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Abstract 

Cyberthreats continue their expansion, becoming more and more complex and varied. However, credentials 
and passwords are still a critical point in security. Password cracking can be a powerful tool to fight against cyber 
criminals if used by cybersecurity professionals and red teams, for instance, to evaluate compliance with security poli‑
cies or in forensic investigations. For particular systems, one crucial step in the password‑cracking process is compari‑
son or matchmaking between password‑guess hashes and real hashes. We hypothesize that using newer data struc‑
tures such as Cuckoo filters could optimize this process. Experimental results show that, with a proper configuration, 
this data structure is two orders of magnitude more efficient in terms of size/usage compared to other data structures 
while keeping a comparable performance in terms of time.
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Introduction
Cybercrime has significantly grown over the last decade, 
impacting individuals, enterprises, and governments 
worldwide. The variety and depth of breaches and inci-
dents, such as social engineering or denial of service 
attacks, have increasingly created a permanent concern 
amongst security professionals to the point that it is con-
sidered a pandemic (The Economist 2021).

Examining the latest security events compromising 
confidentiality, integrity, and availability of information 
assets, and those that resulted in the exposure of data 
to unauthorized parties as published in (Verizon 2021), 
we observe that attacks with financial motivation are the 
number one and the organized crime is still the leading 
actor. Also, it is interesting also to realize that basic web 
application attacks represent the second most common 
pattern in incidents and breaches. In contrast, social 
engineering ranks first in breaches and third in incidents. 

Commonly, some of these incidents are due to stolen cre-
dentials or password cracking. Similarly, the compromise 
of password-based or single-factor user credentials is 
identified by (VMWare et al. 2022) as one of the top con-
cerns for many security leaders.

Understanding novel and agile forms of password 
cracking is paramount to creating robust defense sys-
tems and increasing the culture of cybersecurity amongst 
professionals and organizations. This paper proposes 
and evaluates a novel method to optimize the pass-
word-cracking process. The idea relies on incorporating 
cuckoo filter data structures to accelerate the matchmak-
ing between guesses and targets. To evaluate this pro-
posal, we use the widely known password cracking tool 
John the Ripper, due to its wide use in the cybersecurity 
communities, to crack an anonymized, publicly available 
dataset of leaked password hashes. Then, we compare 
the performance of the cuckoo filter data structure for 
matchmaking with other alternatives, specifically, binary 
search trees, binary search, linear search, and hash tables. 
Results show that (i) among the tested methods, Cuckoo 
filters are the second most efficient solution in terms of 
time consumption and that (ii) when compared in terms 
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of usage, Cuckoo filters are two orders of magnitude 
more efficient than the second best option, hash tables.

The rest of the paper is organized as follows. Section 
“Related work”  summarizes recent trends in password-
cracking methodologies from the related literature. The 
operation of Cuckoo filters and how to incorporate them 
into the cracking process is described in Sect.  “Cuckoo 
filters”. The methodology is shown in Sect.  “Methodol-
ogy”. The evaluation of the proposal and the correspond-
ing results are shown and discussed in Sect. “Results”. The 
paper concludes by highlighting the most important find-
ings and our future work.

Related work
Textual passwords are still one of the most common 
authentication methods (Shi et  al. 2021; Bonneau et  al. 
2012). They are composed of a set of alphanumeric char-
acters, where the rule of thumb is that the longer and 
more complex the passwords are, the higher the security 
offered, which raises the known tradeoff between usabil-
ity and security. Password authentication goes beyond 
using several characters to gain access to a system. As 
explained by (Ali et al. 2021), passwords can be divided 
into three categories: token-based, biometric-based, and 
knowledge-based. Within this last category, we have both 
graphical-based (involving a mouse password entry) and 
textual-based passwords. Then, a textual password could 
belong to a direct keying or a reformation-based scheme. 
In this work, we focus on direct keying passwords.

The reasons to investigate password cracking are var-
ied, from law enforcement and forensic investigations 
(Kanta et al. 2020; Kanta et al. 2021; Maqbool et al. 2020) 
to cybersecurity training (Švábenský et  al. 2021) and 
ethical hacking (Bishop and Klein 1995; Yang et al. 2022), 
through understanding the effect of people’s culture and 
background on the use of passwords (Shin and Woob 
2022; Brown et  al. 2004) (Bonneau 2012; Wang et  al. 
2017; Wang et  al. 2018). Much has been written about 
password cracking during the last decades. It is worth 
mentioning that whereas password cracking is an offline 
technique in which the attacker (usually) has access to the 
password hashes, password guessing is performed online 
while trying to gain unauthorized access to a system.

