
Huang et al. Cybersecurity            (2023) 6:53  
https://doi.org/10.1186/s42400-023-00188-3

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

Generic attacks on small‑state stream cipher 
constructions in the multi‑user setting
Jianfu Huang1, Ye Luo1, Qinggan Fu1, Yincen Chen1, Chao Wang1 and Ling Song1,2*    

Abstract 

Small-state stream ciphers (SSCs), which violate the principle that the state size should exceed the key size by a factor 
of two, still demonstrate robust security properties while maintaining a lightweight design. These ciphers can be clas-
sified into several constructions and their basic security requirement is to resist generic attacks, i.e., the time–mem-
ory–data tradeoff (TMDTO) attack. In this paper, we investigate the security of small-state constructions in the multi-
user setting. Based on it, the TMDTO distinguishing attack and the TMDTO key recovery attack are developed for such 
a setting. It is shown that SSCs which continuously use the key can not resist the TMDTO distinguishing attack. 
Moreover, SSCs based on the continuous-IV-key-use construction cannot withstand the TMDTO key recovery attack 
when the key length is shorter than the IV length, no matter whether the keystream length is limited or not. Finally, 
we apply these two generic attacks to TinyJAMBU and DRACO in the multi-user setting. The TMDTO distinguish-
ing attack on TinyJAMBU with a 128-bit key can be mounted with time, memory, and data complexities of 264 , 248 , 
and 232 , respectively. This attack is comparable with a recent work on ToSC 2022, where partial key bits of TinyJAMBU 
are recovered with more than 250 users (or keys). As DRACO’s IV length is smaller than its key length, it is vulnerable 
to the TMDTO key recovery attack. The resulting attack has a time and memory complexity of both 2112 , which means 
DRACO does not provide 128-bit security in the multi-user setting.

Keywords  Small-state stream ciphers, TMDTO attacks, Multi-user setting

Introduction
Stream ciphers are an important symmetric scheme. 
They use a key and an initial vector (IV) to generate 
a keystream for encryption and decryption. They are 
known for their high speed and low hardware complexity, 
making them important in digital communications, e.g., 
the E0 stream cipher for Bluetooth systems (Jiao et  al. 
2020).

Stream ciphers typically have two phases: initialization 
and keystream generation. In the first phase, the state 

is initialized with a key and an IV and then updated via 
an update function iteratively. In the second phase, the 
update function further obfuscates the state, and the 
output function generates the keystream. We call stream 
cryptographic ciphers self-synchronizing ciphers in 
which the generation of the keystream is influenced by 
the plaintext, and we call those synchronizing ciphers in 
which the keystream and the plaintext are independent 
(Rueppel 1986). Note that the key or the IV is usually not 
influencing the second phase.

A stream cipher of high quality should possess the abil-
ity to withstand all known forms of attacks, such as alge-
braic attack (Shannon 1949), guess-and-determine attack 
(Hawkes and Rose 2002), cube attack (Dinur and Shamir 
2009), fault attack (Biham and Shamir 1997), time-mem-
ory tradeoff (TMTO) attack (Hellman 1980), and so on. 
Among these attacks, only the TMTO attack is generic 
for its high threat to various types of cryptographic 

*Correspondence:
Ling Song
songling.qs@gmail.com
1 College of Cyber Security, Jinan University, Guangzhou 510632, China
2 National Joint Engineering Research Center of Network 
Security Detection and Protection Technology, Jinan University, 
Guangzhou 510632, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00188-3&domain=pdf
http://orcid.org/0000-0001-9298-7313


Page 2 of 11Huang et al. Cybersecurity            (2023) 6:53 

algorithms without knowing their special structures and 
implementations.

The TMTO attack, proposed by Hellman (1980) in 
1980, aims at recovering a key from plenty of plaintexts 
and ciphertexts. The attack balances the cost of time and 
memory through the tradeoff curve, which enables good 
performance in both time and memory complexity. Later, 
Baggage and Golic proposed a Time–memory–data 
tradeoff (TMDTO) attack (Babbage 1995; Golic 1997) 
which is a generalization of TMTO attack. It increases 
the amount of required data to get a better tradeoff. And 
in 2000, Biryukov and Shamir (Biryukov and Shamir 
2000) improved the TMDTO attack for stream ciphers 
with different tradeoff curves and fewer disk operations. 
While the TMDTO attack is applied to a stream cipher, 
the objective is to retrieve the cipher’s internal state in 
order to generate the subsequent keystream. In 2007, 
Håkan Englund et  al. used a distinguishing attack to 
break Pomaranch stream cipher (Englund et al. 2007a, b). 
This attack can not only distinguish whether a sequence 
is random or ciphertext but also recover the remaining 
keystream sequence to get the whole plaintext in some 
special cases. In 2018, this attack was refined by Hamann 
et al. (2018).

Stream ciphers are composed of components like 
Boolean functions, S-boxes, Nonlinear-feedback shift 
register (NFSR), and so on. No matter how one care-
fully chooses these components for a stream cipher, it is 
hard to break the rule that the size of the state is twofold 
compared to that of the keystream, as derived in Babbage 
(1995). This becomes a hurdle for designing lightweight 
stream ciphers.

To break that limit, continuous-key-use (CKEY) con-
struction has been proposed with Sprout (Armknecht 
and Mikhalev 2015). The CKEY construction continu-
ously involves the key in the phase of the keystream gen-
eration, which can foil the TMDTO internal state attack. 
However, Sprout-like ciphers, such as Plantlet (Vasily 
et al. 2016) and Fruit (Amin and Honggang 2018), are vul-
nerable to the TMDTO distinguishing attack, as shown 
in Hamann et al. (2018). Later, to resist these distinguish-
ing attacks, the continuous-IV-use (CIV) construction 
is proposed (Hamann et  al. 2017), which continuously 
involves the IV instead in the phase of the keystream gen-
eration. The CIV construction together with limiting the 
length of the keystream can avoid the sliding property 
of the cipher and reduce the data that the above attacks 
need. Even though the CIV construction can resist the 
distinguishing attack, it is potentially vulnerable to other 
attacks as the IV is publicly known (Amin et  al. 2019). 
Due to this, the CIV construction has not been used in 
real scenarios. Further, the construction continuing using 
both key and IV, which is called the CIVK construction, 

was proposed (Hamann et  al. 2018). Even though the 
CIVK construction behaves heavily in many crypto-
system instances, it resists TMDTO attacks well and is 
considered as a new generic scheme. For example, the 
DRACO stream cipher (Hamann et al. 2022), which fol-
lows the CIVK construction, has been proposed in 2022. 
We call the stream cipher based on these constructions 
mentioned above the small-state stream cipher.

