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Abstract 

Due to the anonymous and contract transfer nature of blockchain cryptocurrencies, they are susceptible to fraudulent 
incidents such as phishing. This poses a threat to the property security of users and hinders the healthy development 
of the entire blockchain community. While numerous studies have been conducted on identifying cryptocurrency 
phishing users, there is a lack of research that integrates class imbalance and transaction time characteristics. This 
paper introduces a novel graph neural network-based account identification model called CT-GCN+, which utilizes 
blockchain cryptocurrency phishing data. It incorporates an imbalanced data processing module for graphs to con-
sider cryptocurrency transaction time. The model initially extracts time characteristics from the transaction graph 
using LSTM and Attention mechanisms. These time characteristics are then fused with underlying features, which are 
subsequently inputted into a combined SMOTE and GCN model for phishing user classification. Experimental results 
demonstrate that the CT-GCN+ model achieves a phishing user identification accuracy of 97.22% and a phishing user 
identification area under the curve of 96.67%. This paper presents a valuable approach to phishing detection research 
within the blockchain and cryptocurrency ecosystems.
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Introduction
Blockchain, as a crucial emerging technology, is decen-
tralized, tamper-evident and traceable (Yu et  al. 2021). 
Due to these characteristics, the large number of cryp-
tocurrencies (e.g., Bitcoin, Ethercoin) through innovative 
incentives and smart contracts have laid the ground-
work for a more vigorous development of blockchain 
technology.

Unlike the Bitcoin blockchain, the Ether blockchain 
provides users with a decentralized computing environ-
ment that is not limited to just transaction users (Lee 
et al. 2020). Specifically, Ethereum can support multiple 

programming languages, allowing for the design of vari-
ous decentralized applications on Ethereum, thereby 
expanding its scope of use (Wang et  al. 2019). These 
characteristics have gradually made Ethereum popular 
among investors, becoming the second largest crypto-
currency after Bitcoin (Xie et al. 2021; Han et al. 2020). 
Even though Ethereum’s market value is lower than Bit-
coin, its crime probability is higher. According to the 
currency distribution of virtual currency crime cases in 
2022, the proportion of virtual currency on the Ethereum 
blockchain in blockchain crime is 28.6%, while the pro-
portion of virtual currency crime on the Bitcoin block-
chain is only 13.7%. At the same time, the loss amount of 
blockchain security incidents in 2022 is mainly on BSC 
(Binance Smart Chain) and ETH (Ethereum) (CHAIN-
DIGG 2022). Therefore the research for blockchain in 
this paper will be on the Ethernet blockchain.
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Phishing is the illegal act of acquiring real account 
information through the use of seemingly legitimate 
entities. It mainly involves account names, passwords, 
and financial accounts (Ramzan 2010; Tan et  al. 2020). 
In APWG’s Phishing Activity Trends Report for the 
third quarter of 2022, 1,270,883 phishing attacks were 
recorded during the quarter. Attacks targeting the finan-
cial sector accounting for the highest percentage of all 
phishing attacks at 23.2% (Report 2022). Phishing in the 
traditional financial industry is the behavior of luring 
users to provide personal sensitive information or com-
plete illegal transactions through false electronic means 
of communication, and its means mainly include fake 
identity, social engineering means and link luring, etc. 
(Alkhalil et  al. 2021). In blockchain, the definition of 
phishing is not different, but it is still different from the 
traditional financial industry. It is mainly manifested in 
two aspects: firstly, the target is different, the phishing in 
blockchain is mainly for blockchain users and related ser-
vices, which mainly includes fake wallets, fake ICOs and 
transaction fraud (Chen et al. 2022); secondly, blockchain 
has its own characteristics. Blockchain, for example, does 
not require third parties to perform transactions, and the 
information is completely open and transparent except 
for the alliance chain and private chain; the transac-
tion medium is cryptocurrency rather than legal tender; 
cryptos cannot be used directly in the existing financial 
market and have to be exchanged for legal tender (Chen 
et al. 2020). It is because of the above differences that lead 
to the following challenges in blockchain phishing com-
pared to phishing in the traditional financial industry: (1) 
The decentralization and anonymity of blockchain lead to 
the malicious nodes in phishing attacks being more hid-
den and difficult to track. One of the difficulties in cat-
egorizing blockchain phishing nodes compared to the 
traditional financial industry lies in the inability to accu-
rately identify anonymous participants involved in an 
attack. (2) Blockchain technology ensures the trustwor-
thiness and security of transactions through consensus 
algorithms and verification mechanisms. However, these 
mechanisms also provide new ways for phishing attacks. 
Attackers can deceive users and lure them to phishing 
websites through malicious behavior, such as forging 
transactions or exploiting smart contract vulnerabilities. 
(3) Transactions in blockchain networks are usually more 
complex and contain more data and interaction informa-
tion. Moreover, users in blockchain networks are more 
inclined to participate and explore new technologies 
and projects, e.g., attackers can utilize social engineer-
ing methods to carry out phishing attacks by tricking 
users into providing private keys or visiting specific web-
sites. Therefore, classifying blockchain network phishing 
nodes requires considering details and features in the 

transactions, which increases the complexity of classifica-
tion. According to KNOWNSEC Blockchain Lab’s (2022) 
hacked incident archive, the number of security incidents 
increased by about 37.3% in 2022 compared to 2021. 
Among them, attackers sent malicious tokens, result-
ing in losses of up to $8.1 million. As a result, it is urgent 
that researchers identify phishing attackers in blockchain 
cryptocurrency transactions.

