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Intrusion detection system for controller 
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Abstract 

The rapid expansion of intra-vehicle networks has increased the number of threats to such networks. Most modern 
vehicles implement various physical and data-link layer technologies. Vehicles are becoming increasingly autono-
mous and connected. Controller area network (CAN) is a serial bus system that is used to connect sensors and con-
trollers (electronic control units—ECUs) within a vehicle. ECUs vary widely in processing power, storage, memory, 
and connectivity. The goal of this research is to design, implement, and test an efficient and effective intrusion 
detection system for intra-vehicle CANs. Classic cryptographic approaches are resource-intensive and increase pro-
cessing delay, thereby not meeting CAN latency requirements. There is a need for a system that is capable of detect-
ing intrusions in almost real-time with minimal resources. Our research proposes a long short-term memory (LSTM) 
network to detect anomalies and a decision engine to detect intrusions by using multiple contextual parameters. We 
have tested our anomaly detection algorithm and our decision engine using data from real automobiles. We present 
the results of our experiments and analyze our findings. After detailed evaluation of our system, we believe that we 
have designed a vehicle security solution that meets all the outlined requirements and goals.

Keywords  Controller area network, Deep learning, Intrusion detection system, Long short-term memory, Machine 
learning, Recurrent neural networks

Introduction
Vehicular technology has been steadily improving to 
enhance the safety and comfort of automobiles. Today’s 
automobiles consist of a wide variety of networks such 
as Controller Area Network, Local Interconnect Net-
work, and Media Oriented Systems Transport. The rapid 
and omnipresent expansion of intra-vehicle networks 
has increased the number of vulnerabilities to these net-
works. Most modern vehicle systems implement vari-
ous physical layer and data link layer technologies. Such 
networks not only interface among themselves but also 
with external networks. Vehicles are becoming increas-
ingly smart, connected, and part of the Internet. This 

has given rise to multiple attack surfaces and vectors to 
automobiles. In Miller and Valasek (2015) demonstrated 
successful hacking of a car in motion on an interstate 
by jamming the transmission system and disabling the 
brakes at low speeds.

The number, severity, and variety of security attacks on 
vehicles is increasing. From jamming transmissions to 
disabling lane control systems, such attacks are a major 
threat to the driver and their surrounding vehicles (Lar-
son and Nilsson 2008; Dibaei et al. 2020). Over the years, 
multiple security solutions have been proposed (Woo 
et al. 2016; Kim et al. 2021). Examples of such solutions 
include firewalls, network segmentation, signature-based 
scanning, and intrusion detection systems. Vehicular 
technology is a mix of multiple physical and link layer 
technologies. As new technologies are introduced for 
vehicles, these technologies have to interface with leg-
acy technologies. The legacy technologies are widely 
prevalent in all vehicles and they provide critical control 
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functions. The advantages of legacy technologies are 
reliability and low-latency (Lv et  al. 2021). Security was 
not an integral part of the design of legacy technologies 
(Dibaei et al. 2019).

As technology evolves for autonomous vehicles, the 
number of attack surfaces will increase. Most modern 
vehicles are equipped with Adaptive Cruise Control 
(ACC), Advanced Driver Assistance Systems (ADAS), 
and Light Detection and Ranging (LIDAR) systems. 
Using these systems, a lot of critical features such as 
speed, lane control, navigation, and others are automati-
cally controlled with minimal driver interaction. Such 
systems will continue to evolve as vehicles make rapid 
progress towards full automation. For example, multi-
ple video cameras on the periphery of the vehicle are 
currently being used to automatically and safely change 
lanes, exit from a freeway, and stop at traffic lights and 
signs. Although these advanced systems use newer and 
faster physical and link layer technologies, the critical 
control and safety systems still run on legacy networks. 
There is a need to develop security solutions that will 
protect critical systems from attacks.

This paper extends our prior work (Tanksale 2020b, 
2021) in the area of intrusion detection for Control-
ler Area Networks. We presented an LSTM network to 
detect anomalous CAN frames in Tanksale (2020b). We 
presented an anomaly detection function design pro-
cess in Tanksale (2021). Each function outputs whether 
a given CAN frame is anomalous or not. We use multiple 
functions in our anomaly detection engine and have pre-
sented the rationale for this in our prior work. The major 
contributions of this paper are (1) a decision engine that 
uses the outputs of multiple functions and contextual 
information to determine if an intrusion is occurring, (2) 
a modified anomaly detection function design process, 
and (3) validation on multiple real-world datasets includ-
ing various makes and models. The decision engine can 
be generalized to make binary decisions based on contra-
dictory inputs from multiple sources. It carefully consid-
ers contextual information as part of its determination 
process. All of these are novel contributions of the work 
that is presented in this paper.

