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Abstract 

The popularity of small office and home office routers has brought convenience, but it also caused many security 
issues due to vulnerabilities. Black-box fuzzing through network protocols to discover vulnerabilities becomes a viable 
option. The main drawbacks of state-of-the-art black-box fuzzers can be summarized as follows. First, the feedback 
process neglects to discover the missing fields in the raw message. Secondly, the guidance of the raw message 
content in the mutation process is aimless. Finally, the randomized validity of the test case structure can cause most 
fuzzing tests to end up with an invalid response of the tested device. To address these challenges, we propose a novel 
black-box fuzzing framework called MSLFuzzer. MSLFuzzer infers the raw message structure according to the response 
from a tested device and generates a message segment list. Furthermore, MSLFuzzer performs semantic, sequence, 
and stability analyses on each message segment to enhance the complementation of missing fields in the raw mes-
sage and guide the mutation process. We construct a dataset of 35 real-world vulnerabilities and evaluate MSLFuzzer. 
The evaluation results show that MSLFuzzer can find more vulnerabilities and elicit more types of responses from fuzz-
ing targets. Additionally, MSLFuzzer successfully discovered 10 previously unknown vulnerabilities.
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Introduction
Internet of Things (IoT) technologies have snowballed 
in recent years, many of which have seen widespread 
adoption. According to a recent report, total semicon-
ductor consumption for IoT endpoints is $130.2 billion 
in 2021 and will grow to $243.2 billion by 2026 (Yamaji 
2022). This booming IoT ecosystem inevitably attracts 
cybercriminals. Among the 1.2 million IoT smart devices 
analyzed by Palo Alto Networks, 57% are vulnerable to 
medium or high-severity attacks (Unit 42 2020). Small 

office and home office (SOHO) routers are typical repre-
sentatives of IoT smart devices. They are widely used to 
provide network services for various IoT smart devices, 
so the security of SOHO routers is crucial. This is espe-
cially true in the current climate where SOHO routers 
are being used more widely due to the increase in home 
office scenarios during the COVID-19 pandemic. Trend 
Micro reports that introducing vulnerable devices into 
the home will expose employees to malware and attacks 
that could sneak into the corporate network (Micro 
2020).

There is thus an urgent need for techniques that can 
effectively and efficiently discover security vulnerabilities 
in SOHO routers. Security vulnerabilities in SOHO rout-
ers are usually implementation flaws in device firmware 
(Cheng et al. 2022), which is software that provides hard-
ware support for upper-level users. Since SOHO rout-
ers are essentially computing devices with networking 

*Correspondence:
Wen Liu
lw8206@cuc.edu.cn
1 State Key Laboratory of Media Convergence and Communication, 
Communication University of China, Beijing, China
2 School of Computer and Cyber Sciences, Communication University 
of China, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00186-5&domain=pdf


Page 2 of 21Cheng et al. Cybersecurity            (2023) 6:51 

capabilities, they are not immune to attacks from the 
Internet as long as they can be accessed remotely through 
specific network protocols (Shu and Yan 2022). This has 
motivated researchers to explore how to perform fuzzing 
tests for device firmware over network protocols (Chen 
et al. 2018; Feng et al. 2021; Yu et al. 2022; Zhang et al. 
2019). Unfortunately, device vendors usually do not pro-
vide source code, documentation, and firmware of these 
devices in public (Cheng et al. 2022; Redini et al. 2021), 
and the hardware debug interface is usually disabled 
(Chen et al. 2018). Therefore, black-box fuzzing is usually 
the only practical way to discover device vulnerabilities 
because of its independence of source code, firmware, 
and debugging capabilities (Shu and Yan 2022).

Black-box fuzzing is a software testing technique that 
does not have the source code of the target program nor 
the internal state of each execution (Zhu et  al. 2022). 
Black-box fuzzers randomly mutate program inputs to 
generate a large corpus and feed each input to the pro-
gram. Taking the built-in remote connection capability of 
SOHO routers into account, black-box fuzzers are usu-
ally designed to send mutated communication messages 
to the target device over the network to detect if it shows 
any symptoms of malfunction. Potential flaws or vul-
nerabilities may be found if a crash is triggered during 
execution or if the device sends back an exception mes-
sage. In practice, SOHO routers usually verify the format 
and parameters of the input message, and most vulner-
abilities usually exist in the function code after the sani-
tization code (Feng et al. 2021). Therefore, the test cases 
generated by black-box fuzzers based on simple random 
mutation usually fail to pass the sanitization. These test 
cases are even less able to reach deeper defective code, 
which makes the efficiency of vulnerability discovery 
extremely low.

State-of-the-art smart device black-box fuzzing meth-
ods such as SNIPUZZ (Feng et  al. 2021) use the feed-
back response messages of smart devices to optimize the 
mutation process of seed messages to make the format 
of test cases as legal as possible. SNIPUZZ builds sev-
eral probe messages by removing byte by byte from the 
seed message. The response messages from these probe 
messages are associated with the deleted bytes. Adjacent 
bytes with the same response message class are combined 
into a snippet mutation unit. These snippets are used in 
the subsequent mutation process. This method utilizes 
the vital feedback response information to constrain the 
mutation process and reduces the size of the input space 
to be searched.

Unfortunately, SNIPUZZ still has some unresolved 
challenges. First, the mutation process of SNIPUZZ is 
unguided. After SNIPUZ completed the construction 
of the snippet, it chose to perform havoc mutation, that 

is, randomly select some random snippets in the mes-
sage and execute a set of mutation schemes for each 
selected snippet. This random selection of snippets is 
straightforward but blind, which causes SNIPUZZ to be 
unguided. The content of the raw message needs to be 
better exploited to guide the mutation process. Second, 
SNIPUZZ cannot discover potentially missing fields in 
the raw message. Some parameter fields in the raw mes-
sage are empty by default. Since the default fields are 
logical fields and do not occupy actual bytes, SNIPUZZ 
cannot construct snippets corresponding to these default 
fields. This caused SNIPUZZ to fail to find such vulner-
abilities when the vulnerability parameter was placed 
in an empty field. Finally, SNIPUZZ cannot guarantee 
the validity of its test case structure. Each snippet con-
structed by SNIPUZZ is equally weighted in the mutation 
process. This makes some critical snippets used to ensure 
the validity of the test case structure may be changed 
during the mutation process. When these vital snippets 
are changed, the entire test case may fail to pass the ini-
tial validity check of the IoT device and be discarded. This 
shows that the test case generation process of SNIPUZZ 
lacks constraints. For these reasons, SNIPUZZ does not 
consistently produce constrained, well-structured fuzz-
ing inputs that reach deeper code locations and thus 
uncover more vulnerabilities.

Our approach
This paper proposes a novel black-box fuzzing frame-
work, MSLFuzzer, to detect potential flaws and vulner-
abilities in SOHO routers. We first define a message 
segment list, a data structure that normalizes the descrip-
tion of the message content. This data structure can bet-
ter describe the attributes and sequence relationships of 
message segments than snippets do. To overcome the 
limitation of SNIPUZZ, MSLFuzzer improves the cor-
relation process of response messages and completes 
the construction of initial message segments. Further, 
MSLFuzzer analyzes the message content of the initial 
message segment list to supplement the attribute infor-
mation of the corresponding segment. Then, MSLFuzzer 
mines the sequence relationship between segments based 
on the n-gram algorithm to find those missing segments 
that are not reflected in the message, which we call invis-
ible segments. Next, MSLFuzzer conducts hierarchical 
stability analysis on each message segment and deter-
mines the mutation priority between each segment. This 
makes the mutated message as far as possible through the 
early sanitization of the firmware to the deep-level code 
defect location. Compared with SNIPUZZ, MSLFuzzer 
mines deeper message content, making the fuzzing pro-
cess more constrained and oriented and reducing the 
input search space size.
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Contributions
We summarize the contributions of the paper as follows:

• New technique We develop a message content anal-
ysis method based on a list of message segments 
to improve the efficiency of black-box fuzzing for 
SOHO routers.

• New framework We propose a response feedback-
based black-box fuzzing framework MSLFuzzer to 
find implementation flaws in SOHO routers. Based 
on the device feedback message and fine-grained 
message content analysis method, MSLFuzzer 
enriches the attribute and sequence information of 
the message segment list, making the fuzzing process 
more constrained and oriented.

• Implementation and findings We implemented a full-
featured prototype of MSLFuzzer and constructed a 
dataset of 20 devices with 35 real-world vulnerabili-
ties to evaluate the vulnerability discovery capabili-
ties of MSLFuzzer. In total, 10 zero-day vulnerabili-
ties were discovered by MSLFuzzer.

Roadmap
In the remainder of this article, Sect.  "Background and 
related work" reviews the background and related work 
of IoT smart device communication architecture and 
SOHO routers fuzzing. Section  "Methodology" presents 
a detailed design of the MSLFuzzer. The implementa-
tion details and evaluation results are summarized in 
Sect.  "Implementation and evaluation". Section  "Dis-
cussion and future work" discusses some limitations of 
the current design and points out future work. Finally, 
Sect. "Conclusion" concludes the paper.

Background and related work
SOHO routers are typical representatives of IoT smart 
devices. This section introduces common commu-
nication architectures for IoT smart devices, fuzz-
ing for SOHO routers, and fuzzing response feedback 
mechanisms.

Common IoT smart device communication architecture
In a typical IoT ecosystem (such as a smart home envi-
ronment), users deploy multiple smart devices for spe-
cific purposes, equipped with many sensors for external 
information collection and wireless connectivity mod-
ules for data transmission (Chen et al. 2018). These smart 
devices usually transmit data or receive control com-
mands remotely through network protocols. To react 
to external raw input messages, most IoT smart devices 
implement a similar high-level communication archi-
tecture inside their firmware, including 1) Sanitizer, 2) 

Function Switch, 3) Function Definitions, and 4) Replier 
(Feng et  al. 2021). The Sanitizer checks and parses the 
input when the IoT smart device receives external input. 
Suppose the input violates the protocol specification or 
syntax requirements. In that case, Sanitizer directly sends 
a response message describing the input error to notify 
the Replier and terminates the processing of the input. If 
the input passes the check, the Function Switch extracts 
the parameter name and value pairs from the input and 
transfers control to the corresponding functions. The 
process is terminated if no input parameter is found and 
a response message is returned. Different functions spe-
cifically implement the processing of parameter values 
passed by the user.