Some research works from the related literature have 
proposed new methods for enhancing the performance 
of password cracking. In order to reduce the time needed 
for this operation, the work done by (Weir et  al. 2009) 
was the first to show that it is possible to use Probabilis-
tic Context Free Grammar (PCFG) to create either pass-
word guesses or templates via training and then employ 
them to crack passwords more efficiently. Numerous 
works have followed this trend with very interesting 
results (Veras et  al. 2014; Houshmand et  al. 2015). In 

(Ali et al. 2021), the authors presented a brute force algo-
rithm to test the security of its reformation-based pass-
word scheme and compare it to other solutions from the 
related literature. From a different perspective, a Markov-
model-based scheme was introduced by (Narayanan and 
Shmatikov 2005) to improve dictionary-based attacks. 
The authors were able to generate guesses that acceler-
ate the process compared to rainbow attacks, and some 
other works have followed this research line (Dürmuth 
et  al. 2013). Lately, with the boost in the application of 
machine learning and deep learning methods, several 
authors have presented promising proposals, such as 
(Hitaj et  al. 2019), where the authors use a Generative 
Adversarial Network (GAN) to learn the distribution of 
real passwords and to produce guesses, (Xia et al. 2020), 
combining a neural network with PCFG, (Kaleel and 
Nhien-An 2020) studying the performance of PassGAN, 
and other interesting works such as (Melicher et al. 2016) 
(Yang et al. 2022).

To the authors’ knowledge, the two most complete 
works on password cracking up to date were presented 
by (Ji et al. 2017) and (Shi et al. 2021). In (Ji et al. 2017), 
the authors conducted a large-scale empirical study with 
almost 150 million real passwords. They tested the level 
of correlation, the effectiveness of commercial password 
meters demonstrating their inconsistency, and the best 
strategy in terms of what algorithms are more effective 
(e.g., with or without training, intra- or cross-site, etc.), 
concluding that a hybrid option could be more appropri-
ate. Similarly, (Shi et  al. 2021) studied over 220 million 
plaintext passwords. Although they also concluded that 
there does not exist a particular better cracking method 
due to the impact of multiple factors, the individual 
analysis of each dataset showed noteworthy results. For 
instance, they demonstrated that whereas English data-
sets were better cracked with PCFG algorithms, Chinese 
datasets responded better to Markov-based methods.

Regarding commercial tools for password cracking, 
Hashcat (Advanced Password Recovery 2022) and the 
latest versions of John the Ripper (Open Wall 2022), e.g., 
Jumbo, are some of the most common applications. JtR 
enables several modes of operation, specifically:

• Wordlist mode, the simplest operation mode where it 
is only necessary to specify a wordlist and a (or some) 
password file; word mangling rules can be enabled.

• Single crack mode, a faster mode than the wordlist 
one, but that only uses login names and directory 
names, being able to apply more mangling rules than 
in the previous mode.

• Incremental mode, considered the most powerful 
mode because all possible character combinations 
are verified, with the consequent increase in time.
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• Markov mode, one of the latest improvements to JtR, 
tests guesses using statistical analysis of similarities 
among known passwords.

To the authors’ knowledge, neither previous research 
works nor commercial tools for password cracking have 
studied the use of cuckoo filters to enhance their opera-
tion. The following section explains the operation of 
this data structure, whose main advantage is double: 
guarantying a zero false-negative rate and a low false-
positive rate while maintaining a comparative low time 
consumption.

Cuckoo filters
Bloom filters (Bloom 1970) and Cuckoo filters (Fan et al. 
2014) are probabilistic data structures commonly used to 
provide membership checking. Their two main advan-
tages are speed and memory efficiency. Both methods 
offer a zero false-negative rate and a non-zero false-
positive rate, i.e., the answer to a membership query will 
always be definitely not (with no error) or maybe yes (with 
a false positive rate).