We believe that transactions in blockchain have their 
own characteristics: firstly, the transactions between 
users have time sequence, so the entire transaction can 
be viewed as a time sequence with time information; 
secondly, blockchain is based on the assumption that 
"most of the people in a group are always honest", so the 
number of ordinary users is higher than the number of 
phishing scammers. Therefore, there is a serious data 
imbalance between phishing users and ordinary users. 
In order to better identify phishing users, in addition 
to utilizing the original features of the transaction (e.g., 
transaction amount, transaction cost, etc.) and the graph 
feature information of the transaction graph, we can also 
utilize the temporal features of the transaction. At the 
same time, in order to solve the data imbalance, we make 
the transaction graph from unbalanced to balanced by 
processing it.

Based on the existing research, we combine the above 
two ideas and propose our model: firstly, we take the 
information in the transaction records themselves as 
the basic features, such as the transaction amount, time 
interval, and the number of transactions, etc.; secondly, 
we extract the transaction records between the nodes 
that contain time information as edge features by LSTM 
method, and then we use the attention mechanism to 
convert the edge features into the graph node features, 
which completes the conversion of the transaction graph 
containing edge features as well as directions into an 
undirected graph containing only node features; finally, 
considering that the transaction graph contains certain 
nonlinear features and the transaction graph is an unbal-
anced graph, we combine the solution class unbalance 
method with graph neural network to extract as much 
information as possible so as to improve the accuracy of 
recognizing phishing users. Finally, the effectiveness of 
our model is proved by evaluating and comparing with 
different models.

The following are our main contributions:

(1) Pay attention to the timing of Ethereum cryptocur-
rency transactions. Time information has a certain 
role in Ether trading, through which we can not 
only determine the transaction time, block gen-
eration time and transaction speed, but also ana-
lyze the user’s transaction behavior, so as to better 
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identify phishing users. Therefore, we extract time 
features from transactions using manual, moving 
average, and LSTM (Long Short Term Memory) 
methods, providing better feature support for accu-
rately identifying phishing users.

(2) Apply the method of overcoming class imbalance 
in graph data to identify Ethereum phishing users. 
Since the transaction graph is unbalanced, mean-
while traditional methods for solving class imbal-
ance are not applicable to graph data. In order to 
better extract the information from the transaction 
graph, we apply the method of solving class imbal-
ance to the transaction graph, which not only over-
comes the effect of ignoring the graph structure on 
node sampling to a certain extent, but also extends 
the method of phishing detection in the blockchain, 
and provides a reference significance for the appli-
cation of graph convolutional technique combined 
with class imbalance technique in the field of net-
work security.

(3) On the basis of the existing research on the time 
characteristics of Ethereum, we propose our cryp-
tocurrency phishing detection model by combining 
different graph class imbalance processing meth-
ods. The model outperforms a variety of known 
same-task models, and provides a modellable idea 
for phishing detection in the blockchain ecosystem.

Our remaining parts are arranged as follows: “Related 
works” section presents the research work that is relevant 
to us; In the “Method” section, the problem definition is 
introduced in detail, and the cryptocurrency phishing 
detection model proposed by us is described in detail; 
In the “Experimental design” section, the experimental 
setup was introduced; The experiment is carried out and 
discussed in the “Experimental results and analysis” sec-
tion to prove that the method has excellent performance 
in detecting phishing fraud of Ethereum cryptocurrency; 
Finally, a summary of the entire article is provided in 
“Conclusion” section.

Related works
Because phishing has existed for a long time (Rek-
ouche 2011) and caused a large amount of losses, many 
researchers have conducted in-depth research on it. 
When studying traditional phishing detection problems, 
most researchers extract phishing fraud features from 
phishing websites and phishing pages. There are mainly 
three types of proven detection methods, such as black 
and white lists, classical machine learning, and deep 
learning (Feng et  al. 2020). Among them, the black and 
white list method refers to the comparison of URLs with 
the normal URLs and phishing URLs known in advance, 

so as to distinguish the URLs (Bahnsen et  al. 2017; 
Whittaker et al. 2010; Zhang et al. 2008). Although this 
method is stable and reliable, it usually does not cover 
all phishing websites. The study by Sheng et  al. (2009) 
shows that approximately 50–80% of phishing domains 
are added to the blacklist after performing some financial 
losses. Traditional machine learning methods are used 
to identify phishing users by extracting features from 
training data and then feeding the extracted features into 
a machine learning model (Ma et  al. 2009; Verma and 
Dyer 2015). Jain and Gupta (2018) proposed a machine 
learning anti phishing model based on URL features 
(PHISH-SAFE). On 33,000 phishing and legal URLs, 
SVM classifier was used to detect more than 90% of 
the ACC of phishing websites. Compared to traditional 
machine learning methods, deep learning methods have 
the advantage of avoiding tedious feature engineering. 
The main achievements of deep models in anti phishing 
research include: Bahnsen et al. (2017) treated each URL 
as an input sequence, and then classified and predicted it 
using the LSTM model. The final results showed that the 
ACC of this method was 98.7%. Yuan et  al. (2020) pro-
posed an improved bi-directional GRU model based on 
attention mechanism for phishing website URL detection 
(BiGRU Attention model), which not only recognizes 
phishing websites but also has interpretability, and the 
model’s ACC is as high as 99.55%.

