi-layer Android application
analysis system. At the network layer, Tcpdump
was suitable for Android collecting network traf-
fic; system calls were monitored at the operating
system layer; and user behavior such as clicking

Page 4 of 16Xu and Cheng Cybersecurity (2024) 7:1

and long-pressing the screen was monitored at the
user layer with ADB to record, and network traffic
was collected for analysis by replaying the recorded
user behavior. Dai et al. (2013) proposed a heu-
ristic UI path generation method to automatedly
run the application in the simulator and automat-
edly explore the usage of the application, thereby
simulating user operations and generating network
interaction. The Android tool monkeyrunner was
used to record and replay the coordinates and con-
trols of the screen of the users’ operations, and Tcp-
dump was used to capture the traffic. The labels of
applications were identified by PID (Process Iden-
tification) of the applications by reading network
calls. Among them, monitoring the user’s operation
on screen needs to obtain root permission.

(2) Cooperate with wireless AP (Access Point) and
other devices, use tools such as Wireshark to col-
lect traffic, and record labels manually. This method
inevitably introduces irreducible background traf-
fic and systematic errors into the dataset, so related
research focuses more on reducing the noise of
the datasets. Saltaformaggio et al. (2016) and
Shafiq et al. (2016) reduced the noise of the sam-
ple datasets by only accessing specified devices and
performing specified behaviors. Fu et al. (2016)
recorded user behavior manually as labels and
built a pure target application traffic environment
by uninstalling non-target applications and set-
ting Android firewalls. Deng et al. (2017) focused
on the traffic research of WeChat and extracted
the traffic belonging to WeChat through plain-
text field matching in the cellular network traf-
fic, but SNI (Server Name Indication) can tamper,
and with the development and popularization of
ESNI (Encrypted SNI) and ECH (Encrypted Cli-
ent Hello) (IETF 2022), the methods of using plain
text will be completely invalid. Yan et al. (2018) also
took WeChat as the research target and reduced
system errors by limiting the networking capabili-
ties of other applications. Wu et al. (2021) manu-
ally recorded function switching when collecting
function-level labeled traffic for labeling. Bartolec
et al. (2020) researched on YouTube, using wireless
AP to capture traffic and OCR (Optical Character
Recognition) technology to identify video informa-
tion to form labels. Loh et al. (2022) also collected
YouTube traffic, combined with the wireless AP and
ADB connection, and the information provided by
the YouTube application to label the sample traffic.
Afzal et al. (2021) took Signal Messenger as their

research object and filtered the traffic of the speci-
fied application by setting up firewall rules, and its
different functions in the application were operated
manually.

(3) Simulate user behavior with scripts. Conti et al.
(2015) used ADB to run scripts to automate the
application operation, recorded the timestamp of
each operation, marked the traffic after the times-
tamp as generated by the operation, and mapped
for the corresponding function label accordingly.
Regarding target application traffic filtering, the
IP is filtered based on WHOIS, and only the flows
related to the application were considered. Cap-
turing traffic was carried out at the wireless AP
through Wireshark. Afterward, Conti et al. (2015)
made further improvements to the scripts, adding
randomness to filling text in the edit box, not using
static text, and using randomly selected from a large
number of sentences instead. However, this type of
scripting method still needs the features of real user
operations. Bahuguna et al. (2021) used Appium to
write scripts, operated specified application func-
tions at fixed timestamps, used tshark to capture
traffic, cut and formed labeled sample datasets
according to specified timestamps, and obtained
adequate flows based on filtered with SNI and DNS
query. This type of method replaces real users with
scripts, loses the real operation features of users,
and obtains labeled datasets that do not conform to
the actual usage scenario of the applications.

To sum up, the current construction method of function-
level labeled datasets for encrypted traffic on mobile
devices mainly has the following problems: (1) The acqui-
sition of root permission destroys the native system of
mobile devices, which has security risks; (2) The collec-
tion methods with wireless AP or other devices are com-
plex, inefficient, and will introduce system errors that
cannot be eliminated; (3) The real operation features
of users are lost in the way of script simulation, which
does not conform to the actual usage scenario of the
applications.

Analysis of IM in Android
As one of the most popular mobile operating systems
today, Android has a complete architecture and com-
ponents to give users an excellent visual and interac-
tive experience. Activity is responsible for displaying
the user interface, and all of the UI controls and lay-
outs in the application are deployed in the Activity.
Since an application may have multiple Activitys, in

Page 5 of 16Xu and Cheng Cybersecurity (2024) 7:1

non-split-screen mode, only one Activity in the fore-
ground can interact with the user and give user opera-
tion feedback. Regardless of complex situations such as
split-screen mode and multi-screen collaboration, in
the general usage scenario of the Android system, the
life cycle of an Activity is divided into Running state,
Paused state, Stopped state, and Killed state. When the
Activity is in the foreground, it is visible to the user and
can interact with the user, which means the Activity is
Running. The user’s operation can also be carried out
on this Activity to generate calls to in-app functions
and provide feedback to the user. Therefore, the identi-
fication and mapping of the function-level labels in the
application should also be completed when the appli-
cation and its Activity where the in-app functions are
deployed are in the foreground.

In order to implement a variety of in-app functions,
the Android system provides many UI controls to sup-
port a rich interactive experience, as shown in Table 1.
A complex user interface can be formed by combin-
ing and arranging many UI controls natively provided
by the Android system and customized by application
developers. In order to make the display of the user
interface logical and beautiful, the Android system pro-
vides layout as the container for UI controls. It forms
a multi-layer nested hierarchical relationship with UI
controls and has certain regularity. With the help of
hierarchical nesting of layouts and UI controls, the
application’s interface in the Android system realizes
a rich and diverse interaction mechanism with users,
which can logically display various information and
give users feedback on operations.