Some general characteristics of Bloom filters are the 
following. The larger the bit array (space) is, the lower the 
false-positive is. The more hash functions you have, the 
slower your Bloom filter and the quicker it fills up, and 
if the hash functions are just too few, we will encounter 
many false positives. In addition, an essential feature of 
classic Bloom filters is that to delete existing items, it is 
required to rebuild the complete filter. This fact led to 
the introduction of new Bloom filter variants (Cao et al. 
2000; Song et al. 2005; Lim et al. 2017; Wu et al. 2021). 
However, some of these modifications incur a significant 
performance or space overhead. For this reason, (Fan 
et al. 2014) proposed Cuckoo filters as an alternative that 
allows adding and deleting items dynamically, demon-
strating better performance and higher space efficiency if 
the false positive rate is kept below 3%.

Standard Cuckoo filters employ a modification of cuckoo 
hashing. As a brief note, a cuckoo hash table is composed 
of an array of buckets, and each bucket can hold several 
items. The number of items that can be stored in bucket 
is denoted by b. The number of candidate buckets where a 
new element x can be inserted equals the number of hash-
ing functions used, k, and the output of the k hash func-
tions gives the bucket numbers. Consequently, to insert 
an item x, the k hashes of x should be calculated. Then, we 
check if either of x’s buckets is empty. If both buckets are 
empty, the algorithm chooses one of the candidate buckets 
and inserts the item. If all candidate buckets are in use, the 
algorithm ejects one of the existing items in one of the x’s 

candidate buckets, re-inserting it into its alternate bucket. 
These relocations can be executed recursively several times 
until a free bucket is found or until a maximum number is 
reached.

The next advance in the use of these data structures was 
the introduction of Cuckoo filters. In contrast to Bloom 
filters, which store 1 bit for each item, or cuckoo-hashing, 
which store the complete item, a Cuckoo filter stores a fin-
gerprint for each inserted item x. The fingerprint is a bit 
string obtained from the item x using another hash func-
tion. Furthermore, unlike cuckoo-hashing, Cuckoo filters 
will apply partial-key cuckoo hashing. When a set mem-
bership query for item x is required, the algorithm outputs 
true just in case an identical fingerprint of x is found. It is 
important to observe that the fingerprint is not the hash 
of x, and the original key-value pairs are not stored, con-
sequently being non-retrievable. This fact implies that we 
could not calculate an item’s alternate bucket as we did with 
cuckoo hashing. Partial-key cuckoo hashing was intro-
duced to enable this capacity by stating that only two hash 
functions will be used. In other words, only two bucket 
candidates given by h1(x) and h2(x) are employed, and these 
two hashes will follow the rule depicted in (1). This rule 
guarantees that x’s alternate bucket can be obtained using 
the location of either bucket h1(x) or h2(x) and x’s finger-
print due to the XOR operation. That is, there is no need to 
know x. Figure 1 depicts an example of inserting elements 
in a Cuckoo filter and checking membership.

Following the same philosophy of Bloom filters, the 
Cuckoo filter’s false-negative rate is zero, and the false-pos-
itive rate ε is shown in (2), where n is the number of items 
expected to be inserted into the set, m is the size of the bit 
array, b is the number of items that a bucket can hold, and 
f is the fingerprint length in bits. The Bloom filter’s false 
positive rate is shown in (3), where k is the number of hash 
functions (Reviriego et al. 2020). Table 1 summarizes some 
characteristics of Bloom filters and Cuckoo filters that 
should be considered in their implementation.

(1)
h1(x) = hash(x)

h2(x) = h1(x) · hash x′sfingerprint

(2)εCuckoo filter ≈

(

8 ·
n

m·b

2f

)

(3)εBloom filter ≈

(

1−

(

1−
1

m

)k·n
)k
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Fig. 1 An example of the Cuckoo Filter operation using a bit array of size 18 (m = 18), each bucket can store only one fingerprint (b = 1), 
and the fingerprint length in bits is 5 (f = 5). The hash function is hash(x) = 2*x mod 18 and fingerprint(x) = (x − 1) mod 18. (a) Inserting elements: To 
insert item 93, the value fingerprint(93) = 2 should be stored either in position  h1(93) = 6 or in position  h2(93) = 2, because position 6 is occupied 
the value 2 is inserted in position 2. To insert item 20, the value 1 should be stored either in position 4 or in position 7, both are available, 
so the value 1 is inserted in position 4. To insert item 24, the value 5 should be stored either in position 12 or in position 6, and both buckets are 
occupied. Consequently, we randomly choose bucket 6 and displace the current fingerprint 10 to its alternate bucket 4. To calculate the alternate 
bucket, we know that h1(x) = 6, then h2(x) = 6 ⊕ hash(10) = 6 ⊕ 2 = 4, so the new location should be position 4. Because bucket 4 is also in use, we 
displace the current fingerprint 1 to its alternate bucket 7 (if h1(x) = 4 then h2(x) = 4 ⊕ hash(1) = 4 ⊕ 2 = 7), which is free. (b) Verifying membership: 
To test the membership of element 15, we calculate its fingerprint, fingerprint(15) = 14, and the two possible buckets where the fingerprint could 
be located (positions  h1(15) = 12 and  h2(15) = 6), because position 12 stores the fingerprint of item 15, we can state that the item belongs to the set 
with a non‑zero false‑positive rate