Due to the fact that blockchain phishing primarily tar-
gets transactions on the blockchain, the study of block-
chain phishing will no longer begin with websites and 
URLs. In the research on blockchain phishing users, 
there are mainly two aspects: manual feature extrac-
tion and automatic feature extraction. Firstly, research 
on manually extracting features mainly includes Farru-
gia et  al. (2020) obtaining 42 transaction user features 
through the Ethereum API, and then using the XGBoost 
model to classify and predict 4681 transaction users, 
resulting in a classification ACC of 96%. In order to 
detect potential Ponzi scheme in smart contracts, Chen 
et al. (2018) also estimated more than 400 Ponzi scheme 
in Ethereum by combining manually extracted features 
and XGBoost classifier. Although manually extracted 
features have a good classification effect, due to the intri-
cate nature of blockchain cryptocurrency transaction 
networks, the original extracted features will inevitably 
miss important details. Moreover, due to uncontrollable 
factors such as time and malicious attacks, the original 
features are weak in representing and distinguishing legal 
and illegal transactions, so more efficient learning meth-
ods are needed (Zhu et al. 2021). Therefore, deep learn-
ing models are gradually favored by researchers because 
they require less human intervention. Yuan et al. (2020) 
used Deepwalk and Node2vec to automatically extract 
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features from Ethereum transaction graphs, and used one 
class support vector machine (one class SVM) for trans-
action user classification. The final experimental results 
showed that the Node2vec algorithm was superior to 
Deepwalk. Lin et al. (2019) proposed the T-EDGE model 
considering the time and quota factors of transactions, 
and experimental results showed that this method out-
performs Deepwalk and Node2vec algorithms. In addi-
tion to using Graph Embedding to automatically extract 
features, many researchers also use graph convolutional 
neural networks to identify Ethereum phishing users. 
Wang et  al. (2021) compared the three manual features 
extraction methods, Graph2Vec, Diffpool, for the trans-
action graph (TSGN) formed by Ethereum traders and 
their first-order neighbors. They found that the Diff-
pool method performed best. In the previous study of 
this paper (Bingxue et  al. 2022), we proposed the CT-
GCN model, which considered transaction direction 
and features at the edges of the transaction graph, and 
its classification accuracy was 88%. Although the CT-
GCN model considers the impact of transaction direc-
tion on identifying phishing users of the network, it is a 
graph classification model that enables fraud detection 
in cryptocurrency transaction networks, i.e., determin-
ing whether or not a set of transactions contains phishing 
fraud.

Compared with the above studies on blockchain net-
work phishing, our proposed CT-GCN+ model has its 
own advantages and features. First, in terms of feature 
extraction, the CT-GCN+ model not only adopts the 
manual feature extraction method to extract the basic 
features, but also adopts LSTM and graph neural net-
work to automatically extract the features in the trans-
action graph; second, in terms of graph processing, the 
Ethereum transaction graph is a directed, multilateral, 
and imbalanced graph with time characteristics on its 

edges, while traditional graph neural networks and meth-
ods for solving class imbalances cannot be directly used. 
Therefore, we convert the polygonal directed transac-
tion graph into a one-sided undirected graph by extract-
ing temporal features, and then perform class imbalance 
processing on the processed graph. It is worth noting that 
there are no reports on class imbalance processing on 
Ethernet transaction graphs.

In summary, we summarize the results of the research 
on blockchain phishing compared with our proposed 
CT-GCN+ model in Table 1.

Method
Construction of ethereum cryptocurrency transaction 
graph
To identify phishing users in Ethereum, we construct an 
Ethereum transaction graph G on the transaction records 
of Ethereum users. Since the transaction record contains 
many transaction information, such as user balance, 
transaction amount, transaction time, transaction cost 
and transaction direction, we treat the transaction record 
as an edge in the transaction graph, the transaction infor-
mation as information on the edge, and the Ether users 
involved in the transaction record as nodes in the trans-
action graph (as shown in Fig. 1).

CT‑GCN+ model
Our model is mainly divided into a temporal information 
part for extracting temporal features and a graph balance 
processing part for solving class imbalance. Next, we will 
provide a detailed introduction to our model (Fig. 2).

Time information section
In our model, the temporal characteristics part is divided 
into two main parts, Timing Processing and Edge 
Processing.

Table 1 Blockchain phishing research comparison table

Categorization Methodologies Characteristics

Manual After extracting features manually, classification is performed 
using a machine learning classification model

Advantages:
1. Can result in better categorization
Disadvantages:
1. Can lead to loss of important information
2. Requires some experience

Automatic After learning the features using the deep learning model, 
the features are fed into the classification model for classifica-
tion

Advantages:
1. No need to extract features manually, reducing the interfer-
ence of human factors
2. Doesn’t require much experience
Disadvantages:
1. Classification effect is lower than manual extraction of fea-
tures

Manual + automatic
(CT-GCN+)

After extracting the features manually, they are fed 
into the GCN to learn the features automatically, and the graph 
balancing process is considered in the GCN

Combining manual and automatic feature extraction methods, 
while considering graph balance processing, greatly improving 
classification efficiency
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Fig. 1 Ethernet transaction graph

Fig. 2 CT-GCN+ model architecture diagram
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(1) Basic Features (BaF)

In the Ethernet transaction graph G, each node (trans-
action account) itself does not have any characteristics, 
because all characteristic information exists on the trans-
action record. Therefore, in order to better express node 
information and conduct comparative experiments, we 
chose 9 features as the basic features of the node, includ-
ing the degree of the node (egress, ingress, and total 
degree), the number of neighbors (egress, ingress, and 
total number of neighbors), the ratio of total transac-
tion volume to the number of neighbors, the proportion 
of neighbors with all transaction amounts of 0, and the 
maximum value in total transaction volume (see Table 2 
for details).

