
Cheng et al. Cybersecurity (2023) 6:51
https://doi.org/10.1186/s42400-023-00186-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

MSLFuzzer: black‑box fuzzing of SOHO
router devices via message segment list
inference
Yixuan Cheng1,2, Wenqing Fan1,2, Wei Huang1,2, Jingyu Yang1,2, Gaoqing Yu1,2 and Wen Liu1,2* 

Abstract 

The popularity of small office and home office routers has brought convenience, but it also caused many security
issues due to vulnerabilities. Black-box fuzzing through network protocols to discover vulnerabilities becomes a viable
option. The main drawbacks of state-of-the-art black-box fuzzers can be summarized as follows. First, the feedback
process neglects to discover the missing fields in the raw message. Secondly, the guidance of the raw message
content in the mutation process is aimless. Finally, the randomized validity of the test case structure can cause most
fuzzing tests to end up with an invalid response of the tested device. To address these challenges, we propose a novel
black-box fuzzing framework called MSLFuzzer. MSLFuzzer infers the raw message structure according to the response
from a tested device and generates a message segment list. Furthermore, MSLFuzzer performs semantic, sequence,
and stability analyses on each message segment to enhance the complementation of missing fields in the raw mes-
sage and guide the mutation process. We construct a dataset of 35 real-world vulnerabilities and evaluate MSLFuzzer.
The evaluation results show that MSLFuzzer can find more vulnerabilities and elicit more types of responses from fuzz-
ing targets. Additionally, MSLFuzzer successfully discovered 10 previously unknown vulnerabilities.

Keywords  Vulnerability discovery, Black-box fuzzing, SOHO routers, Feedback mechanism

Introduction
Internet of Things (IoT) technologies have snowballed
in recent years, many of which have seen widespread
adoption. According to a recent report, total semicon-
ductor consumption for IoT endpoints is $130.2 billion
in 2021 and will grow to $243.2 billion by 2026 (Yamaji
2022). This booming IoT ecosystem inevitably attracts
cybercriminals. Among the 1.2 million IoT smart devices
analyzed by Palo Alto Networks, 57% are vulnerable to
medium or high-severity attacks (Unit 42 2020). Small

office and home office (SOHO) routers are typical repre-
sentatives of IoT smart devices. They are widely used to
provide network services for various IoT smart devices,
so the security of SOHO routers is crucial. This is espe-
cially true in the current climate where SOHO routers
are being used more widely due to the increase in home
office scenarios during the COVID-19 pandemic. Trend
Micro reports that introducing vulnerable devices into
the home will expose employees to malware and attacks
that could sneak into the corporate network (Micro
2020).

There is thus an urgent need for techniques that can
effectively and efficiently discover security vulnerabilities
in SOHO routers. Security vulnerabilities in SOHO rout-
ers are usually implementation flaws in device firmware
(Cheng et al. 2022), which is software that provides hard-
ware support for upper-level users. Since SOHO rout-
ers are essentially computing devices with networking

*Correspondence:
Wen Liu
lw8206@cuc.edu.cn
1 State Key Laboratory of Media Convergence and Communication,
Communication University of China, Beijing, China
2 School of Computer and Cyber Sciences, Communication University
of China, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00186-5&domain=pdf

Page 2 of 21Cheng et al. Cybersecurity (2023) 6:51

capabilities, they are not immune to attacks from the
Internet as long as they can be accessed remotely through
specific network protocols (Shu and Yan 2022). This has
motivated researchers to explore how to perform fuzzing
tests for device firmware over network protocols (Chen
et al. 2018; Feng et al. 2021; Yu et al. 2022; Zhang et al.
2019). Unfortunately, device vendors usually do not pro-
vide source code, documentation, and firmware of these
devices in public (Cheng et al. 2022; Redini et al. 2021),
and the hardware debug interface is usually disabled
(Chen et al. 2018). Therefore, black-box fuzzing is usually
the only practical way to discover device vulnerabilities
because of its independence of source code, firmware,
and debugging capabilities (Shu and Yan 2022).

Black-box fuzzing is a software testing technique that
does not have the source code of the target program nor
the internal state of each execution (Zhu et al. 2022).
Black-box fuzzers randomly mutate program inputs to
generate a large corpus and feed each input to the pro-
gram. Taking the built-in remote connection capability of
SOHO routers into account, black-box fuzzers are usu-
ally designed to send mutated communication messages
to the target device over the network to detect if it shows
any symptoms of malfunction. Potential flaws or vul-
nerabilities may be found if a crash is triggered during
execution or if the device sends back an exception mes-
sage. In practice, SOHO routers usually verify the format
and parameters of the input message, and most vulner-
abilities usually exist in the function code after the sani-
tization code (Feng et al. 2021). Therefore, the test cases
generated by black-box fuzzers based on simple random
mutation usually fail to pass the sanitization. These test
cases are even less able to reach deeper defective code,
which makes the efficiency of vulnerability discovery
extremely low.

State-of-the-art smart device black-box fuzzing meth-
ods such as SNIPUZZ (Feng et al. 2021) use the feed-
back response messages of smart devices to optimize the
mutation process of seed messages to make the format
of test cases as legal as possible. SNIPUZZ builds sev-
eral probe messages by removing byte by byte from the
seed message. The response messages from these probe
messages are associated with the deleted bytes. Adjacent
bytes with the same response message class are combined
into a snippet mutation unit. These snippets are used in
the subsequent mutation process. This method utilizes
the vital feedback response information to constrain the
mutation process and reduces the size of the input space
to be searched.

Unfortunately, SNIPUZZ still has some unresolved
challenges. First, the mutation process of SNIPUZZ is
unguided. After SNIPUZ completed the construction
of the snippet, it chose to perform havoc mutation, that

is, randomly select some random snippets in the mes-
sage and execute a set of mutation schemes for each
selected snippet. This random selection of snippets is
straightforward but blind, which causes SNIPUZZ to be
unguided. The content of the raw message needs to be
better exploited to guide the mutation process. Second,
SNIPUZZ cannot discover potentially missing fields in
the raw message. Some parameter fields in the raw mes-
sage are empty by default. Since the default fields are
logical fields and do not occupy actual bytes, SNIPUZZ
cannot construct snippets corresponding to these default
fields. This caused SNIPUZZ to fail to find such vulner-
abilities when the vulnerability parameter was placed
in an empty field. Finally, SNIPUZZ cannot guarantee
the validity of its test case structure. Each snippet con-
structed by SNIPUZZ is equally weighted in the mutation
process. This makes some critical snippets used to ensure
the validity of the test case structure may be changed
during the mutation process. When these vital snippets
are changed, the entire test case may fail to pass the ini-
tial validity check of the IoT device and be discarded. This
shows that the test case generation process of SNIPUZZ
lacks constraints. For these reasons, SNIPUZZ does not
consistently produce constrained, well-structured fuzz-
ing inputs that reach deeper code locations and thus
uncover more vulnerabilities.

Our approach
This paper proposes a novel black-box fuzzing frame-
work, MSLFuzzer, to detect potential flaws and vulner-
abilities in SOHO routers. We first define a message
segment list, a data structure that normalizes the descrip-
tion of the message content. This data structure can bet-
ter describe the attributes and sequence relationships of
message segments than snippets do. To overcome the
limitation of SNIPUZZ, MSLFuzzer improves the cor-
relation process of response messages and completes
the construction of initial message segments. Further,
MSLFuzzer analyzes the message content of the initial
message segment list to supplement the attribute infor-
mation of the corresponding segment. Then, MSLFuzzer
mines the sequence relationship between segments based
on the n-gram algorithm to find those missing segments
that are not reflected in the message, which we call invis-
ible segments. Next, MSLFuzzer conducts hierarchical
stability analysis on each message segment and deter-
mines the mutation priority between each segment. This
makes the mutated message as far as possible through the
early sanitization of the firmware to the deep-level code
defect location. Compared with SNIPUZZ, MSLFuzzer
mines deeper message content, making the fuzzing pro-
cess more constrained and oriented and reducing the
input search space size.

Page 3 of 21Cheng et al. Cybersecurity (2023) 6:51 	

Contributions
We summarize the contributions of the paper as follows:

•	 New technique We develop a message content anal-
ysis method based on a list of message segments
to improve the efficiency of black-box fuzzing for
SOHO routers.

•	 New framework We propose a response feedback-
based black-box fuzzing framework MSLFuzzer to
find implementation flaws in SOHO routers. Based
on the device feedback message and fine-grained
message content analysis method, MSLFuzzer
enriches the attribute and sequence information of
the message segment list, making the fuzzing process
more constrained and oriented.

•	 Implementation and findings We implemented a full-
featured prototype of MSLFuzzer and constructed a
dataset of 20 devices with 35 real-world vulnerabili-
ties to evaluate the vulnerability discovery capabili-
ties of MSLFuzzer. In total, 10 zero-day vulnerabili-
ties were discovered by MSLFuzzer.

Roadmap
In the remainder of this article, Sect. "Background and
related work" reviews the background and related work
of IoT smart device communication architecture and
SOHO routers fuzzing. Section "Methodology" presents
a detailed design of the MSLFuzzer. The implementa-
tion details and evaluation results are summarized in
Sect. "Implementation and evaluation". Section "Dis-
cussion and future work" discusses some limitations of
the current design and points out future work. Finally,
Sect. "Conclusion" concludes the paper.

Background and related work
SOHO routers are typical representatives of IoT smart
devices. This section introduces common commu-
nication architectures for IoT smart devices, fuzz-
ing for SOHO routers, and fuzzing response feedback
mechanisms.

Common IoT smart device communication architecture
In a typical IoT ecosystem (such as a smart home envi-
ronment), users deploy multiple smart devices for spe-
cific purposes, equipped with many sensors for external
information collection and wireless connectivity mod-
ules for data transmission (Chen et al. 2018). These smart
devices usually transmit data or receive control com-
mands remotely through network protocols. To react
to external raw input messages, most IoT smart devices
implement a similar high-level communication archi-
tecture inside their firmware, including 1) Sanitizer, 2)

Function Switch, 3) Function Definitions, and 4) Replier
(Feng et al. 2021). The Sanitizer checks and parses the
input when the IoT smart device receives external input.
Suppose the input violates the protocol specification or
syntax requirements. In that case, Sanitizer directly sends
a response message describing the input error to notify
the Replier and terminates the processing of the input. If
the input passes the check, the Function Switch extracts
the parameter name and value pairs from the input and
transfers control to the corresponding functions. The
process is terminated if no input parameter is found and
a response message is returned. Different functions spe-
cifically implement the processing of parameter values
passed by the user.

In the method of fuzzing the target smart device
through a network protocol, the mutation operation on
the message mainly focuses on the message structure
and user input parameters (Zhu et al. 2022). Mutations
to the message structure may trigger bugs in the target
device’s protocol stack or structure parsing components.
It is usually located at the Sanitizer. Mutations to user
input parameters may trigger the target device to receive
and process user input parameters, usually in different
functions. Due to the large number of functions and the
frequent handling of external user data, there is a higher
possibility of bugs and vulnerabilities hidden in func-
tions. The mutated message needs to have a legal mes-
sage structure as much as possible to pass the Sanitizer
and Function Switch smoothly and reach the functions.
Simple random mutations often cause the message struc-
ture to be corrupted and discarded before reaching the
location of the defective code.