In the method of fuzzing the target smart device 
through a network protocol, the mutation operation on 
the message mainly focuses on the message structure 
and user input parameters (Zhu et  al. 2022). Mutations 
to the message structure may trigger bugs in the target 
device’s protocol stack or structure parsing components. 
It is usually located at the Sanitizer. Mutations to user 
input parameters may trigger the target device to receive 
and process user input parameters, usually in different 
functions. Due to the large number of functions and the 
frequent handling of external user data, there is a higher 
possibility of bugs and vulnerabilities hidden in func-
tions. The mutated message needs to have a legal mes-
sage structure as much as possible to pass the Sanitizer 
and Function Switch smoothly and reach the functions. 
Simple random mutations often cause the message struc-
ture to be corrupted and discarded before reaching the 
location of the defective code.

SOHO routers fuzzing
According to the amount of information observed dur-
ing execution, fuzzing methods can be divided into 
black-box, grey-box, and white-box fuzzing (Eceiza et al. 
2021). Black-box fuzzing does not know the internal 
state of each execution (Chen et al. 2018; Han et al. 2019; 
Lee et  al. 2020). The object under test is a black box to 
fuzzers, which usually optimize the fuzzing process by 
exploiting input formats or different output states (Dinh 
et  al. 2021; Han et  al. 2019). White-box fuzzing usually 
needs to have all the source code of the target object 
and can obtain all the execution information of the tar-
get object during the fuzzing process (Huang et al. 2020). 
Grey-box fuzzing acquires knowledge of the execution 
state between black-box and white-box fuzzers. Grey-box 
fuzzers do not need to acquire the source code of the tar-
get object and usually use edge coverage as the internal 
execution state (Aschermann et al. 2019; Gan et al. 2018).

For SOHO routers, since device vendors usually do not 
provide the source code and documentation of device 
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firmware in public, white-box fuzzers that rely on source 
code are not suitable for SOHO routers fuzzing (Cheng 
et al. 2022). Grey-box fuzzers need to obtain target runt-
ime context information, and when applied to SOHO 
routers, they usually need to be combined with an emula-
tor (Eceiza et al. 2021). Emulators can execute programs 
originally running on IoT firmware without correspond-
ing hardware. Typical emulators include Avatar (Zaddach 
et  al. 2014), Avatar2 (Muench et  al. 2018), Firmadyne 
(Chen et  al. 2016), and FirmAE (Kim et  al. 2020). An 
emulator can provide a test object for both a grey-box 
fuzzing method and a black-box fuzzing method, which 
can reduce the dependence of the fuzzing method on 
actual equipment and the economic cost. Black box 
fuzzing only requires external access to the emulated 
device as if it was an actual device. The grey-box fuzzing 
requires the further acquisition of contextual information 
during the emulation process and firmware execution, 
especially the edge coverage. The higher the edge cover-
age, the more branch conditions are triggered. If a test 
case triggers a new branch, it will be treated as an excit-
ing seed (Zhu et al. 2022).

Typical grey-box fuzzers for SOHO routers include 
Firm-AFL (Zheng et  al. 2019), FirmHunter (Yin et  al. 
2021), CGFuzzer (Yu et al. 2022), and IoTHunter (Khan-
dait et  al. 2021). When firmware can be emulated suc-
cessfully, and the edge coverage information can be 
obtained, the grey-box fuzzer can effectively find flaws 
and vulnerabilities in the firmware. Unfortunately, not all 
device firmware is publicly available (Redini et al. 2021). 
Meanwhile, firmware unpacking and analyzing firmware 
is a challenging task since firmware may have multiple 
formats and can run on different architectures (Wang 
et  al. 2019). Furthermore, emulators have a relatively 
low success rate for emulating firmware and the range 
of applicable vendor device firmware (Kim et  al. 2020). 
Grey-box fuzzing methods that rely on emulation and 
debugging capabilities do not apply to devices that can-
not be successfully emulated or debugged.

Benefiting from the ability of SOHO routers to com-
municate with the network, security researchers usu-
ally perform black-box fuzzing on target SOHO routers 
based on network communication. Some black-box fuzz-
ing methods try to start from the mobile app side that 
communicates with SOHO routers (Chen et  al. 2018; 
Redini et al. 2021). IoTFuzzer (Chen et al. 2018) analyzes 
the UI elements of the app and then reversely identifies 
the relevant program elements that send messages to the 
device from the control events through data flow analy-
sis. Finally, the mutation operation of the corresponding 
field is completed. DIANE (Redini et al. 2021) views the 
execution of an app as a series of functions that trans-
form user-introduced data into network data. Based on 

IoTFuzzer, DIANE converts the input position of muta-
tion data from the first function to the last function so 
that the generated mutation data is not subject to appli-
cation-side validation. These methods can effectively find 
vulnerabilities in the code that communicates with the 
application on the target device. However, not all devices 
have corresponding mobile apps. At the same time, this 
approach also fails to find vulnerabilities in components 
of the target device that do not communicate with the 
mobile app.

Other black-box fuzzing methods directly analyze the 
captured raw communication messages of SOHO rout-
ers. Boofuzz (Pereyda 2022) is an excellent successor 
to the classic Sulley (Amini et  al. 2019) fuzzing frame-
work. Boofuzz uses human knowledge guidance to solve 
input problems. Before fuzzing, Boofuzz requires users 
to define a set of highly customized messages and write 
corresponding independent scripts for each captured 
raw communication message. Unlike Boofuzz, SRFuzzer 
(Zhang et al. 2019) first captures many web requests from 
physical devices and then models user input semantics to 
generate test cases. SRFuzzer builds a Key-Value model 
for each message content in the request to distinguish the 
data type of the value and assign different mutation rules. 
Based on SRFuzzer, ESRFuzzer (Zhang et al. 2021) adds 
a new D-CONF mode that can detect some issues that 
SRFuzzer misses, including memory corruption, com-
mand injection, and stored cross-site scripting. SRFuzzer 
and ESRFuzzer mainly consider the Key-Value model, 
but in practice, there are various message formats. In 
addition to key-value pairs, there are JSON, XML, soap, 
and custom message formats (Feng et  al. 2021). To be 
applied to various devices, the new solution should be 
able to infer the format from the raw message.

Response feedback mechanism
Since most existing SOHO routers network black-box 
fuzzers (Chen et  al. 2018; Pereyda 2022; Redini et  al. 
2021) do not have an excellent mechanism to constrain 
the format of test cases, some researchers try to use the 
response messages of SOHO routers to guide the muta-
tion process.

SNIPUZZ (Feng et al. 2021) is the first method that pro-
posed using the response messages of a device as feed-
back to guide the fuzzing strategy. Specifically, SNIPUZZ 
first collects the response message corresponding to the 
deleted byte by deleting the raw message byte and send-
ing the deleted message to the target device. SNIPUZZ 
judges whether different test cases cover different code 
execution paths in the device firmware through the con-
tent of the response message. Based on this mechanism, 
SNIPUZZ uses a novel heuristic algorithm to detect the 
role of each byte in the message. Adjacent bytes with 
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similar response messages have the same role in the ini-
tial message fragment and can be packed together and 
linked into a basic mutation unit. The feedback mecha-
nism of SNIPUZZ is novel, and its packaged fundamental 
mutation unit narrows the search range of test cases to a 
certain extent.

SNIPUZZ did not further explore the constructed 
mutated units. Specifically, first, SNIPUZZ did not per-
form content analysis on the mutated units themselves. 
The mutation unit constructed by SNIPUZZ is only a 
byte fragment, and its data type and semantic mean-
ing (such as IP, domain name, and MAC address) have 
not been analyzed. Content analysis of mutated units 
can effectively guide the mutation process. Second, 
SNIPUZZ does not recognize the default variable field 
in the message. Some fields are usually allowed to default 
in the communication message of the target device, and 
the fields corresponding to the default fields in the raw 
message are usually empty. Therefore, the mutation unit 
sequence constructed by SNIPUZZ by deleting the raw 
message byte by byte cannot identify and represent the 
empty default field. These default fields corresponding 
to variable fields are often essential entry points for trig-
gering potential vulnerabilities in firmware. Finally, there 
is an equivalence among mutated units constructed by 
SNIPUZZ. In other words, SNIPUZZ adopts the Havoc 
method in mutation. That is, some random mutation 
units in the message are randomly selected, and a ran-
dom mutation scheme is performed on each selected 
mutation unit. These mutation units represent the format 
and structure of the raw message, and randomly selecting 
mutation units to mutate will destroy the structure of the 
raw message. Although this can find the vulnerabilities 
of those format parsing components in the device firm-
ware to a certain extent, it also prevents mutation mes-
sages from reaching deep functional code, which may 

contain more defects and vulnerabilities. Therefore, the 
new fuzzing scheme based on the feedback mechanism 
should further consider the analysis and exploration of 
the content and structure of the mutation unit.

Methodology
To describe the structure and content of the message in a 
normalized manner, we first define a data structure called 
message segment list, short for MSL, as in (1). MSL con-
sists of n message segments with attributes, where n ∈ N  . 
The definition of a message segment, in short for ms, is 
shown in (2), each message segment has m attributes, 
where m ∈ N .

Typical segment attributes include value, data type, 
encoding type, data semantics, segment stability level, 
data nesting type, etc. The value of the message segment 
corresponds to the contiguous bytes of the raw message. 
The concatenation result of all message segment values 
in the message segment list is the raw message. Since the 
message segment list carries all the bytes of the raw mes-
sage and contains the sequence relationship, any original 
message can be represented by MSL, and MSL can be 
directly serialized into the raw message. In the fuzzing 
process, the serialized mutated message can be directly 
obtained by mutating each message segment in MSL.

