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Abstract 

Verifiable delay functions (VDFs) and delay encryptions (DEs) are two important primitives in decentralized sys-
tems, while existing constructions are mainly based on time-lock puzzles. A disparate framework has been estab-
lished by applying isogenies and pairings on elliptic curves. Following this line, we first employ Richelot isogenies 
and non-degenerate pairings from hyperelliptic curves for a new verifiable delay function, such that no auxiliary 
proof and interaction are needed for the verification. Then, we demonstrate that our scheme satisfies all security 
requirements, in particular, our VDF can resist several attacks, including the latest attacks for SIDH. Besides, resort-
ing to the same techniques, a secure delay encryption from hyperelliptic curves is constructed by modifying Boneh 
and Frankiln’s IBE scheme, which shares the identical setup with our VDF scheme. As far as we know, these schemes 
are the first cryptographic applications from high-genus isogenies apart from basic protocols, i.e., hash functions 
and key exchange protocols.
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Introduction
Verifiable delay function (VDF), first introduced by 
Boneh et al. (2018), is a function f : X → Y that requires 
a prescribed amount of time for evaluations, even if many 
parallel computation resources are employed, while the 
result can be verified efficiently. The most crucial require-
ment demands that evaluation, as a slow function, must 
be realized in at least T sequential steps and no accelera-
tion exists. Such scheme allows a prover to demonstrate 
that a certain amount of time has elapsed. Furthermore, 
the VDFs with more functionality, e.g., tight VDFs (Döt-
tling et  al. 2020) and continuous VDFs (Ephraim et  al. 
2020), were also proposed for particular situations.

Due to efficient verifications, VDFs have been applied 
broadly in cryptography, especially for the decentralized 
setting. A direct application is to construct a trustworthy 
randomness beacon (Rabin 1983), where the beacon is 
given by a VDF with a long delay on the entropy source, 
so the malicious participant can not obtain his advantages 
to adjust the market within a short time. Furthermore, 
based on the “commit-and-reveal” paradigm, multiparty 
randomness can be achieved by replacing commitments 
with VDFs, illustrated in Lenstra and Wesolowski (2017). 
Another usage of VDFs is to lower the energy consump-
tion of blockchains based on proofs-of-work. Namely, an 
ingenious method (Cohen and Pietrzak 2018) combines 
proofs-of-resources with incremental VDFs to achieve 
Consensus from Proof of Resources. Moreover, proof of 
data replication (Armknecht et al. 2016; Juels and Kaliski 
2007) and computational timestamping (Kiayias et  al. 
2017) can be realized with VDFs, where more discussions 
can be found in Boneh et al. (2018).

After the proposal of VDF (Boneh et  al. 2018), vari-
ous instantiations have been established, where VDF 
can be directly achieved using incrementally verifiable 
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computation (Valiant 2008). Apart from the high-level 
ideas, class groups and injective rational maps have 
been leveraged for establishing VDFs (Boneh et al. 2018; 
Wesolowski 2020).

In practice, computing modular exponentiation is an 
elegant choice for sequentially slow evaluation functions, 
where extracting modular square roots in Fp (Dwork 
and Naor 1992) and repeated squaring in an RSA group 
(Rivest et  al. 1996) were instantiated for this problem. 
Thus, a natural idea is to modify the above functions for 
practical VDF schemes. Specifically, the first can be effi-
ciently verified by a modular square, so it turns out to be 
a VDF immediately (Boneh et al. 2018). Regrettably, the 
delay parameter of this approach is only about O(log p) , 
which would be smaller considering the parallelism of 
field multiplications, where Lenstra and Wesolowski 
(2017) introduced Sloth to realize parallel computation 
for modular square roots.

In contrast, the second was generated from the famous 
time-lock puzzles (Rivest et  al. 1996), i.e., utilizing RSA 
modulus N = pq , the puzzle is y = x2

T
mod N from a 

random x ∈ Z
∗
N . Besides, one obtaining ϕ(N ) can evaluate 

y efficiently via reducing the exponent e ≡ 2T mod ϕ(N ) , 
while others must compute T sequential modular squares. 
Following this line, Wesolowski (2020) established an effi-
cient interactive protocol to verify the output y publicly, 
being non-interactive via the Fiat–Shamir paradigm (Fiat 
and Shamir 1986). Namely, the verifier sends a random 
small prime ℓ , and the prover replies with z = x⌊2

T /ℓ⌋ , then 
the verifier accepts when y = zℓxr with r = 2T mod ℓ . To 
reduce the proof size, Pietrzak (2019) introduced another 
interactive protocol via substituting Z∗

N by the group 
QR+

N := {|x|; x = z2 mod N , z ∈ Z
∗
N } with two strong 

primes p and q, so that the prover outputs a proof with 
O(log T ) group elements and the verification only needs 
O(log T ) with the “halving protocol”. Recently, Loe et  al. 
(2022) presented P-VDF without the large proofs, where they 
leveraged the Blum integer N = pq with p ≡ q ≡ 3 mod 4 
such that the verification relies on the factorization of N. As 
a result, the efficiency of verification is the fastest among all 
existing VDFs while we must generate Blum integers for dif-
ferent instantiations.

One notable breakthrough was established in 2019, 
when De Feo et al. (2019) presented a new framework of 
VDFs from the BLS signature (Boneh et al. 2001). In this 
paradigm, the long sequences of isogenies were employed 
as the slow evaluation functions, while the results can be 
efficiently verified via non-degenerate pairings, then two 
schemes were first instantiated from isogenies between 
elliptic curves over Fp and Fp2 , respectively. More specifi-
cally, they employed chains of low-degree isogenies for a 
“slow” evaluation function since the isogeny computation 

still takes T sequential steps, while the pairing can be 
evaluated in poly(logN ) time.

Substituting pairings by the succinct non-interactive 
arguments (SNARGs), the first post-quantum secure 
isogeny-based VDF (Chávez-Saab et  al. 2021) was con-
structed without trusted setups, while the verification 
terminated in quasi-logarithmic time.