SOHO routers fuzzing
According to the amount of information observed dur-
ing execution, fuzzing methods can be divided into
black-box, grey-box, and white-box fuzzing (Eceiza et al.
2021). Black-box fuzzing does not know the internal
state of each execution (Chen et al. 2018; Han et al. 2019;
Lee et al. 2020). The object under test is a black box to
fuzzers, which usually optimize the fuzzing process by
exploiting input formats or different output states (Dinh
et al. 2021; Han et al. 2019). White-box fuzzing usually
needs to have all the source code of the target object
and can obtain all the execution information of the tar-
get object during the fuzzing process (Huang et al. 2020).
Grey-box fuzzing acquires knowledge of the execution
state between black-box and white-box fuzzers. Grey-box
fuzzers do not need to acquire the source code of the tar-
get object and usually use edge coverage as the internal
execution state (Aschermann et al. 2019; Gan et al. 2018).

For SOHO routers, since device vendors usually do not
provide the source code and documentation of device

Page 4 of 21Cheng et al. Cybersecurity (2023) 6:51

firmware in public, white-box fuzzers that rely on source
code are not suitable for SOHO routers fuzzing (Cheng
et al. 2022). Grey-box fuzzers need to obtain target runt-
ime context information, and when applied to SOHO
routers, they usually need to be combined with an emula-
tor (Eceiza et al. 2021). Emulators can execute programs
originally running on IoT firmware without correspond-
ing hardware. Typical emulators include Avatar (Zaddach
et al. 2014), Avatar2 (Muench et al. 2018), Firmadyne
(Chen et al. 2016), and FirmAE (Kim et al. 2020). An
emulator can provide a test object for both a grey-box
fuzzing method and a black-box fuzzing method, which
can reduce the dependence of the fuzzing method on
actual equipment and the economic cost. Black box
fuzzing only requires external access to the emulated
device as if it was an actual device. The grey-box fuzzing
requires the further acquisition of contextual information
during the emulation process and firmware execution,
especially the edge coverage. The higher the edge cover-
age, the more branch conditions are triggered. If a test
case triggers a new branch, it will be treated as an excit-
ing seed (Zhu et al. 2022).

Typical grey-box fuzzers for SOHO routers include
Firm-AFL (Zheng et al. 2019), FirmHunter (Yin et al.
2021), CGFuzzer (Yu et al. 2022), and IoTHunter (Khan-
dait et al. 2021). When firmware can be emulated suc-
cessfully, and the edge coverage information can be
obtained, the grey-box fuzzer can effectively find flaws
and vulnerabilities in the firmware. Unfortunately, not all
device firmware is publicly available (Redini et al. 2021).
Meanwhile, firmware unpacking and analyzing firmware
is a challenging task since firmware may have multiple
formats and can run on different architectures (Wang
et al. 2019). Furthermore, emulators have a relatively
low success rate for emulating firmware and the range
of applicable vendor device firmware (Kim et al. 2020).
Grey-box fuzzing methods that rely on emulation and
debugging capabilities do not apply to devices that can-
not be successfully emulated or debugged.

Benefiting from the ability of SOHO routers to com-
municate with the network, security researchers usu-
ally perform black-box fuzzing on target SOHO routers
based on network communication. Some black-box fuzz-
ing methods try to start from the mobile app side that
communicates with SOHO routers (Chen et al. 2018;
Redini et al. 2021). IoTFuzzer (Chen et al. 2018) analyzes
the UI elements of the app and then reversely identifies
the relevant program elements that send messages to the
device from the control events through data flow analy-
sis. Finally, the mutation operation of the corresponding
field is completed. DIANE (Redini et al. 2021) views the
execution of an app as a series of functions that trans-
form user-introduced data into network data. Based on

IoTFuzzer, DIANE converts the input position of muta-
tion data from the first function to the last function so
that the generated mutation data is not subject to appli-
cation-side validation. These methods can effectively find
vulnerabilities in the code that communicates with the
application on the target device. However, not all devices
have corresponding mobile apps. At the same time, this
approach also fails to find vulnerabilities in components
of the target device that do not communicate with the
mobile app.

Other black-box fuzzing methods directly analyze the
captured raw communication messages of SOHO rout-
ers. Boofuzz (Pereyda 2022) is an excellent successor
to the classic Sulley (Amini et al. 2019) fuzzing frame-
work. Boofuzz uses human knowledge guidance to solve
input problems. Before fuzzing, Boofuzz requires users
to define a set of highly customized messages and write
corresponding independent scripts for each captured
raw communication message. Unlike Boofuzz, SRFuzzer
(Zhang et al. 2019) first captures many web requests from
physical devices and then models user input semantics to
generate test cases. SRFuzzer builds a Key-Value model
for each message content in the request to distinguish the
data type of the value and assign different mutation rules.
Based on SRFuzzer, ESRFuzzer (Zhang et al. 2021) adds
a new D-CONF mode that can detect some issues that
SRFuzzer misses, including memory corruption, com-
mand injection, and stored cross-site scripting. SRFuzzer
and ESRFuzzer mainly consider the Key-Value model,
but in practice, there are various message formats. In
addition to key-value pairs, there are JSON, XML, soap,
and custom message formats (Feng et al. 2021). To be
applied to various devices, the new solution should be
able to infer the format from the raw message.

Response feedback mechanism
Since most existing SOHO routers network black-box
fuzzers (Chen et al. 2018; Pereyda 2022; Redini et al.
2021) do not have an excellent mechanism to constrain
the format of test cases, some researchers try to use the
response messages of SOHO routers to guide the muta-
tion process.

SNIPUZZ (Feng et al. 2021) is the first method that pro-
posed using the response messages of a device as feed-
back to guide the fuzzing strategy. Specifically, SNIPUZZ
first collects the response message corresponding to the
deleted byte by deleting the raw message byte and send-
ing the deleted message to the target device. SNIPUZZ
judges whether different test cases cover different code
execution paths in the device firmware through the con-
tent of the response message. Based on this mechanism,
SNIPUZZ uses a novel heuristic algorithm to detect the
role of each byte in the message. Adjacent bytes with

Page 5 of 21Cheng et al. Cybersecurity (2023) 6:51 	

similar response messages have the same role in the ini-
tial message fragment and can be packed together and
linked into a basic mutation unit. The feedback mecha-
nism of SNIPUZZ is novel, and its packaged fundamental
mutation unit narrows the search range of test cases to a
certain extent.

SNIPUZZ did not further explore the constructed
mutated units. Specifically, first, SNIPUZZ did not per-
form content analysis on the mutated units themselves.
The mutation unit constructed by SNIPUZZ is only a
byte fragment, and its data type and semantic mean-
ing (such as IP, domain name, and MAC address) have
not been analyzed. Content analysis of mutated units
can effectively guide the mutation process. Second,
SNIPUZZ does not recognize the default variable field
in the message. Some fields are usually allowed to default
in the communication message of the target device, and
the fields corresponding to the default fields in the raw
message are usually empty. Therefore, the mutation unit
sequence constructed by SNIPUZZ by deleting the raw
message byte by byte cannot identify and represent the
empty default field. These default fields corresponding
to variable fields are often essential entry points for trig-
gering potential vulnerabilities in firmware. Finally, there
is an equivalence among mutated units constructed by
SNIPUZZ. In other words, SNIPUZZ adopts the Havoc
method in mutation. That is, some random mutation
units in the message are randomly selected, and a ran-
dom mutation scheme is performed on each selected
mutation unit. These mutation units represent the format
and structure of the raw message, and randomly selecting
mutation units to mutate will destroy the structure of the
raw message. Although this can find the vulnerabilities
of those format parsing components in the device firm-
ware to a certain extent, it also prevents mutation mes-
sages from reaching deep functional code, which may

contain more defects and vulnerabilities. Therefore, the
new fuzzing scheme based on the feedback mechanism
should further consider the analysis and exploration of
the content and structure of the mutation unit.

Methodology
To describe the structure and content of the message in a
normalized manner, we first define a data structure called
message segment list, short for MSL, as in (1). MSL con-
sists of n message segments with attributes, where n ∈ N  .
The definition of a message segment, in short for ms, is
shown in (2), each message segment has m attributes,
where m ∈ N .

Typical segment attributes include value, data type,
encoding type, data semantics, segment stability level,
data nesting type, etc. The value of the message segment
corresponds to the contiguous bytes of the raw message.
The concatenation result of all message segment values
in the message segment list is the raw message. Since the
message segment list carries all the bytes of the raw mes-
sage and contains the sequence relationship, any original
message can be represented by MSL, and MSL can be
directly serialized into the raw message. In the fuzzing
process, the serialized mutated message can be directly
obtained by mutating each message segment in MSL.

Based on MSL, we present the detailed design of
MSLFuzzer as illustrated in Fig. 1. MSLFuzzer receives
a raw message as input, obtains the corresponding feed-
back response message by constructing the probe mes-
sage, and stores it in the response pool. These feedback
response messages group the bytes in the raw message

(1)MSL = [ms1,ms2, . . . ,msi, . . . ,msn]

(2)ms = a1, a2, . . . , aj , . . . , am

Fig. 1  Overview of MSLFuzzer

Page 6 of 21Cheng et al. Cybersecurity (2023) 6:51

and build the initial MSL (Sect. Initial message segment
list construction). MSLFuzzer performs semantic analy-
sis, invisible segment analysis, and stability analysis on
each segment in MSL. The result of the analysis is added
to the corresponding segment as an attribute of each
message segment (Sect. Message segment content analy-
sis). Then, the constructed list of message segments with
attributes will be used as a normalized mutation seed
for fuzzing. MSLFuzzer mutates the list of message seg-
ments with attributes, serializes the result of each muta-
tion into a mutated message, and sends it to the target
SOHO router through the messenger (Sect. Message seg-
ment list mutation). Finally, MSLFuzzer will output crash
exceptions and mutated messages that trigger crashes
(Sect. Response monitoring).

Initial message segment list construction
For black-box fuzzing, since the internal execution infor-
mation cannot be obtained from inside the device, the
feedback response messages of the SOHO routers are
regarded as a valuable source of device state informa-
tion at runtime. Different bytes in the message can be
associated with the corresponding response category,
obtained by sending a probe message constructed after
the corresponding bytes are deleted to the target device.
This association relationship can provide support for
the construction of message segments. In this process, a
challenge is to correctly identify the randomness in the
response message, such as timestamps or tokens. These
contents will significantly interfere with the classifica-
tion of response messages. We improved the heuristic
approach of SNIPUZZ to correlate the bytes in the raw
message and the response message class. At the same
time, we propose a difference-based response format ran-
dom value offset inference method to avoid the interfer-
ence of random values on response classification to the
greatest extent. Specifically, the entire initial segment list
construction process is divided into three steps: 1) feed-
back response message collection, 2) random value offset
inference, and 3) message segment list construction.