Based on MSL, we present the detailed design of 
MSLFuzzer as illustrated in Fig.  1. MSLFuzzer receives 
a raw message as input, obtains the corresponding feed-
back response message by constructing the probe mes-
sage, and stores it in the response pool. These feedback 
response messages group the bytes in the raw message 

(1)MSL = [ms1,ms2, . . . ,msi, . . . ,msn]

(2)ms = a1, a2, . . . , aj , . . . , am

Fig. 1 Overview of MSLFuzzer
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and build the initial MSL (Sect. Initial message segment 
list construction). MSLFuzzer performs semantic analy-
sis, invisible segment analysis, and stability analysis on 
each segment in MSL. The result of the analysis is added 
to the corresponding segment as an attribute of each 
message segment (Sect. Message segment content analy-
sis). Then, the constructed list of message segments with 
attributes will be used as a normalized mutation seed 
for fuzzing. MSLFuzzer mutates the list of message seg-
ments with attributes, serializes the result of each muta-
tion into a mutated message, and sends it to the target 
SOHO router through the messenger (Sect. Message seg-
ment list mutation). Finally, MSLFuzzer will output crash 
exceptions and mutated messages that trigger crashes 
(Sect. Response monitoring).

Initial message segment list construction
For black-box fuzzing, since the internal execution infor-
mation cannot be obtained from inside the device, the 
feedback response messages of the SOHO routers are 
regarded as a valuable source of device state informa-
tion at runtime. Different bytes in the message can be 
associated with the corresponding response category, 
obtained by sending a probe message constructed after 
the corresponding bytes are deleted to the target device. 
This association relationship can provide support for 
the construction of message segments. In this process, a 
challenge is to correctly identify the randomness in the 
response message, such as timestamps or tokens. These 
contents will significantly interfere with the classifica-
tion of response messages. We improved the heuristic 
approach of SNIPUZZ to correlate the bytes in the raw 
message and the response message class. At the same 
time, we propose a difference-based response format ran-
dom value offset inference method to avoid the interfer-
ence of random values on response classification to the 
greatest extent. Specifically, the entire initial segment list 
construction process is divided into three steps: 1) feed-
back response message collection, 2) random value offset 
inference, and 3) message segment list construction.

Feedback response message collection
MSLFuzzer first constructs several probe messages by 
deleting the corresponding bytes in the raw message 
byte by byte. These probe messages will be sent to the 
target device. The response message of each probe mes-
sage will be associated with the deleted bytes in the probe 
message.

Random value offset inference
After completing the association of the bytes in the raw 
message with the corresponding response message, the 
response message needs to be classified to realize the 

clustering of adjacent bytes in the raw message. However, 
due to the influence of random values in the response, 
the categories of response messages with the same 
semantics may need to be correctly merged. Therefore, it 
is necessary to find where random values may be located 
and eliminate their interference when calculating the 
response message.

Considering that in most public or private protocols, 
although the protocol usually has extension parts, the 
relative offset of some random values in the protocol is 
usually fixed. Therefore, we make two assumptions: 1) 
The offset of the random value in the response is fixed 
relative to the starting position of the response header; 
2) Two response messages with the same semantic mean-
ing differ only in random values and the same in other 
positions. We propose a difference-based response ran-
dom value offset inference method based on these two 
assumptions, as shown in Algorithm 1.

The input to the algorithm is the set of bytes in the raw 
message and the associated response message R.First, in 
the set R of all response messages, the editing similarity 
ESij between response messages Ri and Rj is calculated 
according to (3) (lines 1–6). When the similarity ESij of 
the two response messages is greater than the threshold 
p , the two messages are considered to belong to the same 
category Pt (lines 7–8). The threshold p is the average 
initial self-similarity of each probe message and is calcu-
lated according to (4), where NP is the total number of 
responses. The threshold p is used to distinguish whether 
different messages belong to the same category. Its value 
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ranges from 0 to 1. When the similarity between message 
A and message B is greater than the average self-similar-
ity threshold p, message A and message B are considered 
to belong to the same category. The sample mean is often 
used to distinguish whether two classes of targets belong 
to the same category. For example, in the field of intru-
sion detection, the sample mean is used as a boundary 
to distinguish between normal and abnormal behaviour 
(Jones and Sielken 2000). MSLFuzzer computes self-sim-
ilarity ESi for each probe message pmi . The probe mes-
sage pmi corresponding to the i th byte is constructed by 
removing the i th byte in the raw message. MSLFuzzer 
sends the same probe message pmi twice within a second 
interval. The two responses ri , rj are collected from the 
target device accordingly. The self-similarity ESi is calcu-
lated according to (3). All categories Pt together form the 
response category pool P (line 9).

Second, for a response class Q in the response pool P , 
pairwise combine the response messages Qi and Qj in Q 
(lines 10–12). Next, make a difference between Qi and 
Qj for each combination and record all inconsistent byte 
positions Ok , the value Vk of the position, and the num-
ber of responses Nk that have had differences in the byte 
position (line 13). Ok , Vk , Nk are recorded in set Sovn (line 
14). The total number of responses NP is statistically 
obtained for subsequent calculations (line 15). Then, all 
inconsistent byte offset in set Sovn are filtered. For each 
set of Oi , Vi , Ni in Sovn , when the proportion of Ni in the 
total number of responses NP is greater than threshold q , 
the corresponding inconsistent byte offset Oi is reserved, 
and Ok , Vk , Nk are recorded in set O , V  , N  respectively 
(lines 16–18). Among them, O is the set of all inconsist-
ent byte positions that meet the requirements, V  is the 
set of values corresponding to all inconsistent byte posi-
tions in set O , and N  is the number of responses with dif-
ferences in all inconsistent byte positions in set O . The 
threshold q is calculated according to (5). This threshold 
q must meet three conditions: 1) The value range is from 
0.5 to 1. That is, the proportion should be at least greater 
than half of the total number of responses, but at the 
same time, this threshold must be less than 1 because the 
byte offsets found may not appear in all responses at the 
same time and there needs to be slight fault tolerance. 2) 
The value of this threshold is related to the total number 
of responses NP . The larger  NP is, the larger q is. This is 

(3)

editing_similarity(Ri,Rj) = 1−
edit_distance(Ri,Rj)

max_len(Ri,Rj)

(4)p =

∑NP
i ESi

NP

to prevent significant differences in threshold settings in 
various situations due to changes in NP size. The larger 
NP is, the higher the proportion should be. 3) When NP 
approaches positive infinity, the limit of this threshold is 
1. In formula (5), the range of NP is all positive integers 
greater than zero. And q increases positively with NP . 
The larger NP is, the larger q is. Satisfying condition 2. 
When n equals 1, q is 0.5. When n approaches positive 
infinity, the limit of q is 1. Satisfying conditions 1 and 3). 
Therefore, this formula meets all conditions for setting 
threshold q.

Further, all consecutive inconsistent byte offsets in set O 
are preserved, discrete inconsistent byte offsets are removed, 
and the sets V  and N should also be modified accordingly 
(line 19). Finally, the intersection O′ of consecutive incon-
sistent bytes in all response classes is obtained. If these 
categories only intersect part of the bytes, the maximum 
consecutive inconsistent bytes are taken (line 20). Potential 
response random number byte position O′ is output.

MSL initialization
After obtaining the potential response random number 
byte position, the response message can be classified. 
Different from the calculation method of SNIPUZZ, 
MSLFuzzer first corrects the response message according 
to the potential byte offset of the random value. Specifi-
cally, for the response messages ri and rj , the byte seg-
ment ro corresponding to the potential random value 
offset O is deleted to obtain r ′i , r

′

j , as shown in (6). The 
corrected response message is then used to calculate the 
similarity. As shown in (7), the corrected self-similarity 
score ES

′

i of the probe message pmi is obtained by cal-
culating the similarity of its two corrected response mes-
sages r ′i and r ′j.

Next, the response category needs further determined 
to be the basis for merging the bytes in the raw message. 
It is important to note that the method for combining 
response categories in this step differs from the method 
for combining response categories during random value 
offset inference. The response categories obtained during 
random value offset inference are just a coarse-grained 
classification algorithm to aid in finding random value 

(5)q =
NP

NP + 1

(6)r′i = ri − ro, r
′

j = rj − ro

(7)ES′i = 1−
edit_distance

(

r′i , r
′

j

)

max_len
(

r′i , r
′

j

)
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offsets. Under the control of a threshold p , this coarse-
grained classification helps determine random value off-
sets but is not suitable for fine-grained classification for 
this step. MSLFuzzer performs fine-grained similarity 
calculation for each pair of response messages of each 
probe message based on (7). When the corrected similar-
ity ES

′

ij of the two response messages ri and rj is greater 
than the corrected self-similarity ES

′

i or ES
′

j of each 
response message, the two response messages are consid-
ered to belong to the same category. Finally, the response 
category corresponding to each response message can be 
obtained.

When all response classes are successfully classified, sev-
eral adjacent bytes with the same response class in the raw 
message will be merged into the same message segment. 
Adjacent bytes will be merged into the byte stream as the ini-
tial value of the new message segment. All constructed mes-
sage segments are assembled in the byte order corresponding 
to the raw message, and the initial MSL is completed.

Message segment content analysis
After obtaining the initial MSL, MSLFuzzer analyzes each 
initial message segment, including 1) message semantic anal-
ysis, 2) invisible segment analysis, and 3) message stability 
analysis.

Message semantic analysis
The raw message usually contains control instructions, con-
figuration parameters, or data payloads, which the user usu-
ally sends to the SOHO router. Although the raw message 
may be a printable string or a custom byte stream, the field 
data carried in it are printable string information in many 
cases. Therefore, semantic analysis of each message segment 
can better help the fuzzer understand the characteristics of 
the raw message. MSLFuzzer uses a heuristic-based mes-
sage semantic analysis method to perform semantic analysis 
on the message segment list. The core idea of the heuristic 
message semantic analysis method is to analyze and arbi-
trate the target message segment by category. MSLFuzzer 
divides analysis categories into four categories: nested struc-
ture analysis, data type analysis, semantic analysis, and field 
encoding analysis. The analysis items supported by these 
analysis methods are shown in Table 1.