Motivated by original time-lock puzzles and VDFs, 
a new primitive named delay encryption (DE) (Burdges 
and De Feo 2021) was introduced by Burdges and De Feo, 
viewed as a time-lock version of Identity-based Encryp-
tions (IBE). Yet it is called an encryption scheme, there 
are no secrets, and the critical concept is session, which is 
generated by a session identifier and is hard to predict. In 
particular, the function Extract , as the defining algorithm 
of generating a session key from an identifier, must run 
sequentially and slowly. Surprisingly, the instantiations 
of certain VDFs can be employed for DEs immediately. 
Namely, the initial construction in Burdges and De Feo 
(2021) followed the same roadmap from isogeny-based 
VDF (De Feo et  al. 2019) by modifying the IBE scheme 
(Boneh and Franklin 2003), and it is facile to construct 
DE from P-VDF (Loe et  al. 2022). For cryptographic 
deployments, some protocols derived from time-lock 
puzzles, i.e., Vickrey auctions and electronic votings, 
would obtain additional advantages via utilizing DEs.

Nowadays, isogenies on hyperelliptic curves (Flynn and 
Ti 2019) have been a hotspot for the shortest key sizes. 
Although it was a mathematical problem (Lubicz and Rob-
ert 2012; Smith 2006) investigated for decades, its crypto-
graphic constructions are relatively new topics. Due to the 
complicated formulae, efficient implementations are cru-
cial problems with abundant improvements (Bruin et  al. 
2014; Cosset and Robert 2015; Flynn 2015; Kunzweiler 
2022), while only hash functions (Castryck et  al. 2020) 
and key exchange protocols (Flynn and Ti 2019) have been 
presented for practical constructions. It is shown that 
the cryptosystem based on isogenies between hyperel-
liptic Jacobians has a smaller key size than that on elliptic 
curves (Costello and Smith 2020; Flynn and Ti 2019), thus 
it is natural to construct more functional applications from 
isogenies on hyperelliptic curves.

Our contributions Following the framework of isogeny-
based VDF, we establish the verifiable delay function and 
delay encryption from hyperelliptic curves, which are 
the first cryptographic applications utilizing isogenies on 
supersingular hyperelliptic curves. More specifically, our 
contributions are summarized as follows.

•	 We first employ Richelot isogenies and non-degener-
ate pairings on hyperelliptic curves to establish a ver-
ifiable delay function without additional interaction, 
where the output is verified via pairings such that 
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no proof is required. Then, we demonstrate that our 
scheme satisfies all security requirements, i.e., the 
parameters of our scheme are fixed to resist several 
known attacks. In particular, the defining property 
“sequentiality” holds under the assumption of high-
genus isogeny shortcut problem, as a generalization 
of that for elliptic curves. As an additional contribu-
tion, we illustrate that isogeny-based VDF can resist 
recent attacks on SIDH.

•	 Following the same framework, we modify Boneh 
and Frankiln’s IBE scheme for a ∆-IND-CPA secure 
delay encryption from hyperelliptic curves with the 
same instantiations, i.e., the session key is obtained 
through T sequential Richelot isogenies. Afterwards, 
we show that the scheme is secure having analogous 
merits and demerits as our VDF scheme.

Organization The rest of this paper is organized as fol-
lows. The “Preliminaries on hyperelliptic curves and 
isogenies” section provides necessary preliminaries on 
hyperelliptic curves and Richelot isogenies. In “Syntax 
of verifiable delay functions and delay encryptions” sec-
tion, the definition and security requirements of VDFs 
and DEs are reviewed. The verifiable delay function from 
hyperelliptic curves is depicted in “Verifiable delay func-
tions from hyperelliptic curves” section, followed by the 
security analysis. The “Delay encryptions from hyperel-
liptic curves” section presents the delay encryption from 
hyperelliptic curves. The last section concludes our work.

Preliminaries on hyperelliptic curves and isogenies
In this section, we recall some necessary mathemati-
cal backgrounds of hyperelliptic curves, pairings, and 
isogenies.

Hyperelliptic curves
Let Fq be the algebraic closure of the finite field Fq with 
characteristic p > 3 . A hyperelliptic curve C of genus 2 
over Fq is given by the following equation:

where f(x) is a squarefree polynomial of degree 5 or 6 
such that there are no solutions (x, y) ∈ Fq × Fq simulta-
neously satisfying the equation y2 = f (x) and the partial 
derivative equations y = 0 and f ′(x) = 0 . For any alge-
braic extension Fqk of Fq , we consider the set

called the set of Fqk-rational points on C.

C : y2 = f (x),

C(Fqk ) := {(x, y) ∈ Fqk × Fqk | y2 = f (x)} ∪
{∞}, if deg(f ) = 5;
{∞+,∞−}, if deg(f ) = 6;

The set C(Fqk ) does not form a group, but we can 
embed C into an abelian variety of dimension 2, which is 
called the Jacobian of C and denoted by JC . The Jacobian 
JC is isomorphic to the divisor class group of degree zero 
Pic0C . Let O be the identity element of JC.

Every divisor in Jacobian JC over a field K can be 
expressed in Mumford representation as a pair (u(x), v(x)) 
of polynomials in K[x], such that u(x) is monic, and 
u(x) divides f (x)− v(x)2 with deg v(x) < deg u(x) ≤ 2 . 
Let P1 = (x1, y1),P2 = (x2, y2) be two points on the 
hyperelliptic curve C, then the Mumford representa-
tion (u(x),  v(x)) associated with two points satisfies 
u(xi) = 0 and v(xi) = yi , for i = 1, 2 . For r ∈ N , we define 
JC [r] := {D ∈ JC | rD = O} as the r-torsion subgroup of 
JC.