Feedback response message collection
MSLFuzzer first constructs several probe messages by
deleting the corresponding bytes in the raw message
byte by byte. These probe messages will be sent to the
target device. The response message of each probe mes-
sage will be associated with the deleted bytes in the probe
message.

Random value offset inference
After completing the association of the bytes in the raw
message with the corresponding response message, the
response message needs to be classified to realize the

clustering of adjacent bytes in the raw message. However,
due to the influence of random values in the response,
the categories of response messages with the same
semantics may need to be correctly merged. Therefore, it
is necessary to find where random values may be located
and eliminate their interference when calculating the
response message.

Considering that in most public or private protocols,
although the protocol usually has extension parts, the
relative offset of some random values in the protocol is
usually fixed. Therefore, we make two assumptions: 1)
The offset of the random value in the response is fixed
relative to the starting position of the response header;
2) Two response messages with the same semantic mean-
ing differ only in random values and the same in other
positions. We propose a difference-based response ran-
dom value offset inference method based on these two
assumptions, as shown in Algorithm 1.

The input to the algorithm is the set of bytes in the raw
message and the associated response message R.First, in
the set R of all response messages, the editing similarity
ESij between response messages Ri and Rj is calculated
according to (3) (lines 1–6). When the similarity ESij of
the two response messages is greater than the threshold
p , the two messages are considered to belong to the same
category Pt (lines 7–8). The threshold p is the average
initial self-similarity of each probe message and is calcu-
lated according to (4), where NP is the total number of
responses. The threshold p is used to distinguish whether
different messages belong to the same category. Its value

Page 7 of 21Cheng et al. Cybersecurity (2023) 6:51 	

ranges from 0 to 1. When the similarity between message
A and message B is greater than the average self-similar-
ity threshold p, message A and message B are considered
to belong to the same category. The sample mean is often
used to distinguish whether two classes of targets belong
to the same category. For example, in the field of intru-
sion detection, the sample mean is used as a boundary
to distinguish between normal and abnormal behaviour
(Jones and Sielken 2000). MSLFuzzer computes self-sim-
ilarity ESi for each probe message pmi . The probe mes-
sage pmi corresponding to the i th byte is constructed by
removing the i th byte in the raw message. MSLFuzzer
sends the same probe message pmi twice within a second
interval. The two responses ri , rj are collected from the
target device accordingly. The self-similarity ESi is calcu-
lated according to (3). All categories Pt together form the
response category pool P (line 9).

Second, for a response class Q in the response pool P ,
pairwise combine the response messages Qi and Qj in Q
(lines 10–12). Next, make a difference between Qi and
Qj for each combination and record all inconsistent byte
positions Ok , the value Vk of the position, and the num-
ber of responses Nk that have had differences in the byte
position (line 13). Ok , Vk , Nk are recorded in set Sovn (line
14). The total number of responses NP is statistically
obtained for subsequent calculations (line 15). Then, all
inconsistent byte offset in set Sovn are filtered. For each
set of Oi , Vi , Ni in Sovn , when the proportion of Ni in the
total number of responses NP is greater than threshold q ,
the corresponding inconsistent byte offset Oi is reserved,
and Ok , Vk , Nk are recorded in set O , V  , N respectively
(lines 16–18). Among them, O is the set of all inconsist-
ent byte positions that meet the requirements, V is the
set of values corresponding to all inconsistent byte posi-
tions in set O , and N is the number of responses with dif-
ferences in all inconsistent byte positions in set O . The
threshold q is calculated according to (5). This threshold
q must meet three conditions: 1) The value range is from
0.5 to 1. That is, the proportion should be at least greater
than half of the total number of responses, but at the
same time, this threshold must be less than 1 because the
byte offsets found may not appear in all responses at the
same time and there needs to be slight fault tolerance. 2)
The value of this threshold is related to the total number
of responses NP . The larger NP is, the larger q is. This is

(3)

editing_similarity(Ri,Rj) = 1−
edit_distance(Ri,Rj)

max_len(Ri,Rj)

(4)p =

∑NP
i ESi

NP

to prevent significant differences in threshold settings in
various situations due to changes in NP size. The larger
NP is, the higher the proportion should be. 3) When NP
approaches positive infinity, the limit of this threshold is
1. In formula (5), the range of NP is all positive integers
greater than zero. And q increases positively with NP .
The larger NP is, the larger q is. Satisfying condition 2.
When n equals 1, q is 0.5. When n approaches positive
infinity, the limit of q is 1. Satisfying conditions 1 and 3).
Therefore, this formula meets all conditions for setting
threshold q.

Further, all consecutive inconsistent byte offsets in set O
are preserved, discrete inconsistent byte offsets are removed,
and the sets V and N should also be modified accordingly
(line 19). Finally, the intersection O′ of consecutive incon-
sistent bytes in all response classes is obtained. If these
categories only intersect part of the bytes, the maximum
consecutive inconsistent bytes are taken (line 20). Potential
response random number byte position O′ is output.

MSL initialization
After obtaining the potential response random number
byte position, the response message can be classified.
Different from the calculation method of SNIPUZZ,
MSLFuzzer first corrects the response message according
to the potential byte offset of the random value. Specifi-
cally, for the response messages ri and rj , the byte seg-
ment ro corresponding to the potential random value
offset O is deleted to obtain r ′i , r

′

j , as shown in (6). The
corrected response message is then used to calculate the
similarity. As shown in (7), the corrected self-similarity
score ES

′

i of the probe message pmi is obtained by cal-
culating the similarity of its two corrected response mes-
sages r ′i and r ′j.

Next, the response category needs further determined
to be the basis for merging the bytes in the raw message.
It is important to note that the method for combining
response categories in this step differs from the method
for combining response categories during random value
offset inference. The response categories obtained during
random value offset inference are just a coarse-grained
classification algorithm to aid in finding random value

(5)q =
NP

NP + 1

(6)r′i = ri − ro, r
′

j = rj − ro

(7)ES′i = 1−
edit_distance

(

r′i , r
′

j

)

max_len
(

r′i , r
′

j

)

Page 8 of 21Cheng et al. Cybersecurity (2023) 6:51

offsets. Under the control of a threshold p , this coarse-
grained classification helps determine random value off-
sets but is not suitable for fine-grained classification for
this step. MSLFuzzer performs fine-grained similarity
calculation for each pair of response messages of each
probe message based on (7). When the corrected similar-
ity ES

′

ij of the two response messages ri and rj is greater
than the corrected self-similarity ES

′

i or ES
′

j of each
response message, the two response messages are consid-
ered to belong to the same category. Finally, the response
category corresponding to each response message can be
obtained.

When all response classes are successfully classified, sev-
eral adjacent bytes with the same response class in the raw
message will be merged into the same message segment.
Adjacent bytes will be merged into the byte stream as the ini-
tial value of the new message segment. All constructed mes-
sage segments are assembled in the byte order corresponding
to the raw message, and the initial MSL is completed.

Message segment content analysis
After obtaining the initial MSL, MSLFuzzer analyzes each
initial message segment, including 1) message semantic anal-
ysis, 2) invisible segment analysis, and 3) message stability
analysis.

Message semantic analysis
The raw message usually contains control instructions, con-
figuration parameters, or data payloads, which the user usu-
ally sends to the SOHO router. Although the raw message
may be a printable string or a custom byte stream, the field
data carried in it are printable string information in many
cases. Therefore, semantic analysis of each message segment
can better help the fuzzer understand the characteristics of
the raw message. MSLFuzzer uses a heuristic-based mes-
sage semantic analysis method to perform semantic analysis
on the message segment list. The core idea of the heuristic
message semantic analysis method is to analyze and arbi-
trate the target message segment by category. MSLFuzzer
divides analysis categories into four categories: nested struc-
ture analysis, data type analysis, semantic analysis, and field
encoding analysis. The analysis items supported by these
analysis methods are shown in Table 1.

Nested structure analysis refers to analyzing the poten-
tially nested structure (such as JSON and XML) in the
message segment and further dismantling it according to
its structural characteristics to form a more fine-grained
message segment. The previous MSL construction pro-
cess has disassembled the underlying nested structure in
the raw message. However, in practice, when faced with
some devices whose response messages are not detailed,
there may still be nested structures in the message seg-
ment. For example, some devices use a unified message

to report all errors. Further splitting of these message
segments in the nested format can effectively increase
the fuzzing capability of devices whose response mes-
sages need to be more detailed. Data type analysis refers
to the analysis and identification of the data type of the
value of the target message segment, such as letters, sym-
bols, numbers, non-printable byte streams, or a combi-
nation of the above types. Semantic analysis refers to
analyzing and identifying the semantic meaning of the
value of the target message segment, such as IP address,
MAC address, and domain name. Field encoding analysis
refers to analyzing the encoding format used to identify
the value of the target message segment, such as base64
encoding and URL encoding.

MSLFuzzer performs heuristic recognition for different
semantic categories. We mainly adopted the heuristic meth-
od’s idea of trial and error and the rule of thumb. Specifi-
cally, for nested format analysis and field encoding analysis,
MSLFuzzer leverage standard nested format parsing tools
and encoding parsing tools to try to parse the target message
segment. If the parsing is wrong, continue using the following
parsing tool. Until one of the parsing tools resolves correctly
or all parsing tools fail to parse. If there is a correct parsing
result, this field’s nested type or encoding type is the corre-
sponding parsing tool type. Message segments with nested
types are broken down into finer-grained message segments.
A message segment with an encoding type is supplemented
with an encoding type attribute. For data type analysis and
semantic analysis, MSLFuzzer mainly matches based on the
data type rule table and semantic meaning rule table. Since
the communication packets of SOHO routers usually con-
tain information related to network configuration, the rule

Table 1  Message content analysis items

Analysis category Analysis item

Nested structure analysis XML

JSON

Key-Value Pair

Data type analysis Alphabet

Number

Symbol

String

Non-printable Bytes

Semantic analysis IP Address

MAC Address

Protocol Name

Domain Name

Logical Keywords

Field encoding analysis Base32

Base64

URL

Page 9 of 21Cheng et al. Cybersecurity (2023) 6:51 	

table contains matching rules for common data types and
semantics related to network configuration. When the value
in the message segment matches the corresponding item in
the table, MSLFuzzer considers the semantic or data type of
the field to be the corresponding type in the rule table. The
corresponding data types and semantic meanings are supple-
mented by the attributes of the message segment, providing
essential information for the subsequent analysis process.

Invisible segment analysis
A single raw message usually carries multiple fields, but
some fields are empty by default if not configured. In this
case, these empty segments will not be included in the
constructed message segment list. We call these uncon-
figured empty segments: invisible segments. When the
variables that trigger the vulnerability are in these invisible
segments, since these invisible segments do not occupy an
independent position in the constructed message segment
list, it is usually challenging to trigger these vulnerabilities
by directly mutating the message segment list. These invis-
ible segments need to be found and added to the message
segment list to improve the effectiveness of fuzzing.