Nested structure analysis refers to analyzing the poten-
tially nested structure (such as JSON and XML) in the 
message segment and further dismantling it according to 
its structural characteristics to form a more fine-grained 
message segment. The previous MSL construction pro-
cess has disassembled the underlying nested structure in 
the raw message. However, in practice, when faced with 
some devices whose response messages are not detailed, 
there may still be nested structures in the message seg-
ment. For example, some devices use a unified message 

to report all errors. Further splitting of these message 
segments in the nested format can effectively increase 
the fuzzing capability of devices whose response mes-
sages need to be more detailed. Data type analysis refers 
to the analysis and identification of the data type of the 
value of the target message segment, such as letters, sym-
bols, numbers, non-printable byte streams, or a combi-
nation of the above types. Semantic analysis refers to 
analyzing and identifying the semantic meaning of the 
value of the target message segment, such as IP address, 
MAC address, and domain name. Field encoding analysis 
refers to analyzing the encoding format used to identify 
the value of the target message segment, such as base64 
encoding and URL encoding.

MSLFuzzer performs heuristic recognition for different 
semantic categories. We mainly adopted the heuristic meth-
od’s idea of trial and error and the rule of thumb. Specifi-
cally, for nested format analysis and field encoding analysis, 
MSLFuzzer leverage standard nested format parsing tools 
and encoding parsing tools to try to parse the target message 
segment. If the parsing is wrong, continue using the following 
parsing tool. Until one of the parsing tools resolves correctly 
or all parsing tools fail to parse. If there is a correct parsing 
result, this field’s nested type or encoding type is the corre-
sponding parsing tool type. Message segments with nested 
types are broken down into finer-grained message segments. 
A message segment with an encoding type is supplemented 
with an encoding type attribute. For data type analysis and 
semantic analysis, MSLFuzzer mainly matches based on the 
data type rule table and semantic meaning rule table. Since 
the communication packets of SOHO routers usually con-
tain information related to network configuration, the rule 

Table 1 Message content analysis items

Analysis category Analysis item

Nested structure analysis XML

JSON

Key-Value Pair

Data type analysis Alphabet

Number

Symbol

String

Non-printable Bytes

Semantic analysis IP Address

MAC Address

Protocol Name

Domain Name

Logical Keywords

Field encoding analysis Base32

Base64

URL
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table contains matching rules for common data types and 
semantics related to network configuration. When the value 
in the message segment matches the corresponding item in 
the table, MSLFuzzer considers the semantic or data type of 
the field to be the corresponding type in the rule table. The 
corresponding data types and semantic meanings are supple-
mented by the attributes of the message segment, providing 
essential information for the subsequent analysis process.

Invisible segment analysis
A single raw message usually carries multiple fields, but 
some fields are empty by default if not configured. In this 
case, these empty segments will not be included in the 
constructed message segment list. We call these uncon-
figured empty segments: invisible segments. When the 
variables that trigger the vulnerability are in these invisible 
segments, since these invisible segments do not occupy an 
independent position in the constructed message segment 
list, it is usually challenging to trigger these vulnerabilities 
by directly mutating the message segment list. These invis-
ible segments need to be found and added to the message 
segment list to improve the effectiveness of fuzzing.

Black-box fuzzing cannot obtain the internal execution 
code and memory contents of the device, so we cannot 
directly obtain the specific invisible segment location. 
Fortunately, MSLFuzzer has constructed a complete mes-
sage segment list in the previous steps. The basic prop-
erties of segments have also been supplemented, so we 
can use the sequence properties of the message segments 
themselves to determine the location of the invisible seg-
ment. MSLFuzzer adopts an n-gram-based invisible seg-
ment expansion algorithm, as shown in Algorithm 2.

The input to the algorithm is MSL with attributes con-
structed in the previous step. First, MSLFuzzer uses 
the n-gram and (n + 1)-gram algorithms in sequence 
on MSL to obtain the n-gram sequence set GN  and the 
(n + 1)-gram sequence set GN1(line 1–3). Based on prac-
tical experience and experimental results, the value of 
the parameter n in the n-gram algorithm is set to 4. In 
Sect. "Invisible segment identification", we provide details 
of the experiments conducted. Next, compare each gram 
GNi in GN  with each gram GN1i in GN1 in turn to obtain 
the respective type attribute sequences  TSn and  TSn1 
(lines 4–7). Based on the edit distance, the attribute edit 
distance TD and edit distance operation method m of 
TSn and TSn1 are calculated (line 8). When TD is equal 
to one and the operation mode is inserted, the inserted 
position in TSn is considered as a candidate invisible seg-
ment (lines 9–10). Then, MSLFuzzer performs regres-
sion judgment on the candidate invisible segments. If 
the value of the segment before and after the potential 
invisible segment in the n-gram is the same as the value 
of the corresponding (n + 1)-gram, the candidate invisible 
segment is considered as an invisible segment, and an 
invisible segment sequence template T  is created (lines 
11–13). Finally, MSLFuzzer searches for the positions of 
all invisible segments in the raw message according to the 
invisible segment sequence template and inserts invisible 
segments in the corresponding positions to obtain MSLI 
(lines 14–17).

The message segment list is used for the subsequent 
analysis process after the completion of the invisible 
segment expansion. Since the default value of inserted 
invisible segments is empty, only when these invisible 
segments are selected to mutate their values will be filled 
with mutated data. Therefore, when other segments are 
mutated, invisible segments will not affect the mutation 
results of other segments. At the same time, the issue 
that the variable that triggers the vulnerability appears in 
the invisible segment can also be solved.

Message stability analysis
Most of the defect code generated by vulnerabilities is 
located in various functional codes after the protocol 
analysis component. According to software development 
practice, before the data in the raw message reaches the 
actual defect code, the protocol format and data for-
mat of the raw message need to pass sanitization. When 
these sanitization constraints are reflected in a fuzzer, the 
fuzzer needs to generate mutated data that conforms to 
the specification as much as possible. More vividly, build-
ing a message segment list is similar to building a block 
castle. The process of mutating the message segment list 
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to generate data that the firmware can verify is similar 
to removing blocks from a block castle one by one and 
ensuring that the block castle does not collapse. Once the 
blocks that play a key supporting role in the structure are 
pulled away, the entire block castle will collapse. Simi-
larly, once the message segments checked by the firm-
ware are changed, the entire mutated message may fail to 
pass the check.

To better describe the stability of each message seg-
ment, we introduce the concept of message stabil-
ity, which is used to describe the satisfaction degree of 
mutated messages to message legitimacy. Because the 
raw message is an essential seed for mutation, we usu-
ally assume that the structure and content of the origi-
nal message seed are valid, and its corresponding initial 
response is the correct response. This correct response 
can be used to infer the stability of each message seg-
ment. MSLFuzzer first copies and blanks the value of the 
target message segment and constructs two new mes-
sages based on the copied and blanked message segment. 
MSLFuzzer sends a new message to the target device 
and receives a response message corresponding to the 
message. Finally, MSLFuzzer determines the degree of 
stability of a message segment by judging the difference 
between the response of the constructed message and the 
response of the seed message.

Figure  2 shows an example of this process. Among 
them, Line 0 is the raw message, and Line 1 is the con-
structed MSL. Response 1 is the response obtained by 
serializing the MSL in Line 1 into a message and sending 
it to the target device. Assuming that we need to make 
a stability judgment on the message segment numbered 
2 in Line 1, MSLFuzzer first copies the value of message 
segment 2 and constructs a new message segment, as 
shown in Line 2. The MSL in Line 2 completes the seri-
alization and sends it to the target device to get Response 
2. Similarly, the MSL in Line 3 and the corresponding 
Response 3 can be obtained. Later, MSLFuzzer judges the 
stability of the message segment numbered 2 based on 
Response 1, Response 2, and Response 3.

Stability is classified into 3 levels, as shown in Table 2. 
Level 0 stability is also called root stability level. For a 
message segment, when both Response 1 and Response 
2 are changed, no matter whether the value of the seg-
ment is copied or blanked, the stability level of the mes-
sage segment is the root stable level. In this case, the raw 
message bytes corresponding to the message segment are 
usually some message identification fields or key struc-
ture fields to be checked. Level 1 stability is also called 
structural stability level. When the segment value is cop-
ied or blanked, only one of Response 1 and Response 2 
will change. In this case, the raw message bytes corre-
sponding to the message segment are usually specially 
checked data values or edge structures. Level 2 stability 
is also called value stability level. Neither Response 1 nor 
Response 2 changes when segment values are inserted 
outside or inside the segment. In this case, the corre-
sponding raw message are usually the variable values car-
ried by the message.

A message segment with a higher stability level indi-
cates a higher probability of passing the sanitization dur-
ing the mutation process, and the exception-handling 
mechanism of the SOHO router does not easily capture 
the mutation message. Message segments of higher pri-
ority should be mutated first. A message segment with a 
lower stability level is more likely to be used as the valida-
tion field in the mutation process. Mutating the data of 
these message segments makes it easy for the mutated 
message to be caught by the exception-handling mecha-
nism of the device, which means that the probability 
of the mutated message reaching the deep defect code 

Fig. 2 Example of message segment stability judgment process

Table 2 Message stability level

Level Segment value duplication Segment value empty

0 Changed Changed

1 Unchanged / changed Changed / unchanged

2 Unchanged Unchanged
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location is lower. Therefore, the mutation priority of a 
message segment with lower stability levels should be 
lowered. The stability level value of the segment is added 
as a property of MSL after it is determined. The enriched 
message segment list will be used for the subsequent 
mutation process.

Message segment list mutation
After the previous step is finished, the list of message seg-
ments complemented by semantic information will be 
used as input to the mutation phase of fuzzing.