Hyperelliptic pairings
Pairings on hyperelliptic curves are useful tools in cryp-
tology. The definitions of two familiar pairings on hyper-
elliptic curves are summarized as follows.

Let C be a hyperelliptic curve of genus 2 over Fq , and JC 
be the corresponding Jacobian. Let r be a divisor of #JC , 
and coprime to q. The embedding degree is the smallest 
positive integer k such that r | (qk − 1) . The group of r-th 
roots of unity in F∗

qk
 is denoted by µr = {z ∈ F

∗
qk

| zr = 1}

.
The Weil pairing is a non-degenerate bilinear map

which is denoted as er(D1,D2) . The Tate-Lichtenbaum 
pairing is a non-degenerate bilinear map

which is denoted as 〈D1,D2〉r . To achieve cryptographic 
applications, we consider the reduced (or modified) 
pairing

Similar to the pairings of elliptic curves, Miller’s algo-
rithm (Cohen et al. 2005; Miller 2004) is used to compute 
hyperelliptic pairings. For more detailed discussions, it 
refers to Galbraith et al. (2007).

JC(Fqk )[r] × JC(Fqk )[r] −→ µr ,

JC(Fqk )[r] × JC(Fqk )/rJC(Fqk ) −→ F
∗
qk
/(F∗

qk
)r ,

tr(D1,D2) = �D1,D2�
qk−1

r
r .
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Richelot isogenies
It is well-known that we can compute an isogenous ellip-
tic curve from a given kernel through Vélu’s formula 
(Vélu 1971), which is the foundation of isogeny-based 
cryptography. Nevertheless, with the growth of genus, 
there is no efficient algorithm to evaluate isogenies 
between Jacobians.

Since the Jacobian JC of a curve C is a principally polar-
ized abelian variety (PPAV), we could consider isogeny of 
principally polarized abelian varieties, which is a finite 
dominant homomorphism of abelian varieties A, and the 
kernel of isogeny is a finite isotropic group. The Richelot 
isogeny is the simplest isogeny whose kernel is contained 
in the 2-torsion subgroup JC [2] from a genus-2 hyperel-
liptic curve. Smith (2006) summarized the Richelot isog-
enies on Jacobians of genus 2, whose kernel is maximal 
isotropic with regards to the 2-Weil pairing.

Proposition 1  (Smith 2006) Let R be a proper, non-
trivial subgroup of JC [2] . If R is the kernel of an isogeny 
between principally polarized abelian surfaces, then R is 
a maximal 2-Weil isotropic subgroup of JC [2] (that is, the 
2-Weil pairing restricts trivially to R, and R is not properly 
contained in any other such subgroup).

Now, we present some facts about Richelot isogenies 
for our construction. Let C : y2 = f (x) be a genus-2 
hyperelliptic curve and JC be its Jacobian, where 
f (x) = c0

∏6
i=1(x − αi)

1. Then, all 2-torsion divisors of JC 
are

where the square brackets denote the equivalence 
classes of divisors. For a maximal isotropic subgroup 
with regards to the 2-Weil pairing, the group contains 
three non-trivial elements such that all αi , 1 ≤ i ≤ 6 , 
occur exactly once in all the representations of divisors. 
Thus, there are fifteen disparate isogenous PPAVs from 
a Jacobian, which are determined by the sets of pairwise 
coprime quadratic factors of f(x).

Definition 1  A quadratic splitting of a squarefree 
degree 6 (resp. degree 5) polynomial f (x) ∈ Fq[x] is 
an unordered triple (G1,G2,G3) ∈ Fq[x] of quadratic 

{O} ∪ {[(αi, 0)− (αj , 0)]; 1 ≤ i < j ≤ 6},

(resp. two quadratic and a linear) polynomials satisfying 
f (x) = G1(x)G2(x)G3(x) under the equivalence

The next proposition provides the codomain of Rich-
elot isogeny, where we refer Bruin and Doerksen (2011), 
Cassels and Flynn (1996), Smith (2006) for more details.

Proposition 2  (Smith 2006) Let 
C : y2 = G1(x)G2(x)G3(x) ∈ Fq[x] be a genus 2 curve such 
that the maximal 2-Weil isotropic subgroup G is deter-
mined by {G1,G2,G3} , where Gi(x) = gi,2x

2 + gi,1x + g0,i 
for i ∈ {1, 2, 3} . Let φ : JC → A be the isogeny with kernel 
G and

 

1.	 If δ  = 0 , then A is isomorphic to the Jacobian of a 
genus-2 curve 

with H1 := G
′
2
G3 − G2G

′
3
,H2 := G

′
3
G1 − G3G

′
1
,

H3 := G
′
1
G2 − G1G

′
2
, where G′

i is the derivative of 
Gi . Moreover, the dual isogeny is determined by 
{H1,H2,H3}.

2.	 If δ = 0 , then A is isomorphic to a product of elliptic 
curves E1 × E2 , where two elliptic curves are defined 
by 

 such that ai,1, ai,2 satisfy Gi = ai,1(x − t1)
2 + ai,2(x − t2)

2 
for some t1, t2 ∈ Fq.

Remark 1
For the second case, the map φ is induced by φ1 × φ2 , 
where

It is essential to evaluate the image of divisors in JC 
under the isogeny φ for the first case of the above prop-
osition. Nevertheless, Richelot isogenies work on the 

{G1,G2,G3} ∼ {βG1, γG2, (βγ )
−1G3}, for all β , γ ∈ F

∗
q .

δ := det





g1,2 g1,1 g1,0
g2,2 g2,1 g2,0
g3,2 g3,1 g3,0



.

C ′ : y2 = δ−1H1(x) ·H2(x) ·H3(x)

E1 : y
3 =

3
∏

i=1

(ai,1x + ai,2) and E2 : y
3 =

3
∏

i=1

(ai,2x + ai,1),

φ1 : C → E1

(x, y) �→
(

(x−t1)
2

(x−t2)2
,

y

(x−t2)3

)

and
φ2 : C → E2

(x, y) �→
(

(x−t2)
2

(x−t1)2
,

y

(x−t1)3

)

.