The growth of the Internet of Things (IoT) enables 
us to interact with a multitude of physical objects and 
exchange data through the Internet, enhancing our daily 
lives. To maintain secure communication in environ-
ments with limited resources, a variety of lightweight 
ciphers are employed in IoT-based applications (Philip 
and Vaithiyanathan 2017; Sehrawat and Gill 2018; Shah 
and Engineer 2019). Many types of IoT-based applica-
tions are facing explosive growth in users, and each 
of them is used with plenty of keys from users, such as 
Bluetooth, WiFi, RFID (Radio Frequency Identification), 
and so on Seliem et al. (2018). Naturally, the concept of 
multi-user security naturally arises. This notion for pub-
lic-key encryption was put forth by Bellare et al. (2000), 
who observed that it could be exhibited in the multi-user 
setting. Afterward, an increasing number of works, such 
as Mouha and Luykx (2015), Tessaro (2015), Hoang and 
Tessaro (2016), Bellare and Tackmann (2016), Hoang and 
Tessaro (2017), and Bose et al. (2018), had concentrated 
on the symmetric cipher analyses on the multi-user secu-
rity and the concept has become recognized as a more 
practical security goal. In 2016, Bellare and Tackmann 
(2016) researched the multi-user security of authenti-
cated encryption. They considered the multi-user secu-
rity of symmetric encryption and introduced two new 
concepts: indistinguishability security and key-recovery 
security. Recently, Muzhou et al. (2022) presented attacks 
under the multi-user setting which can bypass the Tiny-
JAMBU cipher’s restriction of the data per key. With this 
setting, a large number of attacks that are limited by the 
amount of available data will be revitalized. Thus, the 
small-state construction, which can thwart the TMDTO 
attack by restricting the keystream in the single-user set-
ting, lacks the evidence to claim that the cryptosystem 
is secure in a realistic case where a multi-user setting is 
possible.

Our contribution
In this work, we investigate the feasibility of TMDTO 
attacks on small-state stream ciphers in the muti-user 
setting. By exploiting data obtained from different users, 
we present a generic TMDTO distinguishing attack 
on the CKEY construction and a TMDTO key recov-
ery attack on the CIVK construction. Our paper reveals 
that in a multi-user setting, CKEY stream ciphers with 



Page 3 of 11Huang et al. Cybersecurity            (2023) 6:53 	

restricted keystream length fail to deliver adequate secu-
rity. The constraint on the keystream length has an effect 
on both the memory complexity and the number of users 
necessary for an attack, while the time complexity of the 
attack remains unchanged. The TMDTO key recovery 
attack demonstrates that a stream cipher cannot remain 
secure through the restriction of its keystream length if 
its key length is shorter than its IV length. The complex-
ity of this attack is associated with the ciphers’ key length 
and IV length. The limit of keystream affects the number 
of users which our attacks need but the complexity.

Moreover, we apply these two attacks to TinyJAMBU 
and DRACO respectively, and find their vulnerabil-
ity against TMDTO attacks in the multi-user setting. 
We bypass the limit of keystream length and success-
fully mount the TMDTO distinguishing attack on Tiny-
JAMBU with time, memory, and data complexities of 264 , 
248 , and 232 , respectively. This attack is comparable with 
a recent work on ToSC 2022, where partial key bits of 
TinyJAMBU are recovered with more than 250 users (or 
keys). The TMDTO key recovery attack on DRACO has a 
time and memory complexity of both 2112 , which means 
DRACO does not provide 128-bit security in the multi-
user setting. Besides, we propose a new CIVK schema 
that is different from that of DRACO. With this construc-
tion, small-state ciphers have a better property of the 
TMDTO attacks resistance in the multi-user setting.

Outline
The structure of this paper is as follows for the remaining 
sections. In “Preliminary” section, we review TMDTO 
attacks, the multi-user setting, TMDTO distinguishing 
attacks, and TMDTO key recovery attacks. In “TMDTO 
attacks on small-state constructions in the multi-user set-
ting” section, we propose TMDTO attacks in the multi-
user setting, including the TMDTO distinguishing attack 
and the TMDTO key recovery attack. To demonstrate 
the applicability of the new attacks in the multi-user set-
ting, we present a distinguishing attack on TinyJAMBU 
and a key recovery attack on DRACO in “Applications” 
section. Finally, “Conclusion” section is the conclusion of 
the paper.

Preliminary
Stream ciphers and small‑state stream ciphers

Definition 1  (Stream ciphers) Stream ciphers are cryp-
tosystems that use a time-dependent function to encrypt 
plaintexts. They comprise an internal state S ∈ {0, 1}ℓs , an 
update function φ {0, 1}ℓs → {0, 1}ℓs and an output func-
tion α {0, 1}ℓs → {0, 1}ℓo , where ℓs, ℓo are positive inte-
gers. The time-dependent function, which is made up of 
φ and α , takes a key K and an IV as inputs and updates S 

by the function φ (perhaps together with α ) step by step, 
as illustrated in Fig. 1.

TMDTO attacks impose the constraint that the size of 
the state is twofold compared to that of the keystream. 
This inspires researchers to design special stream ciphers 
which can resist TMDTO attacks and maintain light-
weight at the same time.

Small-state stream ciphers (SSCs), whose internal state 
contains an unstable state and a non-volatile instead of 
only an unstable state, use cheaper components such as 
ROM to construct the non-volatile state of the cipher 
while its volatile state is smaller than that of the general 
stream cipher. The general construction of SSCs is shown 
in Fig.  2 and examples of such stream ciphers include 
Sprout (Armknecht and Mikhalev 2015), Plantlet (Vasily 
et al. 2016) and Fruit (Amin and Honggang 2018).

Definition 2  (Small-state stream ciphers) Small-state 
stream ciphers (SSCs) are a type of keystream gen-
erator, which uses keystreams to encrypt plaintexts. 
It is made up of an internal state S ∈ {0, 1}ℓs , an update 
function φ : {0, 1}ℓs → {0, 1}ℓvs and an output function 
α {0, 1}ℓvs → {0, 1}ℓo . S has two parts, i.e., a volatile state 
VS ∈ {0, 1}ℓvs and a non-volatile state NS ∈ {0, 1}ℓns . Note 
that ℓs , ℓvs , ℓns and ℓo are positive integers. A key and an 
IV are accepted as inputs and the VS is updated by the 
function φ (perhaps together with α ) during the encryp-
tion at each clock while the NS is fixed.

According to the treatment of the key and the IV, we 
can classify SSCs into the following categories (Hamann 
et al. 2019; Amin et al. 2019).

Fig. 1  The general construction of stream ciphers

Fig. 2  The general construction of small-state stream ciphers



Page 4 of 11Huang et al. Cybersecurity            (2023) 6:53 

The continuous-Key-Use (CKEY) construction Loading 
the key into the NS during initialization and thus, the key 
gets involved in the update of the VS.