Table 1 Comparative characteristics of Bloom filters and Cuckoo filters (Notation: m≡number of buckets for Cuckoo or size of the 
array for Bloom; n≡number of items; b≡bucket size for Cuckoo; α≡load factor 0 ≤ α ≤ 1; k≡number of hash functions; f≡fingerprint 
length in bits for Cuckoo; n/a≡not applicable)

Standard Bloom filter Cuckoo filter

Lookup operation O(k) O(1)
maximum of two buckets to check

Insert operation O(k) O(1)
longer as load factor approaches capacity

Delete operation N/a O(1)
maximum of two buckets to inspect

Number of hash functions kopt
(

m

n

)

· ln 2

to minimize false positive rate

2
to achieve the close‑to‑best space effi‑
ciency for the most common acceptable 
false positive rate

Minimal fingerprint size (bits) N/a
⌈

log2

(

1
εCuckoo filter

)

+ log2 (2b)
⌉

Best number of entries per bucket b N/a 4
to achieve the close‑to‑best space effi‑
ciency for the most common acceptable 
false positive rate

Bits per item (load factor = 95.5%) 1.44 log2

(

1
εBloom filter

)

1.05
(

log2

(

1
εCuckoo filter

)

+ log2 (2b)
)
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Methodology
In this section, we explain how to improve the perfor-
mance of password cracking by incorporating Cuckoo fil-
ters. Our hypothesis is that the time required to perform 
password cracking can be reduced if (1) the correspond-
ing target hashes are inserted into a Cuckoo filter and 
(2) the guessed passwords are checked against this data 
structure.

In order to evaluate this proposal, we selected one 
leaked password dataset with New Technology Lan 
Manager (NTLM) hashes that may have resulted from 
different types of attacks.1 The NTLM authentication 
protocols authenticate users and computers based on a 
challenge/response mechanism that proves to a server or 
domain controller that a user knows the password asso-
ciated with an account. The format is shown in Fig.  2, 
where we can see the password’s hash and the number 
of times this password had been seen in the source data 
breaches separated by a colon. It is important to state 
that we only employ these password hashes for research 
purposes, and no personally identifiable information is 
being used, explored, or disclosed.

The general method of password cracking, for instance, 
using well-known tools such as JtR, is as follows. A pass-
word guess is created. Then, the corresponding password 
hash of the guess should be computed and tested (com-
pared) against the target hash value. This target hash 
value is frequently included in a large file with hundreds 
or thousands of other “leaked” hashes. Therefore, we 
could wonder, once the guess is generated and the pro-
gram looks for a match to see if it is a valid crack, what is 
the most common technique used for searching? There 
could be many options: linear search, a hash map, etc. 
Particularly with JtR, if salts are correctly used, there is 

only one target hash per salt value. Therefore, it would be 
a one-to-one comparison, and there would be no need for 
a search. In other cases, it is more efficient to compute 
multiple hashes at once from multiple password guesses 
using newly available computing power such as Graph-
ics Processing Units (GPU). In this case, the comparison 
would be many-to-one (Open Wall 2017). However, for 
some systems that use NTLM hashes, the comparison 
step requires using a searching algorithm, such as bitmap 
structures, hash tables, or linear searches (Open Wall 
2023). NTLM hashes are still used by current Windows. 
They are very fast and don’t use salts, so when cracking 
those the comparison step is in fact a bottleneck. Con-
sequently, we propose to include a Cuckoo filter in the 
search process to improve its efficiency by speeding up 
the comparison stage.