1  If deg(f ) = 5 , we define α6 = ∞ and x − α6 = 0 · x + 1
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hyperelliptic curve, as the morphisms between hyperel-
liptic curves. For this aim, we map two points to a unique 
divisor on JC , then the divisor is directly calculated from 
the image points. Furthermore, the above method can 
be realized via the Richelot correspondence R ⊂ C × C ′ 
with

for (u, v) ∈ C and (u1, v1) ∈ C ′ . This correspondence pre-
sents the connection of points on hyperelliptic curves, 
but there are always two solutions for these equations. 
To fill the gap, Kunzweiler (2022) established an algo-
rithm to uniquely determine the image on JC ′ . Namely, 
two solutions determine a divisor, then two divisors from 
different points, generating the preimage divisor on JC , 
compose the unique divisor, which is the image under 
Richelot isogenies.

Syntax of verifiable delay functions and delay 
encryptions
In this section, we review the model of verifiable delay 
functions (VDFs) and delay encryptions (DEs), followed 
by the security requirements.

Verifiable delay functions
The definition of verifiable delay function has been first 
established in Boneh et al. (2018). In general, a VDF con-
tains three algorithms: 

1.	 Setup(�,T ) → (ek , vk) : is an algorithm whose inputs 
are the security parameter � and a delay parameter T. 
The outputs are an evaluation key ek and a verifica-
tion key vk. We require that Setup runs in polyno-
mial time of � and T. Then, the input space X  and the 
output space Y are determined by (ek, vk), where we 
assume that X  is efficiently sampleable.

2.	 Eval(ek , s) → (a, τ ) : is a procedure to evaluate on 
input s ∈ X  . The outputs consist of a ∈ Y from s, and 
a (possibly empty) proof τ . The requirement of this 
procedure is the time of computation can not be less 
than T.

3.	 Verify(vk , s, a, τ ) → {True, False}: is a procedure to 
verify whether a is the correct output for s with the 
help of proof τ if necessary. In general, it is an effi-
cient algorithm compared with Eval , i.e., running in 
ploy(�,T ).

The VDF should satisfy three security properties: Cor-
rectness, Soundness, and Sequentiality. The formal defini-
tions of security requirements are depicted below.

(

G1(u)H1(u1)+ G2(u)H2(u1) = 0
vv1 = G1(u)H1(u1)(u− u1)

)

Correctness This property requires that every output of 
Eval must be accepted by Verify.

Definition 2  The VDFs are correct if for any �,T  , pub-
lic parameters (ek, vk), and input s, if (a, τ ) ← Eval(ek , s) , 
then Verify(vk , s, a, τ ) outputs true.

Soundness It states that the incorrect output (ã, τ̃ ) , gen-
erated by any adversary without performing Eval , can not 
be accepted by the Verify.

Definition 3  (Soundness) A VDF is sound if for 
any �,T  , public parameters (ek,  vk), and input s, if 
(ã, τ̃ ) �= Eval(ek , s) , then Verify(vk , s, ã, τ̃ ) outputs true 
with negligible probability.

Sequentiality This is the defining property of VDFs. 
Namely, this property demands that it is impossible to 
evaluate the VDF faster than running Eval , even given 
a boundless amount of parallel computers and precom-
putations, which are generated after the setup of public 
parameters. Whereas, the adversary with |Y| processors 
can evaluate outputs by simultaneously trying all output 
in Y . Therefore, it is crucial to bound the adversary’s abil-
ity of parallelism. For more detailed discussions, please 
refer to Boneh et al. (2018), De Feo et al. (2019).

Definition 4  (Sequentiality) A VDF is sequential if no 
pair of randomized algorithms A0 , which runs in total 
time ploy(T , �) , and A1 , which runs in parallel time less 
than T, can win the following sequential game with non-
negligible probability. 

1.	 (ek , vk) R
←−Setup(�,T );

2.	 L R
←−A0(�, ek , vk ,T );

3.	 s R
←−X ;

4.	 ã R
←−A1(L, ek , vk , s),

where winning is defined as outputing ã = a , where 
(a, τ ) = Eval(ek , s).

Construction framework Inspired by pairing-based 
BLS signature scheme (Boneh et al. 2001), a construction 
framework of VDFs (De Feo et  al. 2019) has been pro-
posed, i.e., the framework is depicted as follows.

Let eX : X1 × X2 → G ⊂ Fqk and eY : Y1 × Y2 → G ⊂ Fqk
 

be non-degenerate pairings, where X1 , X2 , Y1 , Y2 , G are 
subgroups of order N, and k is denoted by the embedding 
degree. In addition, suppose that there is a pair of bijec-
tions φ : X1 → Y1 and φ̂ : Y2 → X2 such that the follow-
ing diagram is commutative.
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Let P be the generator of X1 , then the system param-
eters are initialized by (N ,X1,X2,Y1,Y2, eX , eY ,P,φ(P)).

Delay encryptions
Motivated by VDFs, Burdges and De Feo (2021) intro-
duced delay encryptions (DE), first instantiated with 
supersingular isogenies and pairings by modifying the 
famous IBE scheme (Boneh and Franklin 2003). DE is 
similar to the time-lock puzzles (Rivest et al. 1996), while 
the protocol outputs a session key rather than the proofs.

A DE consists of four algorithms: 

1.	 Setup(�,T ) → (ek , pk) . Take a security parameter 
� , a delay parameter T as inputs, and produce public 
parameters consisting of an extraction key ek and an 
encryption key pk. Setup must run in time poly(�,T ) 
and the encryption key pk must have size poly(�) , 
but the evaluation key ek is allowed to have size 
poly(�,T ).

2.	 Extract(ek , id) → idk . Take the extraction key ek and 
a session identifier id ∈ {0, 1}∗ as inputs, and output 
a session key idk. Extract is expected to run in time 
exactly T.

