
Cano et al. Cybersecurity (2023) 6:57
https://doi.org/10.1186/s42400-023-00193-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Performance evaluation of Cuckoo filters
as an enhancement tool for password cracking
Maria‑Dolores Cano1* , Antonio Villafranca1 and Igor Tasic1

Abstract

Cyberthreats continue their expansion, becoming more and more complex and varied. However, credentials
and passwords are still a critical point in security. Password cracking can be a powerful tool to fight against cyber
criminals if used by cybersecurity professionals and red teams, for instance, to evaluate compliance with security poli‑
cies or in forensic investigations. For particular systems, one crucial step in the password‑cracking process is compari‑
son or matchmaking between password‑guess hashes and real hashes. We hypothesize that using newer data struc‑
tures such as Cuckoo filters could optimize this process. Experimental results show that, with a proper configuration,
this data structure is two orders of magnitude more efficient in terms of size/usage compared to other data structures
while keeping a comparable performance in terms of time.

Keywords Authentication, Passwords, Password cracking, Cybersecurity, Cuckoo filters

Introduction
Cybercrime has significantly grown over the last decade,
impacting individuals, enterprises, and governments
worldwide. The variety and depth of breaches and inci-
dents, such as social engineering or denial of service
attacks, have increasingly created a permanent concern
amongst security professionals to the point that it is con-
sidered a pandemic (The Economist 2021).

Examining the latest security events compromising
confidentiality, integrity, and availability of information
assets, and those that resulted in the exposure of data
to unauthorized parties as published in (Verizon 2021),
we observe that attacks with financial motivation are the
number one and the organized crime is still the leading
actor. Also, it is interesting also to realize that basic web
application attacks represent the second most common
pattern in incidents and breaches. In contrast, social
engineering ranks first in breaches and third in incidents.

Commonly, some of these incidents are due to stolen cre-
dentials or password cracking. Similarly, the compromise
of password-based or single-factor user credentials is
identified by (VMWare et al. 2022) as one of the top con-
cerns for many security leaders.

Understanding novel and agile forms of password
cracking is paramount to creating robust defense sys-
tems and increasing the culture of cybersecurity amongst
professionals and organizations. This paper proposes
and evaluates a novel method to optimize the pass-
word-cracking process. The idea relies on incorporating
cuckoo filter data structures to accelerate the matchmak-
ing between guesses and targets. To evaluate this pro-
posal, we use the widely known password cracking tool
John the Ripper, due to its wide use in the cybersecurity
communities, to crack an anonymized, publicly available
dataset of leaked password hashes. Then, we compare
the performance of the cuckoo filter data structure for
matchmaking with other alternatives, specifically, binary
search trees, binary search, linear search, and hash tables.
Results show that (i) among the tested methods, Cuckoo
filters are the second most efficient solution in terms of
time consumption and that (ii) when compared in terms

*Correspondence:
Maria‑Dolores Cano
mdolores.cano@upct.es
1 Department of Information and Communication Technologies,
Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00193-6&domain=pdf
http://orcid.org/0000-0003-4952-0325

Page 2 of 11Cano et al. Cybersecurity (2023) 6:57

of usage, Cuckoo filters are two orders of magnitude
more efficient than the second best option, hash tables.

The rest of the paper is organized as follows. Section
“Related work” summarizes recent trends in password-
cracking methodologies from the related literature. The
operation of Cuckoo filters and how to incorporate them
into the cracking process is described in Sect. “Cuckoo
filters”. The methodology is shown in Sect. “Methodol-
ogy”. The evaluation of the proposal and the correspond-
ing results are shown and discussed in Sect. “Results”. The
paper concludes by highlighting the most important find-
ings and our future work.

Related work
Textual passwords are still one of the most common
authentication methods (Shi et al. 2021; Bonneau et al.
2012). They are composed of a set of alphanumeric char-
acters, where the rule of thumb is that the longer and
more complex the passwords are, the higher the security
offered, which raises the known tradeoff between usabil-
ity and security. Password authentication goes beyond
using several characters to gain access to a system. As
explained by (Ali et al. 2021), passwords can be divided
into three categories: token-based, biometric-based, and
knowledge-based. Within this last category, we have both
graphical-based (involving a mouse password entry) and
textual-based passwords. Then, a textual password could
belong to a direct keying or a reformation-based scheme.
In this work, we focus on direct keying passwords.

The reasons to investigate password cracking are var-
ied, from law enforcement and forensic investigations
(Kanta et al. 2020; Kanta et al. 2021; Maqbool et al. 2020)
to cybersecurity training (Švábenský et al. 2021) and
ethical hacking (Bishop and Klein 1995; Yang et al. 2022),
through understanding the effect of people’s culture and
background on the use of passwords (Shin and Woob
2022; Brown et al. 2004) (Bonneau 2012; Wang et al.
2017; Wang et al. 2018). Much has been written about
password cracking during the last decades. It is worth
mentioning that whereas password cracking is an offline
technique in which the attacker (usually) has access to the
password hashes, password guessing is performed online
while trying to gain unauthorized access to a system.