The continuous-IV-Use (CIV) construction Loading the 
IV into the NS during initialization and thus, the IV gets 
involved in the update of the VS.

The continuous-IV-Key-Use (CIVK) construction Load-
ing both of the key and the IV into the NS during initiali-
zation and thus, the key and the IV get involved in the 
update of the VS.

The Lizard-like construction This small-state construc-
tion, as shown in Fig.  3, is different from the construc-
tions described above, which only continuously use 
the key in a part of phases of the cryptosystem such as 
initialization.

Time–memory–data tradeoff attacks
We briefly revisit the relevant details of TMDTO attacks.

First of all, we introduce some notations.

•	 P: the time complexity of the pre-computation phase;
•	 T: the time complexity of the online phase;
•	 M: the memory complexity of the pre-computation 

phase;
•	 D: the data complexity of the online phase;
•	 N: the size of the state space;
•	 n: the length of the state which is equal to log2N .
•	 K ∈ {0, 1}ℓk : the ℓk-bit secret key.

In 1995, Babbage (1995) and Golić (1997) proposed a 
TMDTO attack called BG-TMDTO against stream 
ciphers. The attack has a pre-computation phase and 
an online phase. The attacker computes n-bit keystream 
prefixes corresponding to M initial states and stores 
them in a hash table on the procession of pre-compu-
tation. During the online phase, the attacker catches D 
keystream blocks and finds collisions by looking up the 
hash table. Actually, keystream blocks can be extracted 
from a long keystream with the method of sliding the 
window. If the collision happens, the inner state could 
be recovered with a high probability, with which one 

can predict the following keystream and recover the 
secret key as well. While MD = N  , collisions could 
be found with high probability, resulting in a tradeoff 
curve of TM = N .

We can get a special point T = M = N
1
2 from the 

tradeoff curve. When ℓk is less than half of n, the 
cipher’s security is not guaranteed. Therefore, designers 
of a general stream cipher follow a guideline that the 
internal state length n of the cipher, defined in Defini-
tion 1, is at least twofold compared to the key length ℓk.

We can also expand this TMDTO attack to the 
TMDTO distinguishing attack and the TMDTO key 
recovery attack.

TMDTO distinguishing attacks
TMDTO distinguishing attacks were first proposed by 
Englund et  al. (2007b) and was put forward in 2018 
(Hamann et  al. 2018), which enables these attacks to 
apply to more general stream ciphers by construct-
ing attacks in different ways. In this attack scenario, 
the attacker tells whether a sequence is generated by 
a cryptosystem or random oracle. We call it CIPHER 
when we can identify from a large number of sequences 
that a keystream is generated by a particular cryptosys-
tem and otherwise, we call it RANDOM.

This attack relies on the near-injectivity of IVs and 
the randomness of the initial state. It can be described 
in two steps.

Step 1	By sliding window, the attacker obtains 2
n
2 key-

stream blocks and stores them in a table H , which is 
generated with a fixed key and different IVs. If a col-
lision occurs during this step, we can already distin-
guish CIPHER and stop.

Step 2	Capture D keystream prefixes generated by dif-
ferent IVs and look for a collision in H from Step 1. 
When a collision is found, we can identify it as 
CIPHER and the process can be halted.

To ensure that collisions in keystream blocks are 
due to colliding inner states, the size of the keystream 
blocks is made slightly larger than that of the internal 
state. Hence, we can further compare the subsequent 
keystream blocks corresponding to the two IVs, if they 
are the same, CIPHER . Otherwise, RANDOM.

Obviously, the memory complexity of this attack is 
2

n
2 . A collision occurs in the table built in Step 1 when 

we intercept D = 2
n
2 keystream prefixes. Thus, the time 

complexity is also 2
n
2 . Note that we may fail to mount 

this attack on the cipher which limits keystream gener-
ated by per key or pair of (key, IV) because of the lack-
ing of data, in other words, D ≤ 2

n
2.Fig. 3  Lizard-like small-state stream ciphers



Page 5 of 11Huang et al. Cybersecurity            (2023) 6:53 	

TMDTO key recovery attacks
TMDTO key recovery attacks focus on retrieving a secret 
key of a stream cipher. The process of these attacks is 
similar to BG-TMDTO (Hong and Sarkar 2005). 

Step 1	(offline) Generate 2
n
2 keystream prefixes corre-

sponding to different keys and IVs. Save these key-
stream prefixes and the corresponding key and IV in 
a hash table H . Note that the length of the keystream 
prefix is not less than the sum of the key size and the 
IV size.

Step 2	(online) Intercept D keystream prefixes and find 
collisions in H . If a collision happens, we can recover 
the key and the IV corresponding with the keystream 
prefix.

As we describe above, assuming that we want to attack 
with high probability, D should not be less than 2

n
2 . The 

time complexity is equal to D and the memory com-
plexity is 2

n
2 . And we should note that these attacks are 

thwarted when the length of the IV is not less than that 
of the key.

Small‑state stream ciphers and TMDTO attacks
Small-state stream ciphers break the design guideline 
because of TMDTO attacks, which maintain lightweight 
and high security at the same time.

The CKEY stream cipher loads a key into the NS dur-
ing initialization and thus, the key gets involved in updat-
ing the VS through the update function φ , which maps 
to shifted versions of the same keystream with different 
secret keys. In other words, the keystreams generated by 
different keys can result in the subsequent keystreams 
having the same bits due to collisions in the correspond-
ing internal states at a certain bit. More specifically, the 
TMDTO attacks, which aim to recover the VS by find-
ing collisions from keystream, are thwarted because the 
collision between two ℓvs-bit keystream blocks do not 
mean that the corresponding VSs collide. Additionally, 
the complexity of finding a collision in ℓs-bit keystream 
blocks to recover the S exceeds the security bound.

However, the CKEY stream cipher can not resist the 
TMDTO distinguishing attack as described in “TMDTO 
distinguishing attacks” section, since the shifted version 
of the same keystream with different IVs. The cipher 
based on the CIV or CIVK construction together with 
the limit of the keystream per key or pair of (key,  IV) 
can actually thwart TMDTO attacks since the attacker 
can not obtain enough data to find collisions with low 
complexity.

The cipher based on the CIV construction loads an IV, 
instead of a key, into the NS. Thus, the IV is continuously 

used in the update of the VS through the function φ . In 
this way, the TMDTO distinguishing attack may fail 
because two keystream blocks generated with one key 
may map to different VSs generated with different IVs, 
even if these two keystream blocks are the same.

The ciphers based on the CIVK construction load both 
an IV and a key into the NS and then both of them get 
involved in the update of the VS by the function φ . This 
construction combines the advantages of the construc-
tions mentioned above, which can resist the TMDTO 
internal state recovery attack as well.