Message segment mutation
MSLFuzzer mutates the message segments list obtained 
in the previous stage. It is worth noting that the muta-
tion strategy is performed on a single message segment 
rather than a single byte in the raw message. For effec-
tive fuzzing, MSLFuzzer combines the attribute informa-
tion of each message segment in the mutation process. 
MSLFuzzer uses the following strategies for mutation:

• Byte Fragment Length Manipulation MSLFuzzer 
changes the length of the value of the message seg-
ment to trigger buffer overflow vulnerabilities or out-
of-bounds access vulnerabilities. MSLFuzzer gener-
ates random or repeated strings or byte fragments of 
varying lengths.

• Numeric Bounds Break MSLFuzzer alters the value 
of an integer, double, or float value to cause an inte-
ger overflow or out-of-bounds access vulnerability. 
MSLFuzzer generates tremendous, negative, zero 
values or data boundary values.

• Empty Fill An empty data field may crash the firm-
ware if the data field is not properly checked. There-
fore, MSLFuzzer deletes the entire fragment to clear 
the data field.

• Byte Flip MSLFuzzer flips all the bytes in the mes-
sage segment to detect potential errors in the parsing 
code.

• Specification Check In order to detect more device 
execution states, MSLFuzzer replaces some poten-
tial judgment characters, such as "on" and "off", "true" 
and "false", according to a predefined knowledge 
base. At the same time, MSLFuzzer also identifies 
message segments if their attributes contain semantic 
information (such as IP address and domain name) 
according to the knowledge base. The values of these 
message segments are replaced with values that vio-
late the semantic specification to detect flaws in the 
semantic format check components.

• Command Inject. Due to many command injection 
vulnerabilities in SOHO routers, MSLFuzzer inserts 

a set of predefined random command injection pay-
loads into the segment value of stability level 1 or 2. 
The execution commands included in these payloads 
usually change the network status of the target device 
(for example, a reboot command) so that the subse-
quent network monitoring process can identify an 
abnormal network connection status.

Message segment encoding
Since some SOHO routers encode fields in the message, 
directly fuzzing the encoded fields will cause the device 
to fail to decode and interrupt the message-processing 
workflow. MSLFuzzer uses the corresponding decoder 
to decode the value of the message segment according 
to the encoding attribute in the message segment. The 
decoded message segment value is then subjected to the 
above mutation operation. MSLFuzzer finally uses the 
corresponding encoder to re-encode the mutated result. 
The encoded mutated value is used as the new message 
segment value.

Fuzzing scheduling
The conditions that trigger a crash can be complex. 
For example, modifying different data fields in the 
same message may be necessary to trigger an error. 
Nevertheless, at the same time, it is easy to be rejected 
by the device due to the mutation of all fields. So, we 
want to randomly select one or more subsets of fields 
to mutate while maintaining the stability of the mes-
sage structure rather than mutating all fields simul-
taneously. MSLFuzzer randomly selects the variant 
message segments in the message segment list based 
on the stability level of each message segment, and 
the message segment with a higher stability level has 
a higher probability of being selected. After select-
ing mutated message segments, MSLFuzzer executes 
the above mutation scheme for each segment, serial-
izes the mutated message segment list into a complete 
message, and sends it to the target device. A new mes-
sage segment combination will be selected for the next 
fuzzing round only when the entire mutation process 
lasts for a user-defined time or completes a prede-
fined number of mutations. After fuzzing scheduling, 
MSLFuzzer will record and store the combination of 
protocol message segments selected in the schedule 
into a JSON mutation state snapshot file. Whenever 
MSLFuzzer re-runs, it will first load the mutation 
state snapshot and then perform the fuzzing pro-
cess to avoid the loss of the previous fuzzing state 
information.
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Response monitoring
Since a black-box fuzzer does not have intrusive mem-
ory access to SOHO routers, MSLFuzzer identifies 
whether there are potential anomalies or vulnerabili-
ties triggered by monitoring the network activity of 
the target device. For the potential command injection 
vulnerability in the device, since the default injection 
payload used by MSLFuzzer is the command to change 
the network state of the target device, the detection of 
the injection result can thus be implemented by check-
ing the network activity state of the device. There-
fore, when fuzzing a device, MSLFuzzer analyzes the 
response messages to detect crashes.

Specifically, MSLFuzzer sends a raw message and 
monitors regular device activity response results 
before mutation data is sent to the device. When the 
device works correctly, MSLFuzzer performs the sub-
sequent fuzzing process and receives a response for 
each mutated message. Suppose the response message 
times out, or the connection is interrupted during this 
process. In that case, MSLFuzzer will repeatedly send 
the mutated message to check whether the exception is 
a false positive caused by the slow processing speed of 
the device. When there is no response to the mutated 
messages sent repeatedly, MSLFuzzer will send the 
standard probe message again. If the normal probe 
message has a response, it is considered that the mes-
sage processing component has crashed. Otherwise, 
the entire device service is considered to have crashed. 
Because in some crash scenarios (such as some com-
mand injection vulnerabilities), the device will send a 
response message at first and no response after, which 
will cause the following unrelated mutation message to 
be recorded instead of the previous probe message that 
triggers the crash. Therefore, when a crash is found, 
MSLFuzzer will log the context mutation message that 
triggered the crash for subsequent further analysis.

Implementation and evaluation
This section introduces a prototype implementation of 
MSLFuzzer and analyzes the evaluation results. Specifi-
cally, Sect. "Framework implementation" provides imple-
mentation details, and Sect. "Experiment setup" presents 
the experimental setup. Sect.  "Features of MSLFuzzer" 
compares the features of MSLFuzzer with state-of-the-
art fuzzers. Sect.  "Efficiency" discusses the effective-
ness of MSLFuzzer based on the evaluation results. 
Sects. "Response category trigger" and "Invisible segment 
identification" evaluate the ability of MSLFuzzer to trig-
ger response categories and discover invisible segments, 
respectively. Finally, Sect.  "Unknown vulnerability iden-
tification" explores the ability of MSLFuzzer to discover 
unknown vulnerabilities.

Framework implementation
We have implemented a fully functional MSLFuzzer 
prototype with about 5000 lines of Python code. The 
design of MSLFuzzer includes four stages: initial mes-
sage segment list construction, message segment content 
analysis, message segment list mutation, and response 
monitoring. These core functions are packaged in this 
prototype. Since the input to MSLFuzzer is raw messages, 
we use Wireshark (2022) to capture the communication 
packets of SOHO routers and manually sanitize these 
message sequences as input to MSLFuzzer. Specifically, 
we first use Wireshark to capture standard communica-
tion packets of SOHO routers and store all communica-
tion traffic as packet capture (PCAP) file. Secondly, we 
used Wireshark to track and analyze each TCP or UDP 
flow in the data packet and manually selected some typi-
cal seed packets as candidate seeds. Next, we analyzed 
these candidate seed messages and extracted some criti-
cal bytes from them as filtering conditions for filtering. 
We manually code Wireshark’s filtering rules based on 
the characteristic vital bytes. We applied them to the 
entire data packet to filter out all data packets that meet 
the filtering rules. Finally, we do a regression check on all 
the filtered data packets to determine whether they are 
our expected packets. We use the expected message as 
the input of MSLFuzzer.

To make MSLFuzzer easier to be driven by external 
programs, we wrote a fuzzer wrapper to drive MSLFuzzer 
to fuzz the target device. This wrapper takes the raw mes-
sages from the packets and passes them to MSLFuzzer 
as input. At the same time, when a raw message contains 
authentication credentials, the wrapper will dynamically 
update the authentication credentials in the raw message 
before the fuzzing process according to different types of 
devices to ensure the validity of the raw message in the 
fuzzing process.

Experiment setup
Dataset
Existing IoT black-box fuzzing work is usually evaluated 
on physical devices. The physical devices selected for 
each job are different, and many physical devices have 
been sold out and cannot be purchased. At the same 
time, since the firmware in the physical device may have 
been updated, many historical vulnerabilities cannot be 
exploited. Therefore, it is challenging to reproduce the 
evaluation experiments of each work fully. This makes it 
difficult for comparative experiments of different works 
to compare fairly on a relatively deterministic dataset. 
With this in mind, we constructed a deterministic, easy-
to-use dataset that would make it easier and affordable 
for other researchers to reproduce our work and compare 
it more easily with other methods.
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Firmware emulation technology can meet the needs 
of low-cost and rapid construction of IoT test environ-
ments. Although the success rate of firmware emulation 
technology for different manufacturers and device mod-
els varies greatly, and the overall emulation success rate 
is low, from the perspective of building a dataset, we can 
still get some candidates by increasing the base of avail-
able firmware. A successfully emulated firmware is finally 
used for an experimental evaluation. It is worth noting 
that our method and the other methods compared in 
this paper are all black-box fuzzing methods and do not 
depend on the success rate of firmware emulation. The 
emulation-capable firmware is only used to build the 
test environment. For experimental evaluation, whether 
the test environment is, an emulated device or a physical 
device is transparent to the evaluated method.

To better evaluate the efficiency of MSLFuzzer, we 
compare MSLFuzzer with other methods on a particu-
lar dataset to evaluate its effectiveness in discovering 
vulnerabilities. We need to build a dataset of known 
vulnerabilities of SOHO routers. We mainly considered 
the following factors when constructing this dataset: 
1) Real-world firmware image. Every firmware image in 
the datasets should be from the real world. These firm-
ware images should cover mainstream architectures such 
as MIPS and ARM. 2) Real World Vulnerabilities. Every 
firmware image in the datasets should contain the real-
world vulnerability. Selecting real-world vulnerabilities 
is more effective for verifying the performance of fuzz-
ers in practice than artificially implanted vulnerabilities 
through the forward porting method (Hazimeh et  al. 
2020). 3) Typical vulnerability types. The types of vul-
nerabilities in the firmware should cover typical SOHO 
router device vulnerabilities. The typical types of vul-
nerabilities mainly studied in the existing SOHO router 
device black-box fuzzing research work include memory 
corruption, command injection, and denial of service 
(Feng et al. 2021; Shu and Yan 2022; Zhang et al. 2021). 
Therefore, the vulnerabilities contained in the baseline 
firmware image should contain the above vulnerabil-
ity types. 4) Emulation and fidelity of firmware images. 
Every benchmark firmware should be able to be emulated 
successfully and efficiently used. The fidelity of the firm-
ware image also needs to be verified. For example, many 
emulated firmware crashes after deep interactions. Such 
as, clicking on a web page to set properties affects the 
validity of fuzzer evaluations. Therefore, the fidelity of 
the firmware image also needs to be verified.