Some research works from the related literature have
proposed new methods for enhancing the performance
of password cracking. In order to reduce the time needed
for this operation, the work done by (Weir et al. 2009)
was the first to show that it is possible to use Probabilis-
tic Context Free Grammar (PCFG) to create either pass-
word guesses or templates via training and then employ
them to crack passwords more efficiently. Numerous
works have followed this trend with very interesting
results (Veras et al. 2014; Houshmand et al. 2015). In

(Ali et al. 2021), the authors presented a brute force algo-
rithm to test the security of its reformation-based pass-
word scheme and compare it to other solutions from the
related literature. From a different perspective, a Markov-
model-based scheme was introduced by (Narayanan and
Shmatikov 2005) to improve dictionary-based attacks.
The authors were able to generate guesses that acceler-
ate the process compared to rainbow attacks, and some
other works have followed this research line (Dürmuth
et al. 2013). Lately, with the boost in the application of
machine learning and deep learning methods, several
authors have presented promising proposals, such as
(Hitaj et al. 2019), where the authors use a Generative
Adversarial Network (GAN) to learn the distribution of
real passwords and to produce guesses, (Xia et al. 2020),
combining a neural network with PCFG, (Kaleel and
Nhien-An 2020) studying the performance of PassGAN,
and other interesting works such as (Melicher et al. 2016)
(Yang et al. 2022).

To the authors’ knowledge, the two most complete
works on password cracking up to date were presented
by (Ji et al. 2017) and (Shi et al. 2021). In (Ji et al. 2017),
the authors conducted a large-scale empirical study with
almost 150 million real passwords. They tested the level
of correlation, the effectiveness of commercial password
meters demonstrating their inconsistency, and the best
strategy in terms of what algorithms are more effective
(e.g., with or without training, intra- or cross-site, etc.),
concluding that a hybrid option could be more appropri-
ate. Similarly, (Shi et al. 2021) studied over 220 million
plaintext passwords. Although they also concluded that
there does not exist a particular better cracking method
due to the impact of multiple factors, the individual
analysis of each dataset showed noteworthy results. For
instance, they demonstrated that whereas English data-
sets were better cracked with PCFG algorithms, Chinese
datasets responded better to Markov-based methods.

Regarding commercial tools for password cracking,
Hashcat (Advanced Password Recovery 2022) and the
latest versions of John the Ripper (Open Wall 2022), e.g.,
Jumbo, are some of the most common applications. JtR
enables several modes of operation, specifically:

• Wordlist mode, the simplest operation mode where it
is only necessary to specify a wordlist and a (or some)
password file; word mangling rules can be enabled.

• Single crack mode, a faster mode than the wordlist
one, but that only uses login names and directory
names, being able to apply more mangling rules than
in the previous mode.

• Incremental mode, considered the most powerful
mode because all possible character combinations
are verified, with the consequent increase in time.

Page 3 of 11Cano et al. Cybersecurity (2023) 6:57

• Markov mode, one of the latest improvements to JtR,
tests guesses using statistical analysis of similarities
among known passwords.

To the authors’ knowledge, neither previous research
works nor commercial tools for password cracking have
studied the use of cuckoo filters to enhance their opera-
tion. The following section explains the operation of
this data structure, whose main advantage is double:
guarantying a zero false-negative rate and a low false-
positive rate while maintaining a comparative low time
consumption.

Cuckoo filters
Bloom filters (Bloom 1970) and Cuckoo filters (Fan et al.
2014) are probabilistic data structures commonly used to
provide membership checking. Their two main advan-
tages are speed and memory efficiency. Both methods
offer a zero false-negative rate and a non-zero false-
positive rate, i.e., the answer to a membership query will
always be definitely not (with no error) or maybe yes (with
a false positive rate).

Some general characteristics of Bloom filters are the
following. The larger the bit array (space) is, the lower the
false-positive is. The more hash functions you have, the
slower your Bloom filter and the quicker it fills up, and
if the hash functions are just too few, we will encounter
many false positives. In addition, an essential feature of
classic Bloom filters is that to delete existing items, it is
required to rebuild the complete filter. This fact led to
the introduction of new Bloom filter variants (Cao et al.
2000; Song et al. 2005; Lim et al. 2017; Wu et al. 2021).
However, some of these modifications incur a significant
performance or space overhead. For this reason, (Fan
et al. 2014) proposed Cuckoo filters as an alternative that
allows adding and deleting items dynamically, demon-
strating better performance and higher space efficiency if
the false positive rate is kept below 3%.