3.	 Encaps(pk , id) → (c, k) . Take the encryption key 
pk and a session identifier id ∈ {0, 1}∗ as inputs, and 
output a ciphertext c and a key k. Encaps must run 
in time poly(�).

4.	 Decaps(pk , id, idk , c) → k . Take the encryption 
key pk, a session identifier id, a session key idk, and 
a ciphertext c as inputs, and output a key k. Decaps 
must run in time poly(�).

A DE scheme is correct if for any (ek, pk) = Setup(�,T ) 
and any id ∈ {0, 1}∗,

As an encryption scheme, the security of DE is similar 
to that of most public key encryption schemes, i.e., in 
particular of the IBE schemes. Whereas, one additional 
requirement of DE is that it is negligible to output idk for 
a random identifier id in time less than T. The security 
games of DE are depicted in Burdges and De Feo (2021).

idk =Extract(ek , id) ∧ (c, k) = Encaps(pk , id) ⇒

Decaps(pk , id, idk , c) = k .

Verifiable delay functions from hyperelliptic curves
In this section, we establish the concrete VDF under the 
framework in “Syntax of verifiable delay functions and 
delay encryptions” section, utilizing the Richelot isog-
enies and Weil pairings from supersingular hyperelliptic 
curves, then the security analysis is presented.

Our scheme
Following the framework in De Feo et  al. (2019), we 
introduce the VDF from genus-2 hyperelliptic curves.

The prime is the form p = 2T ℓf − 1 such that p+ 1 has 
a large prime factor ℓ . Then, we leverage the algorithm 
in Burdges and De Feo (2021) to generate two trusted 
setups, i.e., two supersingular elliptic curves E1,E2 over 
Fp2 , and transform the above curves into a supersingular 
hyperelliptic curve C, then the Jacobian JC is obtained. 
Let eℓ(·, ·) be a non-degenerate Weil pairing on JC [ℓ].

From the supersingularity of JC , we have 
#JC(Fp2) = (p+ 1)4 , and JC [2T ] ∼= C4

2T is a subgroup 
with four generators, where Cn is a cyclic group of order 
n. Flynn and Ti (2019) demonstrated that the maxi-
mal 2n-isotropic subgroups of JC must be isomorphic 
to C2n × C2j × C2n−j , where 0 ≤ j ≤ ⌊n/2⌋ . To fulfill 
the condition of maximal isotropy, the secret selection 
method has been established in Flynn and Ti (2019), so 
we leverage this algorithm to create the kernel subgroup 
G with three generators Q1,Q2,Q3 such that the isogeny 
φ : C → C ′ is fixed2, i.e., the hyperelliptic curve C ′ is 
decided by φ with kernel G. Immediately, the dual isog-
eny φ̂ is determined.

In practice, we decompose the isogeny into a sequence 
of T Richelot isogenies so that the dual isogeny φ̂ can be 
evaluated in the linear time of T.

Remark 2
We know that every 2-dimension supersingular PPAV is 
isomorphic to either the Jacobian of a genus-2 hyperellip-
tic curve or a product of two elliptic curves, and the sec-
ond case occurs with a probability 10/(p+ 10) (Castryck 
et al. 2020). Upon our choice, the probability of the inter-
mediate PPAVs isomorphic to a product of elliptic curves 
is negligible. Even if this event has occurred, we can simply 
choose another kernel group G′ to evaluate a new isogeny 
with overwhelming probability.

Since the prime is in the particular form, we could 
sample an ℓ-torsion divisor P ∈ JC [ℓ] , and X1 = �P� is a 
subgroup of order ℓ . From the isogeny φ : JC → JC ′ , we 

2  There are several choices of G for given n, j, and the decomposition of the 
isogeny derived from given G is not unique, where the details can be found 
in Flynn and Ti (2019, Sect. 2.2).



Page 7 of 12Chen and Zhang ﻿Cybersecurity            (2023) 6:54 	

know that φ(P) ∈ JC ′ is still an ℓ-torsion divisor. We set 
Y1 = �φ(P)� . After that, we output the evaluation key and 
verification key as φ̂ and (JC , JC ′ ,P,φ(P)) , respectively.

Similarly, JC ′ [ℓ] has four generators and let e′ℓ(·, ·) be a 
non-degenerate Weil pairing. Since the map 
R  → e′ℓ(R,φ(P)) is surjective, there exists at least one 
divisor Q ∈ JC ′ such that e′ℓ(φ(P),Q) �= 1, i.e., Q /∈ �φ(P)� . 
We can randomly sample a divisor Q ∈ JC ′ [ℓ]\�φ(P)� , and 
set Y2 = �Q� ⊂ JC ′ [ℓ] . For every divisor S ∈ Y2 , 
e′ℓ(Q, S) = 1 is always holds while e′ℓ(φ(P), S) = 1 can not 
be satisfied unless S = O . In the same way, we have 
X2 =

〈

φ̂(Q)

〉

.

Remark 3

1.	 This divisor Q can be obtained with probability 
(ℓ− 1)/ℓ . If it fails, we can sample another divisor 
with overwhelming probability.

2.	 Since the degree of isogeny is coprime to ℓ , we can 
also select a generator Q′ in JC [ℓ] and obtain the 
image φ(Q′) under the isogeny φ.

The four groups X1,X2,Y1,Y2 are all cyclic groups, so 
it is facile to uniformly sample a point from these sub-
groups. The function Eval takes a random divisor S ∈ Y2 
and outputs the image φ̂(S) under the isogeny φ̂ . For the 
verification Verify , first check

otherwise, the verification fails. After that, φ̂(S) passes 
the verification if

eℓ(φ̂(Q), φ̂(S))
?
= 1,

Our VDF scheme is depicted in Fig. 1.

Security analysis
Now we present the security analysis of our VDF 
scheme, i.e., three properties are all satisfied.