With the rapid development of the mobile Internet,
many popular applications, such as Alipay, integrate
many functions in a single application, providing users
with many services, including online payment, financial
planning, health code, and so on. Although these in-
app functions belong to the same application, their traf-
fic features are changeful and often even use different

protocols for network communication. In IM, it is also
widespread that different in-app functions of the same
application use different transport and application layer
protocols. Taking WeChat of the Android system as an
example, it uses TCP, TLS, HTTP, MMTLS, and many
other public and private protocols when transmitting
text, pictures, files, and diverse information.

Different from the in-app functions integration
method that provides different services by switching
the entire foreground interface, the function switch-
ing in the chat window of the IM is more frequent. In
extreme cases, whenever a user sends a message, it is
possible to call a different network protocol using a dif-
ferent in-app function. Generally speaking, the in-app
functions provided in the chat window of popular IM
are shown in Table 2.

Compared with other types of applications, most of the
functions of IM are frequently switched in daily usage
scenarios. Hou et al. (2018) put forward a clear condi-
tional hypothesis in their research: two different func-
tions are performed sequentially, not concurrently. When
the user uses the IM, the messages are also sent serially
instead of in parallel. Therefore, this paper also assumes
that the traffic generated by different in-app functions
does not overlap; it belongs to the time interval of the
function call in the application. The collected network
traffic belongs only to the function and its background
traffic that cannot be eliminated and will not be mixed
with traffic generated by other functions. This assump-
tion provides the possibility for labeling and mapping
function-level samples. Looking further at various IM, it
can be found that the visual feedback after the function
call of this type of application follows the same interac-
tive logic. The newly sent or received message is located
at the bottom of the display area that belongs to this type
of function in the Activity in Running state. When a new
message appears, and there is no remaining display space
in this area, the interface is automatedly scrolled up, and
the new message is kept at the bottom of the display area.

Table 1 Common UI controls in Android

Name Function

TextView Display a text message

EditText Allow users to input and edit content

Button Display a button

ImageView Display an image

ProgressBar Display a progress bar

ProgressDialog Pop up a dialog box and block other UI controls

AlertDialog Pop up a dialog box and block other UI controls

... ...

Table 2 Popular in-app functions in IM

In‑app function Abbreviation

Send and receive text message Text

Send and receive picture Picture

Send and receive video Video

Send and receive voice message Voice

Send and receive file File

Audio and video call –

... ...

Page 6 of 16Xu and Cheng Cybersecurity (2024) 7:1

Function‑level label identification and matching
In previous work (Chen et al. 2022), the A3C system was
proposed to complete the automatic and pure applica-
tion-level traffic collection. Based on A3C, this paper
studies the function-level label of traffic to make samples
more fine-grained. Cooperating with the A3C system to
collect encrypted traffic, F3L is targeted to identify and
cut the application-level traffic into samples with func-
tion-level labels. Since past researchers need to obtain
root permission to monitor users’ operation on the
screen, F3L is based on Accessibility Service to monitor
for changes in UI controls and layouts in the foreground
to identify user operation, bypassing the limitation of
root permission. In addition, F3L only listens instead of
simulating user operation, and its listening content is
still real user behavior, thus avoiding the loss of real user
features.

System overview
In order to identify the in-app functions in the IM with
frequent switching in the Android system with non-
root permission and correctly label the traffic samples in
time, this paper proposes a function-level low-overhead
labeled encrypted traffic datasets construction method
for Android, F3L, which monitors the UI controls and
layouts in the foreground without interfering normal
usage. The overall architecture of the system is shown in
Fig. 1. The in-app function label matching library is the
core module of F3L. Different IM have different UI con-
trols and layouts. Even if the same manufacturer develops
them, different teams are responsible for the develop-
ment and implementation. There are general differences
in the audio-visual feedback and attributes of UI controls

and layouts, which allows for building a specific in-app
function label matching library. The feature fields of UI
controls and layouts attributes are selected to build an in-
app function label matching library, which can map the
attribute changes of the UI controls and layouts with the
corresponding in-app functions and accurately complete
the function-level label matching within the shortest time
threshold. The core of this module adopts the Accessibil-
ity Service interface in the Android system to provide the
accessibility service. This interface has been supported
since Android 1.6 and has been greatly improved in
Android 4.0. It can collect interaction information about
Activity in the foreground (Developers 2022).

The detailed process of the method is shown in Algo-
rithm 1. After detecting and confirming that the Activ-
ity currently in the foreground belongs to the target
application, the UI controls and layouts are scanned
to form a snapshot. Unlike monitoring user operations
on the screen, this step can be realized in a non-root
environment. According to the in-app function label
matching library, the content fields of each attribute of
the UI controls and layouts are regularly matched with
preset rules. Then the coordinates of the feature UI
controls and layouts are read and compared to get the
UI control and layout at the bottom of the Activity in
the foreground. Since the latest in-app function is clear,
the current in-app function-level label is obtained.
Finally, the current label is compared with the last
recorded label. If they are different, the latest in-app
function in the target application has changed. There-
fore, the new label and its timestamp must be recorded
in the function-level label log to prepare for subsequent
traffic cutting and mapping.

Fig. 1 The architecture of F3L

Page 7 of 16Xu and Cheng Cybersecurity (2024) 7:1

F3L applies to the function of the UI controls and lay-
outs that can be obtained by scanning in the Activity
in the foreground. Therefore, any in-app function that
causes the changes in UI controls and layouts in the fore-
ground can adopt the same principle for label identifica-
tion and matching and only needs to add content fields of
feature attributes to the in-app function label matching
library to expand the preset rules.