Black-box fuzzing cannot obtain the internal execution
code and memory contents of the device, so we cannot
directly obtain the specific invisible segment location.
Fortunately, MSLFuzzer has constructed a complete mes-
sage segment list in the previous steps. The basic prop-
erties of segments have also been supplemented, so we
can use the sequence properties of the message segments
themselves to determine the location of the invisible seg-
ment. MSLFuzzer adopts an n-gram-based invisible seg-
ment expansion algorithm, as shown in Algorithm 2.

The input to the algorithm is MSL with attributes con-
structed in the previous step. First, MSLFuzzer uses
the n-gram and (n + 1)-gram algorithms in sequence
on MSL to obtain the n-gram sequence set GN and the
(n + 1)-gram sequence set GN1(line 1–3). Based on prac-
tical experience and experimental results, the value of
the parameter n in the n-gram algorithm is set to 4. In
Sect. "Invisible segment identification", we provide details
of the experiments conducted. Next, compare each gram
GNi in GN with each gram GN1i in GN1 in turn to obtain
the respective type attribute sequences TSn and TSn1
(lines 4–7). Based on the edit distance, the attribute edit
distance TD and edit distance operation method m of
TSn and TSn1 are calculated (line 8). When TD is equal
to one and the operation mode is inserted, the inserted
position in TSn is considered as a candidate invisible seg-
ment (lines 9–10). Then, MSLFuzzer performs regres-
sion judgment on the candidate invisible segments. If
the value of the segment before and after the potential
invisible segment in the n-gram is the same as the value
of the corresponding (n + 1)-gram, the candidate invisible
segment is considered as an invisible segment, and an
invisible segment sequence template T is created (lines
11–13). Finally, MSLFuzzer searches for the positions of
all invisible segments in the raw message according to the
invisible segment sequence template and inserts invisible
segments in the corresponding positions to obtain MSLI
(lines 14–17).

The message segment list is used for the subsequent
analysis process after the completion of the invisible
segment expansion. Since the default value of inserted
invisible segments is empty, only when these invisible
segments are selected to mutate their values will be filled
with mutated data. Therefore, when other segments are
mutated, invisible segments will not affect the mutation
results of other segments. At the same time, the issue
that the variable that triggers the vulnerability appears in
the invisible segment can also be solved.

Message stability analysis
Most of the defect code generated by vulnerabilities is
located in various functional codes after the protocol
analysis component. According to software development
practice, before the data in the raw message reaches the
actual defect code, the protocol format and data for-
mat of the raw message need to pass sanitization. When
these sanitization constraints are reflected in a fuzzer, the
fuzzer needs to generate mutated data that conforms to
the specification as much as possible. More vividly, build-
ing a message segment list is similar to building a block
castle. The process of mutating the message segment list

Page 10 of 21Cheng et al. Cybersecurity (2023) 6:51

to generate data that the firmware can verify is similar
to removing blocks from a block castle one by one and
ensuring that the block castle does not collapse. Once the
blocks that play a key supporting role in the structure are
pulled away, the entire block castle will collapse. Simi-
larly, once the message segments checked by the firm-
ware are changed, the entire mutated message may fail to
pass the check.

To better describe the stability of each message seg-
ment, we introduce the concept of message stabil-
ity, which is used to describe the satisfaction degree of
mutated messages to message legitimacy. Because the
raw message is an essential seed for mutation, we usu-
ally assume that the structure and content of the origi-
nal message seed are valid, and its corresponding initial
response is the correct response. This correct response
can be used to infer the stability of each message seg-
ment. MSLFuzzer first copies and blanks the value of the
target message segment and constructs two new mes-
sages based on the copied and blanked message segment.
MSLFuzzer sends a new message to the target device
and receives a response message corresponding to the
message. Finally, MSLFuzzer determines the degree of
stability of a message segment by judging the difference
between the response of the constructed message and the
response of the seed message.

Figure 2 shows an example of this process. Among
them, Line 0 is the raw message, and Line 1 is the con-
structed MSL. Response 1 is the response obtained by
serializing the MSL in Line 1 into a message and sending
it to the target device. Assuming that we need to make
a stability judgment on the message segment numbered
2 in Line 1, MSLFuzzer first copies the value of message
segment 2 and constructs a new message segment, as
shown in Line 2. The MSL in Line 2 completes the seri-
alization and sends it to the target device to get Response
2. Similarly, the MSL in Line 3 and the corresponding
Response 3 can be obtained. Later, MSLFuzzer judges the
stability of the message segment numbered 2 based on
Response 1, Response 2, and Response 3.

Stability is classified into 3 levels, as shown in Table 2.
Level 0 stability is also called root stability level. For a
message segment, when both Response 1 and Response
2 are changed, no matter whether the value of the seg-
ment is copied or blanked, the stability level of the mes-
sage segment is the root stable level. In this case, the raw
message bytes corresponding to the message segment are
usually some message identification fields or key struc-
ture fields to be checked. Level 1 stability is also called
structural stability level. When the segment value is cop-
ied or blanked, only one of Response 1 and Response 2
will change. In this case, the raw message bytes corre-
sponding to the message segment are usually specially
checked data values or edge structures. Level 2 stability
is also called value stability level. Neither Response 1 nor
Response 2 changes when segment values are inserted
outside or inside the segment. In this case, the corre-
sponding raw message are usually the variable values car-
ried by the message.

A message segment with a higher stability level indi-
cates a higher probability of passing the sanitization dur-
ing the mutation process, and the exception-handling
mechanism of the SOHO router does not easily capture
the mutation message. Message segments of higher pri-
ority should be mutated first. A message segment with a
lower stability level is more likely to be used as the valida-
tion field in the mutation process. Mutating the data of
these message segments makes it easy for the mutated
message to be caught by the exception-handling mecha-
nism of the device, which means that the probability
of the mutated message reaching the deep defect code

Fig. 2  Example of message segment stability judgment process

Table 2  Message stability level

Level Segment value duplication Segment value empty

0 Changed Changed

1 Unchanged / changed Changed / unchanged

2 Unchanged Unchanged

Page 11 of 21Cheng et al. Cybersecurity (2023) 6:51 	

location is lower. Therefore, the mutation priority of a
message segment with lower stability levels should be
lowered. The stability level value of the segment is added
as a property of MSL after it is determined. The enriched
message segment list will be used for the subsequent
mutation process.

Message segment list mutation
After the previous step is finished, the list of message seg-
ments complemented by semantic information will be
used as input to the mutation phase of fuzzing.

Message segment mutation
MSLFuzzer mutates the message segments list obtained
in the previous stage. It is worth noting that the muta-
tion strategy is performed on a single message segment
rather than a single byte in the raw message. For effec-
tive fuzzing, MSLFuzzer combines the attribute informa-
tion of each message segment in the mutation process.
MSLFuzzer uses the following strategies for mutation:

•	 Byte Fragment Length Manipulation MSLFuzzer
changes the length of the value of the message seg-
ment to trigger buffer overflow vulnerabilities or out-
of-bounds access vulnerabilities. MSLFuzzer gener-
ates random or repeated strings or byte fragments of
varying lengths.

•	 Numeric Bounds Break MSLFuzzer alters the value
of an integer, double, or float value to cause an inte-
ger overflow or out-of-bounds access vulnerability.
MSLFuzzer generates tremendous, negative, zero
values or data boundary values.

•	 Empty Fill An empty data field may crash the firm-
ware if the data field is not properly checked. There-
fore, MSLFuzzer deletes the entire fragment to clear
the data field.

•	 Byte Flip MSLFuzzer flips all the bytes in the mes-
sage segment to detect potential errors in the parsing
code.

•	 Specification Check In order to detect more device
execution states, MSLFuzzer replaces some poten-
tial judgment characters, such as "on" and "off", "true"
and "false", according to a predefined knowledge
base. At the same time, MSLFuzzer also identifies
message segments if their attributes contain semantic
information (such as IP address and domain name)
according to the knowledge base. The values of these
message segments are replaced with values that vio-
late the semantic specification to detect flaws in the
semantic format check components.

•	 Command Inject. Due to many command injection
vulnerabilities in SOHO routers, MSLFuzzer inserts

a set of predefined random command injection pay-
loads into the segment value of stability level 1 or 2.
The execution commands included in these payloads
usually change the network status of the target device
(for example, a reboot command) so that the subse-
quent network monitoring process can identify an
abnormal network connection status.

Message segment encoding
Since some SOHO routers encode fields in the message,
directly fuzzing the encoded fields will cause the device
to fail to decode and interrupt the message-processing
workflow. MSLFuzzer uses the corresponding decoder
to decode the value of the message segment according
to the encoding attribute in the message segment. The
decoded message segment value is then subjected to the
above mutation operation. MSLFuzzer finally uses the
corresponding encoder to re-encode the mutated result.
The encoded mutated value is used as the new message
segment value.

Fuzzing scheduling
The conditions that trigger a crash can be complex.
For example, modifying different data fields in the
same message may be necessary to trigger an error.
Nevertheless, at the same time, it is easy to be rejected
by the device due to the mutation of all fields. So, we
want to randomly select one or more subsets of fields
to mutate while maintaining the stability of the mes-
sage structure rather than mutating all fields simul-
taneously. MSLFuzzer randomly selects the variant
message segments in the message segment list based
on the stability level of each message segment, and
the message segment with a higher stability level has
a higher probability of being selected. After select-
ing mutated message segments, MSLFuzzer executes
the above mutation scheme for each segment, serial-
izes the mutated message segment list into a complete
message, and sends it to the target device. A new mes-
sage segment combination will be selected for the next
fuzzing round only when the entire mutation process
lasts for a user-defined time or completes a prede-
fined number of mutations. After fuzzing scheduling,
MSLFuzzer will record and store the combination of
protocol message segments selected in the schedule
into a JSON mutation state snapshot file. Whenever
MSLFuzzer re-runs, it will first load the mutation
state snapshot and then perform the fuzzing pro-
cess to avoid the loss of the previous fuzzing state
information.

Page 12 of 21Cheng et al. Cybersecurity (2023) 6:51

Response monitoring
Since a black-box fuzzer does not have intrusive mem-
ory access to SOHO routers, MSLFuzzer identifies
whether there are potential anomalies or vulnerabili-
ties triggered by monitoring the network activity of
the target device. For the potential command injection
vulnerability in the device, since the default injection
payload used by MSLFuzzer is the command to change
the network state of the target device, the detection of
the injection result can thus be implemented by check-
ing the network activity state of the device. There-
fore, when fuzzing a device, MSLFuzzer analyzes the
response messages to detect crashes.