Standard Cuckoo filters employ a modification of cuckoo
hashing. As a brief note, a cuckoo hash table is composed
of an array of buckets, and each bucket can hold several
items. The number of items that can be stored in bucket
is denoted by b. The number of candidate buckets where a
new element x can be inserted equals the number of hash-
ing functions used, k, and the output of the k hash func-
tions gives the bucket numbers. Consequently, to insert
an item x, the k hashes of x should be calculated. Then, we
check if either of x’s buckets is empty. If both buckets are
empty, the algorithm chooses one of the candidate buckets
and inserts the item. If all candidate buckets are in use, the
algorithm ejects one of the existing items in one of the x’s

candidate buckets, re-inserting it into its alternate bucket.
These relocations can be executed recursively several times
until a free bucket is found or until a maximum number is
reached.

The next advance in the use of these data structures was
the introduction of Cuckoo filters. In contrast to Bloom
filters, which store 1 bit for each item, or cuckoo-hashing,
which store the complete item, a Cuckoo filter stores a fin-
gerprint for each inserted item x. The fingerprint is a bit
string obtained from the item x using another hash func-
tion. Furthermore, unlike cuckoo-hashing, Cuckoo filters
will apply partial-key cuckoo hashing. When a set mem-
bership query for item x is required, the algorithm outputs
true just in case an identical fingerprint of x is found. It is
important to observe that the fingerprint is not the hash
of x, and the original key-value pairs are not stored, con-
sequently being non-retrievable. This fact implies that we
could not calculate an item’s alternate bucket as we did with
cuckoo hashing. Partial-key cuckoo hashing was intro-
duced to enable this capacity by stating that only two hash
functions will be used. In other words, only two bucket
candidates given by h1(x) and h2(x) are employed, and these
two hashes will follow the rule depicted in (1). This rule
guarantees that x’s alternate bucket can be obtained using
the location of either bucket h1(x) or h2(x) and x’s finger-
print due to the XOR operation. That is, there is no need to
know x. Figure 1 depicts an example of inserting elements
in a Cuckoo filter and checking membership.

Following the same philosophy of Bloom filters, the
Cuckoo filter’s false-negative rate is zero, and the false-pos-
itive rate ε is shown in (2), where n is the number of items
expected to be inserted into the set, m is the size of the bit
array, b is the number of items that a bucket can hold, and
f is the fingerprint length in bits. The Bloom filter’s false
positive rate is shown in (3), where k is the number of hash
functions (Reviriego et al. 2020). Table 1 summarizes some
characteristics of Bloom filters and Cuckoo filters that
should be considered in their implementation.

(1)
h1(x) = hash(x)

h2(x) = h1(x) · hash x′sfingerprint

(2)εCuckoo filter ≈

(

8 ·
n

m·b

2f

)

(3)εBloom filter ≈

(

1−

(

1−
1

m

)k·n
)k

Page 4 of 11Cano et al. Cybersecurity (2023) 6:57

Fig. 1 An example of the Cuckoo Filter operation using a bit array of size 18 (m = 18), each bucket can store only one fingerprint (b = 1),
and the fingerprint length in bits is 5 (f = 5). The hash function is hash(x) = 2*x mod 18 and fingerprint(x) = (x − 1) mod 18. (a) Inserting elements: To
insert item 93, the value fingerprint(93) = 2 should be stored either in position h1(93) = 6 or in position h2(93) = 2, because position 6 is occupied
the value 2 is inserted in position 2. To insert item 20, the value 1 should be stored either in position 4 or in position 7, both are available,
so the value 1 is inserted in position 4. To insert item 24, the value 5 should be stored either in position 12 or in position 6, and both buckets are
occupied. Consequently, we randomly choose bucket 6 and displace the current fingerprint 10 to its alternate bucket 4. To calculate the alternate
bucket, we know that h1(x) = 6, then h2(x) = 6 ⊕ hash(10) = 6 ⊕ 2 = 4, so the new location should be position 4. Because bucket 4 is also in use, we
displace the current fingerprint 1 to its alternate bucket 7 (if h1(x) = 4 then h2(x) = 4 ⊕ hash(1) = 4 ⊕ 2 = 7), which is free. (b) Verifying membership:
To test the membership of element 15, we calculate its fingerprint, fingerprint(15) = 14, and the two possible buckets where the fingerprint could
be located (positions h1(15) = 12 and h2(15) = 6), because position 12 stores the fingerprint of item 15, we can state that the item belongs to the set
with a non‑zero false‑positive rate

Table 1 Comparative characteristics of Bloom filters and Cuckoo filters (Notation: m≡number of buckets for Cuckoo or size of the
array for Bloom; n≡number of items; b≡bucket size for Cuckoo; α≡load factor 0 ≤ α ≤ 1; k≡number of hash functions; f≡fingerprint
length in bits for Cuckoo; n/a≡not applicable)