Theorem 1  Our scheme is correct and sound.

Proof
Assume S = aQ ∈ Y2 for a ∈ Z/ℓZ , then the honest output 
φ̂(S) = aφ̂(Q) ∈ X2 , so it holds that eℓ(φ̂(Q), φ̂(S)) = 1 . 
The equation

comes from Mumford (1970). Thus, the legitimate output 
can pass the verification.

For the soundness, we know that eℓ(φ̂(Q), ·) is degen-
erate on X2 . However, the map S′ �→ eℓ(φ̂(Q), S′) 
is surjective, so a random divisor S′ ∈ JC ′ [ℓ] satis-
fies eℓ(φ̂(Q), S′) = 1 with a probability 1/ℓ . The sec-
ond equation eℓ(P, S

′) = e′ℓ(φ(P), S) is satisfied if 
and only if eℓ(P, S

′) = eℓ(P, φ̂(S)) , which indicates 
eℓ(P, S

′ − φ̂(S)) = 1 . Then, from the surjectivity of 
eℓ(P, S

′) , we know it occurs with a probability 1/ℓ.

Thus the verification succeeds with a probability 1/ℓ2 
when the output is a random divisor S′ ∈ JC ′ [ℓ] . � �

eℓ(P, φ̂(S)) = e′ℓ(φ(P), S).

(1)eℓ(P, φ̂(S)) = e′ℓ(φ(P), S)

Fig. 1  Verifiable delay functions from hyperelliptic curves



Page 8 of 12Chen and Zhang ﻿Cybersecurity            (2023) 6:54 

Remark 4
The perfect soundness for isogeny-based VDF (De Feo 
et  al. 2019) is invalid here. There are four generators in 
JC ′ [ℓ] , so two equations for verification can not determine 
a unique divisor.

Although Sequentiality is the most crucial prop-
erty, it is hard to illustrate that there is no algorithm 
of “running in parallel time less than T”. We now shift 
our attention to the following problem for isogenies 
between hyperelliptic curves, which has been intro-
duced for elliptic curves in De Feo et al. (2019).

Definition 5  Let JC be the Jacobian over Fp2 , iso-
morphic to a supersingular PPAV. Fixed an isogeny 
φ : JC → JC ′ with the maximal 2T-isotropic subgroup G 
and allowed a precomputation in time poly(�,T ) , evalu-
ate φ̂(S) on a random divisor S ∈ Y2 in parallel time less 
than T.

To set parameter sizes, we discuss several attacks on 
the high-genus isogeny shortcut problems, similar to 
the attacks mentioned in Burdges and De Feo (2021) 
and De Feo et al. (2019). The complexities of attacks are 
summarized in Table 1.

Pairing inversion The simplest attacks focus on 
the properties of Weil pairings. Namely, for given 
P,φ(P), S , to compute φ̂(S) ∈ JC [ℓ] is enough to obtain 
a divisor S′ ∈ JC [ℓ] , more specifically, S′ ∈ X2 , such that 
eℓ(P, S

′) = e′ℓ(φ(P), S) , i.e., to solve the pairing inverse 
problem eℓ(P, ·) = e′ℓ(φ(P), S).

Due to the surjection of Weil pairings eℓ(P, ·) , the 
equation

is satisfied with probability 1/ℓ for a random divisor 
S′ ∈ X2 . Thus, a better strategy is to randomly sam-
ple a divisor S0 ∈ Y2 , then find m ∈ Z/ℓZ such that 
e′ℓ(φ(P), S) = eℓ(P, S0)

m , then the divisor mS0 is one 
legitimate output for verification. Therefore, the secu-
rity of DLP impacts the hardness of the pairing inversion 
problem.

From Setup , the embedding degree is 2, indicating 
the best algorithm is the Number Field Sieve (NFS) for 

(2)eℓ(P, S
′) = e′ℓ(φ(P), S)

Fp2 , whose (heuristic) complexity is Lp(1/3) . With the 
progress on NFS, the DLP in Fp2 for a prime of around 
300 bits has been solved in Barbulescu et  al. (2015), 
then Barbulescu and Duquesne (2019) have selected 
the parameters for pairings under several security lev-
els. It is suggested to utilize prime p of around 1500 bits 
and ℓ of 256 bits for 128-bit security. Unfortunately, the 
pairing inversion problem is insecure under quantum 
computers.

Computing shortcuts One natural attack comes from 
finding a “simple” isogeny between JC and JC ′ , agree-
ing with φ on JC [ℓ] , but requiring less parallel time to 
evaluate.

However, considering supersingular PPAVs, there 
are no generic algorithms to compute (ℓ0, ℓ0)-isogenies 
for odd primes ℓ0 . When ℓ0 = 3, 5 , explicit formulae of 
(ℓ0, ℓ0)-isogenies exist for some special cases (Bruin et al. 
2014; Flynn 2015), but the formulae become more com-
plicated when ℓ0 is a large prime, including the algorithms 
introduced in Cosset and Robert (2015). Furthermore, 
the structures of the (ℓ0, ℓ0)-isogenous graphs are more 
complicated than those for elliptic curves, and we only 
know a few properties for ℓ0 = 2 . Therefore, it is tough 
to utilize (ℓ0, ℓ0)-isogeny with odd primes ℓ0 for finding 
an isogenous path between supersingular Jacobians. For 
Richelot isogenies, some properties are discussed in Flo-
rit and Smith (2022), and only the local neighborhoods in 
the (2, 2)-isogeny graph have been exploited in Florit and 
Smith (2022), thus the generic properties of global Rich-
elot isogeny graphs are still hard mathematical problems.