This paper is organized as follows. Section  “Control-
ler area network” provides a brief introduction to the 
Controller Area Network (CAN). Section  “CAN secu-
rity” describes security weaknesses and attacks on CAN 
communications. Relevant related research is summa-
rized in section  “Background and related work”. Our 
prior work that describes a Long Short-Term Memory 
parameter selection algorithm (Tanksale 2020b) and 
design of anomaly detection functions (Tanksale 2021) is 

described in section  “Summary of our prior work”. This 
section also presents a modified anomaly detection func-
tion design process as a result of further evaluation of our 
earlier algorithm. Section “Decision engine” presents the 
rationale for the proposed decision engine parameters, a 
process to handle functions with contradictory outputs, 
design of the decision engine, and evaluation based on 
real-world datasets. We perform a detailed comparative 
analysis with other similar systems in section  “System 
analysis and discussion” and conclude the paper in sec-
tion. “Decision engine”.

Controller area network
Controller Area Network is the most common serial bus 
system that is used to connect devices within automo-
biles. The connected devices are commonly called Elec-
tronic Control Units (ECU) although there is a subtle 
distinction that is outlined later in this dissertation. Fig-
ure 1 demonstrates how ECU nodes are connected to a 
CAN bus. An electronic control unit controls an electri-
cal subsystem in a vehicle. Most newer vehicles contain 
an average of 120 ECUs. ECUs are used in transmission 
control, engine control, speed control, airbag control, 
powertrain control, and many other vehicle subsystems.

CAN with flexible data-rate (CAN FD) is the latest 
communication standard that provides high data rates. 
Classical CAN was introduced in 1986 and implemented 
in 1988 and CAN FD was launched in 2012 and inter-
nationally standardized in 2015 in ISO 11898-1. Table 1 
summarizes the communication speed for intra-vehicle 
network technologies. Figure  2 shows the format of a 
CAN-FD data frame.

CAN security
Security weaknesses
CAN messages are broadcast and do not contain the 
sender’s address. All frames are received by all ECUs 
and each ECU determines whether to act on the frame 
based on the message identifier. A well-known flaw in 
any broadcast transmission is that malicious nodes can 
easily passively eavesdrop on all the frames transmitted 
by other nodes. This will allow a rogue CAN sensor to 

Fig. 1  CAN Bus and ECUs
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read the CAN data traffic and later use it for a fabrica-
tion attack. Traffic on the CAN is not encrypted. CAN 
Message space is limited. It is fairly easy to capture 
CAN traffic and analyze it for traffic and message pat-
terns. This allows attackers to passively monitor and 
collect detailed metrics about CAN traffic. All of this 
makes a replay attack fairly easy to execute. Lack of a 
sender’s address in the CAN frame makes it a challenge 
to verify if a message was indeed sent by an ECU that is 
expected to send it. A rogue sensor could periodically 
report incorrect wheel speed or oil temperature values. 
Recall that a remote frame is used to solicit data from 
CAN sensors. Any malicious sensor can potentially 
respond to such a remote frame. Such malicious activ-
ity can potentially damage or disable critical control 
systems.

Apart from maintenance of sender integrity, there 
is no mechanism to verify data integrity (Xiong et  al. 
2019). Message Authentication Codes (MAC) are one 
solution to enforce data integrity. The payload of CAN 
frames can be at most 512 bits. There is not enough 
space in the data field for the actual message and a 
strong MAC. A majority of ECUs send very similar 
messages with only minor changes to the content of the 
message. This makes it easier to replay messages.

There are multiple interfaces into the CAN. The 
OBD-II port provides direct physical access to the CAN 
(Takefuji 2018). The OBD-II port only provides wired 
access to the CAN. A majority of modern automobiles 
are equipped with a multi-functional telematics system, 
which supports GPS, media entertainment, Bluetooth, 
cellular among others. All such interfaces are potential 
vulnerabilities that can be used in any of the aforemen-
tioned attack scenarios.

To summarize, the CAN protocol has the following 
weaknesses due to its design:

Communication
All nodes broadcast their messages on the CAN. A mali-
cious node on the CAN can easily sniff all traffic. Mes-
sage sent by a malicious node will be seen by all sensors. 
Broadcast is required for the network to function. Elimi-
nating broadcast will necessitate a hardware and network 
change which is not practical.

Low‑latency requirement
CAN messages are supposed to be sent and received in 
real-time. Any security mechanism may significantly add 
to the delay.

Lack of authentication
There is no support for source and message authentica-
tion. This makes the CAN network vulnerable to integrity 
violations and replay attacks. Authentication procedures 
will add to latency.

Our prior work (Tanksale 2019, 2020a, b, 2021) encom-
passes CAN security weaknesses and CAN security 
requirements.