Standard Bloom filter Cuckoo filter

Lookup operation O(k) O(1)
maximum of two buckets to check

Insert operation O(k) O(1)
longer as load factor approaches capacity

Delete operation N/a O(1)
maximum of two buckets to inspect

Number of hash functions kopt
(

m

n

)

· ln 2

to minimize false positive rate

2
to achieve the close‑to‑best space effi‑
ciency for the most common acceptable
false positive rate

Minimal fingerprint size (bits) N/a
⌈

log2

(

1
εCuckoo filter

)

+ log2 (2b)
⌉

Best number of entries per bucket b N/a 4
to achieve the close‑to‑best space effi‑
ciency for the most common acceptable
false positive rate

Bits per item (load factor = 95.5%) 1.44 log2

(

1
εBloom filter

)

1.05
(

log2

(

1
εCuckoo filter

)

+ log2 (2b)
)

Page 5 of 11Cano et al. Cybersecurity (2023) 6:57

Methodology
In this section, we explain how to improve the perfor-
mance of password cracking by incorporating Cuckoo fil-
ters. Our hypothesis is that the time required to perform
password cracking can be reduced if (1) the correspond-
ing target hashes are inserted into a Cuckoo filter and
(2) the guessed passwords are checked against this data
structure.

In order to evaluate this proposal, we selected one
leaked password dataset with New Technology Lan
Manager (NTLM) hashes that may have resulted from
different types of attacks.1 The NTLM authentication
protocols authenticate users and computers based on a
challenge/response mechanism that proves to a server or
domain controller that a user knows the password asso-
ciated with an account. The format is shown in Fig. 2,
where we can see the password’s hash and the number
of times this password had been seen in the source data
breaches separated by a colon. It is important to state
that we only employ these password hashes for research
purposes, and no personally identifiable information is
being used, explored, or disclosed.

The general method of password cracking, for instance,
using well-known tools such as JtR, is as follows. A pass-
word guess is created. Then, the corresponding password
hash of the guess should be computed and tested (com-
pared) against the target hash value. This target hash
value is frequently included in a large file with hundreds
or thousands of other “leaked” hashes. Therefore, we
could wonder, once the guess is generated and the pro-
gram looks for a match to see if it is a valid crack, what is
the most common technique used for searching? There
could be many options: linear search, a hash map, etc.
Particularly with JtR, if salts are correctly used, there is

only one target hash per salt value. Therefore, it would be
a one-to-one comparison, and there would be no need for
a search. In other cases, it is more efficient to compute
multiple hashes at once from multiple password guesses
using newly available computing power such as Graph-
ics Processing Units (GPU). In this case, the comparison
would be many-to-one (Open Wall 2017). However, for
some systems that use NTLM hashes, the comparison
step requires using a searching algorithm, such as bitmap
structures, hash tables, or linear searches (Open Wall
2023). NTLM hashes are still used by current Windows.
They are very fast and don’t use salts, so when cracking
those the comparison step is in fact a bottleneck. Con-
sequently, we propose to include a Cuckoo filter in the
search process to improve its efficiency by speeding up
the comparison stage.

In order to evaluate the performance of our proposal,
we designed several tests with the following methodology
(Fig. 3). Given that our goal is to measure the effective-
ness of incorporating a Cuckoo filter into the cracking
process, we decided not to modify JtT or Hashcat, which
will be considered for future work, but to compare the
performance of a linear search, a hash table, a binary
search tree, a binary search, and a Cuckoo filter under the
same case study of password cracking.

First, we split the leaked password dataset with NTLM
hashes into n sub-datasets of different sizes (see Table 2).
Each sub-date is called targeti (i = 1..n). For each sub-
dataset targeti, we generate the corresponding Cuckoo
filter using the cuckoo filter library for Python (Guan
2019). That is, we fill the Cuckoo data structure by insert-
ing the items of the sub-dataset targeti. Next, we crack
the passwords of the sub-dataset targeti using JtR and
store the obtained cracked hashes in a temporary file
tmpi. New random, fake hashes that do not belong to
any of the cracked passwords are then inserted into the
temporary file tmpi. The reason is to get as close as pos-
sible to reality so that there will be correct and incorrect
guesses during the cracking process. Therefore, the tem-
porary file tmpi includes the correct hashes, i.e., the tar-
get hashes corresponding to the cracked passwords, and
filler (fake) hashes (50%).