Specifically, MSLFuzzer sends a raw message and
monitors regular device activity response results
before mutation data is sent to the device. When the
device works correctly, MSLFuzzer performs the sub-
sequent fuzzing process and receives a response for
each mutated message. Suppose the response message
times out, or the connection is interrupted during this
process. In that case, MSLFuzzer will repeatedly send
the mutated message to check whether the exception is
a false positive caused by the slow processing speed of
the device. When there is no response to the mutated
messages sent repeatedly, MSLFuzzer will send the
standard probe message again. If the normal probe
message has a response, it is considered that the mes-
sage processing component has crashed. Otherwise,
the entire device service is considered to have crashed.
Because in some crash scenarios (such as some com-
mand injection vulnerabilities), the device will send a
response message at first and no response after, which
will cause the following unrelated mutation message to
be recorded instead of the previous probe message that
triggers the crash. Therefore, when a crash is found,
MSLFuzzer will log the context mutation message that
triggered the crash for subsequent further analysis.

Implementation and evaluation
This section introduces a prototype implementation of
MSLFuzzer and analyzes the evaluation results. Specifi-
cally, Sect. "Framework implementation" provides imple-
mentation details, and Sect. "Experiment setup" presents
the experimental setup. Sect. "Features of MSLFuzzer"
compares the features of MSLFuzzer with state-of-the-
art fuzzers. Sect. "Efficiency" discusses the effective-
ness of MSLFuzzer based on the evaluation results.
Sects. "Response category trigger" and "Invisible segment
identification" evaluate the ability of MSLFuzzer to trig-
ger response categories and discover invisible segments,
respectively. Finally, Sect. "Unknown vulnerability iden-
tification" explores the ability of MSLFuzzer to discover
unknown vulnerabilities.

Framework implementation
We have implemented a fully functional MSLFuzzer
prototype with about 5000 lines of Python code. The
design of MSLFuzzer includes four stages: initial mes-
sage segment list construction, message segment content
analysis, message segment list mutation, and response
monitoring. These core functions are packaged in this
prototype. Since the input to MSLFuzzer is raw messages,
we use Wireshark (2022) to capture the communication
packets of SOHO routers and manually sanitize these
message sequences as input to MSLFuzzer. Specifically,
we first use Wireshark to capture standard communica-
tion packets of SOHO routers and store all communica-
tion traffic as packet capture (PCAP) file. Secondly, we
used Wireshark to track and analyze each TCP or UDP
flow in the data packet and manually selected some typi-
cal seed packets as candidate seeds. Next, we analyzed
these candidate seed messages and extracted some criti-
cal bytes from them as filtering conditions for filtering.
We manually code Wireshark’s filtering rules based on
the characteristic vital bytes. We applied them to the
entire data packet to filter out all data packets that meet
the filtering rules. Finally, we do a regression check on all
the filtered data packets to determine whether they are
our expected packets. We use the expected message as
the input of MSLFuzzer.

To make MSLFuzzer easier to be driven by external
programs, we wrote a fuzzer wrapper to drive MSLFuzzer
to fuzz the target device. This wrapper takes the raw mes-
sages from the packets and passes them to MSLFuzzer
as input. At the same time, when a raw message contains
authentication credentials, the wrapper will dynamically
update the authentication credentials in the raw message
before the fuzzing process according to different types of
devices to ensure the validity of the raw message in the
fuzzing process.

Experiment setup
Dataset
Existing IoT black-box fuzzing work is usually evaluated
on physical devices. The physical devices selected for
each job are different, and many physical devices have
been sold out and cannot be purchased. At the same
time, since the firmware in the physical device may have
been updated, many historical vulnerabilities cannot be
exploited. Therefore, it is challenging to reproduce the
evaluation experiments of each work fully. This makes it
difficult for comparative experiments of different works
to compare fairly on a relatively deterministic dataset.
With this in mind, we constructed a deterministic, easy-
to-use dataset that would make it easier and affordable
for other researchers to reproduce our work and compare
it more easily with other methods.

Page 13 of 21Cheng et al. Cybersecurity (2023) 6:51 	

Firmware emulation technology can meet the needs
of low-cost and rapid construction of IoT test environ-
ments. Although the success rate of firmware emulation
technology for different manufacturers and device mod-
els varies greatly, and the overall emulation success rate
is low, from the perspective of building a dataset, we can
still get some candidates by increasing the base of avail-
able firmware. A successfully emulated firmware is finally
used for an experimental evaluation. It is worth noting
that our method and the other methods compared in
this paper are all black-box fuzzing methods and do not
depend on the success rate of firmware emulation. The
emulation-capable firmware is only used to build the
test environment. For experimental evaluation, whether
the test environment is, an emulated device or a physical
device is transparent to the evaluated method.

To better evaluate the efficiency of MSLFuzzer, we
compare MSLFuzzer with other methods on a particu-
lar dataset to evaluate its effectiveness in discovering
vulnerabilities. We need to build a dataset of known
vulnerabilities of SOHO routers. We mainly considered
the following factors when constructing this dataset:
1) Real-world firmware image. Every firmware image in
the datasets should be from the real world. These firm-
ware images should cover mainstream architectures such
as MIPS and ARM. 2) Real World Vulnerabilities. Every
firmware image in the datasets should contain the real-
world vulnerability. Selecting real-world vulnerabilities
is more effective for verifying the performance of fuzz-
ers in practice than artificially implanted vulnerabilities
through the forward porting method (Hazimeh et al.
2020). 3) Typical vulnerability types. The types of vul-
nerabilities in the firmware should cover typical SOHO
router device vulnerabilities. The typical types of vul-
nerabilities mainly studied in the existing SOHO router
device black-box fuzzing research work include memory
corruption, command injection, and denial of service
(Feng et al. 2021; Shu and Yan 2022; Zhang et al. 2021).
Therefore, the vulnerabilities contained in the baseline
firmware image should contain the above vulnerabil-
ity types. 4) Emulation and fidelity of firmware images.
Every benchmark firmware should be able to be emulated
successfully and efficiently used. The fidelity of the firm-
ware image also needs to be verified. For example, many
emulated firmware crashes after deep interactions. Such
as, clicking on a web page to set properties affects the
validity of fuzzer evaluations. Therefore, the fidelity of
the firmware image also needs to be verified.

Environment setup
We implemented an emulation device control tool to
facilitate the MSLFuzzer to control the emulated SOHO
routers to achieve all of the device states or to restart

the device after the emulation crash. The tool provides a
RESTful API, and all emulated devices can be started or
stopped through an API call. When a crash of the target
service is detected, the target device needs to be restarted
in order for the next round of fuzzing to proceed. The
fuzzer wrapper automatically reboots the target device
and restores the target service by calling the API. Since
the fuzzing process is random, we repeat the experiment
5 times and count the average data. Like existing evalua-
tion methods, we set the maximum testing time for each
fuzzing experiment to be 24 h. We deployed MSLFuzzer
on an Ubuntu 20.04 desktop PC with Intel Core i7 8-core
X 3.70 GHz CPU and 16 GB RAM.

Benchmark tools
To verify the performance of MSLFuzzer in find-
ing crashes, we used four different fuzzing schemes as
benchmarks.

•	 SNIPUZZ The initial SNIPUZZ code published by
its authors is written in C# for Windows machines.
As a demo version, the code lacks a user manual,
has complex dependencies, and is not packaged as
an independent tool. Its authors try to reimplement
SNIPUZZ in python to enhance its generality. Unfor-
tunately, the python version of SNIPUZZ was not
released when we started our experiment. Therefore,
we reimplemented SNIPUZZ based on our under-
standing of the method presented in the paper (Feng
et al. 2021) and its C# implementation code. Consid-
ering that SNIPUZZ needs to infer message content
based on feedback response messages, to make the
benchmark as fair as possible, we use the same raw
message as seed for SNIPUZZ and MSLFuzzer.

•	 Boofuzz Unlike other black-box fuzzers, Boofuzz
requires human knowledge to guide. Specifically,
Boofuzz needs to manually code a corresponding
script for each raw message, which defines the for-
mat of the raw message, the fields that need to be
mutated, and the mutation strategy. We refer to the
evaluation methods of Boofuzz from other works
(Feng et al. 2021), exploit this property of Boofuzz,
and manually define more fuzzing strategies to
enrich the benchmark evaluation.

•	Boofuzz-Default Each message in the input is set
to a full string. Boofuzz will mutate that message
as a string.

•	Boofuzz-Byte Each byte of the message in the input
will be used for mutation individually.

•	 MSLFuzzer-NoAnalysis MSLFuzzer further analyzes
the message content to improve the fuzzing efficiency

Page 14 of 21Cheng et al. Cybersecurity (2023) 6:51

and the ability to find crashes. To verify whether fine-
grained message analysis is beneficial for fuzzing, we
removed the message content analysis code used in
MSLFuzzer and implemented MSLFuzzer-NoAnaly-
sis. MSLFuzzer-NoAnalysis does not further analyze
the constructed message segment list and directly
completes the subsequent mutation operations.

All benchmarking tools and MSLFuzzer are tested on
the same vulnerability dataset to make the benchmark
as fair as possible. These inputs may have different for-
mats (e.g., Boofuzz requires manual input settings, and
SNIPUZZ requires raw messages), but the content is the
same.

Features of MSLFuzzer
This section evaluates MSLFuzzer and existing black-box
fuzzer tools for SOHO routers. We compared MSLFuzzer
with state-of-the-art network fuzzers Boofuzz (Pereyda
2022), SNIPUZZ (Feng et al. 2021) and UCRF (Qin et al.
2023) regarding the firmware dependent, analysis object,
analysis method, seed generation, and field completion.
Since UCRF is not open source, we mainly compare its
functions in this section.

As shown in Table 4, MSLFuzzer, SNIPUZZ and Boo-
fuzz do not depend on the firmware image, and the anal-
ysis object is the message communicated with the target
device. UCRF relies on firmware images, which require
static analysis, and new seeds can be generated. There-
fore, the use scenarios of MSLFuzzer and UCRF are dif-
ferent, and when the router device firmware image is
unavailable, the application scenarios of MSLFuzzer are
more comprehensive. Unlike SNIPUZZ, MSLFuzzer adds
MSL inference based on response feedback technology
and can complete the default message fields. Therefore,
the analysis of MSLFuzzer for response messages is more
comprehensive.

Efficiency
MSLFuzzer is evaluated on the dataset containing 35
real-world vulnerabilities in 20 emulated SOHO routers.
Our process of judging different fuzzers triggering vul-
nerabilities is as follows. First, before the fuzzing experi-
ment corresponding to each vulnerability, we provided a
unified seed for all tested fuzzers. The network interface
contained in the seed corresponds to a specific service
component on the device under test, and this component
has a known vulnerability that we have verified. Second,
we captured all traffic packets during fuzzing. After the
fuzzing is over, we code Wireshark filter rules, manually
locate the specific packet that triggers the exception, and
analyze whether the specific mutation position of the
mutated packet is consistent with the trigger field of the

target known vulnerability in the component. Finally, we
replayed the message, observed the context information
given by the emulator when the device reported an error,
and finally judged whether the target vulnerability was
triggered.