(2) Timing Processing

In this section, we mainly refer to Li et  al.’s (2022) 
treatment of time when targeting the temporal transac-
tion aggregation graph network for Ether phishing scam 
detection. It is mainly divided into three parts: (1) Since 
transactions between accounts in Ethereum are car-
ried out in chronological order, the transaction records 
between each pair of nodes (transaction accounts) are 

treated as a time series based on the transaction time; (2) 
Considering that the direction of the transaction and the 
amount of the transaction are crucial in the whole trans-
action, the amount of the transaction is assigned accord-
ing to the direction of the transaction, i.e. positive for 
sending and negative for receiving; (3) Using the LSTM 
model to extract features from the transaction time series 
to obtain the edge features between each pair of nodes. 
(The schematic diagram is as follows).

In Fig. 3, v1 , v2 , L , vn and t1 , t2 , L , tn denote the trans-
action amount and transaction time between node v and 
node u . h1 , h2 , L , hn denote the results of (v1, t1) , (−v2, t2) , 
L , (−vn, tn) after LSTM. We finally choose hn as the edge 
feature between node v and node u , which is ẽvu.

(3) Edge Processing

Through Timing Processing, the polygons in transac-
tion graph G are transformed into single edges, where 
each pair of nodes is connected by only one undirected 
edge with information. In order to integrate the informa-
tion on the undirected edges around the nodes into the 
central node (i.e., processing the edge information), an 
Attention model was introduced to ultimately obtain the 
temporal characteristics (TF) of the nodes (Fig. 4).

Table 2 Base features of nodes

Feature representation Feature meaning

degree_in/to/total_sum Incoming/outgoing/total transaction volume

neighbor_in/to/total Incoming/outgoing/total neighbors

Inverse_frequency Ratio of total number of transactions to number of neighbors

Amount_0_percentage Percentage of neighbors with all 0 transactions

degree_total_max The maximum value of the total transaction volume

Fig. 3 Timing processing (this image is from reference Li et al. 2022)
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Among them, Q, K, and V respectively represent 
the matrix of transaction numbers between each pair 
of nodes, the feature matrix formed by the combina-
tion of node basic features and edge features (output 
of LSTM), and the edge only feature matrix; W rep-
resents the weight matrix of the multi head attention 
mechanism.

Figure balance processing section
The temporal features of the transaction graph nodes 
are obtained through the temporal information section; 
then the temporal features are combined with the node 
base features as the input to the graph balance process-
ing section. To solve the problem of graph imbalance, 
we mainly adopted a combination of GCN and SMOTE 
methods. The detailed process of the balance process-
ing section (Ando and Huang 2017) is as follows:

(1)

TFv = concat (head1, head2, · · · , headh)W

headi = Attention (Q,K ,V )

= softmax

(

QKT

√

dk

)

V

The Embed_SMOTE model first learns two graph con-
volution layers (GCL) for the imbalanced graph to obtain 
the graph embedding features (embedding) of each node:

where The X matrix denotes the identity matrix of the 
graph nodes, A denotes the adjacency matrix of the 
graph, and Â = D̂− 1

2 (A + I)D̂− 1
2 , D̂ is diagonal matrix 

and D̂ = I +
∑

j Aij , I represents identity matrix; W1,W2 
is the weight parameter in GCL (Fig. 5).

Then perform SMOTE sampling balance on node fea-
tures, but without any changes to the edges, and finally 
the balanced node features are fed into the linear layer 
(FC) for classification.

Although our model was inspired by Li et  al. (2020), it 
still differs from it. The main differences are as follows: (1) 
The statistical characteristics of transaction graph nodes 
are different, and we use basic features (BaF) instead; (2) 
The output of Graph Convolutional Layer (GCL) is dif-
ferent, that is, GCL is no longer considered as a structural 
feature extractor to output features, but instead adopts an 
end-to-end approach, treating it as a combination of feature 
extractors and classifiers to directly complete the classifica-
tion output and classification results; (3) Cancel the intro-
duction of LightGBM classifier because the classification 
has been completed by introducing a linear layer; (4) Due 
to the serious class imbalance in the transaction graph we 
constructed, in order to solve this problem, we improved 
the graph neural network GCN by introducing the SMOTE 
method (Zhao et al. 2021; Ando and Huang 2017).

(2)
H1 = ReLU(ÂXW1)

H2 = ReLU(ÂH1W2)

(3)
X ′ = SMOTE(H2)

Z = ReLU(ÂX ′W3)

ŷ = FC(Z)

Fig. 4 Edge processing

Fig. 5 Embedded_SMOTE flowchart
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Experimental design
Experiment on the relevant features of the graph
Time characteristics
The transaction records of Ethereum mainly include five 
pieces of information: transaction time, sender’s balance, 
receiver’s balance, transaction amount, and transaction 
cost. Except for the transaction time series, the remain-
ing four series are time series. In order to better mine 
the information of time series, we extracted the features 
of time series using three methods: manual extraction, 
moving average method, and LSTM.