However, as the audio and video call function attached
to most IM, it reminds users of incoming calls in the
form of floating windows or full-screen pop-up win-
dows in many cases, and no UI control or layout can be
directly scanned and obtained. It does not belong to the
applicable scope of the in-app function label matching
library. This paper proposes monitoring system noti-
fication as a supplement to F3L. The notification of the
Android system is outside the UI and is used to display
message reminders. In Android 4.3, Google provides the
Notification Listener Service interface to allow listen-
ing to notifications, through which information such as
the notification source’s application and the notification
content can be obtained. This paper also constructs an
extensible notification label matching library, introduc-
ing the content of audio and video call notifications. A

regular matching method is adopted to identify the audio
and video call. The in-app function label is recorded in
the function-level label log. This module does not need to
confirm that the Activity in the foreground belongs to the
target application. Even when the target application is in
the background, F3L can also record this label.

Calibration of function‑level label timestamp
For general users, sending and receiving messages in IM
is a complex thinking activity. This paper assumes that
the operation interval between different in-app functions
should be greater than or equal to 1 s when users send
and receive each message. Therefore, 500 ms is selected
as the time interval for F3L to take every snapshot. Too
high a frequency of snapshot generation will lead to
unnecessary performance consumption. At the same
time, too low a frequency will lead to the loss of some
inappropriate sample labels. Since 500 ms is the median
of 1 s, there must be a snapshot between two user opera-
tions, which allows for accuracy and performance.

This paper assumes that at timestamp tA , the matched
in-app function is A, and at subsequent timestamp tB , the
matched in-app function is B. Therefore, the traffic from

Page 8 of 16Xu and Cheng Cybersecurity (2024) 7:1

timestamp tA to tB is mapped to label A, and the traffic
after tB is mapped to label B.

In an ideal state, F3L can immediately identify and
update the function-level label after the user oper-
ates the in-app function. However, it takes time for the
application to respond and give feedback. With a script
to simulate user operations and A3C collecting traffic
simultaneously, F3L identifies the in-app function labels.
The three types of timestamps are recorded as shown in
Fig. 2. Every green dot represents a packet. The darker the
green is, the denser the packets are at this time point. So
it is evident that after the user operates the functions in
the target application, the application generates network
interaction traffic first. After a while, the function-level
label matching is completed. Hence, after the operation,
the specified in-app function is called first, and the net-
work interaction required by the in-app function starts,
which leads to network traffic generation. Then in the
foreground, UI controls, and layouts in the Activity are
refreshed to give the user the necessary feedback on the
operation. Currently, F3L can perceive the changes in the
UI controls and layouts, compare them with the in-app
function label matching library, and write the matching
result into the function-level label log. Therefore, a time
difference exists between user operation, network traffic
generation, and label matching completion. To solve the
problem that may lead to the dislocation of traffic cutting,
this paper proposes to take advantage of the existence of
Think Time (Microsoft 2012) to calibrate the timestamp
of the function-level label. Otherwise, when an in-app
function is triggered, the traffic may be omitted. Think
Time is when users switch between different applica-
tions and functions and perform different operations in
the load test. Since users need to spend a certain amount
of time thinking before they operate in-app functions in
actual usage scenarios, when the user switches to differ-
ent in-app functions, there is a time interval that provides
a time threshold for cutting labeled samples, which pro-
vides possibilities for accurate mapping of function-level
labeled samples. Thanks to the high-speed Internet and
manufacturers’ demand for user experience, the time for
feedback will be brief. Through enough experiments, the

calibration threshold can be determined to match diverse
in-app functions.

Feature attribute selection
This paper takes QQ, WeChat, and Telegram, three pop-
ular IM, as examples to analyze, considering text, picture,
video, voice, and file, five in-app functions to introduce
in-app function label matching library building steps.
Both QQ and WeChat are Internet IM tools provided by
Tencent, while Telegram is an IM that provides end-to-
end encrypted communications.

Using the Android UI control analysis tool to scan the
Activity of the three IM, it can find that their UI controls
and layouts present a hierarchical pattern. The central
part of the user interface of WeChat and Telegram is
RecycleView, a component like a list. In contrast, QQ’s
central part is a custom component named AbsListView,
which plays the same role. In order to support diversified
visual effects and interactive experiences, these UI con-
trols and layouts have complex multi-dimensional attrib-
utes, which can be used as features to identify different
in-app functions, as shown in Table 3. These attributes
include interactivity, visual effects, drawing order, and
hierarchical relationship of the UI controls and layouts.

Because attributes are multi-dimensional and com-
plex, even changing, this paper proposes that the follow-
ing principles should be followed when selecting feature
attributes:

(1) Specificity Since different in-app functions are in the
same application, their corresponding UI controls
and layouts must be similar. If the selected feature
attributes lack specificity, it will lead to misidenti-
fication, making it impossible to obtain the correct
function-level label.

(2) Stability First, feature attributes must be stable in
the same application version. For example, bounds
and depth will change with the sliding page, while
the className and other attributes of the same type
of UI controls will remain unchanged. Secondly,
feature attributes should also be robust in different

Fig. 2 The process of application traffic transmission

Page 9 of 16Xu and Cheng Cybersecurity (2024) 7:1

versions of applications. For example, in multiple
versions of QQ, the id of the dialog box is “qq_aio_
ptt_time_tv”. In contrast, in WeChat, the id of the
dialog box is iterated with the version, which brings
costs for updating the in-app function label match-
ing library.