TMDTO attacks on small‑state constructions 
in the multi‑user setting
The security in the multi‑user setting
Before we describe our attack in the multi-user setting, 
we introduce some symbols as follows.

•	 The secret key K ∈ {0, 1}ℓk

•	 The space of the internal state N
•	 The size of the internal state n = log2N

•	 The hash table H
•	 The initial vector IV ∈ {0, 1}ℓIV

•	 Limit 2�-bit keystream per key or pair of (key, IV)

A stream cipher cryptosystem can be considered as an 
oracle O which consists of encryption and decryption, 
where the key space of O is {0, 1}ℓk . When users A and 
B choose a key K, A can query O for encryption under 
key K to send a message M to B. And then B can query 
decryption under the same key K from O and get the 
message M.

Definition 3  (Single-user security) An adversary A can 
request encryption from an oracle O . The oracle O uses a 
key K that is random, independent, and unknown to A . 
For messages M chosen by A , the corresponding cipher-
texts under K can be obtained from O . The objective is 
to distinguish if the oracle O is CIPHER or RANDOM , and 
potentially recover K.

However, many systems and applications are multi-
user oriented in the real world, such as broadcasting 
messages on the Internet, which leads to the concept of 
the multi-user setting.

Definition 4  (Multi-user setting) Each user Ai (i > 1) 
holds a random, independent and different key Ki and 
a sender B send message mi to Ai , encrypted under Ki 
through O . This setting can also be called the multi-key 
setting while the users do not change their key during the 
communication.



Page 6 of 11Huang et al. Cybersecurity            (2023) 6:53 

Definition 5  (Multi-user security) An adversary A can 
query encryption from the oracle O . The oracle O uses 
random and independent secret keys Ki ( i = 0, 1, . . . ) 
owned by different users. For messages M chosen by A , 
A can get the corresponding ciphertexts under Ki from 
O . The aim is to ascertain if the oracle O is CIPHER or 
RANDOM and even retrieve one of the secret keys.

A cryptosystem that is secure in the single-user setting 
may suffer threats in the multi-user setting. The security 
definitions for symmetric cryptosystem in the multi-user 
setting include indistinguishability security (Bellare and 
Tackmann 2016) and key recovery security (Bose et  al. 
2018).

Definition 6  (Indistinguishability security) The distin-
guishing game samples a random challenge, which is to 
distinguish whether an oracle O is CIPHER or RANDOM . 
The adversary A can utilize an oracle N  to generate new 
user instances. Additionally, A has the ability to access an 
encryption oracle O with user i, an initial vector IV, and 
a fixed message M. We call the oracle O CIPHER when 
we can identify from a large number of sequences that a 
keystream is generated by a particular cryptosystem, and 
otherwise, we call it RANDOM.

Definition 7  (Key recovery security) The target of the 
attacker A is to output the key of any users. The same 
with Definition  6, A can access the oracle N  and the 
encryption oracle O . A queries the ciphertext Ci from O 
with a initial vector IV and a fixed message M under the 
user i. If a collision of Ci and a record computed offline 
occurs, we can recover the key of the user i.

The TMDTO distinguishing attack in the multi‑user setting
As mentioned above, multi-user security is under the 
chosen plaintext attack. We can get sufficient data to 
carry out a distinguishing attack on SSCs in the multi-
user setting.

Note that our attack is dedicated to the CKEY con-
struction since the small-state construction which 

continuously uses the IV can foil the TMDTO distin-
guishing attack naturally.

Before we describe our distinguishing attack on the 
CKEY stream cipher, let � denote that we need 2θ 
recipients in this scenario and let γ denote that we can 
store up to γ keystream blocks from each recipient in 
the hash table H . Because of limiting the keystream 
length, we can not obtain enough data to mount the 
attack. Therefore, we need � recipients, each providing 
up to γ keystream blocks to build H , to collide with a 
high possibility. Note that the size of the cipher’s state 
is not exceeded by the size of the keystream block. We 
further describe � and γ in the following Table  1 cor-
responding to the two different ways of limiting the 
keystream length and two small-state constructions we 
attack.

Let us describe in detail how the distinguishing attack 
works, which is shown as Algorithm  2. A intercepts 
all keystream sequences by XORing the plaintexts and 
ciphertexts between both sides of communications. 
Applying Algorithm 1, A can get a large number of key-
stream blocks, which will be stored in H subsequently. 
As soon as one of them collides, stop it and we distin-
guish the system as CIPHER . If the space of H is full, 
A continuously intercepts keystreams, and at the same 
time, compares them with the data in H . While the 
length of intercepted keystream in this step is equal to 
2� bits and there is no collision found, we reset H and 
switch to the next key or pair of (key, IV) to repeat the 
above steps. When we change the key more than � 
times and no collision happens, we distinguish the ora-
cle as RANDOM . Otherwise, we stop and distinguish it as 
CIPHER.



Page 7 of 11Huang et al. Cybersecurity            (2023) 6:53 	

Let us analyze the feasibility of this attack. According to 
the birthday paradox, with around 2n/2 keystream blocks, 
each being n-bit long, the probability of a collision occur-
ring is high. If θ is equal to 0, i.e., � is 1, then only one 
user is required to compromise the cryptosystem. Thus, 
we only talk about the other case.

Take the limit of keystream generated by each key as 
an example. The probability of finding collisions in H is 
not sufficient to mount the attack. Hence, we can sum all 
expectations of finding collisions in n-bit sequences to 
one to make our attack successful, i.e., we should search 
N collisions in n-bit sequences in which a collision occurs 
in high probability. While each user can generate up to 
2�-bit keystream and search collisions about 22� times, 
we can get a equation 2n = 22� · 2θ for � users. Thus, we 
need � = 2n−2� users. The same is true of the limit of 
keystream bits per pair of (key, IV).

Now we analyze the complexity of our attack. There are 
2θ users with 2γ data respectively, which means about 2n/2 
pairs keystream blocks are involved. Therefore, the time 
complexity is 2n/2 . At the same time, we need to clear out 
all data of the table H to switch to the next user, so the 
memory complexity is 2γ . Note that � has an influence on 
the memory complexity and the number of users neces-
sary for the attack, but not on the time complexity.

The TMDTO key recovery attack in the multi‑user setting
Here we illustrate the attack. Suppose that we have a hash 
table H which stores blocks of (key, IV , keystream prefix) . 
Note that the length of the keystream prefix is not less 
than the sum of ℓk and ℓIV  . For convenience, we assume 
that the size of the keystream prefix is ℓk + ℓIV + ǫ where 
ǫ is a negligible number, and introduce our attack shown 
as follows. 