In evaluating the performance of each fuzzer, we pri-
oritize using the number of vulnerabilities found by each
fuzzer as the primary evaluation metric. When each
fuzzer can or cannot find a specific vulnerability, the
response category triggered by them will be used as an
additional evaluation metric. We choose such an evalu-
ation metric mainly following the suggestion of Magma
(Hazimeh et al. 2020), a state-of-the-art fuzzer evalua-
tion work. The final metric for evaluating two fuzzers is
to compare the number of bugs found by each fuzzer. If
fuzzer A finds more bugs than fuzzer B, then A is bet-
ter than B. However, considering that some fuzzers can
or cannot find the same vulnerability, we use the number
of response categories as an additional metric to supple-
ment the evaluation. The results of the experiment are
shown in Table 3. MSLFuzzer found 31 out of 35 vul-
nerabilities, which is higher than the other four involved
benchmark tools. We conducted a detailed analysis of the
fuzzing process for these vulnerabilities.

We first analyzed the fuzzing process for four vulner-
abilities that MSLFuzzer did not successfully trigger.
We found that CVE-2019-10891, CVE-2019-20215 and
CVE-2020-15893 were not successfully triggered because
the number of responses triggered by these two vulner-
abilities was small, and the message format did not have
a specific nested structure. Therefore, MSLFuzzer fails
to construct detailed message segments, and the entire
fuzzing process is close to random mutation. CVE-
2019-6258 was not successfully triggered because the
component affected by the vulnerability differs from the
component receiving the mutated message. MSLFuzzer
observes the state of the component that receives
mutated messages. However, the component did not
behave abnormally, so the vulnerability was not detected
by MSLFuzzer. These three vulnerabilities were also not
discovered by SNIPUZZ.

Then, we analyzed the vulnerabilities that both
MSLFuzzer and SNIPUZZ could trigger successfully.
SNIPUZZ found more responses on CVE-2017-13772
than MSLFuzzer did, and MSLFuzzer found more
responses on CVE-2019-17510 than SNIPUZZ did. Of
the remaining vulnerabilities, MSLFuzzer found the
same number of responses as SNIPUZZ. This shows that
MSLFuzzer and SNIPUZZ have relatively comparable
performances on these vulnerabilities.

Next, we focus on the vulnerabilities that MSLFuzzer
triggers successfully, but SNIPUZZ does not trig-
ger successfully. An essential reason that MSLFuzzer

Page 15 of 21Cheng et al. Cybersecurity (2023) 6:51 	

found these vulnerabilities while SNIPUZZ did not
is that the responses of many SOHO routers could be
more detailed, and many devices respond with a suit-
able error response type. Therefore, when the number
of responses is too small, the primary segment snippet
constructed by SNIPUZZ cannot sufficiently describe
the original structure of the message, which makes
the fuzzing process close to random mutation and

cannot successfully find a vulnerability. MSLFuzzer
performs nested structure analysis after the initial mes-
sage segment list is constructed. Therefore, when the
device adopts a standard protocol format, its message
structure can be effectively disassembled. This allows
MSL to better describe the message structure, and
MSLFuzzer to obtain more diverse response types. As
a result, MSLFuzzer can discover CVE-2017-17215,

Table 3  Experiment Results. MSLFuzzer discovers the greatest number of vulnerabilities

The bold numbers indicate that the corresponding fuzzer has the best fuzzing performance for that vulnerability corresponding to that row among all fuzzers, i.e., it
triggered the most responses

C Crashed,  + implies at least one crash, − means no crash, N Number of response categories

ID Device Protocol MSLFuzzer SNIPUZZ Boofuzz-
Default

Boofuzz-
Byte

MSLFuzzer
NoAnalysis

C N C N C N C N C N

1 CVE-2017-13772 TP-Link WR940N HTTP  +  15  +  25 − 1  +  1 − 2

2 CVE-2017-17215 Huawei HG532 SOAP  +  2 − 2 − 1 − 1 − 1

3 CVE-2018-14558 Tenda AC7 HTTP  +  2  +  2 − 2 − 2  +  7
4 CVE-2018-16334 Tenda AC9 HTTP  +  2  +  2 − 1 − 1 − 5
5 CVE-2018-18728 Tenda AC9 HTTP  +  5 − 5 − 2 − 2 − 10
6 CVE-2018-19987 D-Link DIR-822 HNAP  +  3 − 1 − 2 − 1 − 2

7 CVE-2018-19989 D-Link DIR-822 HNAP  +  3 − 1 − 2 − 1 − 1

8 CVE-2019-10891 D-Link DIR-806 HNAP − 4 − 1 − 1 − 1 − 1

9 CVE-2019-17510 D-Link DIR-846 HNAP  +  6  +  3 − 4 − 3  +  4

10 CVE-2019-17621 D-Link DIR-859 UPNP  +  3 − 2 − 2 − 2 − 1

11 CVE-2019-20215 D-Link DIR-859 UPNP − 2 − 2 − 1 − 1 − 1

12 CVE-2019-20760 NETGEAR R9000 HTTP  +  4 − 4 − 2 − 3 − 3

13 CVE-2019-6258 D-Link DIR822 SOAP − 2 − 2 − 2 − 2 − 2
14 CVE-2019-6989 TP-Link WR940N HTTP  +  4 − 2 − 1 − 1 − 1

15 CVE-2019-7297 D-Link DIR-823G SOAP  +  6 − 39 − 23 − 29 − 1

16 CVE-2020-10215 D-Link DIR-825 HTTP  +  37 − 209 − 3 − 79 − 3

17 CVE-2020-10216 D-Link DIR-825 HTTP  +  2 − 1 − 1 − 5 − 3

18 CVE-2020-13392 Tenda AC6 HTTP  +  8 − 2 − 1 − 1 − 9
19 CVE-2020-13394 Tenda AC18 HTTP  +  2  +  2 − 1 − 1  +  2
20 CVE-2020-13782 D-Link DIR-865L HTTP  +  3 − 2 − 1 − 1 − 2

21 CVE-2020-15893 D-Link DIR-816L UPNP − 2 − 2 − 2 − 1 − 2
22 CVE-2020-25367 D-Link DIR-823G SOAP  +  3  +  3 − 1  +  1  +  1

23 CVE-2020-27600 D-Link DIR-846 HNAP  +  3 − 3 − 4 − 1 − 1

24 CVE-2020-8423 TP-Link WR841N HTTP  +  5 − 29 − 12 − 12 − 17

25 CVE-2021-43474 D-Link DIR-823G SOAP  +  3 − 2 − 2 − 2 − 2

26 CVE-2021-46314 D-Link DIR-846 HNAP  +  7 − 7 − 3 − 3 − 3

27 CVE-2022-24355 TP-Link WR940N HTTP  +  2  +  2 − 5 − 1  +  2

28 CVE-2022-25079 TOTOLINK A810R HTTP  +  5 − 4 − 2 − 2 − 3

29 CVE-2022-25439 Tenda AC9 HTTP  +  3 − 3 − 2 − 2 − 2

30 CVE-2022-29638 TOTOLINK A3100R HTTP  +  3  +  3 − 2 − 2 − 2

31 CVE-2022-29643 TOTOLINK A3100R HTTP  +  5  +  5 − 2 − 2 − 2

32 CVE-2022-35619 D-Link DIR-818L SOAP  +  2 − 3 − 1 − 1 − 2

33 CVE-2022-35620 D-Link DIR-818L UPNP  +  2 − 1 − 1 − 1 − 1

34 Disclosed but Unassigned-1 NETGEAR WNDR3700 HTTP  +  4 − 1 − 4  +  1 − 5

35 Disclosed but Unassigned-2 NETGEAR WNDR3700 HTTP  +  4 − 2  +  1  +  12 − 9

Page 16 of 21Cheng et al. Cybersecurity (2023) 6:51

CVE-2019-6989, CVE-2020-10216, CVE-2020-13392,
Unassigned-1, and Unassigned-2. Although MSLFuzzer
cannot handle some undefined message structures,
such as CVE-2019-20215 and CVE-2020-15893, it can
handle most cases correctly, which mitigates the prob-
lems encountered by SNIPUZZ. MSLFuzzer can also
discover CVE-2022-25079 by performing random value
offset inference. The response message corresponding
to this vulnerability carries random value information.
MSLFuzzer successfully locates the position of the ran-
dom value, which makes the message structure more
accurately described.

Another important reason we found that MSLFuzzer
can find more vulnerabilities than the benchmarked fuzz
tools is because MSLFuzzer performs content analysis on
the mutated MSL. CVE-2019-20760 and CVE-2020-8423
can be found because MSLFuzzer performs the encoding
analysis. The fields that trigger these two vulnerabilities
must be encoded to reach the flawed code location. CVE-
2018-19987, CVE-2018-19989, CVE-2019-7297, CVE-
2020-13392, CVE-2020-13782, CVE-2020-27600, and
CVE-2021-46314 were discovered because MSLFuzzer
performed invisible segment analysis. There are many
parameters in the raw seed message corresponding to
these vulnerabilities, and the value of the field that trig-
gers the vulnerability is empty. MSLFuzzer can locate the
location of these invisible segments, so in the process of
mutation, these invisible segments can be successfully
selected for mutation. CVE-2019-7297 and CVE-2020-
10215 produced more responses than other vulnerabili-
ties. This is because the response message carries the
field value in the mutated message. During the mutation
process of SNIPUZZ, the probability of each snippet
being selected for mutation is the same, so the test case
generated by SNIPUZZ destroys the message structure
required for device sanitization. MSLFuzzer conducted a
stability analysis, and the possibility of each message seg-
ment being selected is different. The constructed mutated
message structure is more stable, and the mutated mes-
sage is easier to reach the defect code position. Therefore,
these two vulnerabilities were successfully discovered by
MSLFuzzer.

In addition, we observed that SNIPUZZ triggered sig-
nificantly higher response categories on CVE-2019-7297,
CVE-2020-10215, and CVE-2020-8423. We analyzed the
complete fuzzing process and response categories for
these vulnerabilities and found that this is mainly due
to two reasons. First, these devices will feed back part of
the field information in the test case to the user as part
of the response. Second, we adopt the idea of Fail-fast
in the experiment. The fuzzing process is stopped after
the vulnerability is triggered, so the response category
stops growing after the vulnerability is triggered. Among

these vulnerabilities, since MSLFuzzer successfully trig-
gered the vulnerability, but SNIPUZZ did not, although
SNIPUZZ triggered more types of responses, MSLFuzzer
performed better.

Boofuzz-Byte found four vulnerabilities, and Boofuzz-
Default found only one. Boofuzz directly replaces the
specified position in the message with a pre-set string
or byte and does not split and analyze the content of
the message, so it finds far fewer than MSLFuzzer.
MSLFuzzer-NoAnalysis is a fuzzing tool that does not
use the message segment content analysis method of
MSLFuzzer. It discovered 6 vulnerabilities, outperform-
ing Boofuzz but slightly inferior to SNIPUZZ. The reason
is that MSLFuzzer-NoAnalysis does not analyze the mes-
sage content in various ways, but directly mutates it after
constructing the initial MSL. Therefore, most of the test
cases generated by MSLFuzzer-NoAnalysis usually fail
to pass the sanitization phase. This method may be more
effective in finding vulnerabilities on devices that require
highly structured input.