Environment setup
We implemented an emulation device control tool to 
facilitate the MSLFuzzer to control the emulated SOHO 
routers to achieve all of the device states or to restart 

the device after the emulation crash. The tool provides a 
RESTful API, and all emulated devices can be started or 
stopped through an API call. When a crash of the target 
service is detected, the target device needs to be restarted 
in order for the next round of fuzzing to proceed. The 
fuzzer wrapper automatically reboots the target device 
and restores the target service by calling the API. Since 
the fuzzing process is random, we repeat the experiment 
5 times and count the average data. Like existing evalua-
tion methods, we set the maximum testing time for each 
fuzzing experiment to be 24 h. We deployed MSLFuzzer 
on an Ubuntu 20.04 desktop PC with Intel Core i7 8-core 
X 3.70 GHz CPU and 16 GB RAM.

Benchmark tools
To verify the performance of MSLFuzzer in find-
ing crashes, we used four different fuzzing schemes as 
benchmarks.

• SNIPUZZ The initial SNIPUZZ code published by 
its authors is written in C# for Windows machines. 
As a demo version, the code lacks a user manual, 
has complex dependencies, and is not packaged as 
an independent tool. Its authors try to reimplement 
SNIPUZZ in python to enhance its generality. Unfor-
tunately, the python version of SNIPUZZ was not 
released when we started our experiment. Therefore, 
we reimplemented SNIPUZZ based on our under-
standing of the method presented in the paper (Feng 
et al. 2021) and its C# implementation code. Consid-
ering that SNIPUZZ needs to infer message content 
based on feedback response messages, to make the 
benchmark as fair as possible, we use the same raw 
message as seed for SNIPUZZ and MSLFuzzer.

• Boofuzz Unlike other black-box fuzzers, Boofuzz 
requires human knowledge to guide. Specifically, 
Boofuzz needs to manually code a corresponding 
script for each raw message, which defines the for-
mat of the raw message, the fields that need to be 
mutated, and the mutation strategy. We refer to the 
evaluation methods of Boofuzz from other works 
(Feng et  al. 2021), exploit this property of Boofuzz, 
and manually define more fuzzing strategies to 
enrich the benchmark evaluation.

• Boofuzz-Default Each message in the input is set 
to a full string. Boofuzz will mutate that message 
as a string.

• Boofuzz-Byte Each byte of the message in the input 
will be used for mutation individually.

• MSLFuzzer-NoAnalysis MSLFuzzer further analyzes 
the message content to improve the fuzzing efficiency 
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and the ability to find crashes. To verify whether fine-
grained message analysis is beneficial for fuzzing, we 
removed the message content analysis code used in 
MSLFuzzer and implemented MSLFuzzer-NoAnaly-
sis. MSLFuzzer-NoAnalysis does not further analyze 
the constructed message segment list and directly 
completes the subsequent mutation operations.

All benchmarking tools and MSLFuzzer are tested on 
the same vulnerability dataset to make the benchmark 
as fair as possible. These inputs may have different for-
mats (e.g., Boofuzz requires manual input settings, and 
SNIPUZZ requires raw messages), but the content is the 
same.

Features of MSLFuzzer
This section evaluates MSLFuzzer and existing black-box 
fuzzer tools for SOHO routers. We compared MSLFuzzer 
with state-of-the-art network fuzzers Boofuzz (Pereyda 
2022), SNIPUZZ (Feng et al. 2021) and UCRF (Qin et al. 
2023) regarding the firmware dependent, analysis object, 
analysis method, seed generation, and field completion. 
Since UCRF is not open source, we mainly compare its 
functions in this section.

As shown in Table 4, MSLFuzzer, SNIPUZZ and Boo-
fuzz do not depend on the firmware image, and the anal-
ysis object is the message communicated with the target 
device. UCRF relies on firmware images, which require 
static analysis, and new seeds can be generated. There-
fore, the use scenarios of MSLFuzzer and UCRF are dif-
ferent, and when the router device firmware image is 
unavailable, the application scenarios of MSLFuzzer are 
more comprehensive. Unlike SNIPUZZ, MSLFuzzer adds 
MSL inference based on response feedback technology 
and can complete the default message fields. Therefore, 
the analysis of MSLFuzzer for response messages is more 
comprehensive.

Efficiency
MSLFuzzer is evaluated on the dataset containing 35 
real-world vulnerabilities in 20 emulated SOHO routers. 
Our process of judging different fuzzers triggering vul-
nerabilities is as follows. First, before the fuzzing experi-
ment corresponding to each vulnerability, we provided a 
unified seed for all tested fuzzers. The network interface 
contained in the seed corresponds to a specific service 
component on the device under test, and this component 
has a known vulnerability that we have verified. Second, 
we captured all traffic packets during fuzzing. After the 
fuzzing is over, we code Wireshark filter rules, manually 
locate the specific packet that triggers the exception, and 
analyze whether the specific mutation position of the 
mutated packet is consistent with the trigger field of the 

target known vulnerability in the component. Finally, we 
replayed the message, observed the context information 
given by the emulator when the device reported an error, 
and finally judged whether the target vulnerability was 
triggered.

In evaluating the performance of each fuzzer, we pri-
oritize using the number of vulnerabilities found by each 
fuzzer as the primary evaluation metric. When each 
fuzzer can or cannot find a specific vulnerability, the 
response category triggered by them will be used as an 
additional evaluation metric. We choose such an evalu-
ation metric mainly following the suggestion of Magma 
(Hazimeh et  al. 2020), a state-of-the-art fuzzer evalua-
tion work. The final metric for evaluating two fuzzers is 
to compare the number of bugs found by each fuzzer. If 
fuzzer A finds more bugs than fuzzer B, then A is bet-
ter than B. However, considering that some fuzzers can 
or cannot find the same vulnerability, we use the number 
of response categories as an additional metric to supple-
ment the evaluation. The results of the experiment are 
shown in Table  3. MSLFuzzer found 31 out of 35 vul-
nerabilities, which is higher than the other four involved 
benchmark tools. We conducted a detailed analysis of the 
fuzzing process for these vulnerabilities.

We first analyzed the fuzzing process for four vulner-
abilities that MSLFuzzer did not successfully trigger. 
We found that CVE-2019-10891, CVE-2019-20215 and 
CVE-2020-15893 were not successfully triggered because 
the number of responses triggered by these two vulner-
abilities was small, and the message format did not have 
a specific nested structure. Therefore, MSLFuzzer fails 
to construct detailed message segments, and the entire 
fuzzing process is close to random mutation. CVE-
2019-6258 was not successfully triggered because the 
component affected by the vulnerability differs from the 
component receiving the mutated message. MSLFuzzer 
observes the state of the component that receives 
mutated messages. However, the component did not 
behave abnormally, so the vulnerability was not detected 
by MSLFuzzer. These three vulnerabilities were also not 
discovered by SNIPUZZ.

Then, we analyzed the vulnerabilities that both 
MSLFuzzer and SNIPUZZ could trigger successfully. 
SNIPUZZ found more responses on CVE-2017-13772 
than MSLFuzzer did, and MSLFuzzer found more 
responses on CVE-2019-17510 than SNIPUZZ did. Of 
the remaining vulnerabilities, MSLFuzzer found the 
same number of responses as SNIPUZZ. This shows that 
MSLFuzzer and SNIPUZZ have relatively comparable 
performances on these vulnerabilities.

Next, we focus on the vulnerabilities that MSLFuzzer 
triggers successfully, but SNIPUZZ does not trig-
ger successfully. An essential reason that MSLFuzzer 
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found these vulnerabilities while SNIPUZZ did not 
is that the responses of many SOHO routers could be 
more detailed, and many devices respond with a suit-
able error response type. Therefore, when the number 
of responses is too small, the primary segment snippet 
constructed by SNIPUZZ cannot sufficiently describe 
the original structure of the message, which makes 
the fuzzing process close to random mutation and 

cannot successfully find a vulnerability. MSLFuzzer 
performs nested structure analysis after the initial mes-
sage segment list is constructed. Therefore, when the 
device adopts a standard protocol format, its message 
structure can be effectively disassembled. This allows 
MSL to better describe the message structure, and 
MSLFuzzer to obtain more diverse response types. As 
a result, MSLFuzzer can discover CVE-2017-17215, 

Table 3 Experiment Results. MSLFuzzer discovers the greatest number of vulnerabilities

The bold numbers indicate that the corresponding fuzzer has the best fuzzing performance for that vulnerability corresponding to that row among all fuzzers, i.e., it 
triggered the most responses

C Crashed,  + implies at least one crash, − means no crash, N Number of response categories

# ID Device Protocol MSLFuzzer SNIPUZZ Boofuzz-
Default

Boofuzz-
Byte

MSLFuzzer
NoAnalysis

C N C N C N C N C N

1 CVE-2017-13772 TP-Link WR940N HTTP  + 15  + 25 − 1  + 1 − 2

2 CVE-2017-17215 Huawei HG532 SOAP  + 2 − 2 − 1 − 1 − 1

3 CVE-2018-14558 Tenda AC7 HTTP  + 2  + 2 − 2 − 2  + 7
4 CVE-2018-16334 Tenda AC9 HTTP  + 2  + 2 − 1 − 1 − 5
5 CVE-2018-18728 Tenda AC9 HTTP  + 5 − 5 − 2 − 2 − 10
6 CVE-2018-19987 D-Link DIR-822 HNAP  + 3 − 1 − 2 − 1 − 2