To break our scheme, the attack needs to compute 
another isogenous map between supersingular hyperel-
liptic curves, i.e., isogenous to the product of g supersin-
gular elliptic curves, thus a natural idea is to find another 
isogeny between two superspecial abelian varieties, as the 
more specifical PPAVs isogenous to g supersingular ellip-
tic curves. In general, Costello and Smith (2020) demon-
strated that for two superspecial abelian varieties A1 and 
A2 , finding a path φ : A1 → A2 in the (ℓ0, . . . , ℓ0)-isogeny 
graph requires Õ(pg−1) field operations on a classical 
computer, and Õ(

√

pg−1) field operations on a quantum 
computer. Therefore, computing a shortcut of known 
Richelot isogenies between two supersingular hyperellip-
tic curves requires more than Õ(

√

pg−1) field operations 
for quantum computers, thus it is negligible to compute 
another path between two isogenous hyperelliptic curves 
of known isogenies.

Even if we have obtained a short isogeny ψ : JC → JC ′ , 
we must find ω such that ω ◦ ψ̂ = φ̂ on JC ′ [ℓ] . More spe-
cifically, ω satisfies ω ◦ ψ̂ |Y2= φ̂ |Y2 . Yet the structure of 
JC [ℓ] is clear, it is inefficient to determine map ω with the 
property of endomorphism. To simplify this problem, we 
restrict our attention to the subgroup X2 . If ψ̂(Y2) = X2 , 

Table 1  Complexities of the attacks on the sequentiality of our 
VDF, consisting of the cases for classical and quantum computers

Attacks Classical Quantum

Computing shortcuts Õ(pg−1) Õ(
√

pg−1)

Pairing inversion Lp(1/3) poly(log p)
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ω is determined via computing discrete logarithms on X2 , 
while it hardly occurs. In general, we have ψ̂(Y2) �= X2 , 
then ω induces a group isomorphism from ψ̂(Y2) to 
X2 , where computing discrete logarithms on X2 is also 
involved. As a result, the problem of searching ω is more 
complicated than pairing inversion problems.

Parallel isogeny evaluation Finally, another obvious 
attack would utilize more parallel resources for evaluat-
ing chains of isogenies, whose aim is to accelerate evalu-
ations of the sequential and slow function Eval . However, 
Richelot isogenies utilize unique maximal 2-Weil iso-
tropic subgroups for the next isogeny, requiring a maxi-
mal 2-Weil isotropic subgroup in Jacobians, so all existing 
algorithms go through all T intermediate PPAVs. In addi-
tion, for chains of 2-isogenies, replacing two 2-isogenies 
by one 4-isogeny is the generic technique for SIDH (De 
Feo et  al. 2014), which will reduce the total cost by a 
constant factor, while there is no algorithm to evaluate 
(2n, 2n)-isogenies directly.

Consequently, the implementations of Richelot isog-
enies must be in a straight line, similar to the iterative 
isogenies for isogeny-based VDFs. Hence, an adversary 
can not accelerate the computation even using poly(T) 
processors at present.

Other known attacks In Kunzweiler et  al. (2021), an 
adaptive attack has been proposed, where the gist is 
the symplectic basis related to Weil pairings. In gen-
eral, finding the symplectic basis is equivalent to solv-
ing DLP for Weil pairings, which is practical for smooth 
order ℓn0 . Whereas, our scheme leverages the divisors 
of large prime order, then determining the symplectic 
basis of order ℓ is at least as hard as the pairing inversion 
problems.

Recently, Castryck and Decru (2023) established an 
attack for SIDH, then Robert (2023) generalized this 
method to the PPAVs of all genera. However, this strategy 
employs all generators of torsion groups in two PPAVs 
and leverages the parameter tweaks for the smooth prime 
factorization, then the secret isogeny is recovered. In our 

VDF, the isogeny has been fixed with the output, i.e., we 
already have an isogeny path, and the ultimate goal is to 
evaluate the isogeny faster, so it may work for comput-
ing shortcuts. Luckily, this attack can not apply to VDFs 
straightforwardly. On the one hand, only two genera-
tors of JC [ℓ] with the corresponding images in JC ′ are 
known, such that there are not enough divisors to apply 
this attack. On the other hand, the prime p is particularly 
selected such that p+ 1 has a large prime factor ℓ , so the 
parameter tweaks have few choices since the guess pro-
cessions search for small isogenies upon the factorization 
of the difference value of divisors of 2T and ℓf  . Hence, for 
the huge difference between 2T and ℓf  , the first guessing 
isogeny is of large degree, almost identical to 2T , which 
makes it almost impossible to find a legitimate isogeny 
since there is one unique choice among all likely isog-
enies, whose degree is close to 2T . Consequently, this 
attack has no influence on our scheme. Similarly, yet two 
generators with the corresponding images are fixed, the 
isogeny-based VDF (De Feo et  al. 2019) can resist the 
attacks for genus one SIDH (Castryck and Decru 2023; 
Maino et al. 2023; Robert 2023).

Parameters and comparison
Based on the above analysis, we choose a 256-bit prime 
ℓ , then set T = 1244 and f = 63 to obtain the prime 
p = 21244 · 63ℓ− 1 of 1506 bits, as the same prime in 
De Feo et  al. (2019) for the security level of 128 bits. It 
is believed that computing discrete logarithm in a sub-
group of order ℓ in a finite field Fp2 requires more than 
2128 operations.

As for the implementation, Weil pairings can be real-
ized by pairing-based cryptography, where Miller’s algo-
rithm (Miller 2004) is suggested. Moreover, one can 
substitute Weil pairings by Tate pairings, then half of 
Miller loops are saved at the expense of one final expo-
nentiation. However, Richelot isogenies is a relatively 
new topic, and we refer to the relevant algorithms in 
Castryck and Decru (2023), Castryck et al. (2020), Flynn 
and Ti (2019) and Kunzweiler (2022). In general, isoge-
nies between high genus PPAVs are more inefficient than 
elliptic curve isogenies, which means that our VDFs may 
obtain larger delay effect under the same parameter set 
than isogeny-based VDF (De Feo et al. 2019).