The experimental results show that MSLFuzzer has the
most vital ability to find vulnerabilities among all bench-
mark tools. Its ability to trigger different numbers of
responses is close to the state-of-the-art black-box feed-
back fuzzer SNIPUZZ. This shows that MSLFuzzer can
effectively discover potential vulnerabilities in SOHO
routers.

Response category trigger
In this section, we evaluate the ability of MSLFuzzer to
trigger response categories. Response categories are used
as additional metrics for evaluating fuzzers when multi-
ple fuzzers can or cannot find vulnerabilities. We used two
metrics to measure the ability of each fuzzer to trigger more
response categories. The first metric is the cumulative num-
ber of valid response categories triggered by each fuzzer
across all experiments. This metric measures the combined
performance of each fuzzer across all experiments. It should
be noted that some vulnerabilities may carry part of the
test case content in their responses, resulting in an abnor-
mal number of responses. We removed these vulnerabili-
ties when counting this metric to avoid interference with
the experimental results. The second metric is the number
of experimental groups in which each fuzzer triggered the
most responses among 35 groups of vulnerability experi-
ments. The second metric measures the average perfor-
mance of each fuzzer in each set of experiments.

Figure 3 displays the experimental results of the first
metric as a histogram. MSLFuzzer found the most sig-
nificant number of response categories among all fuzz-
ers and performed the best. The second metric displays
the experimental results as a line graph. Among the
35 groups of vulnerability experiments, MSLFuzzer

Page 17 of 21Cheng et al. Cybersecurity (2023) 6:51 	

achieved the best performance in 22 groups of experi-
ments, outperforming all other fuzzers. This shows that
MSLFuzzer can effectively trigger more response catego-
ries and perform more stably.

Invisible segment identification
In this section, we evaluate the ability of MSLFuzzer to
discover invisible segments. Firstly, we removed some
valid fields from the seed messages of each vulnerability.
Then, the messages with invisible segments were used as
new seeds and input to MSLFuzzer. Finally, we calculated
the proportion of successfully identified invisible seg-
ments among all seeds carrying invisible segments when
the parameter n in the n-gram of Algorithm 2 ranged
from 3 to 10.

As shown in Fig. 4, when the parameter n equals 4,
Algorithm 2 identifies the maximum number of invisible
segments. As n increases, the proportion of identified
invisible segments gradually decreases. When n equals 7
and 10, the proportion is at its lowest, 62.2%. Therefore,
MSLFuzzer uses a value of n equal to 4. At this value,
MSLFuzzer identifies 94.6% of invisible segments. This
demonstrates that MSLFuzzer can effectively infer poten-
tial invisible segments in message packets.

Unknown vulnerability identification
MSLFuzzer has demonstrated superior performance in
previous experiments, but we still want to verify further
its ability to discover unknown vulnerabilities.

We first collected firmware that can be emulated in
building the known vulnerability dataset. Because a
fuzzer requires primitive seeds, we use the control inter-
face provided by a successfully emulated firmware and
artificially access these interfaces to generate as many
raw messages as possible. At the same time, we captured
the network communication traffic in the process and
screened the raw messages containing the data submit-
ted by the user as seeds. MSLFuzzer uses these seeds as
input.

By evaluating these emulated devices from five ven-
dors, MSLFuzzer found 15 crashes. We manually
verified crashes one by one to determine if they were
previously unknown vulnerabilities. In this process, we
first locate the specific message that triggers the excep-
tion. We replayed the message that triggered the excep-
tion and observed the context information given by the
emulator when the emulated device reported an error.
Secondly, we searched the NVD and CNVD databases
using device manufacturers, models, and interfaces as
keywords. For all the known vulnerabilities retrieved,

Fig. 3  Results for each fuzzer triggering response categories. Boofuzz-D is an abbreviation for Boofuzz-Default, Boofuzz-B is an abbreviation
for Boofuzz-Byte, and MSLFuzzer-N is an abbreviation for MSLFuzzer-NoAnalysis

Page 18 of 21Cheng et al. Cybersecurity (2023) 6:51

we analyzed their vulnerability descriptions, inter-
face names, parameter information, PoC, and other
information individually. We compared them with the
triggered crash to complete the judgment. In the end,
MSLFuzzer found 10 zero-day vulnerabilities. Four
were confirmed by the CVE, and one was confirmed by
the CNVD, as shown in Table 5. Types of these vulner-
abilities include stack overflow and command injection.
We have reported all these vulnerabilities to CNCERT/
CC (National computer network emergency response
technical team 2021) in pursuit of helping vendors fix
them. We also tried using SNIPUZZ to find these vul-
nerabilities and extended the fuzzing time to 48 h.

Unfortunately, SNIPUZZ was not able to find these
vulnerabilities.

While validating these crashes as unknown vulner-
abilities, we discovered some interesting things. Before
we applied for the CVE number, there were more than
50 historical vulnerabilities in the Tenda ac9 firmware
included in the NVD. Such a large number of vulner-
abilities in one firmware shows that researchers have
thoroughly analyzed the security of this firmware, and
it is difficult to find new vulnerabilities in it. Neverthe-
less, even in this case, MSLFuzzer could still find some
missed vulnerabilities, which shows that MSLFuzzer can
comprehensively discover vulnerabilities in SOHO rout-
ers. In addition, NVD does not contain any vulnerabili-
ties in the NETGEAR WNAP 320 firmware. MSLFuzzer
successfully found the first vulnerability of this device.
The experimental results show that MSLFuzzer can be
applied to SOHO routers from different manufacturers
and can effectively discover unknown vulnerabilities.

Discussion and future work
The evaluation results show that our framework can
effectively discover memory corruption and command
injection vulnerabilities in SOHO routers, but there
are still some directions for future improvement. In
this section, we discuss the limitations that exist in the

Fig. 4  Invisible segment identification variation curve diagram

Table 4  Comparison of state-of-the-art fuzzers

Fuzzer Firmware
dependent

Analysis
object

Analysis
method

Field
completion

MSLFuzzer No Message Response
Feed-
back + MSL
Inference

Yes

SNIPUZZ No Message Response
Feedback

No

Boofuzz No Message Manual No

UCRF Yes Firmware Static Analysis No

Page 19 of 21Cheng et al. Cybersecurity (2023) 6:51 	

current design and explore how these limitations can be
addressed in the future.

Initial seed acquisition
The initial input to MSLFuzzer is a raw message. The
raw message is used as an initial seed for mutation, and
its quality significantly impacts the final effect of fuzz-
ing. The initial seed construction method is to manually
complete the communication process with SOHO rout-
ers and monitor network communication to capture all
communication packets. Corresponding filtering rules
are set to extract high-quality raw messages in packets. In
the above process, an automatic generation of valid raw
messages is challenging. A promising solution is to auto-
matically analyze the user input interface of the device
console program and generate corresponding request
traffic. For example, for a SOHO router that supports
control through a web page, a compelling seed message
can be generated by analyzing the dependencies between
parameters and input rules from the front-end page.
Automated initial seed generation will be our next step.

More semantic categories
In the message segment content analysis stage,
MSLFuzzer adopts a rule-based heuristic method to
analyze four semantic categories. These four semantic
categories have covered some common semantic situ-
ations in device messages. However, from the perspec-
tive of completeness, more categories and fine-grained
categories can increase the understanding of the mes-
sage content, which in turn can impose more substantial
constraints on mutated messages and improve fuzzing
efficiency. This is a process of continuous improvement.
Given the recent excellent performance of deep learning
techniques in the field of natural language processing, in
future work, we consider introducing deep learning tech-
niques to enhance the understanding of message content
further.

Inter‑message dependencies
In the current implementation of MSLFuzzer, we only
focus on messages that can accomplish the correspond-
ing function with a single request. However, some func-
tions still require multiple request messages to work
together. A possible solution is to perform correlation
analysis on multiple messages in a message sequence,
tracking and modeling the entire conversation flow dur-
ing the initial analysis of the messages. At the same time,
the corresponding protocol state machine is constructed,
and the customized fuzzing is carried out based on a pro-
tocol state machine. This approach may have advantages
in finding vulnerabilities triggered by multiple message
combinations and vulnerabilities due to violations in the
implementation of the protocol specification.

Details of the response message
The details of the response message affect the quality of
the initial construction of the message segment list. The
more details the response message contains, the more
accurately the segment list segments the raw message.
MSLFuzzer further disassembles the nested message
segment in analyzing the content of the message seg-
ment, which can make up for the lack of detail in some
response messages. When applied to a binary protocol,
since the standard string nesting structure may not exist
in the binary protocol, the division of the binary proto-
col structure largely depends on the detail level of the
response provided by the target device. However, the
response details provided by the SOHO routers are too
vague (e.g., using a unified message to report all errors),
and the nested format cannot be appropriately recog-
nized. In that case, the number of message segments
may be low, which makes fuzzing inefficient. Fortunately,
in practice, this problem can be mitigated in two ways.
The first way, for some SOHO routers that support debug
mode, we can get advanced error descriptions in debug

Table 5  Summary of Discovered Unknown Vulnerabilities

Vulnerability Device Vulnerability type Severity

1 CVE-2022-36568 Tenda ac9 Stack overflow High

2 CVE-2022-36569 Tenda ac9 Stack overflow High

3 CVE-2022-36570 Tenda ac9 Stack OVERFLOW High

4 CVE-2022-36571 Tenda ac9 Stack Overflow High

5 CVE-2022-46641 D-Link DIR-846 Command injection High

6 CVE-2022-46642 D-Link DIR-846 Command injection High

7 CNVD-2022-62390 D-Link DIR-823G Command injection Medium

8 Reported but Not Disclosed TOTOLINK A3100R Stack overflow Medium

9 Reported but Not Disclosed NETGEAR WNAP320 Command injection High

10 Reported but Not Disclosed NETGEAR WNAP320 Command injection High

Page 20 of 21Cheng et al. Cybersecurity (2023) 6:51

mode, which will significantly improve the process of
MSLFuzzer building the message segment list. In a sec-
ond way, researchers can code plug-ins that parse the
protocol and build a message segment list when prior
knowledge of the target message format or binary proto-
col specification is obtained. Since the message segment
list can describe the message content in a normalized
manner, the plug-in code for message parsing can be
easily integrated with MSLFuzzer, and the subsequent
analysis process of MSLFuzzer can still be used com-
monly. Both of these can alleviate the complete failure of
fuzzing when encountering insufficiently detailed device
responses.

Validation of effective fields
Judging how many effective fields in the message segment
completed by MSLFuzzer are consistent with the fields
in the firmware processing logic can guide the further
improvement of MSLFuzzer. However, due to the cus-
tomization of the control protocol by different firmware
models, the valid fields cannot be directly confirmed by
observation. For example, some byte segments may be
the segmentation identifier of the protocol and have no
specific meaning. Some byte segments are data submit-
ted by the user, but the components that process the
interface in the firmware do not process these data. Some
byte segments The segment is a format customized by
the firmware, and it is impossible to directly judge which
bytes in it are specific valid fields through observation.
Manual reverse analysis assistance is possible, but it con-
sumes many human resources and time. A possible solu-
tion is to comb all the parameters received and processed
by each interface of the firmware based on reverse analy-
sis of the firmware, combined with data flow analysis, and
associate them with the fuzzing process. This will be one
of the directions to improve MSLFuzzer.