Step 1	(offline) We generate the fragment at the begin-
ning of keystream with different pairs of (key,  IV), 
and put them in H until the size of H is 2

ℓk+ℓIV +ǫ

2  . 
During this step, we should ensure that there is no 
collision in H.

Step 2	(online) Intercept keystream, and at the same 
time, compare them with the data in the table. While 

Table 1  The value of the two different ways on the number of 
recipients 2θ and the size of the hash table γ

Various  Limit 2�-bit keystream
per key

 Limit 2�-bit keystream
per pair of (key, IV)

θ max(0, (n− 2 · �)) max(0, (n− 2 · � · ℓIV ))

γ min(2� , 2n/2) min(2� · ℓIV , 2
n/2)



Page 8 of 11Huang et al. Cybersecurity            (2023) 6:53 

a collision occurs, there is a high probability that we 
can recover the key.

As described above, our attack can break cryptosystems 
based on small-state constructions or plaintext depend-
ant keystream generators. In addition, the limit of the 
keystream has no effect on our attack.

Now we analyze the feasibility of the attack, and we 
limit the keystream per pair of (key,  IV) here. When 
ℓIV <

ℓk+ℓIV
2  , in other words, the length of IV is shorter 

than that of the key, a single key can not generate 
more than 2

ℓk+ℓIV +ǫ

2  keystream prefixes, thus, we need 
2

ℓk+ℓIV +ǫ

2 −ℓIV  chosen keys to provide a sufficient num-
ber of keystream prefixes to build H . Hence, the success 
probability of this attack can be derived according to 
the birthday paradox. Both the time complexity and the 
memory complexity are 2

ℓk+ℓIV +ǫ

2  . When ℓIV ≥
ℓk+ℓIV

2  , in 
other words, the length of IV is not shorter than that of 
the key, our attack will not be feasible because the time 
complexity is higher than 2ℓk . Note that 2� is generally 
not less than ℓk + ℓIV + ǫ in this scenario, by which the 
attack will not be influenced.

If we limit the keystream per key and ℓIV <
ℓk+ℓIV

2  , we 
need to consider two possibilities. If 
2� ≥ (ℓk + ℓIV + ǫ) · 2ℓIV  , � will not affect our attack 
which we can get enough data to mount the attack. Oth-
erwise, a single key can only get up to 2�

(ℓk+ℓIV+ǫ)
 key-

stream prefixes and we need more than 
2

ℓk+ℓIV +ǫ

2 / 2�

(ℓk+ℓIV+ǫ)
 chosen keys to obtain enough data. 

However, � only affects the number of chosen keys we 
need and will not affect the complexity of the attack. In 
this scenario, the time complexity is also 2

ℓk+ℓIV +ǫ

2  as well 
as the memory complexity.

Applications
The attack on TinyJAMBU
TinyJAMBU
TinyJAMBU (Hongjun and Tao 2019, 2021) is a light-
weight scheme of authenticated encryption that uses a 
128-bit keyed permutation. This permutation supports 3 
types of key sizes which are 128 bits, 192 bits, and 256 
bits. For our attack, we take TinyJAMBU v2 (Hongjun 
and Tao 2021) with a 128-bit key size and a 96-bit nonce 
size as an example to introduce it.

The authenticated encryption scheme has four parts: 
initialization, processing of associated data, encryption, 
and finalization, as depicted in Fig. 4.

Initialization This procession has two stages. Firstly, 
the key setup procession is to randomize the state by 
operating the keyed permutation. Secondly, the nonce 
setup procession has three steps, where 3 bits of the state 
are XORed with the framebits of a nonce, then the keyed 
permutation is processed, and XORing the state with 
32-bit nonce blocks finally.

Processing the associated data Processing each 32-bit 
associated data block like the procession of nonce setup.

The encryption After processing the associated data, 
message M is divided into many 32-bit blocks to be 
encrypted. In each step, a 32-bit cipher block is gener-
ated by XORing a 32-bit message block and 32 bits of the 
state after updating the state by XORing the framebits of 
encryption and processing the keyed permutation. Mean-
while, the state is updated by XORed a message block.

The finalization A 64-bit authentication tag can be gen-
erated in two steps. Firstly, we generate the first 32-bit tag 
block by extracting 32-bit data from the state which has 
XORed the framebits of finalization and processed the 

Fig. 4  The TinyJAMBU v2 mode for 128-bit state (Hongjun and Tao 2021). AD is denoted as association data. Denote Pi by processing 
the permutation i time(s)



Page 9 of 11Huang et al. Cybersecurity            (2023) 6:53 	

keyed permutation. And then, we generate the second 
32-bit tag block in a similar way.

Note that TinyJAMBU stipulates that each secret 
key can process at most 250 bytes of messages 
(associated data, plaintext/ ciphertext), with each mes-
sage being at least 8 bytes.

The TMDTO distinguishing attack on TinyJAMBU
As introduced above, when we use Hamann’s distin-
guishing attack to break TinyJAMBU, it will not succeed 
because we do not have enough data. Specifically, the 
length of the keystream, which the attack needs, is 2n/2 
bits, i.e., 264 bits, but TinyJAMBU limits 253 bits per key. 
Next, we will attack TinyJAMBU using the attack men-
tioned in “The TMDTO distinguishing attack in the 
multi-user setting” section.

To ensure the success of our attack, we make the 
assumption that all plaintext blocks corresponding to the 
keystream blocks generated with one key and many non-
ces are all zero or remain constant.

Note that if the attacker violates those assumptions, 
our attack can not process effectively because it is diffi-
cult to build the sorted keystream blocks table. In order 
to understand the assumptions and our attack on Tiny-
JAMBU, we need to know some properties about Tiny-
JAMBU as follows: 

1.	 The plaintext block(32-bit) will not affect the state of 
the subsequent keyed permutation when a plaintext 
block is filled with zero or constant;

2.	 When the nonce is reused in TinyJAMBU mode, the 
role of the associated data is equivalent to that of the 
nonce.

3.	 When two keystream blocks generated by Tiny-
JAMBU with the same parameters are the same, the 
following blocks are the same;

4.	 When a keystream block and a random sequence 
block are the same, the following blocks are the same 
with probability close to 2−32.

We should note that 

1.	 The keystream length we intercept is 160 bits, i.e., 
five keystream blocks, which we can find collision 
through 128 bits and use 32 bits to verify.

2.	 TinyJAMBU limits 253-bit keystream per key. We 
can generate 248 32-bit keystream blocks, i.e., � 
is 48, and get θ = max(0, n− 2 · �) = 32 and 
γ = min(2�, 2n/2) = 248.

3.	 Let H denote the hash table which can save at most 
γ keystream blocks generated by one key. It is obvi-
ously that � is less than n2 . Thus, we must catch at 
least � user from user communications so that we 
can mount our attack successfully.