(1) Manual extraction method

We count the range and standard deviation of the 
transaction time in three ways: out, in and total; and the 
sum, maximum, minimum, mean and standard deviation 
of the four information other than the transaction time 
in three ways: out, in and total, and the features consist-
ing of the four information such as transaction amount 
are collectively called manual time series features, abbre-
viated as TmF (Specific feature information is shown in 
Table 3).

(2)  Moving average method

Due to the consistent use of the moving average 
method for all four time series, we chose to use the trans-
action amount as an example to explain the moving aver-
age method. By referring to Li et  al.’s (2020) treatment 
of the time series of bitcoin address balances, we do the 
following for the time series V of Ethereum user transac-
tion amounts: First, the first-order difference of the time 

series V is done to obtain the differenced series V1, and 
calculating the mean and standard deviation of the V1 
series; then, a 2/4/6/8-period moving average of the V1 
series is calculated; finally, the mean and standard devia-
tion of the V1 series and all moving averages are used as 
the eigenvalues of the V series, and the TsF features are 
obtained by this method.

(3) LSTM method

The LSTM network is specifically designed to solve 
long-standing problems, with the main idea being to 
address each point in time Tn will have a corresponding 
state Ct , and Ct it is not only related to the state of the 
current time point, but also to the state of the past time 
point. Therefore, for each time point Tn it can be cor-
rected by adjusting the input of weights, forgetting, and 
other methods to revise Ct.

Therefore, we use the LSTM method to automatically 
extract time series features for each of the four time 
series, and the features obtained by this method are 
named TaF. It is worth noting that the time series using 
the LSTM method is consistent with the time series using 
the moving average method in (2).

Graph embedding
Graph Embedding technology represents nodes in a 
graph in the form of low dimensional dense vectors. It 
requires similar nodes in the original graph to be close 
to each other in the low dimensional representation 
space, and the resulting expression vector can be used for 
downstream tasks such as node classification, link pre-
diction, visualization, or reconstruction of the original 

Table 3 Manual time series features (TmF)

Feature representation Feature meaning

Time_in_range/std Time span/standard deviation of entry

Time_to_range/std Time span/standard deviation of out

Time_range/std Total time span/standard deviation

value_in_sum/max/min/mean/std Sum/maximum/minimum/mean/standard deviation of entered amount

value_to_sum/max/min/mean/std Sum/maximum/minimum/mean/standard deviation of outgoing amount

value_sum/max/min/mean/std Total amount/maximum/minimum/mean/standard deviation

fee_in_sum/max/min/mean/std Sum/maximum/minimum/mean/standard deviation of entered expenses

fee_to_sum/max/min/mean/std Sum/maximum/minimum/mean/standard deviation of outgoing expenses

fee_sum/max/min/mean/std Total expenses sum/maximum/minimum/mean/standard deviation

sender/receiver_balances_in
_sum/max/min/mean/std

Incoming sender/receiver balance
Sum/Max/Min/Mean/Standard Deviation

sender/receiver_balance_to
_sum/max/min/mean/std

Outgoing sender/receiver balance
Sum/Max/Min/Mean/Standard Deviation

sender/receiver_balances
_sum/max/min/mean/std

Total sender/receiver balance
Sum/Max/Min/Mean/Standard Deviation
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graph. Since the Graph Embedding method extracts 
features from the Ethereum transaction graph G from 
the perspective of graph structure, we will use these fea-
tures as structural features (StF). In this section, the main 
methods involved are T-EDGE and Node2vec.

(1) T-EDGE

Due to the fact that the Ethereum transaction graph is 
a multi-sided directed sequence graph, that is, it has mul-
tiple edges between each pair of nodes and each edge has 
a direction and time, Lin et al. (2019) proposed a graph 
embedding method based on the three factors of trans-
action amount, time, and direction: T-EDGE method. 
The main content of this method means: first the edges 
of each node (i.e. transaction records) are arranged in 
chronological order, and each edge itself carries a weight 
(i.e. transaction amount); Then calculate the node sam-
pling probability based on time deviation sampling/
amount deviation sampling/time amount average devia-
tion sampling; Finally, the sampling sequence is obtained 
based on the node sampling probability and edge direc-
tion, and the sampling sequence is calculated to achieve 
the node structure characteristics. The sampling prob-
ability calculation methods for time deviation sampling, 
amount deviation sampling, and time amount average 
deviation sampling are as follows:

where T (e) denotes the transaction time on edge e , 
W (e) denotes the amount of the transaction on edge e , 
α denotes the degree of sampling according to the time 
amount deviation, as a hyperparameter; In addition, 
in order to follow the rule that the closer the transac-
tion time (large), the greater the degree of association 
between nodes and the greater the transaction amount 
the greater the degree of association between nodes, we 
set:

(2) Node2vec

Because the deviation sampling of Node2vec is mainly 
divided into depth first walk and breadth first walk based 

(4)

PTBS(e) =
η(T (e))

∑

e′∈Nt (vi)
η(T (e′))

PWBS(e) =
η(W (e))

∑

e′∈Nt (vi)
η(W (e′))

PTBS+WBS(e) =
PTBS(e)

αPWBS(e)
1−α

∑

e′∈Nt (vi)
[PTBS(e)αPWBS(e)1−α]

, (0 ≤ α ≤ 1)

(5)η =
x − xmin

xmax − xmin

on edge weights, and this method is based on the fact 
that there is one and only one edge in each direction 
between each pair of nodes in the graph, so the multi-
laterally directed Ethernet transaction graph needs to be 
pre-processed before using the method, i.e., the multilat-
eral is changed into a single edge.