(3) Availability Compared with attributes such as id,
which can directly regularly match content fields,
the attributes of child UI controls involve the hier-
archical nesting relationship between UI controls
and layouts. A second search is required in the
results of the first round of searches, which will
burden the performance of F3L. Therefore, simple
attributes that do not involve nested relationships
should be selected as feature attributes preferen-
tially unless a single attribute is not specific.

Finally, after updating iterations of multiple applica-
tion versions, the relatively stable feature attributes of
the five in-app functions in the three applications are
selected, as shown in Table 4. Among the three IM, the
five functions of QQ can all be identified accurately
with a regular match through the content fields of the
four attributes of className, id, desc, and text. The
situation with WeChat is more complicated. According
to the results of scanning and analysis, the id attributes
of the layouts and UI controls in WeChat are volatile
in the iterative update of the version. As the manufac-
turer continues to push new versions, the function label
matching library in the application needs to be updated
continuously, making the method’s robustness not
satisfied.

Moreover, due to the lack of a stable id in WeChat,
when users operate the interface in the foreground, the
UI controls and layouts that have nothing to do with the
target function will also show a high degree of similarity

with those that serve as the feedback of the function. If
selected feature fields are not specific, it may disturb the
recognition results and reduce the accuracy. Therefore,
compared with QQ, WeChat’s function label match-
ing library introduces attributes of child-controls and
matching mechanisms related to application interac-
tion to maintain the stability of feature attributes in the
matching library and reduce the cost it needs to pay after
the iteration of the application version. Compared with
QQ and WeChat, which have complex structures of user
interface and display rich visual effects, the UI controls
and layouts in Activity of Telegram are more concise and
have fewer nesting layers. The five functions in the chat
window use the same UI controls and layouts packaging
logic. The information received and sent by the user can
also be directly obtained by reading the content field in
the attributes of the UI controls and layouts to simplify
the above algorithm. The feature UI control at the bot-
tom of the chat window can be obtained directly to read
its attributes, which can be matched with the feature con-
tent field in the matching library to determine whether to
update the in-app function label.

Experiments and results
In the actual usage scenario of IM daily, various in-app
functions switch frequently. In order to ensure that the
function-level labels are correct and the mapping with
the traffic samples is entirely accurate and to provide
support for the following encryption traffic classifica-
tion method based on machine learning and deep learn-
ing, this paper verifies the accuracy and rapidity of F3L.
This paper selects an Android smartphone equipped with
a Qualcomm Snapdragon 730 G processor and 8GB of
memory as the experimental device. Considering sending
and receiving text messages, pictures, videos, voice mes-
sages, and files of three IM, which are WeChat, QQ, and
Telegram, five popular in-app functions are included in
the experiments.

Table 3 Attributes of layouts and UI controls in Android

Name Function

className The name of class

id Identity document

desc Description

text Text content

bounds Coordinates

depth Layer

clickable Whether to allow to click

longClickable Whether to allow to long press

... ...

Table 4 Feature attributes of in-app functions in matching
library

In‑app functions QQ WeChat Telegram

Text id, className longClickable, className,
text

text, desc

Picture id, className desc, className text, desc

Video desc clickable, className,
childCount

text, desc

Voice id, text text text, desc

File text className, desc text, desc

Page 10 of 16Xu and Cheng Cybersecurity (2024) 7:1

Accuracy of function‑level labels identification
This paper adopts the method of manually sending five
types of IM messages. It sends each type of message
alternately 100 times in a fixed order of picture, video,
text, file, and voice, records that each type of message is
sent once as a round, and compares the result of label
identification and matching with the real label to obtain
its accuracy rate. The result is shown in Fig. 3a.

The experimental results show that after sending 100
rounds of messages, WeChat has many misidentifica-
tions. However, each message is accurately matched,
and the locations of the misidentification phenomenon
are shown in Fig. 3b. It is shown that the phenomenon
mainly occurs when sending pictures, videos, and files.
This is because when users send these three types of mes-
sages when viewing pictures, videos, and files, WeChat
will play a sliding window animation to switch the Activ-
ity, and during the switching process, the UI controls and
layouts related to sending and receiving messages in the
chat window in the Activity are partially blocked, result-
ing in the incomplete layouts and UI controls scanned,
so that the identification of the latest in-app function
makes errors. The nature of recognition of UI controls
and layouts is similar to that of OCR, and such problems
are unavoidable errors due to the complexity of screen
display content. Nevertheless, after the user sends a new
message, the Activity on the interface for sending and
receiving messages will return to the correct position and
will not interfere with the following identification of the
label of the in-app function.

Due to the slow upload speed of videos, this paper
simulates the operation of WeChat’s four in-app func-
tions by the script and carries out five rounds in the
order of picture, text, file, and voice. After calibrating

the label timestamp with the threshold in Sec. 5.2, the
labels recorded in the function-level label log are shown
in Table 5. After cutting the traffic collected by A3C, the
number of packets corresponding to each function-level
label is also shown below, where (*) means misidentifica-
tion. In order to avoid errors caused by closing scripts,
A3C and F3L at the end of the collection, the tail samples
are discarded. It can prove that since the time threshold
of wrong labels recorded by misidentification is mostly
very short, and in WeChat when there is no operation
of sending and receiving messages, there is often no
network traffic interaction. So when traffic cutting and
mapping are performed later, the corresponding traffic
samples in the time threshold are empty and can be dis-
carded directly, so such misidentification will not affect
the construction of the encrypted traffic function-level
labeled dataset.

Similar to the results of WeChat, a few misidentifica-
tions also occurred in QQ. The results are shown in Fig. 3
too. The reason is also that the UI animation blocks the
UI controls and layouts, resulting in incomplete snap-
shots obtained by scanning, then identification goes
wrong. However, the UI animation in QQ is smoother
and faster than in WeChat, and the time threshold is
smaller. The probability of misidentification is lower, and
the impact on subsequent labeled sample cutting and
mapping is also weaker.