Then, the search process is implemented using as input
the temporary file tmpi, emulating the hashes created
by the password cracking program, and checking if the
hashes that it contains match the target hashes targeti
(and therefore, meaning that we were able to crack the
passwords). The search time ti

s is computed as a perfor-
mance indicator. Figure 3 summarizes the evaluation pro-
cess. The comparison has been carried out using a Virtual
Machine (Virtual Box) with Debian (64-bit) (Kali Linux),
8192 MB RAM, six processors, 80 Gb storing capac-
ity, VMSVGA 128 Mb graphics, and Python 3.11.2. In

Fig. 2 An example of NTLM hashes from the dataset in hexadecimal
format

1 https:// havei beenp wned. com/ Passw ords

https://haveibeenpwned.com/Passwords

Page 6 of 11Cano et al. Cybersecurity (2023) 6:57

addition, specifically for the Cuckoo filter data structure,
additional tests are carried out varying its configuration
parameters to evaluate their impact on performance.

Results
Results are illustrated in Fig. 4. In Fig. 4a, we compare
the different search methods with the Cuckoo Filter
using its default parameters (m = total number of hashes,
b = 4, f = 8). We can observe that the time required to

find matches between the computed hashes (from the
guess passwords) and the target hashes for each search
algorithm ti

s is lower for the hast table. The second and
third faster methods are cuckoo filter and the binary
search methods, respectively. Nevertheless, we can
deduce from Fig. 4b that the sizes of the data structures
are not negligible, making the Cuckoo filter the most
optimal one in two orders of magnitude compared with
the hash table.

Fig. 3 Flow diagram for the evaluation process. This process is repeated for each data structure under study. (*) The search methods are linear, hash
table, binary search tree, binary search, and Cuckoo filter

Page 7 of 11Cano et al. Cybersecurity (2023) 6:57

Linear search is simple but inefficient for large data sets.
Although it is easy to implement, its search time increases
linearly with data size, making it unsuitable for large data
sets. However, it could be a viable option for very small
data sets. Binary search significantly improves performance
compared to linear search using an ordered data structure.
It is an acceptable method for large data sets and presents a
logarithmic search time. In addition, it offers high accuracy
and has no false positives or negatives. However, it requires
the data to be pre-sorted and can be more complex to
implement. Binary search trees offer reasonable search
time and high accuracy. Their performance improves com-
pared to linear search but is inferior to binary search. The
size of the data structure depends on the number of nodes
and the depth of the tree, which implies significant mem-
ory consumption. Binary search trees are useful when a
tidy data structure is required and accuracy is critical.

Hash tables are highly efficient regarding search time,
as they allow direct access to items through a hash func-
tion. They provide high search speed, especially for large
data sets. However, the size of the data structure grows
with the number of elements, which can be a limitation
in terms of memory consumption. In addition, it is criti-
cal to select a suitable hash function and consider pos-
sible collisions. Cuckoo filters are an attractive option for
balancing speed, accuracy, and memory consumption.
They offer fast search time and a compact data structure.
The memory consumption of the Cuckoo filter is lower
compared with the other methods, as depicted in Fig. 4
(b), which makes it an efficient alternative.

Correctly setting the Cuckoo filter parameters is impor-
tant to minimize false positives. To study the Cuckoo fil-
ter’s performance with more detail, we show in Figs. 5,
6, and 7 the effect of using different bucket sizes (b = 2,
b = 4, b = 6), different fingerprint sizes (f = 8, f = 16, f = 24,
f = 32), and different filter sizes (m = total, m = 2·total,
m = 3·total m = 4·total, where total is the total number of
hashes to be tested). For b = 4, i.e., each bucket can store
four fingerprints, we can see in Fig. 5 that varying the size
has little impact on the searching time. However, using a
fingerprint length of more than 8 bits decreases the false-
positive rate to almost zero. This effect is also noticeable
for b = 2 and b = 6, i.e., each bucket can store two or six
fingerprints, respectively, as shown in Figs. 6a and 7a.
The reason is that a larger fingerprint reduces the likeli-
hood of a collision.

As expected from the definition of a Cuckoo filter,
larger values of m increase the size of the data structure.
If this parameter growths then there will be more “space”
available to store items. Nevertheless, this does not mean
that the performance will be better as shown in Figs. 5, 6,
and 7. Observing these figures for f = 16, f = 24, and f = 32
bits, we can see that the best configuration in terms of
searching time is found for the combination {b = 2, f = 16}
(Fig. 6.b) and {b = 6, f = 24} (Fig. 7c). In the former, there
is a slightly higher size cost because the best result is
obtained with m = 3, opting for {b = 2, f = 16} with m = 1
as the best configuration considering the searching time
and size.