Class imbalance experiments on the graph
In addition to the SMOTE method of the features after 
the graph convolution that we have used, there are also 
methods to change the graph into a balanced graph 
before performing the graph convolution and to per-
form SMOTE on features and edges simultaneously. The 
detailed process is as follows:

(1) SMOTE

Before learning the graph neural network (GCN) for 
imbalanced graphs, The graph nodes are sampled in 
accordance with SMOTE to generate the correspond-
ing nodes n′ , at this point the number of fishing nodes 
in the graph nodes is approximately the same as that of 
normal fishing nodes; For edges, they are directly copied 
according to the original imbalanced graph, i.e. the size 
of A_balance is (n′ + n) × (n + n′) ; Finally, a relatively 
balanced graph is obtained, and then double-layer GCL 
training is performed on the balanced graph to achieve 
the goal of identifying phishing users (Fig. 6).

(2) Graph_ SMOTE

The Graph_SMOTE model is based on Embed_
SMOTE, a new adjacency matrix is obtained by decod-
ing the generated high-dimensional embedding. Then the 
nodes and edges are trained simultaneously to make both 
nodes and edges balanced and more reasonable (Fig. 7).

Experimental data
We crawled the transaction information of phishing 
users and normal users from the Ethernet (China) web-
site by means of web crawlers. The starting block for the 
phishing account is 1,997,275 (August 2, 2016), while the 
block for which we crawled the data on July 25, 2021 is 
12,892,110, and there are more than a billion transac-
tion records between these two blocks. Due to our lack 
of equipment and the limitations of the website for crawl-
ers, as well as the representativeness of the data crawled, 
we chose to use a transaction network consisting of the 
crawling hub node and its first-order neighbors to rep-
resent the transaction records between block 1,997,275 
and block 12,892,110. In order to make our transaction 
network cover all phishing users as much as possible, we 
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choose all phishing users and their corresponding num-
ber of normal users as the central node, and then crawl 
the transaction information of their first-order neighbors 
and their first-order neighbors, which ultimately consti-
tutes our experimental data.

We crawled a total of 220,000 transaction records con-
sisting of 3879 phishing users as the central node, as well 
as 230,000 transaction records consisting of 3874 nor-
mal users as the central node. After cleaning the above 
crawler data (Jiajing et  al. 2022; Zheng et  al. 2022), we 
ultimately obtained 336,500 transaction records, and our 
transaction graph G is built on it. In transaction graph 
G, there are a total of 93,007 Ethereum users, while the 
number of phishing users is only 1928.

Experimental evaluation indicators
ACC (Accuracy) represents the percentage of correctly 
predicted sample sizes in the total, and is often used as one 
of the indicators to evaluate the quality of classification. 

However, considering that our dataset is a class imbalanced 
dataset, relying solely on ACC will result in certain errors. 
Therefore, we introduce both F1 Score and AUC as evalua-
tion indicators. The essence of F1 scoring is not to miss any 
chance of making mistakes; And AUC, as the area of the 
ROC curve, essentially reduces the chance of model errors 
and is more moderate compared to F1 scores. Therefore, 
we ultimately used ACC, F1 score, and AUC as our experi-
mental evaluation indicators.

(6)

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 - score = 2 ×
Precision × Recall

Precision + Recall

Fig. 6 SMOTE flowchart

Fig. 7 Graph_SMOTE flowchart
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where TP is the number of positive samples correctly pre-
dicted; FP represents the number of positive samples that 
were incorrectly predicted; FN represents the number of 
negative samples that were incorrectly predicted; TN is 
the number of correctly predicted negative samples.

Experimental setup
Time series processing in time features
When extracting time features, we consider the trans-
action records of nodes and all their first-order neigh-
bors as a time series, so each node has a corresponding 
time series composed of transaction records. However, 
in actual Ethereum trading networks, the transaction 
volume of different nodes is inconsistent, which can be 
confirmed from the data we have collected. At the same 
time, due to the fact that Ethereum users have transac-
tions in and out, we mark the sent transactions as posi-
tive (+) and the received transactions as negative (−) 
when constructing the time series, in order to distinguish 
the direction of transactions.

According to Table 4, it can be seen that 95.45% of the 
93,007 nodes in the transaction graph G have a transac-
tion volume less than or equal to 20. Therefore, in order 
to make the time series relatively consistent and ensure 
more accurate experimental results, we have unified the 
length of the time series to 20. For time series with a 
length less than 20, the insufficient part is supplemented 
with − 1; For time series with a length longer than 20, 
select the 20 transaction data that later in time (i.e. the 
highest BlockNumber value).

Graph embedding
The experimental parameters for the graph embedding 
model are set as follows: the embedding feature dimen-
sion is 128; The width of the Skip_gram is 10; The walk 
length is 10, and each node can be traversed up to 10 
times.

CT‑GCN+ 
The transaction graph G we constructed contains 93,007 
nodes, which are limited by computer hardware facilities. 
We chose to randomly select 10,000 and 20,000 nodes 
from G to form a transaction subgraph and train them on 
the transaction subgraph (Table 5).