Compared with WeChat and QQ, which have com-
plex interfaces and rich animation effects, Telegram,
due to the simplicity of its UI controls and layouts,
makes the matching results of function-level labels in
its applications extremely accurate, as shown in Fig. 3a,
almost reaching 100% . According to the test, when the
user’s operation speed is too fast, which means after the

Fig. 3 The matching results of function-level labels

Page 11 of 16Xu and Cheng Cybersecurity (2024) 7:1

feedback with UI controls and layouts is generated, the
user stays on the interface to be scanned and identified
for less than the interval threshold between two scans of
the screen, making the method unable to recognize the
changes in the in-app functions in the two snapshots
before and after the UI controls and layouts refreshed,
resulting in failure to match function-level labels.

Therefore, according to the experimental results, the
accuracy of label matching at the in-app function-level
can lay the foundation for subsequent traffic cutting and
mapping, thereby ensuring the accuracy of labeled sam-
ples. Since encrypted traffic classification is a typical
supervised learning problem, and the dataset is its basis.
In principle, the noiseless and accurate dataset collected
by F3L is helpful for model training and prediction. As
for experiments, it should be persuasive to compare with
other function-level datasets, but the same type of public
datasets in this area are rare.

Calibration threshold measurement and selection
In order to obtain the timestamps of user operations of
applications and in-app functions, this paper uses auto-
mated scripts to simulate user operations. It records
the timestamp tx of the five types of messages sent
by the scripts. The timestamp tc of the function-level
label matching completed and compares the difference
between the two �t is used as the calibration threshold
due to the applications and functions response and the
time-consuming of label identification and matching.
According to enough multiple experimental results, the
function-level label timestamp calibration threshold tm is
selected. In order to ensure the reliability and accuracy
of the selected in-app functions calibration thresholds,
pictures, videos, text messages, files, and voice messages
are sent alternately in a fixed order, recording that each
type of message is sent once as a round, and discarded
300 rounds of experiments were carried out. The results

are shown in Fig. 4, 5 and 6. It can be seen that the �t
of different in-app functions has a relatively stable distri-
bution range, which provides feasibility for the selection
of tm . Because F3L is based on the UI controls and lay-
outs in Activity in the foreground, the complexity of the
UI controls and layouts will greatly affect the matching
speed of function-level labels. Among them, since the
information carried by the text and voice messages is rel-
atively simple, �t is generally small. However, due to the
greater information entropy, pictures, videos, and files
also need to meet users’ complex needs, such as click-
ing to view, clicking to play, and clicking to download,
resulting in more complex UI controls and layouts for
more feedback. More complex hierarchical relationships
also require longer loading times. These reasons lead to
the increase of �t . Compared with WeChat and QQ, Tel-
egram’s UI controls and layouts have fewer layers and a
more concise combination. Therefore, label identification
and matching speed are higher than that of WeChat and
QQ, and the distribution of �t is more concentrated.

When selecting tm , it is considered that when tm is too
small, it may cause a large loss of head traffic during sam-
ple cutting and mapping, making the traffic correspond-
ing to the in-app functions incomplete. When tm is too
large, it may cause the tail traffic of the previous function
to be incorrectly mapped to the current function-level
label. After discarding the extreme values beyond the dis-
tribution range of most �t , tm is chosen. In this paper, C
is defined as the ratio between the number of �t less than
tm and the number of all �t measured through experi-
ments. The final results of tm and C of different applica-
tions and in-app functions are shown in Table 6. It can be
seen that C is average around 98% , proving that most �t
can be calibrated.

The more concentrated the distribution of �t , the
larger the C is. The simpler the UI controls and layouts
are, the smaller the tm is. In addition, among the five

Table 5 WeChat function-level traffic sample

Operation Picture Text File Voice

Log1 Picture Text File Voice

Packet number 51 4 35 5

Log2 Picture Text Voice* File Voice

Packet number 49 4 0 36 3

Log3 Picture Text File Voice

Packet number 52 4 36 5

Log4 Picture Text Picture* Text* File Voice

Packet number 46 4 0 0 36 5

Log5 Picture Text File Voice Voice*

Packet number 49 4 41 – –

Page 12 of 16Xu and Cheng Cybersecurity (2024) 7:1

in-app functions of the three applications, the maximum
tm is 2800 ms. Only the tm of WeChat and QQ file send-
ing and receiving exceeds 2000 ms. The rest of the in-app
functions can complete label matching within 2000 ms,
proving that F3L is fast and efficient.

Performance and cost
In daily usage scenarios, the performance of Android
devices is often lower than that of PCs, and its storage
space and computing power have a large gap compared
with PCs, so the performance and cost of the method
must be addressed. High system cost will cause the
Android system to have the risk of freezing, affecting the
normal use of applications running in the foreground.
It will also reduce the efficiency of the Android system

itself, even causing errors in the identification and match-
ing results. For example, big games with high image ren-
dering accuracy can only run on PCs. When on Android,
it is often necessary to sacrifice image accuracy and load-
ing time to adapt, leading to information loss.