7 CVE-2018-19989 D-Link DIR-822 HNAP  + 3 − 1 − 2 − 1 − 1

8 CVE-2019-10891 D-Link DIR-806 HNAP − 4 − 1 − 1 − 1 − 1

9 CVE-2019-17510 D-Link DIR-846 HNAP  + 6  + 3 − 4 − 3  + 4

10 CVE-2019-17621 D-Link DIR-859 UPNP  + 3 − 2 − 2 − 2 − 1

11 CVE-2019-20215 D-Link DIR-859 UPNP − 2 − 2 − 1 − 1 − 1

12 CVE-2019-20760 NETGEAR R9000 HTTP  + 4 − 4 − 2 − 3 − 3

13 CVE-2019-6258 D-Link DIR822 SOAP − 2 − 2 − 2 − 2 − 2
14 CVE-2019-6989 TP-Link WR940N HTTP  + 4 − 2 − 1 − 1 − 1

15 CVE-2019-7297 D-Link DIR-823G SOAP  + 6 − 39 − 23 − 29 − 1

16 CVE-2020-10215 D-Link DIR-825 HTTP  + 37 − 209 − 3 − 79 − 3

17 CVE-2020-10216 D-Link DIR-825 HTTP  + 2 − 1 − 1 − 5 − 3

18 CVE-2020-13392 Tenda AC6 HTTP  + 8 − 2 − 1 − 1 − 9
19 CVE-2020-13394 Tenda AC18 HTTP  + 2  + 2 − 1 − 1  + 2
20 CVE-2020-13782 D-Link DIR-865L HTTP  + 3 − 2 − 1 − 1 − 2

21 CVE-2020-15893 D-Link DIR-816L UPNP − 2 − 2 − 2 − 1 − 2
22 CVE-2020-25367 D-Link DIR-823G SOAP  + 3  + 3 − 1  + 1  + 1

23 CVE-2020-27600 D-Link DIR-846 HNAP  + 3 − 3 − 4 − 1 − 1

24 CVE-2020-8423 TP-Link WR841N HTTP  + 5 − 29 − 12 − 12 − 17

25 CVE-2021-43474 D-Link DIR-823G SOAP  + 3 − 2 − 2 − 2 − 2

26 CVE-2021-46314 D-Link DIR-846 HNAP  + 7 − 7 − 3 − 3 − 3

27 CVE-2022-24355 TP-Link WR940N HTTP  + 2  + 2 − 5 − 1  + 2

28 CVE-2022-25079 TOTOLINK A810R HTTP  + 5 − 4 − 2 − 2 − 3

29 CVE-2022-25439 Tenda AC9 HTTP  + 3 − 3 − 2 − 2 − 2

30 CVE-2022-29638 TOTOLINK A3100R HTTP  + 3  + 3 − 2 − 2 − 2

31 CVE-2022-29643 TOTOLINK A3100R HTTP  + 5  + 5 − 2 − 2 − 2

32 CVE-2022-35619 D-Link DIR-818L SOAP  + 2 − 3 − 1 − 1 − 2

33 CVE-2022-35620 D-Link DIR-818L UPNP  + 2 − 1 − 1 − 1 − 1

34 Disclosed but Unassigned-1 NETGEAR WNDR3700 HTTP  + 4 − 1 − 4  + 1 − 5

35 Disclosed but Unassigned-2 NETGEAR WNDR3700 HTTP  + 4 − 2  + 1  + 12 − 9
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CVE-2019-6989, CVE-2020-10216, CVE-2020-13392, 
Unassigned-1, and Unassigned-2. Although MSLFuzzer 
cannot handle some undefined message structures, 
such as CVE-2019-20215 and CVE-2020-15893, it can 
handle most cases correctly, which mitigates the prob-
lems encountered by SNIPUZZ. MSLFuzzer can also 
discover CVE-2022-25079 by performing random value 
offset inference. The response message corresponding 
to this vulnerability carries random value information. 
MSLFuzzer successfully locates the position of the ran-
dom value, which makes the message structure more 
accurately described.

Another important reason we found that MSLFuzzer 
can find more vulnerabilities than the benchmarked fuzz 
tools is because MSLFuzzer performs content analysis on 
the mutated MSL. CVE-2019-20760 and CVE-2020-8423 
can be found because MSLFuzzer performs the encoding 
analysis. The fields that trigger these two vulnerabilities 
must be encoded to reach the flawed code location. CVE-
2018-19987, CVE-2018-19989, CVE-2019-7297, CVE-
2020-13392, CVE-2020-13782, CVE-2020-27600, and 
CVE-2021-46314 were discovered because MSLFuzzer 
performed invisible segment analysis. There are many 
parameters in the raw seed message corresponding to 
these vulnerabilities, and the value of the field that trig-
gers the vulnerability is empty. MSLFuzzer can locate the 
location of these invisible segments, so in the process of 
mutation, these invisible segments can be successfully 
selected for mutation. CVE-2019-7297 and CVE-2020-
10215 produced more responses than other vulnerabili-
ties. This is because the response message carries the 
field value in the mutated message. During the mutation 
process of SNIPUZZ, the probability of each snippet 
being selected for mutation is the same, so the test case 
generated by SNIPUZZ destroys the message structure 
required for device sanitization. MSLFuzzer conducted a 
stability analysis, and the possibility of each message seg-
ment being selected is different. The constructed mutated 
message structure is more stable, and the mutated mes-
sage is easier to reach the defect code position. Therefore, 
these two vulnerabilities were successfully discovered by 
MSLFuzzer.

In addition, we observed that SNIPUZZ triggered sig-
nificantly higher response categories on CVE-2019-7297, 
CVE-2020-10215, and CVE-2020-8423. We analyzed the 
complete fuzzing process and response categories for 
these vulnerabilities and found that this is mainly due 
to two reasons. First, these devices will feed back part of 
the field information in the test case to the user as part 
of the response. Second, we adopt the idea of Fail-fast 
in the experiment. The fuzzing process is stopped after 
the vulnerability is triggered, so the response category 
stops growing after the vulnerability is triggered. Among 

these vulnerabilities, since MSLFuzzer successfully trig-
gered the vulnerability, but SNIPUZZ did not, although 
SNIPUZZ triggered more types of responses, MSLFuzzer 
performed better.

Boofuzz-Byte found four vulnerabilities, and Boofuzz-
Default found only one. Boofuzz directly replaces the 
specified position in the message with a pre-set string 
or byte and does not split and analyze the content of 
the message, so it finds far fewer than MSLFuzzer. 
MSLFuzzer-NoAnalysis is a fuzzing tool that does not 
use the message segment content analysis method of 
MSLFuzzer. It discovered 6 vulnerabilities, outperform-
ing Boofuzz but slightly inferior to SNIPUZZ. The reason 
is that MSLFuzzer-NoAnalysis does not analyze the mes-
sage content in various ways, but directly mutates it after 
constructing the initial MSL. Therefore, most of the test 
cases generated by MSLFuzzer-NoAnalysis usually fail 
to pass the sanitization phase. This method may be more 
effective in finding vulnerabilities on devices that require 
highly structured input.

The experimental results show that MSLFuzzer has the 
most vital ability to find vulnerabilities among all bench-
mark tools. Its ability to trigger different numbers of 
responses is close to the state-of-the-art black-box feed-
back fuzzer SNIPUZZ. This shows that MSLFuzzer can 
effectively discover potential vulnerabilities in SOHO 
routers.

Response category trigger
In this section, we evaluate the ability of MSLFuzzer to 
trigger response categories. Response categories are used 
as additional metrics for evaluating fuzzers when multi-
ple fuzzers can or cannot find vulnerabilities. We used two 
metrics to measure the ability of each fuzzer to trigger more 
response categories. The first metric is the cumulative num-
ber of valid response categories triggered by each fuzzer 
across all experiments. This metric measures the combined 
performance of each fuzzer across all experiments. It should 
be noted that some vulnerabilities may carry part of the 
test case content in their responses, resulting in an abnor-
mal number of responses. We removed these vulnerabili-
ties when counting this metric to avoid interference with 
the experimental results. The second metric is the number 
of experimental groups in which each fuzzer triggered the 
most responses among 35 groups of vulnerability experi-
ments. The second metric measures the average perfor-
mance of each fuzzer in each set of experiments.

Figure  3 displays the experimental results of the first 
metric as a histogram. MSLFuzzer found the most sig-
nificant number of response categories among all fuzz-
ers and performed the best. The second metric displays 
the experimental results as a line graph. Among the 
35 groups of vulnerability experiments, MSLFuzzer 
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achieved the best performance in 22 groups of experi-
ments, outperforming all other fuzzers. This shows that 
MSLFuzzer can effectively trigger more response catego-
ries and perform more stably.

Invisible segment identification
In this section, we evaluate the ability of MSLFuzzer to 
discover invisible segments. Firstly, we removed some 
valid fields from the seed messages of each vulnerability. 
Then, the messages with invisible segments were used as 
new seeds and input to MSLFuzzer. Finally, we calculated 
the proportion of successfully identified invisible seg-
ments among all seeds carrying invisible segments when 
the parameter n in the n-gram of Algorithm  2 ranged 
from 3 to 10.

As shown in Fig.  4, when the parameter n equals 4, 
Algorithm 2 identifies the maximum number of invisible 
segments. As n increases, the proportion of identified 
invisible segments gradually decreases. When n equals 7 
and 10, the proportion is at its lowest, 62.2%. Therefore, 
MSLFuzzer uses a value of n equal to 4. At this value, 
MSLFuzzer identifies 94.6% of invisible segments. This 
demonstrates that MSLFuzzer can effectively infer poten-
tial invisible segments in message packets.

Unknown vulnerability identification
MSLFuzzer has demonstrated superior performance in 
previous experiments, but we still want to verify further 
its ability to discover unknown vulnerabilities.

We first collected firmware that can be emulated in 
building the known vulnerability dataset. Because a 
fuzzer requires primitive seeds, we use the control inter-
face provided by a successfully emulated firmware and 
artificially access these interfaces to generate as many 
raw messages as possible. At the same time, we captured 
the network communication traffic in the process and 
screened the raw messages containing the data submit-
ted by the user as seeds. MSLFuzzer uses these seeds as 
input.