The overall comparison of different VDF schemes is 
depicted in Table  2. Compared with other VDFs, e.g., 
Pietrzak (2019) and Wesolowski (2020), one notable 
advantage is the empty proof, where the pairings play the 
role of proof. Note that Leo’s VDF (Loe et al. 2022) can 
achieve empty proof, but it is a prerequisite to generate 
a fresh Blum integer for every VDF, while the prime in 
our scheme can be applied for all schemes. Apart from 
that, our VDF is non-interactive such that the output can 

Table 2  Comparison of VDFs. For simplity, all times are assumed 
to be bounded by a constant factor, where T and � are the delay 
parameter and security parameter, respectively

VDF Setup Eval Verify Proof size

Wesolowski’s VDF (Weso-
lowski 2020)

�
3 (1+ 2

log T
)T �

4
�
3

Pietrzak’s VDF (Pietrzak 2019) �
3 (1+ 2√

T
)T log T �

3

Leo’s VDF (Loe et al. 2022) �
3 T 1 –

Isogeny VDF (De Feo et al. 
2019)

T log � T �
4 –

This work T log � T �
4 –
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be verified without interactions. Nevertheless, the com-
putation of Richelot isogenies is inefficient, and the time 
needed for setup is almost the same as evaluation, which 
is also the drawback of isogeny-based VDFs. To this 
problem, a possible solution may come from Kummer 
varieties, where Kummer lines have been employed for 
acceleration (Chen et al. 2023), which needs more devel-
opment in this realm. Moreover, the property of perfect 
soundness fails for our design, which is the shortage 
compared with isogeny-based VDFs (De Feo et al. 2019).

Delay encryptions from hyperelliptic curves
Since the original DE has been derived from isogeny-
based VDFs (Burdges and De Feo 2021), we present new 
DE from hyperelliptic curves in a similar roadmap. The 
IBE scheme (Boneh and Franklin 2003) is modified for 
our construction, i.e., the master secret is substituted by 
a long chain of Richelot isogenies, so that the decryption 
key from a fixed identity is a slow operation.

Our design
Setup is almost identical to the VDFs in Fig. 1, where the 
prime p = 2T ℓf − 1 and Jacobian JC are fixed, then an 
isogeny φ : JC → JC ′ with the image of an ℓ-torsion divi-
sor is established. To depict other routines, we would 

introduce two hash functions. Let H1 : {0, 1}
� → JC ′ [ℓ] 

be used to hash id to divisors of order ℓ , and 
H2 : Fqk → {0, 1}� be a key derivation. The detailed pro-
tocol is described in Fig. 2, where the notations coincide 
with those in Fig. 1.

Remark 5
If Weil pairing e′ℓ(Q,φ(P)) = 1 , Q is substituted by 
H1(id||Q) , where the failure probability is 1/ℓ . Moreover, 
this strategy applies to all involved evaluations of H1.

The correctness of our scheme is satisfied by the follow-
ing equation

Remark 6
Note that two hash identities Q,Q′ such that 
e′ℓ(φ(P),Q) = e′ℓ(φ(P),Q

′) determine the same s for 
Encaps and Decaps , then the adversary only compute 
the image of one divisor from them under φ̂ . Whereas, 
from the analysis in the proof of Theorem 1, it occurs with 
probability 1/ℓ , which is still negligible.

(3)eℓ(rP, φ̂(Q)) = eℓ(P, φ̂(Q))r = e′ℓ(φ(P),Q)r .

Fig. 2  Delay encryption from hyperelliptic curves
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Security analysis
To illustrate the security of our scheme, we follow the line 
in Burdges and De Feo (2021). We first generalize the bilin-
ear isogeny shortcut games to high genus as follows:

Precomputation The adversary receives p, ℓ, JC , JC ′ ,φ and 
outputs an algorithm B.

Challenge The challenger outputs uniformly random 
P0 ∈ JC [ℓ] and Q0 ∈ JC ′ [ℓ].

Guess Algorithm B runs on the pair (P0,Q0) . Then the 
adversary wins if B outputs

Similarly, we say the high-genus bilinear isogeny shortcut 
game is ∆-hard if no adversary running the precompu-
tation in time poly(�,T ) produces an algorithm B that 
wins in time less than ∆ with non-negligible probability. 
Consequently, the following theorem illustrates that our 
scheme satisfies ∆-IND-CPA if the above game is hard.

Theorem 2  The delay encryption scheme from hyperel-
liptic curves is ∆-IND-CPA secure, assuming the ∆′-hard-
ness of the high-genus bilinear isogeny shortcut game with 
∆ ∈ ∆′ − o(∆′) , where H1 and H2 are assumed as the ran-
dom oracles.

Proof
The proof of this theorem is almost identical to that of 
delay encryption from elliptic curves in Burdges and De 
Feo (2021), so we omit the proof for brevity.�  �

For the security of the high-genus bilinear isogeny 
shortcut game, it follows the analysis of three attacks in 
“Security analysis” section. Consequently, the parameters 
are the same as those for our VDFs from hyperelliptic 
curves with analogous merits and demerits.

Conclusion
In this work, we present the first VDF and DE from 
hyperelliptic curves by utilizing Richelot isogenies and 
non-degenerate pairings, which broaden the crypto-
graphic applications of high-genus isogenies. In particu-
lar, we employ the framework in isogeny-based VDF for 
two schemes with analogous merits and demerits as those 
from isogeny-based ones, while our scheme is secure 
under generalized assumptions on high-genus isogenies. 
To further implement those schemes, the study on effi-
cient Richelot isogenies would be welcome, which is the 
main obstacle to the implementation of isogeny-based 
cryptography from hyperelliptic curves. Apart from that, 
the cryptographic applications from high-genus isogenies 
may share the smallest key sizes among post-quantum 

B(P0,Q0) = eℓ(P0, φ̂(Q0)) = e′ℓ(φ(P0),Q0).

cryptosystems, thus it is natural to enrich this cryptosys-
tem with abundant cryptographic constructions.
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