This paper uses CPU usage and memory usage as
indicators to evaluate the system performance. The
specific experimental method enables F3L to run dur-
ing the normal use of the foreground IM and records
the CPU usage and memory usage of F3L every second.
The test lasts for one minute. F3L is a tool that runs in
the background of Android and monitors and identi-
fies the UI controls and layouts of applications in the
foreground. Since there is currently no function-level
label identification tool of the same type, at the same

Fig. 4 �t distribution of WeChat

Fig. 5 �t distribution of QQ

Page 13 of 16Xu and Cheng Cybersecurity (2024) 7:1

time, the Android device is sufficient to support the
normal usage of IM in the foreground while playing
music in the background. Hence, this paper proposes
to compare three popular music applications support-
ing background running to verify that F3L can match
function-level labels without affecting the foreground
IM application. The results are shown in Fig. 7. It can
be seen that the CPU usage and memory usage of F3L
is similar to those of background music players. When
F3L runs, the average CPU usage is 7.22% , and the aver-
age memory usage is 249.04MB.

Meanwhile, this paper also measured CPU and mem-
ory usage when WeChat, QQ, and Telegram were in
the foreground. The results are shown in Fig. 8. Gen-
erally speaking, the total cost of IM and F3L is within
the acceptable range of Android devices. Therefore, the
resource occupation of F3L is small and will not affect
the normal use of the target IM. Since the traffic gener-
ation environment conforms to the users’ general usage
scenarios, F3L ensures the authenticity and reliability
of the labeled samples.

In addition, during the construction of the in-app
function-level labeled dataset, A3C runs simultaneously
with F3L. Their functional implementations are inde-
pendent and do not affect each other. However, since
A3C and F3L run simultaneously on an Android device,
evaluating their performance and cost is also necessary.
The experimental method enables F3L and A3C to run
simultaneously during the normal use of the foreground
IM and records the CPU usage and memory usage of F3L
every second. The test lasts for one minute. The experi-
mental results are shown in Fig. 9. It can be seen that
excluding the performance peak caused by turning on
A3C in the first second, the average CPU usage of A3C
during normal operation is only 0.11% , and the average
memory usage is 61.00 MB, which is much lower than
that of F3L and other background music players. There-
fore, combining A3C and F3L for automated encrypted
traffic labeled dataset construction is undoubtedly
low-overhead.

Fig. 6 �t distribution of Telegram

Table 6 Function-level label timestamp calibration

Application WeChat QQ Telegram

Function tm/ms C/% tm/ms C/% tm/ms C/%

Text 1100 98.3 1500 99.0 450 99.0

Voice 1000 98.3 1800 98.0 650 99.3

Picture 1800 99.3 1600 99.0 800 100

Video 1600 98.7 1600 98.0 900 97.7

File 2500 99.0 2800 97.7 1100 100

Page 14 of 16Xu and Cheng Cybersecurity (2024) 7:1

Limitation and discussion
The call of in-app functions is triggered by user behav-
ior. Ignoring user behavior and focusing solely on the
in-app functions will result in losing the real user behav-
ior features in daily usage scenarios. F3L considers the
feedback and display of in-app functions in UI controls
and layouts, replacing simulation with monitoring. By
constructing an in-app function label matching library,
it identifies and records calls of in-app functions. This
method suits in-app functions where UI controls and lay-
outs may change.

However, F3L still has limitations. For example, in
gaming and video applications, screen graphics have
changed, but the attributes of UI controls and layouts
have remained the same, resulting in F3L’s inability to

capture the in-app functions in these applications. For
this type of problem, it may be possible to improve the
universality of F3L by introducing a computer vision rec-
ognition model.

In addition, only IM experiments have shown that
overly complex and sluggish UI animations can also
affect the results of F3L. With the improvement of the
integration of various IM applications and their increas-
ing demand for performance, higher requirements will
be placed on the speed and simplicity of F3L algorithms.
Furthermore, there are numerous and complex instant
messaging applications on the market, and the in-app
functions covered in this paper are only a part of the pop-
ular functions. Further experiments on the performance
of F3L are needed on other in-app functions.

Fig. 7 Performance and cost of applications in the background

Fig. 8 Performance and cost of IM in the foreground

Page 15 of 16Xu and Cheng Cybersecurity (2024) 7:1

Conclusion
Machine learning and deep learning methods have
become the main methods of encrypted traffic classifica-
tion research, and constructing labeled datasets as their
basis is still an urgent problem to be solved. In the cur-
rent situation of increasingly complex and integrated
mobile applications, this paper proposes a function-level
low-overhead labeled encrypted traffic datasets construc-
tion method for IM in Android, F3L, using the method
of monitoring the UI controls and layouts in the fore-
ground, and building an in-app function label matching
library, aims for different applications and in-app func-
tions to label and map network traffic. F3L retains the
real user behavior features and conforms to the general
scenarios of the users’ daily use of the applications.

This paper verifies the accuracy, performance, and
cost of F3L, measures the calibration threshold of func-
tion-level label timestamp, and proves that it is a safe,
accurate, efficient, and low-overhead method for con-
structing function-level encrypted traffic labeled data-
sets, which will provide data support for fine-grained
encrypted traffic classification research. Since F3L has
scalability and portability, it can be popularized for
other mobile applications and in-app functions with
UI controls and layouts changes as feedback in the
foreground.

Acknowledgements
This work was supported by the General Program of the National Natural Sci-
ence Foundation of China under Grant No. 62172093.