Encrypted traffic
While preparing the raw message as a fuzzing seed, we
noticed that some devices use encryption to protect
communication. Since the encryption algorithm destroys
the original format of the message, modifications made to
the raw message are often challenging to decrypt to legit-
imate messages. Moreover, since the feedback response
message is also encrypted, it is impossible to directly
judge the category based on the content of the message.
Relieving the constraints of encryption from outside the
target device based solely on network traffic is challeng-
ing, and solutions are often difficult to generalize. Never-
theless, when the encryption and decryption algorithms
are known, it is feasible to apply MSLFuzzer to this sce-
nario. It can be solved by integrating the encryption and
decryption algorithm with MSLFuzzer. The mutated

message is encrypted each time before it is sent to the
target device, and the response message is decrypted
after it is received. The rest of the message segment con-
struction and fuzzing processes can be directly reused
with MSLFuzzer. In this way, the fuzzing process of the
target device can be completed in this scenario.

Conclusion
This paper proposes a black-box fuzzing framework,
MSLFuzzer, to discover vulnerabilities in SOHO routers.
Unlike other black-box network fuzzers, MSLFuzzer uses
device feedback response messages to conduct prelimi-
nary structural division of raw messages and performs
semantic analysis, invisible segment analysis, and stability
analysis on each message segment. This mutation strat-
egy based on the message segment list has better con-
straints and orientation, narrows the search space, and
can ensure that well-structured test cases are generated
to test more functions of the tested devices other than
the sanitizer. We construct a dataset of 35 real-world vul-
nerabilities and 20 consumer-grade SOHO routers that
can be emulated and evaluate MSLFuzzer on this dataset.
MSLFuzzer found more known vulnerabilities than other
state-of-the-art benchmark tools and successfully discov-
ered 10 zero-day vulnerabilities with four CVEs and one
CNVD.

Acknowledgements
Not applicable.

Author contributions
YXC, WQF, and WH designed this research. YXC and JYY built this framework
and performed experiments. YXC, WL wrote this paper. YXC, WQF, and WL
reviewed and edited the manuscript. All authors read and approved the
manuscript.

Funding
This work was supported by the major project of Science and Technology
Innovation 2030, “The next generation of Artificial Intelligence” under Grant
Number 2021ZD0111400, the Open project of the State Key Laboratory
of Computer Architecture, Neural Network Enhanced Symbolic Execution
Algorithm Research under Grant Number CARCH201910, and the Funda-
mental Research Funds for the Central Universities under Grant Number
3132018XNG1814 and 3132018XNG1815.

Availability of data and materials
The data used to support the findings of this study are available from the cor-
responding author upon request. The disclosed security vulnerabilities used
and found in this paper can be accessed in the CVE (https://​cve.​mitre.​org/)
and CNVD (http://​www.​cnvd.​org.​cn).

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 May 2023 Accepted: 29 August 2023

https://cve.mitre.org/
http://www.cnvd.org.cn

Page 21 of 21Cheng et al. Cybersecurity (2023) 6:51 	

References
Amini P, Portnoy A, Sears R (2019) Sulley: a pure-python fully automated and

unattended fuzzing framework. Available https://​github.​com/​OpenR​CE/​
sulley. Accessed 9 Nov 2022

Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T, Bochum R (2019)
REDQUEEN: fuzzing with input-to-state correspondence. In: 2019 net-
work and distributed system security symposium

Chen D, Woo M, Brumley D (2016) Towards automated dynamic analysis for
linux-based embedded firmware. In: Network and distributed system
security symposium

Chen J, Diao W, Zhao Q et al. (2018) IoTFuzzer: discovering memory corrup-
tions in IoT through app-based fuzzing. In: Network and distributed
system security symposium

Cheng Y et al (2022) PDFuzzerGen: policy-driven black-box fuzzer generation
for smart devices. Secur Commun Netw. https://​doi.​org/​10.​1155/​2022/​
97882​19

Dinh S et al. (2021) Favocado: fuzzing the binding code of JavaScript engines
using semantically correct test cases. In: Network and distributed system
security symposium

Eceiza M, Flores JL, Iturbe M (2021) Fuzzing the Internet of Things: a review
on the techniques and challenges for efficient vulnerability discovery in
embedded systems. IEEE Internet Things J 8(13):10390–10411

Feng X et al. (2021) Snipuzz: black-box fuzzing of iot firmware via message
snippet inference. In: Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, pp. 337–350.

Gan S et al. (2018) CollAFL: path sensitive fuzzing. In: 2018 IEEE symposium on
security and privacy, pp. 679–696

Han H, Oh D, Cha S (2019) CodeAlchemist: semantics-aware code generation
to find vulnerabilities in JavaScript engines. In: Network and distributed
system security symposium

Hazimeh A, Herrera A, Payer M (2020) Magma: a ground-truth fuzzing bench-
mark. Proc ACM Meas Anal Comput Syst 4(3):1–29

Huang H, Yao P, Wu R, Shi Q, Zhang C (2020) Pangolin: incremental hybrid
fuzzing with polyhedral path abstraction. In: 2020 IEEE symposium on
security and privacy, pp. 1613–1627

Jones AK, Sielken RS (2000) Computer system intrusion detection: a survey.
Comput Sci Tech Rep, pp. 1–25.

Khandait P, Hubballi N, Mazumdar B (2021) IoTHunter: IoT network traffic clas-
sification using device specific keywords. IET Netw 10(2):59–75

Kim M, Kim D, Kim E, Kim S, Jang Y, Kim Y (2020) Firmae: towards large-scale
emulation of iot firmware for dynamic analysis. In: Annual computer
security applications conference, pp. 733–745.

Lee S, Han H, Cha S, Son S (2020) Montage: a neural network language {Model-
Guided}{JavaScript} engine fuzzer. In: 29th USENIX security symposium,
pp. 2613–2630.

Micro T (2020) Smart yet flawed: IoT device vulnerabilities explained. Security
News, Tech. Rep.

Muench M, Nisi D, Francillon A, Balzarotti D (2018) Avatar 2: a multi-target
orchestration platform. In: Proc. Workshop Binary Anal. Res. (Colocated
NDSS Symp.), vol. 18, pp. 1–11.

National computer network emergency response technical team/coordina-
tion center of China, 2021. Available: https://​www.​cert.org.cn/publish/
english/index.html. Accessed 9 Nov 2022

Pereyda J (2022) boofuzz: network protocol fuzzing for humans. Available
https://​boofu​zz.​readt​hedocs.​io/​en/​latest/. Accessed 9 Nov 2022

Qin C, Peng J, Liu P et al (2023) UCRF: static analyzing firmware to gener-
ate under-constrained seed for fuzzing SOHO router. Comput Secur
128:103157

Redini N et al. (2021) Diane: identifying fuzzing triggers in apps to generate
under-constrained inputs for IoT devices. In: 2021 IEEE symposium on
security and privacy, pp. 484–500.

Shu Z, Yan G (2022) IoTInfer: automated blackbox fuzz testing of IoT network
protocols guided by finite state machine inference. IEEE Internet Things J
9(22):22737–22751

Unit 42, “2020 Unit 42 IoT Threat Report”, Palo Alto Networks, Inc., 2020.
Available https://​unit42.​paloa​ltone​tworks.​com/​iot-​threat-​report-​2020/.
Accessed 9 Nov 2022

Wang D, Zhang X, Chen T, Li J (2019) Discovering vulnerabilities in COTS IoT
devices through blackbox fuzzing web management interface. Secur
Commun Netw. https://​doi.​org/​10.​1155/​2019/​50763​24

Wireshark. Available https://​www.​wires​hark.​org/. Accessed 9 Nov 2022

Yamaji M (2022) Forecast: IoT semiconductors, worldwide, 2Q22 update.
Gartner, Inc.. Available https://​www.​gartn​er.​com/​en/​docum​ents/​40165​
43/. Accessed 9 Nov 2022

Yin Q, Zhou X, Zhang H (2021) FirmHunter: state-aware and introspection-
driven grey-box fuzzing towards IoT firmware. Appl Sci 11(19):9094

Yu Z, Wang H, Wang D, Li Z, Song H (2022) CGFuzzer: a fuzzing approach based
on coverage-guided generative adversarial networks for industrial IoT
protocols. IEEE Internet Things J 9(21):21607–21619

Zaddach J, Bruno L, Francillon A, Balzarotti D (2014) AVATAR: a framework to
support dynamic security analysis of embedded systems’ firmwares. In:
2014 network and distributed system security symposium

Zhang Y et al (2021) ESRFuzzer: an enhanced fuzzing framework for physical
SOHO router devices to discover multi-Type vulnerabilities. Cybersecurity
4(1):1–22

Zhang Y et al. (2019) SRFuzzer: an automatic fuzzing framework for physical
SOHO router devices to discover multi-type vulnerabilities. In: Proceed-
ings of the 35th annual computer security applications conference, pp.
544–556

Zheng Y, Davanian A, Yin H, Song C, Zhu H, Sun L (2019) {FIRM-AFL}:{High-
Throughput} greybox fuzzing of {IoT} firmware via augmented process
emulation. In: 28th USENIX security symposium, pp. 1099–1114

Zhu X, Wen S, Camtepe S, Xiang Y (2022) Fuzzing: a survey for roadmap. ACM
Comput Surv 54(11s):1–36

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://doi.org/10.1155/2022/9788219
https://doi.org/10.1155/2022/9788219
https://www.cert
https://boofuzz.readthedocs.io/en/latest/
https://unit42.paloaltonetworks.com/iot-threat-report-2020/
https://doi.org/10.1155/2019/5076324
https://www.wireshark.org/
https://www.gartner.com/en/documents/4016543/
https://www.gartner.com/en/documents/4016543/

	MSLFuzzer: black-box fuzzing of SOHO router devices via message segment list inference
	Abstract
	Introduction
	Our approach
	Contributions
	Roadmap

	Background and related work
	Common IoT smart device communication architecture
	SOHO routers fuzzing
	Response feedback mechanism

	Methodology
	Initial message segment list construction
	Feedback response message collection
	Random value offset inference
	MSL initialization

	Message segment content analysis
	Message semantic analysis
	Invisible segment analysis
	Message stability analysis

	Message segment list mutation
	Message segment mutation
	Message segment encoding
	Fuzzing scheduling

	Response monitoring

	Implementation and evaluation
	Framework implementation
	Experiment setup
	Dataset
	Environment setup
	Benchmark tools

	Features of MSLFuzzer
	Efficiency
	Response category trigger
	Invisible segment identification
	Unknown vulnerability identification

	Discussion and future work
	Initial seed acquisition
	More semantic categories
	Inter-message dependencies
	Details of the response message
	Validation of effective fields
	Encrypted traffic

	Conclusion
	Acknowledgements
	References