Attacks on CAN communication
The following attack scenarios are possible:

•	 Modification—Malicious ECU sniffs frame and 
changes frame data

•	 Interception—Passively scan all traffic on CAN
•	 Fabrication—Malicious ECU generates frame that is 

supposed to be generated by other ECU(s)
•	 Interruption—Denial of Service attack where mali-

cious ECU continuously sends frames with lower IDs 
to thwart transmission of higher priority frames

The U.S. Industrial Control Systems Cyber Emergency 
Response Team (ICS-CERT) recently published an alert 
about a selective denial-of-service attack against the 
CAN standard which doesn’t involve the transmission of 
any frames for its execution, and thus would be undetect-
able via frame-level analysis (NCCIC/ICS-CERT 2017). 
Some recent experiments have revealed vulnerabilities 

Fig. 2  CAN-FD frame format (size in bits)

Table 1  Communication speed

Type Speed

Low-speed CAN 40–125 Kbps

High-speed CAN 40 Kbps–1 Mbps

CAN-FD 8 Mbps

MOST 100–150 Mbps

LIN 20 Kbps
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in the CAN and ECU architecture. White-hat hackers 
were able to gain access to the transmission system of a 
vehicle by gaining access to it via the infotainment sys-
tem (Meyer 2019). Attackers are likely to focus on vehicle 
entry-points such as Bluetooth, over-the-air diagnos-
tics, Wi-Fi, Zigbee, infotainment systems, and mobile 
applications.

The attack shown in Fig. 3 was demonstrated by Miller 
and Valasek (2015) on a Toyota Prius. The CAN message 
that sends the vehicle’s speed to the speedometer for dis-
play was manipulated. As a result, the speedometer was 
displaying the incorrect speed which results in a danger-
ous driving condition. The Counter (CN) and the Mes-
sage ID (0x00B4) were unchanged. The Checksum (CS) 
was recomputed for the modified data. The current vehi-
cle speed of 64.23 mph (0x2877) was replaced with 8.66 
mph (0x575) in the highlighted frames. This caused the 
driver of the vehicle to accelerate and the vehicle reached 
a dangerously high speed.

Background and related work
In this section, we review prior research, in the areas of 
confidentiality and integrity of CAN communications, 
that utilizes classifiers, intrusion detection, and various 
types of deep neural networks. Kleberger et  al. (2011) 
survey the current research related to securing the con-
nected car, with a focus on the security of the in-vehi-
cle network. Taylor et  al. (2016) use Long Short-Term 

Memory (LSTM) networks to detect sequential anom-
alies in CAN data, however their approach results in 
higher than acceptable false positive rate. Desta et  al. 
(2020) propose an LSTM network to predict the next 
CAN arbitration ID and compare it with the actual arbi-
tration ID, however their proposed scheme is vulnerable 
to replay attacks. A broad survey of current intrusion 
detection systems for all types of in-vehicle networks is 
presented in Wu et al. (2020). Nie et al. (2020) propose 
an intrusion detection system, using convolution neural 
networks, for Internet of Vehicles using road side units. 
We adopt some of their feature extraction techniques in 
our research.

Gated Recurrent Units (GRU) use fewer gates and 
parameters than LSTM, however, prediction accu-
racy of LSTMs is higher than the prediction accuracy 
of GRUs (Tanksale 2023) for temporal vehicle data. 
A system proposed in Lee et  al. (2022) uses periodic 
properties of CAN messages to detect masquerade 
attacks. There are many problems with this approach. 
It does not detect attacks on CAN messages that are 
not periodic. Their results and analysis are based on 
data from 2 vehicles which is not nearly enough to 
validate any system. The system relies on project-
ing when a normal ECU suspends message trans-
mission and then flags frames sent after that time as 
intrusive. Another approach uses Convolution Neural 
Networks and Gated Recurrent Units to flag intru-
sions (Javed et  al. 2021). This system performs well 

Fig. 3  Normal CAN sequence (left), modified CAN sequence (right)
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to detect intrusions and considers different types of 
attacks on the CAN. One of the attacks that this sys-
tem specifically addresses is an impersonation attack. 
One potential drawback of this approach is that the 
hacker can send fabricated frames with the same fre-
quency as normal CAN messages and such an attack 
may not be detected. CAN message sequencing and 
corresponding timing analysis is used to detect intru-
sions (Marchetti and Stabili 2017). This system is vul-
nerable to fabricated and replay CAN frames that are 
inserted using the same periodicity as normal CAN 
frames. Attacks on multiple CAN parameters are not 
detected with high sensitivity. Generative pretrained 
transformer (GPT) is a well-researched technique for 
natural language generation. Researchers have used 
GPT to detect intrusions in CAN (Nam et  al. 2021). 
Their system is designed to detect only injection 
attacks. It works well when a limited number of CAN 
message types are used in the attack. The researchers 
recognize that their system will not detect all types 
of attacks and attacks launched using multiple CAN 
message types.