Author contributions
GC proposes the methodology and KX writes the manuscript. All authors read
and approved the finnal manuscript.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 10 May 2023 Accepted: 22 August 2023

References
Aceto G, Ciuonzo D, Montieri A, Nascita A, Pescapé A (2021) Encrypted multi-

task traffic classification via multimodal deep learning. In: ICC 2021-IEEE
international conference on communications, IEEE, pp 1–6

Afzal A, Hussain M, Saleem S, Shahzad MK, Ho AT, Jung K-H (2021) Encrypted
network traffic analysis of secure instant messaging application: a case
study of signal messenger app. Appl Sci 11(17):7789

Bahuguna A, Agrawal A, Bhatia A, Tiwari K, Vishwakarma D (2021) User profil-
ing using smartphone network traffic analysis. In: 2021 international
conference on communication systems and NETworkS (COMSNETS), IEEE,
pp 69–73

Banihashemi SB, Aktharkavan E (2022) Encrypted network traffic classification
using deep learning method. In: 2022 8th international conference on
web research (ICWR), IEEE, pp 1–8

Bartolec I, Orsolic I, Skorin-Kapov L (2020) Inclusion of end user playback-
related interactions in youtube video data collection and ml-based
performance model training. In: 2020 twelfth international conference on
quality of multimedia experience (QoMEX), IEEE, pp 1–6

Cai W, Gou G, Jiang M, Liu C, Xiong G, Li Z (2021) Memg: mobile encrypted
traffic classification with Markov chains and graph neural network. In:
2021 IEEE 23rd int conf on high performance computing and communi-
cations; 7th Int Conf on data science and systems; 19th Int Conf on Smart
City; 7th Int Conf on dependability in sensor, cloud and big data systems
and Application (HPCC/DSS/SmartCity/DependSys), IEEE, pp 478–486

Chen Z, Cheng G, Xu Z, Xu K, Shan Y, Zhang J (2022) A3c system: one-stop
automated encrypted traffic labeled sample collection, construction and
correlation in multi-systems. Appl Sci 12(22):11731

Chen Z, Cheng G, Jiang B, Tang S, Guo S, Zhou Y (2020) Length matters: fast
internet encrypted traffic service classification based on multi-pdu
lengths. In: 2020 16th international conference on mobility, sensing and
networking (MSN), IEEE, pp 531–538

CNNIC: The 50th Statistical Report on China’s Internet Development. China
Internet Network Information Center (2022)

Fig. 9 Performance and cost of A3C and F3L

Page 16 of 16Xu and Cheng Cybersecurity (2024) 7:1

Conti M, Mancini LV, Spolaor R, Verde NV (2015) Analyzing Android
encrypted network traffic to identify user actions. IEEE Trans Inf Forens
Secur 11(1):114–125

Conti M, Mancini LV, Spolaor R, Verde NV (2015) Can’t you hear me knock-
ing: identification of user actions on Android apps via traffic analysis.
In: Proceedings of the 5th ACM conference on data and application
security and privacy, pp 297–304

Dai S, Tongaonkar A, Wang X, Nucci A, Song D (2013) Networkprofiler:
towards automatic fingerprinting of Android apps. In: 2013 proceed-
ings IEEE INFOCOM, IEEE, pp 809–817

Deng Q, Li Z, Wu Q, Xu C, Xie G (2017) An empirical study of the wechat
mobile instant messaging service. In: 2017 IEEE conference on
computer communications workshops (INFOCOM WKSHPS), IEEE, pp
390–395

Developers: create your own accessibility service, (2022). https:// devel oper.
andro id. com/ guide/ topics/ ui/ acces sibil ity/ servi ce? hl= en. Accessed 12
Dec 2022

Draper-Gil G, Lashkari AH, Mamun MSI, Ghorbani AA (2016) Characteriza-
tion of encrypted and vpn traffic using time-related. In: Proceedings of
the 2nd international conference on information systems security and
privacy (ICISSP), pp 407–414

Fu Y, Xiong H, Lu X, Yang J, Chen C (2016) Service usage classification with
encrypted internet traffic in mobile messaging apps. IEEE Trans Mob
Comput 15(11):2851–2864

Hou C, Shi J, Kang C, Cao Z, Gang X (2018) Classifying user activities in the
encrypted wechat traffic. In: 2018 IEEE 37th international performance
computing and communications conference (IPCCC), IEEE, pp 1–8

Huabing Z, Sisi Y, Xiaoming C, Zhida L (2021) Real-time detection method
for mobile network traffic anomalies considering user behavior
security monitoring. In: 2021 international conference on computer,
blockchain and financial development (CBFD), IEEE, pp 11–16

IETF: TLS Encrypted Client Hello. https:// www. ietf. org/ archi ve/ id/ draft- ietf-
tls- esni- 15. txt. 2022-12-12 (2022)

Lin CY, Chen B, Lan W (2022) An efficient approach for encrypted traffic
classification using cnn and bidirectional gru. In: 2022 2nd interna-
tional conference on consumer electronics and computer engineering
(ICCECE), IEEE, pp 368–373

Loh F, Wamser F, Poignée F, Geißler S, Hoßfeld T (2022) Youtube dataset on
mobile streaming for internet traffic modeling and streaming analysis.
Sci Data 9(1):1–12

Maonan W, Kangfeng Z, Ning X, Yanqing Y, Xiujuan W (2021) Centime: a
direct comprehensive traffic features extraction for encrypted traffic
classification. In: 2021 IEEE 6th international conference on computer
and communication systems (ICCCS), IEEE, pp 490–498

Microsoft: About Think Time, (2012). https:// docs. micro soft. com/ en- us/ previ
ous- versi ons/ visua lstud io/ visual- studio- 2008/ ms184 790(v= vs. 90)? redir
ected from= MSDN. Accessed 12 Dec 2022

Saltaformaggio B, Choi H, Johnson K, Kwon Y, Zhang Q, Zhang X, Xu D, Qian
J (2016) Eavesdropping on {Fine-Grained} user activities within smart-
phone apps over encrypted network traffic. In: 10th USENIX workshop on
offensive technologies (WOOT 16)

Satrabhandhu W, Tritilanunt S (2021) Encrypted traffic characterization using
none zero payload and payload ratio characteristics. In: 2021 25th inter-
national computer science and engineering conference (ICSEC), IEEE, pp
63–69