In order to evaluate the performance of our proposal, 
we designed several tests with the following methodology 
(Fig. 3). Given that our goal is to measure the effective-
ness of incorporating a Cuckoo filter into the cracking 
process, we decided not to modify JtT or Hashcat, which 
will be considered for future work, but to compare the 
performance of a linear search, a hash table, a binary 
search tree, a binary search, and a Cuckoo filter under the 
same case study of password cracking.

First, we split the leaked password dataset with NTLM 
hashes into n sub-datasets of different sizes (see Table 2). 
Each sub-date is called targeti (i = 1..n). For each sub-
dataset targeti, we generate the corresponding Cuckoo 
filter using the cuckoo filter library for Python (Guan 
2019). That is, we fill the Cuckoo data structure by insert-
ing the items of the sub-dataset targeti. Next, we crack 
the passwords of the sub-dataset targeti using JtR and 
store the obtained cracked hashes in a temporary file 
tmpi. New random, fake hashes that do not belong to 
any of the cracked passwords are then inserted into the 
temporary file tmpi. The reason is to get as close as pos-
sible to reality so that there will be correct and incorrect 
guesses during the cracking process. Therefore, the tem-
porary file tmpi includes the correct hashes, i.e., the tar-
get hashes corresponding to the cracked passwords, and 
filler (fake) hashes (50%).

Then, the search process is implemented using as input 
the temporary file tmpi, emulating the hashes created 
by the password cracking program, and checking if the 
hashes that it contains match the target hashes targeti 
(and therefore, meaning that we were able to crack the 
passwords). The search time ti

s is computed as a perfor-
mance indicator. Figure 3 summarizes the evaluation pro-
cess. The comparison has been carried out using a Virtual 
Machine (Virtual Box) with Debian (64-bit) (Kali Linux), 
8192  MB RAM, six processors, 80  Gb storing capac-
ity, VMSVGA 128  Mb graphics, and Python 3.11.2. In 

Fig. 2 An example of NTLM hashes from the dataset in hexadecimal 
format

1 https:// havei beenp wned. com/ Passw ords

https://haveibeenpwned.com/Passwords
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addition, specifically for the Cuckoo filter data structure, 
additional tests are carried out varying its configuration 
parameters to evaluate their impact on performance.

Results
Results are illustrated in Fig.  4. In Fig.  4a, we compare 
the different search methods with the Cuckoo Filter 
using its default parameters (m = total number of hashes, 
b = 4, f = 8). We can observe that the time required to 

find matches between the computed hashes (from the 
guess passwords) and the target hashes for each search 
algorithm ti

s is lower for the hast table. The second and 
third faster methods are cuckoo filter and the binary 
search methods, respectively. Nevertheless, we can 
deduce from Fig. 4b that the sizes of the data structures 
are not negligible, making the Cuckoo filter the most 
optimal one in two orders of magnitude compared with 
the hash table.

Fig. 3 Flow diagram for the evaluation process. This process is repeated for each data structure under study. (*) The search methods are linear, hash 
table, binary search tree, binary search, and Cuckoo filter
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Linear search is simple but inefficient for large data sets. 
Although it is easy to implement, its search time increases 
linearly with data size, making it unsuitable for large data 
sets. However, it could be a viable option for very small 
data sets. Binary search significantly improves performance 
compared to linear search using an ordered data structure. 
It is an acceptable method for large data sets and presents a 
logarithmic search time. In addition, it offers high accuracy 
and has no false positives or negatives. However, it requires 
the data to be pre-sorted and can be more complex to 
implement. Binary search trees offer reasonable search 
time and high accuracy. Their performance improves com-
pared to linear search but is inferior to binary search. The 
size of the data structure depends on the number of nodes 
and the depth of the tree, which implies significant mem-
ory consumption. Binary search trees are useful when a 
tidy data structure is required and accuracy is critical.

Hash tables are highly efficient regarding search time, 
as they allow direct access to items through a hash func-
tion. They provide high search speed, especially for large 
data sets. However, the size of the data structure grows 
with the number of elements, which can be a limitation 
in terms of memory consumption. In addition, it is criti-
cal to select a suitable hash function and consider pos-
sible collisions. Cuckoo filters are an attractive option for 
balancing speed, accuracy, and memory consumption. 
They offer fast search time and a compact data structure. 
The memory consumption of the Cuckoo filter is lower 
compared with the other methods, as depicted in Fig. 4 
(b), which makes it an efficient alternative.