In this attack scenario, the probability of success can be 
derived from “The TMDTO key recovery attack in the 
multi-user setting” section. The complexities of time and 
memory are 264 and 248 , respectively. Meanwhile, the 
number of users that the attack needs is 232.

Recently, Muzhou et al. (2022) proposed a new statisti-
cal model on the extension of linear cryptanalysis to lin-
ear hulls and obtain cryptanalysis results on TinyJAMBU 
(Hongjun and Tao 2019, 2021) in ToSC 2022, where par-
tial key bits are recovered. In that paper, the adversary 
needs to choose related keys between users, which is 
much stronger than the normal multi-user setting in our 
attacks. In addition, Muzhou et al. (2022) mounts partial 
key recovery attacks using more than 250 users (or keys) 
while our work is a distinguishing attack but with only 232 
users (or keys) and also much lower time complexity.

The attack on DRACO
DRACO
The DRACO stream cipher (Hamann et  al. 2022), pro-
posed in IACR ToSC 2022, uses a 128-bit key and a 
96-bit IV. It has a 128-bit inner state that is composed of 
2 NFSRs with lengths of 95 bits and 33 bits, respectively.

As the figure is shown in Fig. 5, the NS consists of part 
of the key and full bits of the IV, and the volatile state is 
the 128-bit inner state. The feedback functions of NFSR1 
and NFSR2 are denoted as G and F respectively. The out-
put function is denoted as Z.

The process of generating a keystream is divided into 
two parts, state initialization, and keystream generation, 
where state initialization is also divided into two phases, 
key-IV loading, and Mixing. During the state initializa-
tion, we load a key prefix and an IV into the NS and load 
full bits of the key into the volatile state. Then, we process 
the mixing phase. In this phase, clocking the cipher 512 
times without generating any bits, and updating the inner 
state by XORing the output of key-IV schedule, F, G, Z, Fig. 5  The block diagram of DRACO



Page 10 of 11Huang et al. Cybersecurity            (2023) 6:53 

and the state of NFSR1 and NFSR2. Afterward, Z starts 
generating the keystream by processing the update func-
tion without incorporating Z’s output. Note that DRACO 
limits 232-bit keystream per pair of (key, IV).

The TMDTO key recovery attack on DRACO
With the illustration of DRACO and our attack in “The 
TMDTO key recovery attack in the multi-user setting” 
section, the IV in DRACO is 96-bit which is less than the 
length of the key, which can pose a threat to DRACO.

To make our attack effective, we should generate 224-
bit keystream prefixes per (key, IV) pair and save blocks, 
which consists of key, IV, and keystream prefix, into the 
hash table H offline. More specifically, as we can gener-
ate about 246 keystream prefixes per pair of (key, IV), we 
should generate enough keystream prefixes with 266 keys 
and save at least 2112 blocks into H . According to “The 
TMDTO key recovery attack in the multi-user setting” 
section, we can compare the keystream prefixes that we 
catch online with the keystream prefixes saved in H . If a 
collision occurs, we can recover the key.

The time complexity is 2112 which is the same as the 
memory complexity and less than 2128 , so our attack is 
valid. In addition, the number of the chosen keys, which 
the attack needs, is 232.

Note that, Subhadeep Banik et al. posed two TMDTO 
attacks (Banik 2022) on DRACO recently, which exploits 
the fact that The state update function utilizes only a 
minor fraction of the NS. However, our attack is not 
aimed at exploiting the vulnerability of the components 
but the CIVK construction under the security parameters 
of DRACO. Our attack shows that DRACO is not a good 
instance of the CIVK construction in resisting attacks 
under the multi-user setting.

CIVK schemes and TMDTO attacks
DRACO has shown that its CIVK scheme has excel-
lent resistance to TMDTO attacks in single-user mode. 
While the IV size is less than the key size, DRACO is lack 
resistance to TMDTO attacks in the multi-user scenario. 
Therefore, we make improvements to the CIVK scheme 
based on DRACO and analyze it for TMDTO attacks 
security.

The IV size ℓIV-bit of our CIVK scheme is 128-bit 
which is the same as the key size ℓk-bit. NS, whose 
size is 128-bit, consists of a key prefix and an IV pre-
fix whose lengths are ℓprek -bit and ℓpreIV -bit respectively. 
Once the remaining key bits and full of the IV bits have 
been loaded into the internal state, our scheme pro-
ceeds through phases similar to those of DRACO. As 
for the limit of keystream length, our scheme allows up 

to 264 − 1 bits to be generated per key, rather than per 
(key, IV) pair.

Conclusion
Our work reveals the fact that some of the small-state 
ciphers, which can resist TMDTO attacks excellently, 
are still vulnerable to TMDTO attacks in the multi-user 
scenario. We describe a distinguishing attack and a key 
recovery attack under the multi-user setting with sev-
eral examples based on TMDTO attacks. The multi-user 
setting is reflecting the real usage of lightweight applica-
tions, such as the widespread use of RFID. Thus, in the 
multi-user setting, attackers have sufficient data available 
to mount TMDTO attacks. The stream cipher based on 
the CKEY construction is vulnerable to the TMDTO dis-
tinguishing attack in the multi-user scenario, even though 
it limits the keystream per key or pair of (key, IV). While 
the CIVK scheme can thwart not only the TMDTO inner 
state recovery attack but also the TMDTO distinguish-
ing attack. Therefore, the cipher based on the CIVK con-
struction should uphold the principle that the IV length 
cannot be less than the key length. For the designer, 
the CIVK construction, with the restriction of the key-
stream length, should be considered as a generic scheme 
to design a small-state cipher that can secure the stream 
cipher against TMDTO attacks in the real world.

Authors’ contributions
All the authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
[grant number 62022036, 62132008, 62372213].

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 16 May 2023   Accepted: 30 August 2023

References
Amin GV, Honggang H (2018) Fruit-80: a secure ultra-lightweight stream 

cipher for constrained environments. Entropy 20(3):180. https://​doi.​org/​
10.​3390/​e2003​0180

Amin GV, Honggang H, Fujiang L (2019) On designing secure small-state 
stream ciphers against time-memory-data tradeoff attacks. Cryptology 
ePrint Archive, Preprint https://​eprint.​iacr.​org/​2019/​670

Armknecht F, Mikhalev V (2015) On lightweight stream ciphers with shorter 
internal states. In: Fast software encryption—22nd international work-
shop—FSE 2015—Istanbul, Revised Selected Papers. Lecture Notes in 
Computer Science, vol 9054, pp 451–470. https://​doi.​org/​10.​1007/​978-3-​
662-​48116-5_​22

https://doi.org/10.3390/e20030180
https://doi.org/10.3390/e20030180
https://eprint.iacr.org/2019/670
https://doi.org/10.1007/978-3-662-48116-5_22
https://doi.org/10.1007/978-3-662-48116-5_22