Shafiq M, Yu X, Laghari AA, Yao L, Karn NK, Abdesssamia F, et al (2016) Wechat
text and picture messages service flow traffic classification using
machine learning technique. In: 2016 IEEE 18th international conference
on high performance computing and communications; IEEE 14th inter-
national conference on smart city; IEEE 2nd international conference on
data science and systems (HPCC/SmartCity/DSS), IEEE, pp 58–62

Sharif MS, Moein M (2021) An effective cost-sensitive convolutional neural
network for network traffic classification. In: 2021 International confer-
ence on innovation and intelligence for informatics, computing, and
technologies (3ICT), IEEE, pp 40–45

Shen M, Liu Y, Zhu L, Du X, Hu J (2020) Fine-grained webpage fingerprinting
using only packet length information of encrypted traffic. IEEE Trans Inf
Forens Secur 16:2046–2059

Statista: Mobile operating systems’ market share worldwide from 1st quarter
2009 to 4th quarter 2022, (2022). https:// www. stati sta. com/ stati stics/

272698/ global- market- share- held- by- mobile- opera ting- syste ms- since-
2009. Accessed 12 Dec 2022

Sun B, Yang W, Yan M, Wu D, Zhu Y, Bai Z (2020) An encrypted traffic classifica-
tion method combining graph convolutional network and autoencoder.
In: 2020 IEEE 39th international performance computing and communi-
cations conference (IPCCC), IEEE, pp 1–8

Vasudevan S, Jain K, Su C-J (2021) Machine learning based encrypted traffic
classification using estimated application layer statistics. In: 38th interna-
tional communications satellite systems conference (ICSSC 2021), IET, vol.
2021, pp 189–194

Velan P, Čermák M, Čeleda P, Drašar M (2015) A survey of methods for
encrypted traffic classification and analysis. Int J Netw Manag
25(5):355–374

Wang X, Chen S, Su J (2020) Automatic mobile app identification
from encrypted traffic with hybrid neural networks. IEEE Access
8:182065–182077

Wang P, Li S, Ye F, Wang Z, Zhang M (2020) Packetcgan: exploratory study of
class imbalance for encrypted traffic classification using cgan. In: ICC
2020-2020 IEEE international conference on communications (ICC), IEEE,
pp 1–7

Wei X, Gomez L, Neamtiu I, Faloutsos M (2012) Profiledroid: multi-layer profil-
ing of Android applications. In: Proceedings of the 18th annual interna-
tional conference on mobile computing and networking, pp 137–148

Wu H, Wu Q, Cheng G, Guo S, Hu X, Yan S (2021) Sfim: identify user behavior
based on stable features. Peer-to-Peer Network Appl 14(6):3674–3687

Yang B, Liu D (2019) Research on network traffic identification based on
machine learning and deep packet inspection. In: 2019 IEEE 3rd informa-
tion technology, networking, electronic and automation control confer-
ence (ITNEC), IEEE, pp 1887–1891

Yan F, Xu M, Qiao T, Wu T, Yang X, Zheng N, Choo K-KR (2018) Identifying
wechat red packets and fund transfers via analyzing encrypted network
traffic. In: 2018 17th IEEE international conference on trust, security and
privacy in computing and communications/12th IEEE international
conference on big data science and engineering (TrustCom/BigDataSE),
IEEE, pp 1426–1432

Yao H, Liu C, Zhang P, Wu S, Jiang C, Yu S (2019) Identification of encrypted
traffic through attention mechanism based long short term memory.
IEEE Trans Big Data 8(1):241–252

Zhang C, An C, Wang JH, Zhao Z, Yu T, Wang J (2021) Safsn: a self-attention
based neural network for encrypted mobile traffic classification. In: 2021
IEEE international conferences on Internet of Things (iThings) and IEEE
green computing and communications (GreenCom) and IEEE cyber,
physical and social computing (CPSCom) and IEEE smart data (Smart-
Data) and IEEE congress on cybermatics (Cybermatics), IEEE, pp 330–337

Zhao Y, Yang Y, Niu Y, Wu K, Hao Y, Su H, Zhao Q (2021) A classification and
identification technology of tls encrypted traffic applications. In: 2021
IEEE 4th international conference on big data and artificial intelligence
(BDAI), IEEE, pp 160–164

Zhou Y, Shi H, Zhao Y, Gao W, Zhang W (2021) Encrypted network traffic
identification based on 2d-cnn model. In: 2021 22nd Asia-Pacific network
operations and management symposium (APNOMS), IEEE, pp 238–241

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://developer.android.com/guide/topics/ui/accessibility/service?hl=en
https://developer.android.com/guide/topics/ui/accessibility/service?hl=en
https://www.ietf.org/archive/id/draft-ietf-tls-esni-15.txt
https://www.ietf.org/archive/id/draft-ietf-tls-esni-15.txt
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/ms184790%28v=vs.90%29?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/ms184790%28v=vs.90%29?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2008/ms184790%28v=vs.90%29?redirectedfrom=MSDN
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009

	F3l: an automated and secure function-level low-overhead labeled encrypted traffic dataset construction method for IM in Android
	Abstract
	Introduction
	Related work
	Encrypted traffic classification
	Function-level labeled dataset construction

	Analysis of IM in Android
	Function-level label identification and matching
	System overview
	Calibration of function-level label timestamp
	Feature attribute selection

	Experiments and results
	Accuracy of function-level labels identification
	Calibration threshold measurement and selection
	Performance and cost

	Limitation and discussion
	Conclusion
	Acknowledgements
	References