Table 2 Details of the files and hashes employed for the performance evaluation

Subdata set Size of the original
leaked file (MB)

Hashes of the
original leaked file

#Cracked hashes
using JtR

#Fake hashes
introduced

#Total number of
hashes

Size of the
filled file tmp
(MB)

1 134 3,897,669 3,897,669 3,897,668 7,795,337 340

2 67 1,948,834 1,948,834 1,948,833 3,897,667 168

3 34 974,417 974,417 974,416 1,948,833 84

4 17 487,208 487,208 487,207 974,415 42

5 8.3 243,604 243,604 243,603 487,207 20.7

6 4.2 121,802 121,802 121,801 243,603 10.3

7 2.1 60,901 60,901 60,900 121,801 5.1

8 1 30,450 30,450 30,449 60,899 2.6

9 0.5341 15,225 15,225 15,224 30,449 1.3

10 0.267 7612 7612 7611 15,223 0.6587

11 0.1335 3806 3806 3805 7611 0.3318

12 0.0667 1903 1903 1902 3805 0.1679

Page 8 of 11Cano et al. Cybersecurity (2023) 6:57

Conclusion
New data structures, such as the Cuckoo filters, have
been proven efficient in several computer network
applications. Nevertheless, its use in security has been
limited mainly to authentication tasks. In this work, we
have introduced a new use of Cuckoo filters as a valu-
able tool within the password-cracking process. The
proposed method is particularly interesting for systems

that use NTLM hashes because, in this scenario, the
comparison step between generated hashes and target
hashes requires a searching algorithm. Results show
that whereas there is no a direct reduction in time, the
gain in terms of memory usage is of two orders of mag-
nitude compared to commonly employed data struc-
tures, which opens the door to further research in this
direction.

Fig. 4 Comparison of the use of different data structures for matchmaking. a Time in (s) required for matchmaking, i.e., finding matches
between the computed hashes (from the guess passwords) and the target hashes for each search algorithm b Size in (MB) of the data structure
used for matchmaking. The represented size is the output of the Python primitive sys.getsizeof() that returns the size of an object in bytes,
considering that only the memory consumption directly attributed to the object is accounted for, not the memory consumption of objects it refers
to

Page 9 of 11Cano et al. Cybersecurity (2023) 6:57

Fig. 5 Cuckoo filter performance in terms of searching time and False‑Positive (FP) rate for b = 4 varying the size m and the fingerprint length f.
m = x means that the size of the Cuckoo filter is x times the total number of hashes to be tested (e.g., m = 2, the size of the Cuckoo filter is twice
the total number of hashes to be tested)

Fig. 6 Cuckoo filter performance in terms of searching time and False‑Positive (FP) rate for b = 2 varying the size m and the fingerprint length f.
m = x means that the size of the Cuckoo filter is x times the total number of hashes to be tested (e.g., m = 2, the size of the Cuckoo filter is twice
the total number of hashes to be tested)

Page 10 of 11Cano et al. Cybersecurity (2023) 6:57

Author contributions
M‑DC: Conceptualization, data curation, formal analysis, funding acquisition,
investigation, methodology, project administration, resources, validation, visu‑
alization, writing—original draft, writing—review and editing, supervision. AV:
Data curation, formal analysis, investigation, software, visualization, writing—
original draft. IT: Conceptualization, validation, investigation, methodology,
visualization, writing—review and editing.

Funding
This research was supported by the research Grant PID2020‑116329 GB‑C22
funded by MCIN/AEI/10.13039/501100011033.

Availability of data and materials
The datasets used during the current study are available from the correspond‑
ing author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 24 July 2023 Accepted: 22 September 2023

References
Advanced Password Recovery (2022) Hashcat. https:// hashc at. net/ hashc at/.

Accessed 9 Feb 2022
Ali M, Baloch A, Waheed A, Zareei M, Manzoor R, Sajid H, Alanazi F (2021) A

simple and secure reformation‑based password scheme. IEEE Access
9:11655–11674. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30490 52

Bishop M, Klein DV (1995) Improving system security via proactive password
checking. Comput Secur 14:233–249. https:// doi. org/ 10. 1016/ 0167‑
4048(95) 00003‑Q

Bloom BH (1970) Space/time trade‑offs in hash coding with al lowable errors.
Commun ACM 13:422–426. https:// doi. org/ 10. 1145/ 362686. 362692

Bonneau J (2012) The science of guessing: Analyzing an anonymized corpus of
70 million passwords. In: In Proc. IEEE symposium on security and privacy.
San Francisco, CA, pp 538–552

Bonneau J, Herley C, Oorschot PC van, Stajano F (2012) The quest to replace
passwords: a framework for comparative evaluation of web authentica‑
tion schemes. In: In Proc. 25th USENIX security symposium. San Francisco,
CA, pp 175–191

Boudreau PE, Bergman WC, Irvin DR (1994) Performance of a cyclic redun‑
dancy check and its interaction with a data scrambler. IBM J Res Dev
38:651–658. https:// doi. org/ 10. 1147/ rd. 386. 0651

Brown AS, Bracken E, Zoccoli S, Douglas K (2004) Generating and remember‑
ing passwords. Appl Cogn Psychol 18:641–651. https:// doi. org/ 10. 1016/j.
fsidi. 2021. 301186