Page 11 of 11Huang et al. Cybersecurity            (2023) 6:53 	

Babbage SH (1995) Improved “exhaustive search” attacks on stream ciphers. 
In: European convention on security and detection 1995, pp 161–166. 
https://​doi.​org/​10.​1049/​cp:​19950​490

Banik S (2022) Cryptanalysis of draco. IACR Transactions on symmetric cryptol-
ogy, pp 92–104. https://​doi.​org/​10.​46586/​tosc.​v2022.​i4.​92-​104

Bellare M, Tackmann B (2016) The multi-user security of authenticated encryp-
tion: AES-GCM in TLS 1.3. In: Robshaw M, Katz J (eds) Advances in cryptol-
ogy—CRYPTO 2016—36th annual international cryptology conference, 
Santa Barbara, Part I. Lecture Notes in Computer Science, vol 9814, pp 
247–276. https://​doi.​org/​10.​1007/​978-3-​662-​53018-4_​10

Bellare M, Boldyreva A, Micali S (2000) Public-key encryption in a multi-user 
setting: security proofs and improvements. In: Preneel B (ed) Advances in 
Cryptology—EUROCRYPT 2000, International conference on the theory 
and application of cryptographic techniques, Bruges, Lecture Notes in 
Computer Science, vol 1807, pp 259–274. doi: https://​doi.​org/​10.​1007/3-​
540-​45539-6_​18

Biham E, Shamir A (1997) Differential fault analysis of secret key cryptosystems. 
In: Jr. BSK (ed) Advances in cryptology—CRYPTO ’97, 17th annual interna-
tional cryptology conference, Santa Barbara, Lecture Notes in Computer 
Science, vol 1294, pp 513–525. doi: https://​doi.​org/​10.​1007/​BFb00​52259

Biryukov A, Shamir A (2000) Cryptanalytic time/memory/data tradeoffs for 
stream ciphers. In: Tatsuaki O (ed) Advances in cryptology—ASIACRYPT 
2000. ASIACRYPT 2000. Lecture Notes in Computer Science, pp 1–13. doi: 
https://​doi.​org/​10.​1007/3-​540-​44448-3_1

Bose P, Hoang VT, Tessaro S (2018) Revisiting AES-GCM-SIV: multi-user security, 
faster key derivation, and better bounds. In: Nielsen JB, Rijmen V (eds) 
Advances in cryptology—EUROCRYPT 2018—37th annual international 
conference on the theory and applications of cryptographic techniques, 
Tel Aviv, Part I, pp 468–499. doi: https://​doi.​org/​10.​1007/​978-3-​319-​78381-
9_​18

Dinur I, Shamir A (2009) Cube attacks on tweakable black box polynomials. 
In: Joux A (ed) Advances in Cryptology—EUROCRYPT 2009, 28th annual 
international conference on the theory and applications of cryptographic 
techniques, Cologne, Germany, Lecture Notes in Computer Science, vol 
5479, pp 278–299. doi: https://​doi.​org/​10.​1007/​978-3-​642-​01001-9_​16

Englund H, Hell M, Johansson T (2007) A note on distinguishing attacks. In: 
Proceedings of the IEEE Information theory workshop on information 
theory for wireless networks, Solstrand, pp 1–4. doi: https://​doi.​org/​10.​
1109/​ITWIT​WN.​2007.​43180​38

Englund H, Hell M, Johansson T (2007) Two general attacks on pomaranch-like 
keystream generators. In: Fast software encryption, 14th international 
workshop—FSE 2007—Luxembourg, Revised Selected Papers, pp 
274–289. doi: https://​doi.​org/​10.​1007/​978-3-​540-​74619-5_​18

Golic JD (1997) Cryptanalysis of alleged A5 stream cipher. In: Fumy W (ed) 
Advances in cryptology—EUROCRYPT ’97, International conference 
on the theory and application of cryptographic techniques, Konstanz, 
Lecture Notes in Computer Science, vol 1233, pp 239–255. doi: https://​
doi.​org/​10.​1007/3-​540-​69053-0_​17

Hamann M, Krause M, Meier W (2017) A note on stream ciphers that continu-
ously use the IV. Cryptology ePrint Archive, Preprint https://​eprint.​iacr.​
org/​2017/​1172

Hamann M, Krause M, Meier W, Zhang B (2018) Design and analysis of small-
state grain-like stream ciphers. Cryptogr Commun 10:803–834. https://​
doi.​org/​10.​1007/​s12095-​017-​0261-6

Hamann M, Krause M, Moch A (2020) Tight security bounds for generic stream 
cipher constructions. In: Paterson KG, Stebila D (eds) Selected Areas in 
cryptography—SAC 2019—26th international conference, Waterloo, pp 
335–364. doi: https://​doi.​org/​10.​1007/​978-3-​030-​38471-5_​14

Hamann M, Moch A, Krause M, Mikhalev V (2022) The DRACO stream cipher: 
a power-efficient small-state stream cipher with full provable security 
against TMDTO attacks. IACR transactions on symmetric cryptology, pp 
1–42. doi: https://​doi.​org/​10.​46586/​tosc.​v2022.​i2.1-​42

Hawkes P, Rose GG (2002) Guess-and-determine attacks on snow. In: Nyberg 
K, Heys HM (eds) Selected areas in cryptography, 9th annual international 
workshop, SAC 2002, St. John’s, Newfoundland, Canada, Revised Papers. 
Lecture Notes in Computer Science, vol 2595, pp 37–46. doi: https://​doi.​
org/​10.​1007/3-​540-​36492-7_4

Hellman M (1980) A cryptanalytic time-memory trade-off. IEEE Trans Inf Theory 
26(4):401–406. https://​doi.​org/​10.​1109/​TIT.​1980.​10562​20

Hoang VT, Tessaro S (2016) Key-alternating ciphers and key-length exten-
sion: exact bounds and multi-user security. In: Robshaw M, Katz J 

(eds) Advances in cryptology—CRYPTO 2016—36th annual interna-
tional cryptology conference, Santa Barbara, Part I. Lecture Notes in 
Computer Science, vol 9814, pp 3–32. doi: https://​doi.​org/​10.​1007/​
978-3-​662-​53018-4_1

Hoang VT, Tessaro S (2017) The multi-user security of double encryption. In: 
Coron J, Nielsen JB (eds) Advances in Cryptology—EUROCRYPT 2017—
36th annual international conference on the theory and applications 
of cryptographic techniques, Paris, Part II. Lecture Notes in Computer 
Science, vol 10211, pp 381–411. doi: https://​doi.​org/​10.​1007/​978-3-​319-​
56614-6_​13