Correctly setting the Cuckoo filter parameters is impor-
tant to minimize false positives. To study the Cuckoo fil-
ter’s performance with more detail, we show in Figs.  5, 
6, and 7 the effect of using different bucket sizes (b = 2, 
b = 4, b = 6), different fingerprint sizes (f = 8, f = 16, f = 24, 
f = 32), and different filter sizes (m = total, m = 2·total, 
m = 3·total m = 4·total, where total is the total number of 
hashes to be tested). For b = 4, i.e., each bucket can store 
four fingerprints, we can see in Fig. 5 that varying the size 
has little impact on the searching time. However, using a 
fingerprint length of more than 8 bits decreases the false-
positive rate to almost zero. This effect is also noticeable 
for b = 2 and b = 6, i.e., each bucket can store two or six 
fingerprints, respectively, as shown in Figs.  6a and 7a. 
The reason is that a larger fingerprint reduces the likeli-
hood of a collision.

As expected from the definition of a Cuckoo filter, 
larger values of m increase the size of the data structure. 
If this parameter growths then there will be more “space” 
available to store items. Nevertheless, this does not mean 
that the performance will be better as shown in Figs. 5, 6, 
and 7. Observing these figures for f = 16, f = 24, and f = 32 
bits, we can see that the best configuration in terms of 
searching time is found for the combination {b = 2, f = 16} 
(Fig. 6.b) and {b = 6, f = 24} (Fig. 7c). In the former, there 
is a slightly higher size cost because the best result is 
obtained with m = 3, opting for {b = 2, f = 16} with m = 1 
as the best configuration considering the searching time 
and size.

Table 2 Details of the files and hashes employed for the performance evaluation

Subdata set Size of the original 
leaked file (MB)

# Hashes of the 
original leaked file

#Cracked hashes 
using JtR

#Fake hashes 
introduced

#Total number of 
hashes

Size of the 
filled file tmp 
(MB)

1 134 3,897,669 3,897,669 3,897,668 7,795,337 340

2 67 1,948,834 1,948,834 1,948,833 3,897,667 168

3 34 974,417 974,417 974,416 1,948,833 84

4 17 487,208 487,208 487,207 974,415 42

5 8.3 243,604 243,604 243,603 487,207 20.7

6 4.2 121,802 121,802 121,801 243,603 10.3

7 2.1 60,901 60,901 60,900 121,801 5.1

8 1 30,450 30,450 30,449 60,899 2.6

9 0.5341 15,225 15,225 15,224 30,449 1.3

10 0.267 7612 7612 7611 15,223 0.6587

11 0.1335 3806 3806 3805 7611 0.3318

12 0.0667 1903 1903 1902 3805 0.1679
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Conclusion
New data structures, such as the Cuckoo filters, have 
been proven efficient in several computer network 
applications. Nevertheless, its use in security has been 
limited mainly to authentication tasks. In this work, we 
have introduced a new use of Cuckoo filters as a valu-
able tool within the password-cracking process. The 
proposed method is particularly interesting for systems 

that use NTLM hashes because, in this scenario, the 
comparison step between generated hashes and target 
hashes requires a searching algorithm. Results show 
that whereas there is no a direct reduction in time, the 
gain in terms of memory usage is of two orders of mag-
nitude compared to commonly employed data struc-
tures, which opens the door to further research in this 
direction.

Fig. 4 Comparison of the use of different data structures for matchmaking. a Time in (s) required for matchmaking, i.e., finding matches 
between the computed hashes (from the guess passwords) and the target hashes for each search algorithm b Size in (MB) of the data structure 
used for matchmaking. The represented size is the output of the Python primitive sys.getsizeof() that returns the size of an object in bytes, 
considering that only the memory consumption directly attributed to the object is accounted for, not the memory consumption of objects it refers 
to
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Fig. 5 Cuckoo filter performance in terms of searching time and False‑Positive (FP) rate for b = 4 varying the size m and the fingerprint length f. 
m = x means that the size of the Cuckoo filter is x times the total number of hashes to be tested (e.g., m = 2, the size of the Cuckoo filter is twice 
the total number of hashes to be tested)

Fig. 6 Cuckoo filter performance in terms of searching time and False‑Positive (FP) rate for b = 2 varying the size m and the fingerprint length f. 
m = x means that the size of the Cuckoo filter is x times the total number of hashes to be tested (e.g., m = 2, the size of the Cuckoo filter is twice 
the total number of hashes to be tested)
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