(1)  LSTM

In this experiment, it is no longer the transaction 
records of nodes and all their first-order neighbors that 
form a time series, but rather the transaction records 
between each pair of nodes that form a time series. There-
fore, the transaction amount is first assigned according to 
the direction of the transaction, i.e. send as positive and 

receive as negative; Then, based on the statistics in the 
transaction graph G, it can be seen that there are a total 
of 246,970 node pairs in G, namely 246,970 time series, 
and there are 243,916 time series with a length less than 
or equal to 25. Therefore, we unify the time series length 
to 25; Finally, the uniformly long time series is input into 
the LSTM model to obtain the edge features between 
each pair of nodes.

(2)  Attention

By using the LSTM model, the polygons in transac-
tion graph G are transformed into single edges, i.e., each 
pair of nodes is connected by only one undirected edge 
with information. In order to integrate the information 

Table 4 Node time series length

Time series length Percentage (%) Cumulative 
percentage 
(%)

1 71.88 –

2 12.97 84.85

3 3.28 88.13

4 2.04 90.17

5 0.96 91.13

6 0.73 91.86

7 0.47 92.32

8 0.41 92.73

9 0.27 93.00

10 0.26 93.26

11 0.32 93.59

12 0.30 93.89

13 0.25 94.14

14 0.26 94.40

15 0.22 94.61

16 0.19 94.80

17 0.17 94.97

18 0.18 95.15

19 0.16 95.30

20 0.14 95.45

Table 5 Transaction subgraph

Total number 
of G1 nodes

Number of G1 
fishing nodes

Total number 
of G2 nodes

Number of 
G2 phishing 
nodes

10,000 217 20,000 413

10,000 196 20,000 401

10,000 221 20,000 432

10,000 197 20,000 409

10,000 235 20,000 411
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on the undirected edges around the nodes into the cen-
tral node, the TTAGN model introduces the Attention 
model. It should be noted that at this stage, the input 
sequence is composed differently and the length of the 
input sequence is determined by the number of neigh-
bors of the central node. According to statistics, 85% of 
nodes have neighbors less than or equal to 50, so we set 
the input sequence length of the Attention layer to 50. 
And as the three most important input matrices of the 
Attention model, Q, K, and V are composed of the num-
ber of transactions between each pair of nodes, the fea-
tures formed by the combination of node basic features 
and edge features (output of LSTM), and edge features, 
respectively.

(3) Figure balance processing section

Obtain the time characteristics of nodes through LSTM 
and Attention; Then, the combination of time features 
and node basic features is used as input for the graph bal-
ance processing section. For some parameter settings, see 
Table 6.

Experimental results and analysis
Although the experiments we are involved in differ in 
data processing, their essence is to conduct multiple sam-
pling and repeated experiments on the transaction graph 
G composed of the data we collect. Therefore, the experi-
mental results are to some extent comparable. Except 
for the graph balance processing section that does not 
involve a specific classifier, all other experiments were 
conducted on XGBoost classifiers.

Experimental results
According to the experimental results in Table  7, after 
adding temporal features to the basic features, the clas-
sification performance has been improved to a certain 
extent, indicating that considering temporal factors can 

effectively improve the recognition ability of Ethereum 
phishing users. The bold numbers in the table represent 
the best results. Among these three different temporal 
feature processing methods, manual feature extraction 
is the most effective, with F1 scores, ACC, and AUC 
all increased by about 8%; Next is the moving average 
method, with an increase of around 5%; The last one is 
the LSTM method, with an improvement of only about 
3%. However, overall, any method that combines manual 
extraction of temporal features has an F1 score, ACC, 
and AUC of around 89%.

To confirm the impact of the number of transactions 
between nodes on the identification of phishing users, we 
consider two methods in the Node2vec model, namely 
using the number of transactions in the same direction 
between each pair of nodes as the weight (Node2vec1) 
and having the same weight between each pair of nodes 
(Node2vec2). From the experimental results, it can be 
seen that the classification performance of Node2vec2 is 
not as good as Node2vec1, with a difference of about 3% 
between the two. Therefore, this problem has been con-
firmed. Compared to the Node2vec model, the T-EDGE 
model is slightly better than the Node2vec model, with 
F1 scores, ACC, and AUC exceeding 90%.

Since in the above experiments requiring XGBoost 
classification, it is by randomly selecting the nodes so 
that the experimental data are already class balanced at 
the time of input to the XGBoost model, i.e., at the time 
of constructing the data. But in the class imbalance 
experiment on the graph, the data is balanced by con-
sidering the SMOTE method at different stages. Based 
on all experimental results, the effect of class imbalance 

Table 6 Parameter settings for the balance processing part of 
the figure

Parameters Value

epoch 200

up_scale 45

im_ratio 0.02

batch_size 32

embedding_size 64

lr 0.001

dropout 0.01

Table 7 Experimental results

Experimental model F1 ACC AUC 

BaF 0.8077 0.8172 0.8178

BaF + TmF 0.8963 0.8982 0.8985

BaF + TsF 0.8575 0.8603 0.8606

BaF + TaF 0.8288 0.8355 0.8360

BaF + TmF + TsF 0.8919 0.8943 0.8946

BaF + TmF + TaF 0.8901 0.8916 0.8919

BaF + TsF + TaF 0.8487 0.8525 0.8528

BaF + TmF + TsF + TaF 0.8883 0.8903 0.8906

BaF + TmF + Node2vec1 0.9497 0.9316 0.9113

BaF + TmF + Node2vec2 0.9295 0.9055 0.8908

BaF + TmF + T-EDGE 0.9498 0.9317 0.9154

Time information section + SMOTE 0.9503 0.9686 0.9485

Time information section + Graph_SMOTE 0.8422 0.9547 0.9445

CT-GCN+ (our model) 0.9507 0.9722 0.9667
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treatment on the graph is better, with ACC and AUC 
scores exceeding 95%. In the class imbalance experi-
ment on the graph, our model performs the best. The 
reason for this may be that in this method, the struc-
ture of the original transaction graph was not changed, 
thereby reducing the negative impact of graph struc-
ture information on classification results.