By evaluating these emulated devices from five ven-
dors, MSLFuzzer found 15 crashes. We manually 
verified crashes one by one to determine if they were 
previously unknown vulnerabilities. In this process, we 
first locate the specific message that triggers the excep-
tion. We replayed the message that triggered the excep-
tion and observed the context information given by the 
emulator when the emulated device reported an error. 
Secondly, we searched the NVD and CNVD databases 
using device manufacturers, models, and interfaces as 
keywords. For all the known vulnerabilities retrieved, 

Fig. 3 Results for each fuzzer triggering response categories. Boofuzz-D is an abbreviation for Boofuzz-Default, Boofuzz-B is an abbreviation 
for Boofuzz-Byte, and MSLFuzzer-N is an abbreviation for MSLFuzzer-NoAnalysis
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we analyzed their vulnerability descriptions, inter-
face names, parameter information, PoC, and other 
information individually. We compared them with the 
triggered crash to complete the judgment. In the end, 
MSLFuzzer found 10 zero-day vulnerabilities. Four 
were confirmed by the CVE, and one was confirmed by 
the CNVD, as shown in Table 5. Types of these vulner-
abilities include stack overflow and command injection. 
We have reported all these vulnerabilities to CNCERT/
CC (National computer network emergency response 
technical team 2021) in pursuit of helping vendors fix 
them. We also tried using SNIPUZZ to find these vul-
nerabilities and extended the fuzzing time to 48  h. 

Unfortunately, SNIPUZZ was not able to find these 
vulnerabilities.

While validating these crashes as unknown vulner-
abilities, we discovered some interesting things. Before 
we applied for the CVE number, there were more than 
50 historical vulnerabilities in the Tenda ac9 firmware 
included in the NVD. Such a large number of vulner-
abilities in one firmware shows that researchers have 
thoroughly analyzed the security of this firmware, and 
it is difficult to find new vulnerabilities in it. Neverthe-
less, even in this case, MSLFuzzer could still find some 
missed vulnerabilities, which shows that MSLFuzzer can 
comprehensively discover vulnerabilities in SOHO rout-
ers. In addition, NVD does not contain any vulnerabili-
ties in the NETGEAR WNAP 320 firmware. MSLFuzzer 
successfully found the first vulnerability of this device. 
The experimental results show that MSLFuzzer can be 
applied to SOHO routers from different manufacturers 
and can effectively discover unknown vulnerabilities.

Discussion and future work
The evaluation results show that our framework can 
effectively discover memory corruption and command 
injection vulnerabilities in SOHO routers, but there 
are still some directions for future improvement. In 
this section, we discuss the limitations that exist in the 

Fig. 4 Invisible segment identification variation curve diagram

Table 4 Comparison of state-of-the-art fuzzers

Fuzzer Firmware 
dependent

Analysis 
object

Analysis 
method

Field 
completion

MSLFuzzer No Message Response 
Feed-
back + MSL 
Inference

Yes

SNIPUZZ No Message Response 
Feedback

No

Boofuzz No Message Manual No

UCRF Yes Firmware Static Analysis No
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current design and explore how these limitations can be 
addressed in the future.

Initial seed acquisition
The initial input to MSLFuzzer is a raw message. The 
raw message is used as an initial seed for mutation, and 
its quality significantly impacts the final effect of fuzz-
ing. The initial seed construction method is to manually 
complete the communication process with SOHO rout-
ers and monitor network communication to capture all 
communication packets. Corresponding filtering rules 
are set to extract high-quality raw messages in packets. In 
the above process, an automatic generation of valid raw 
messages is challenging. A promising solution is to auto-
matically analyze the user input interface of the device 
console program and generate corresponding request 
traffic. For example, for a SOHO router that supports 
control through a web page, a compelling seed message 
can be generated by analyzing the dependencies between 
parameters and input rules from the front-end page. 
Automated initial seed generation will be our next step.

More semantic categories
In the message segment content analysis stage, 
MSLFuzzer adopts a rule-based heuristic method to 
analyze four semantic categories. These four semantic 
categories have covered some common semantic situ-
ations in device messages. However, from the perspec-
tive of completeness, more categories and fine-grained 
categories can increase the understanding of the mes-
sage content, which in turn can impose more substantial 
constraints on mutated messages and improve fuzzing 
efficiency. This is a process of continuous improvement. 
Given the recent excellent performance of deep learning 
techniques in the field of natural language processing, in 
future work, we consider introducing deep learning tech-
niques to enhance the understanding of message content 
further.

Inter-message dependencies
In the current implementation of MSLFuzzer, we only 
focus on messages that can accomplish the correspond-
ing function with a single request. However, some func-
tions still require multiple request messages to work 
together. A possible solution is to perform correlation 
analysis on multiple messages in a message sequence, 
tracking and modeling the entire conversation flow dur-
ing the initial analysis of the messages. At the same time, 
the corresponding protocol state machine is constructed, 
and the customized fuzzing is carried out based on a pro-
tocol state machine. This approach may have advantages 
in finding vulnerabilities triggered by multiple message 
combinations and vulnerabilities due to violations in the 
implementation of the protocol specification.

Details of the response message
The details of the response message affect the quality of 
the initial construction of the message segment list. The 
more details the response message contains, the more 
accurately the segment list segments the raw message. 
MSLFuzzer further disassembles the nested message 
segment in analyzing the content of the message seg-
ment, which can make up for the lack of detail in some 
response messages. When applied to a binary protocol, 
since the standard string nesting structure may not exist 
in the binary protocol, the division of the binary proto-
col structure largely depends on the detail level of the 
response provided by the target device. However, the 
response details provided by the SOHO routers are too 
vague (e.g., using a unified message to report all errors), 
and the nested format cannot be appropriately recog-
nized. In that case, the number of message segments 
may be low, which makes fuzzing inefficient. Fortunately, 
in practice, this problem can be mitigated in two ways. 
The first way, for some SOHO routers that support debug 
mode, we can get advanced error descriptions in debug 

Table 5 Summary of Discovered Unknown Vulnerabilities

# Vulnerability Device Vulnerability type Severity

1 CVE-2022-36568 Tenda ac9 Stack overflow High

2 CVE-2022-36569 Tenda ac9 Stack overflow High

3 CVE-2022-36570 Tenda ac9 Stack OVERFLOW High

4 CVE-2022-36571 Tenda ac9 Stack Overflow High

5 CVE-2022-46641 D-Link DIR-846 Command injection High

6 CVE-2022-46642 D-Link DIR-846 Command injection High

7 CNVD-2022-62390 D-Link DIR-823G Command injection Medium

8 Reported but Not Disclosed TOTOLINK A3100R Stack overflow Medium

9 Reported but Not Disclosed NETGEAR WNAP320 Command injection High

10 Reported but Not Disclosed NETGEAR WNAP320 Command injection High
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mode, which will significantly improve the process of 
MSLFuzzer building the message segment list. In a sec-
ond way, researchers can code plug-ins that parse the 
protocol and build a message segment list when prior 
knowledge of the target message format or binary proto-
col specification is obtained. Since the message segment 
list can describe the message content in a normalized 
manner, the plug-in code for message parsing can be 
easily integrated with MSLFuzzer, and the subsequent 
analysis process of MSLFuzzer can still be used com-
monly. Both of these can alleviate the complete failure of 
fuzzing when encountering insufficiently detailed device 
responses.

Validation of effective fields
Judging how many effective fields in the message segment 
completed by MSLFuzzer are consistent with the fields 
in the firmware processing logic can guide the further 
improvement of MSLFuzzer. However, due to the cus-
tomization of the control protocol by different firmware 
models, the valid fields cannot be directly confirmed by 
observation. For example, some byte segments may be 
the segmentation identifier of the protocol and have no 
specific meaning. Some byte segments are data submit-
ted by the user, but the components that process the 
interface in the firmware do not process these data. Some 
byte segments The segment is a format customized by 
the firmware, and it is impossible to directly judge which 
bytes in it are specific valid fields through observation. 
Manual reverse analysis assistance is possible, but it con-
sumes many human resources and time. A possible solu-
tion is to comb all the parameters received and processed 
by each interface of the firmware based on reverse analy-
sis of the firmware, combined with data flow analysis, and 
associate them with the fuzzing process. This will be one 
of the directions to improve MSLFuzzer.

Encrypted traffic
While preparing the raw message as a fuzzing seed, we 
noticed that some devices use encryption to protect 
communication. Since the encryption algorithm destroys 
the original format of the message, modifications made to 
the raw message are often challenging to decrypt to legit-
imate messages. Moreover, since the feedback response 
message is also encrypted, it is impossible to directly 
judge the category based on the content of the message. 
Relieving the constraints of encryption from outside the 
target device based solely on network traffic is challeng-
ing, and solutions are often difficult to generalize. Never-
theless, when the encryption and decryption algorithms 
are known, it is feasible to apply MSLFuzzer to this sce-
nario. It can be solved by integrating the encryption and 
decryption algorithm with MSLFuzzer. The mutated 

message is encrypted each time before it is sent to the 
target device, and the response message is decrypted 
after it is received. The rest of the message segment con-
struction and fuzzing processes can be directly reused 
with MSLFuzzer. In this way, the fuzzing process of the 
target device can be completed in this scenario.

Conclusion
This paper proposes a black-box fuzzing framework, 
MSLFuzzer, to discover vulnerabilities in SOHO routers. 
Unlike other black-box network fuzzers, MSLFuzzer uses 
device feedback response messages to conduct prelimi-
nary structural division of raw messages and performs 
semantic analysis, invisible segment analysis, and stability 
analysis on each message segment. This mutation strat-
egy based on the message segment list has better con-
straints and orientation, narrows the search space, and 
can ensure that well-structured test cases are generated 
to test more functions of the tested devices other than 
the sanitizer. We construct a dataset of 35 real-world vul-
nerabilities and 20 consumer-grade SOHO routers that 
can be emulated and evaluate MSLFuzzer on this dataset. 
MSLFuzzer found more known vulnerabilities than other 
state-of-the-art benchmark tools and successfully discov-
ered 10 zero-day vulnerabilities with four CVEs and one 
CNVD.
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