Cao FP, Almeida J, Broder AZ (2000) Summary cache: a scalable wide‑area Web
cache sharing protocol. IEEE/ACM Trans Netw 8:281–293. https:// doi. org/
10. 1109/ 90. 851975

Dürmuth M, Chaabane A, Perito D, Castelluccia C (2013) When privacy meets
security: Leveraging personal information for password cracking. https://
arxiv. org/ abs/ 1304. 6584

Fan B, Andersen DG, Kaminsky M, Mitzenmacher MD (2014) Cuckoo filter:
practically better than bloom. In: In Proc. CoNEXT’14. Sydney, Australia

Fowler G, Noll LC, Vo K‑P, et al (2019) The FNV Non‑Cryptographic Hash Algo‑
rithm. In: IETF Draft

Guan J (2019) Cuckoofilter Python Library
Hitaj B, Gasti P, Ateniese G, Perez‑Cruz F (2019) PassGAN: A Deep Learning Approach

for Password Guessing. In: In Applied cryptography and network security: 17th
international conference, ACNS 2019. Bogota, Colombia, pp 217–237

Houshmand S, Aggarwal S, Flood R (2015) Next Gen PCFG password cracking.
IEEE Trans Inf Forensics Secur 10:1776–1791. https:// doi. org/ 10. 1109/ TIFS.
2015. 24286 71

Ji S, Yang S, Hu X et al (2017) Zero‑sum password cracking game: a large‑scale
empirical study on the crackability, correlation, and security of passwords.
IEEE Trans Dependable Secur Comput 14:550–564. https:// doi. org/ 10.
1109/ TDSC. 2015. 24818 84

Kaleel M, Nhien‑An L‑K (2020) Towards a new deep learning based
approach for the password prediction. In: In Proc. IEEE 19th interna‑
tional conference on trust, security and privacy in computing and
communications (TrustCom). pp 1146–1150

Fig. 7 Cuckoo filter performance in terms of searching time and False‑Positive (FP) rate for b = 6 varying the size m and the fingerprint length f.
m = x means that the size of the Cuckoo filter is x times the total number of hashes to be tested (e.g., m = 2, the size of the Cuckoo filter is twice
the total number of hashes to be tested)

https://hashcat.net/hashcat/
https://doi.org/10.1109/ACCESS.2020.3049052
https://doi.org/10.1016/0167-4048(95)00003-Q
https://doi.org/10.1016/0167-4048(95)00003-Q
https://doi.org/10.1145/362686.362692
https://doi.org/10.1147/rd.386.0651
https://doi.org/10.1016/j.fsidi.2021.301186
https://doi.org/10.1016/j.fsidi.2021.301186
https://doi.org/10.1109/90.851975
https://doi.org/10.1109/90.851975
https://arxiv.org/abs/1304.6584
https://arxiv.org/abs/1304.6584
https://doi.org/10.1109/TIFS.2015.2428671
https://doi.org/10.1109/TIFS.2015.2428671
https://doi.org/10.1109/TDSC.2015.2481884
https://doi.org/10.1109/TDSC.2015.2481884

Page 11 of 11Cano et al. Cybersecurity (2023) 6:57

Kanta A, Coisel I, Scanlon M (2020) A survey exploring open source Intel‑
ligence for smarter password cracking. Forensic Sci Int Digit Investig
35:1–11. https:// doi. org/ 10. 1016/j. fsidi. 2020. 301075

Kanta A, Coray S, Coisel I, Scanlona M (2021) How viable is password crack‑
ing in digital forensic investigation? Analyzing the guessability of over
3.9 billion real‑world accounts. Forensic Sci Int Digit Investig 37:1–11.
https:// doi. org/ 10. 1016/j. fsidi. 2021. 301186

Lim H, Lee J, Yim C (2017) Complement bloom filter for identifying true
positiveness of a bloom filter. IEEE Commun Lett 19:1905–1908.
https:// doi. org/ 10. 1109/ LCOMM. 2015. 24784 62

Maqbool Z, Aggarwal P, Pammi VSC, Dutt V (2020) Cyber security: effects of
penalizing defenders in cyber‑security games via experimentation and
computational modeling. Front Psychol 11:1–11. https:// doi. org/ 10.
3389/ fpsyg. 2020. 00011

Melicher W, Ur B, Segreti SM, et al (2016) Fast, lean, and accurate: modeling
password guessability using neural networks. In: In Proc. 25th USENIX
Security Symposium (USENIX Security 16). Austin, TX, USA, pp 175–191

Narayanan A, Shmatikov V (2005) Fast dictionary attacks on passwords using
time‑space tradeoff. In: In Proc. 12th ACM SIGSAC conference on com‑
puter communications and security. New York, NY, pp 364–372

Open Wall (2022) John the Ripper. https:// www. openw all. com/ john/.
Accessed 9 Feb 2022