Ablation experiment
Since our model is mainly divided into two parts: time 
information and graph balance processing, in order to 
understand the magnitude of the role played by each 
part in the whole experiment, we did a model ablation 
experiment. The specific results are as follows: (where 
w/o_Embed represents the absence of graph balance 
processing part, and w/o_Time represents the absence 
of time information part).

According to the results of Fig.  8, In the entire 
Ethereum, both graph balance processing and time 
information have played a positive role in identifying 
phishing users, and the graph balance processing part 
has been more effective than the time information part.

In terms of the ACC results, the w/o_Embed model 
is better than the other two models. It is possible that 
this is because it does not perform class imbalance pro-
cessing. This leads to a prediction result more likely to 
be based on more samples, which increases the ACC. 
Based on the F1 score, the results of the w/o_Embed 
model are very unstable, which highlights the impor-
tance of the balance processing part of the graph.

Parameter sensitivity experiment
The impact of transaction graph size
From the experimental results, it can be seen that in the 
transaction subgraph G1 composed of 10,000 nodes, dif-
ferent class imbalance processing methods have their 
own advantages. Among them, the ACC of the time 
information part + SMOTE model can reach 98%, while 
the AUC of the time information part + Graph_SMOTE 
model is 92.75%, which is the highest among the three 
methods. But in the transaction subgraph G2 composed 
of 20,000 nodes, our model method is the best, with F1 
scores, ACC, and AUC all above 95%. In summary, our 
proposed model performs better and is more stable in 
node classification scenarios with 20,000 nodes than in 
node classification scenarios with 10,000 nodes (Table 8).

Parameter impact of time information section
In order to explore the degree of influence of various 
parameters in the time information section, we selected 
different LSTM dimensions and Attention sizes for 
experiments (Figs. 9 and 10).

The final results showed that although the results of 
different LSTM output dimensions showed greater differ-
ences compared to the results of different Attention sizes, 
the degree of influence of LSTM dimensions and Atten-
tion sizes decreased with the increase of the constructed 
transaction graph size, and the difference was not sig-
nificant, This indicates that the temporal information 
part has good robustness in larger transaction graphs, 
and the classification results are more susceptible to dif-
ferent LSTM dimensions. However, overall, the LSTM 

Fig. 8 Experimental results for each part of the model
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dimension of 10 and the Attention size of 10 have the 
best effect, with F1 scores, ACC, and AUC reaching 90%.

Conclusion
Due to the lack of third-party supervision of crypto-
currency transactions in blockchain, there is a series of 
online fraud and fraud behaviors in this emerging finan-
cial ecosystem, seriously threatening the security of the 
entire system. Therefore, in order to achieve more effi-
cient identification of phishing users in Ethereum, we 

also consider the time and class imbalance problems in 
Ethereum phishing user identification, and propose the 
CT-GCN+ model. The final experimental results prove 
the importance of time and graph structure in the iden-
tification process of Ethereum phishing users. Mean-
while, compared to the model without considering graph 
balancing, our model has a 5% improvement in ACC 
and AUC. Moreover, compared to models that consider 
time and graph balance, our model remains the optimal 
model.

Table 8 Experimental results of different transaction graph sizes

G1 G2

F1 ACC AUC F1 ACC AUC 

Time information section + SMOTE 0.8871 0.9814 0.8889 0.9503 0.9686 0.9485

CT-GCN+ (our model) 0.8932 0.9584 0.9185 0.9507 0.9722 0.9667
Time information section + Graph_SMOTE 0.8907 0.9409 0.9275 0.8422 0.9547 0.9445

Fig. 9 The impact of different LSTM output dimensions (From left to right: F1, ACC, AUC)

Fig. 10 The impact of different Attention sizes (From left to right: F1, ACC, AUC)
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In the research process of this article, there are still 
some issues worth further analysis and discussion: (1) 
Since our data collection is to identify users first and 
then collect transaction information of users and their 
first-order neighbors, it leads to the defect that the 
transaction graph constructed at the time of classifi-
cation has incomplete transaction collection between 
nodes. Therefore, in future work, if graph node classifi-
cation is considered, the dataset should be constructed 
as much as possible by determining a certain time 
period and extracting all transaction data within that 
time period during data collection. (2) This article dis-
cusses the experimental results of XGBoost as a classi-
fier, which can be used for comparative analysis of more 
classifiers (such as SVM, deep neural networks, etc.) 
in future work. (3) CT-GCN+ can be applied to other 
cryptocurrency related studies to a certain extent. 
There are two main reasons for this: (a) Our model is 
based on the analysis of nodes’ behaviors and charac-
teristics in the network, which are usually common in 
different cryptocurrency networks. And whether it is 
Ether or other cryptocurrencies, nodes in the network 
face similar phishing risks and threats. (b) Our model is 
based on collecting and analyzing transaction data and 
applying corresponding algorithms and models to iden-
tify and classify phishing nodes. However, these tech-
niques are migratable in their fundamentals and can be 
applied to different cryptocurrency networks. There-
fore, in future research, the application of this method 
to other cryptocurrencies can be considered.
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