Hong J, Sarkar P (2005) New applications of time memory data tradeoffs. In: 
Roy BK (ed) Advances in Cryptology—ASIACRYPT 2005, 11th interna-
tional conference on the theory and application of cryptology and 
information security, Chennai, Lecture Notes in Computer Science, vol 
3788, pp 353–372. doi: https://​doi.​org/​10.​1007/​11593​447_​19

Hongjun W, Tao H (2019) TinyJAMBU: a family of lightweight authenticated 
encryption algorithms. The NIST lightweight cryptography competition. 
https://​csrc.​nist.​gov/​CSRC/​media/​Proje​cts/​Light​weight-​Crypt​ograp​hy/​
docum​ents/​round-1/​ip-​state​ments/​TinyJ​AMBU-​State​ments.​pdf

Hongjun W, Tao H (2021) TinyJAMBU: A family of lightweight authenticated 
encryption algorithms (Version 2). The NIST lightweight cryptography 
competition. https://​csrc.​nist.​gov/​CSRC/​media/​Proje​cts/​light​weight-​
crypt​ograp​hy/​docum​ents/​final​ist-​round/​updat​ed-​spec-​doc/​tinyj​ambu-​
spec-​final.​pdf

Jiao L, Hao Y, Feng D (2020) Stream cipher designs: a review. Sci China Inf Sci 
63(3):1–25. https://​doi.​org/​10.​1007/​s11432-​018-​9929-x

Mouha N, Luykx A (2015) Multi-key security: the even-mansour construction 
revisited. In: Gennaro R, Robshaw M (eds) Advances in Cryptology—
CRYPTO 2015—35th annual cryptology conference, Santa Barbara, Part 
I. Lecture Notes in Computer Science, vol 9215, pp 209–223. doi: https://​
doi.​org/​10.​1007/​978-3-​662-​47989-6_​10

Muzhou L, Nicky M, Ling S, Meiqin W (2022) Revisiting the extension of 
Matsui’s algorithm 1 to linear hulls: application to TinyJAMBU. IACR 
transactions on symmetric cryptology, pp 161–200. doi: https://​doi.​org/​
10.​46586/​tosc.​v2022.​i2.​161-​200

Philip MA, Vaithiyanathan (2017) A survey on lightweight ciphers for IoT 
devices. In: 2017 international conference on technological advance-
ments in power and energy (TAP Energy), pp 1–4. doi: https://​doi.​org/​10.​
1109/​TAPEN​ERGY.​2017.​83972​71

Rueppel RA (1986) Analysis and design of stream ciphers. Springer, Berlin, 
Heidelberg, pp 5–16. https://​doi.​org/​10.​1007/​978-3-​642-​82865-2_2

Sehrawat D, Gill NS (2018) Lightweight block ciphers for IoT based applica-
tions: a review. Int J Appl Eng Res 13(5):2258–2270

Seliem M, Elgazzar K, Khalil K (2018) Towards privacy preserving IoT environ-
ments: a survey. Wirel Commun Mob Comput 2018:1032761. https://​doi.​
org/​10.​1155/​2018/​10327​61

Shah A, Engineer M (2019) A survey of lightweight cryptographic algorithms 
for IoT-based applications. In: Smart innovations in communication and 
computational sciences: proceedings of ICSICCS-2018, Springer, pp 
283–293. doi: https://​doi.​org/​10.​1007/​978-​981-​13-​2414-7_​27

Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech 
J 28(4):656–715

Tessaro S (2015) Optimally secure block ciphers from ideal primitives. In: Iwata 
T, Cheon JH (eds) Advances in cryptology— ASIACRYPT 2015—21st 
international conference on the theory and application of cryptology 
and information security, Auckland, Part II. Lecture Notes in Computer 
Science, vol 9453, pp 437–462. doi: https://​doi.​org/​10.​1007/​978-3-​662-​
48800-3_​18

Vasily M, Frederik A, Christian M (2016) On ciphers that continuously access 
the non-volatile key. IACR transactions on symmetric cryptology, pp 
52–79. doi: https://​doi.​org/​10.​13154/​tosc.​v2016.​i2.​52-​79

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1049/cp:19950490
https://doi.org/10.46586/tosc.v2022.i4.92-104
https://doi.org/10.1007/978-3-662-53018-4_10
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/978-3-319-78381-9_18
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1109/ITWITWN.2007.4318038
https://doi.org/10.1109/ITWITWN.2007.4318038
https://doi.org/10.1007/978-3-540-74619-5_18
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://eprint.iacr.org/2017/1172
https://eprint.iacr.org/2017/1172
https://doi.org/10.1007/s12095-017-0261-6
https://doi.org/10.1007/s12095-017-0261-6
https://doi.org/10.1007/978-3-030-38471-5_14
https://doi.org/10.46586/tosc.v2022.i2.1-42
https://doi.org/10.1007/3-540-36492-7_4
https://doi.org/10.1007/3-540-36492-7_4
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1007/978-3-319-56614-6_13
https://doi.org/10.1007/11593447_19
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/ip-statements/TinyJAMBU-Statements.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/ip-statements/TinyJAMBU-Statements.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://doi.org/10.1007/s11432-018-9929-x
https://doi.org/10.1007/978-3-662-47989-6_10
https://doi.org/10.1007/978-3-662-47989-6_10
https://doi.org/10.46586/tosc.v2022.i2.161-200
https://doi.org/10.46586/tosc.v2022.i2.161-200
https://doi.org/10.1109/TAPENERGY.2017.8397271
https://doi.org/10.1109/TAPENERGY.2017.8397271
https://doi.org/10.1007/978-3-642-82865-2_2
https://doi.org/10.1155/2018/1032761
https://doi.org/10.1155/2018/1032761
https://doi.org/10.1007/978-981-13-2414-7_27
https://doi.org/10.1007/978-3-662-48800-3_18
https://doi.org/10.1007/978-3-662-48800-3_18
https://doi.org/10.13154/tosc.v2016.i2.52-79

	Generic attacks on small-state stream cipher constructions in the multi-user setting
	Abstract 
	Introduction
	Our contribution
	Outline

	Preliminary
	Stream ciphers and small-state stream ciphers
	Time–memory–data tradeoff attacks
	TMDTO distinguishing attacks
	TMDTO key recovery attacks

	Small-state stream ciphers and TMDTO attacks

	TMDTO attacks on small-state constructions in the multi-user setting
	The security in the multi-user setting
	The TMDTO distinguishing attack in the multi-user setting
	The TMDTO key recovery attack in the multi-user setting

	Applications
	The attack on TinyJAMBU
	TinyJAMBU
	The TMDTO distinguishing attack on TinyJAMBU

	The attack on DRACO
	DRACO
	The TMDTO key recovery attack on DRACO

	CIVK schemes and TMDTO attacks

	Conclusion
	References