Open Wall (2017) Large‑scale password hashing
Open Wall (2023) Password security: past, present, future
Reviriego P, Martínez J, Larrabeiti D, Pontarelli S (2020) Cuckoo filters and

bloom filters: comparison and application to packet classification. IEEE
Trans Netw Serv Manag. https:// doi. org/ 10. 1109/ TNSM. 2020. 30246 80

Shi R, Zhou Y, Li Y, Han W (2021) Understanding offline password‑cracking
methods: a large‑scale empirical study. Secur Commun Networks
2021:1–16. https:// doi. org/ 10. 1155/ 2021/ 55638 84

Shin Y, Woob SS (2022) PasswordTensor: analyzing and explaining password
strength using tensor decomposition. Comput Secur. https:// doi. org/
10. 1016/j. cose. 2022. 102634

Song H, Dharmapurikar S, Turner J, Lockwood J (2005) Fast hash table
lookup using extended bloom filter: An aid to network processing. In:
In Proc. Applications, technologies, architectures, and protocols for
computer communications. Philadelphia, PA, pp 181–192

Švábenský V, Celeda P, Vykopal J, Brišáková S (2021) Cybersecurity knowledge
and skills taught in capture the flag challenges. Comput Secur 102:1–14.
https:// doi. org/ 10. 1016/j. cose. 2020. 102154

The Economist (2021) To stop the ransomware pandemic, start with the basics.
In: Econ. https:// www. econo mist. com/ leade rs/ 2021/ 06/ 19/ to‑ stop‑ the‑
ranso mware‑ pande mic‑ start‑ with‑ the‑ basics. Accessed 17 Feb 2022

Veras R, Collins C, Thorpe J (2014) On the semantic patterns of passwords and
their security impact. In: In Proc. network and distributed system security
(NDSS) symposium. San Diego, CA, pp 1–16

Verizon (2021) Verizon 2021 Data Breach Investigations Report
VMWare, Kroll, RedCanary (2022) The state of incident response 2021: It’s time

for a confidence boost
Wang D, Cheng H, Wang P et al (2017) Zipf’s law in passwords. IEEE Trans Inf

Forensics Secur 12:2776–2791. https:// doi. org/ 10. 1016/j. fsidi. 2021. 301186
Wang D, Cheng H, Wang P, et al (2018) A security analysis of honeywords. In: In

Proc. 25th Annual Network and Distributed System Security Symposium.
San Diego, CA, pp 1–15

Weir M, Aggarwal S, Medeiros B de, Glodek B (2009) Password cracking using
probabilistic context‑free grammars. In: In Proc. 30th IEEE Symposium on
Security and Privacy. Oakland, CA, pp 391–405

Wu Y, He J, Yan S et al (2021) Elastic bloom filter: deletable and expandable
filter using elastic fingerprints. IEEE Trans Comput PP: https:// doi. org/ 10.
1109/ TC. 2021. 30677 13

Xia Z, Yi P, Liu Y et al (2020) GENPass: a multi‑source deep learning model for
password guessing. IEEE Trans Multimed 22:1323–1332. https:// doi. org/
10. 1109/ TMM. 2019. 29408 77

Yang K, Hu X, Zhang Q et al (2022) VAEPass: a lightweight passwords guessing
model based on variational auto‑encoder. Comput Secur 114:1–12.
https:// doi. org/ 10. 1016/j. cose. 2021. 102587

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.fsidi.2020.301075
https://doi.org/10.1016/j.fsidi.2021.301186
https://doi.org/10.1109/LCOMM.2015.2478462
https://doi.org/10.3389/fpsyg.2020.00011
https://doi.org/10.3389/fpsyg.2020.00011
https://www.openwall.com/john/
https://doi.org/10.1109/TNSM.2020.3024680
https://doi.org/10.1155/2021/5563884
https://doi.org/10.1016/j.cose.2022.102634
https://doi.org/10.1016/j.cose.2022.102634
https://doi.org/10.1016/j.cose.2020.102154
https://www.economist.com/leaders/2021/06/19/to-stop-the-ransomware-pandemic-start-with-the-basics
https://www.economist.com/leaders/2021/06/19/to-stop-the-ransomware-pandemic-start-with-the-basics
https://doi.org/10.1016/j.fsidi.2021.301186
https://doi.org/10.1109/TC.2021.3067713
https://doi.org/10.1109/TC.2021.3067713
https://doi.org/10.1109/TMM.2019.2940877
https://doi.org/10.1109/TMM.2019.2940877
https://doi.org/10.1016/j.cose.2021.102587

	Performance evaluation of Cuckoo filters as an enhancement tool for password cracking
	Abstract
	Introduction
	Related work
	Cuckoo filters
	Methodology
	Results
	Conclusion
	References