Jin, Chung, and Xu propose a signature-based intru-
sion detection system (Jin et  al. 2021) that can detect 
replay and interruption attacks. Katragadda et al. (2020) 
propose a system to detect low-rate replay attacks how-
ever it their solution works only for specific types of 
replay attacks. Wu et al. (2018) use statistical measure-
ments related to the message id to attempt to thwart 
replay and reverse-engineering attacks on the CAN. A 
basic LSTM network was used to classify CAN frames as 
normal frames or attack frames in Hossain et al. (2020). 
There is no novel approach proposed here and although 
accuracy is extremely high there is no discussion of 
sensitivity.

Support vector machines (SVM) were first introduced 
by Cortes and Vapnik (1995); Vapnik (2013). A Support 
Vector Machine-based classification and prediction 
approach is detailed in Tanksale (2019). A weakness of 
this approach is the absence of contextual time-series 
information in classifying CAN frames. Kang and Kang 
propose an efficient intrusion detection system based 
on a deep neural network for the security of in-vehic-
ular network (Kang and Kang 2016). The use of Sup-
port Vector Machines (SVM) for the detection of DoS 
attacks have been discussed in Mukkamala and Sung 
(2003). The performance of the proposed method has 
been validated experimentally and shown that proposed 
SVM-based detection approach achieves very high 
detection accuracy. A general classification problem 
in n-dimensional space is defined in Cristianini et  al. 
(2000). Attacks on safety-critical CANs are summarized 

in Fröschle and Stühring (2017) and we incorporate 
these ideas in some of our experiments. A general 
machine learning based detection system is presented 
in Minawi et  al. (2020) but it was not tested on real 
world attack data. Zhou et  al. (2019) propose a novel 
intrusion detection system using ECU fingerprinting by 
calculating statistical features of the bit time of reces-
sive and dominant bits.

Sekar et  al. (2002) combine specification-based with 
statistical anomaly detection techniques to ease the 
task of model construction and to reduce false alarm 
rate. The authors acknowledge that such a system is vul-
nerable during training. SVM is a supervised machine 
learning model which is well-known for its great per-
formance in pattern recognition and classification tasks 
with high dimensional data (Peng et  al. 2015). Nguyen 
and Armitage (2008) describe machine learning tech-
niques for Internet traffic classification. The techniques 
described therein do not rely on well-known port num-
bers but on statistical traffic characteristics. Multiple 
ECUs on a high-speed CAN bus and a low-speed CAN 
bus, connected using a bridge, were simulated using 
CANoe (Vector https://​www.​vector.​com/​int/​en/​produ​
cts/​produ​cts-a-​z/​softw​are/​canoe/) software to imple-
ment a replay attack by Hoppe and Dittman (2007). An 
ECU on the low-speed CAN bus was able to capture 
messages from and replay those messages to the high-
speed CAN bus.

Machine learning is often employed to implement 
anomaly-based intrusion detection. The network traffic 
is collected from the Network Interface Card or from a 
packet capture file containing previously captured net-
work traffic. The packets are then filtered and sent to a 
feature extraction engine, which computes flow-based 
and header-based attributes. These attributes are assem-
bled into a feature vector, which provides the input data 
for the training or classification phases of a classifier. 
Tavallaee et  al. (2008) proposed an anomaly detection 
scheme using the correlation information contained in 
groups of network traffic samples. The main idea is to 
compare the signs in the covariance matrix of a group 
of sequential samples with the signs in the covariance 
matrix of the normal data obtained during the training 
process. Machine learning techniques have been widely 
used in detecting network anomalies because machine 
learning can construct models automatically based on the 
given training data. Machine learning techniques have 
achieved good performance on anomaly-based detection 
systems. Some typical methods used in network traffic 
anomaly detection include Bayesian networks, support 
vector machine (Sung and Mukkamala 2003), fuzzy logi-
cal (Hoang et al. 2009), genetic algorithm (Li 2004), and 
decision trees.

https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
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To summarize, a variety of intrusion detection systems 
have been proposed over the years. CAN data is tempo-
ral-based as future vehicle behavior is dependent on past 
and current behavior. Dependence on periodic properties 
(Lee et  al. 2022) of CAN is vulnerable to attack frames 
that are inserted at regular intervals in the CAN traffic. 
Systems that use CNNs and GRUs (Javed et  al. 2021) 
also depend on periodic properties of the CAN net-
work. Classification and prediction models are unable to 
address contextual time-series-based nature of the CAN 
data (Tanksale 2019; Mukkamala and Sung 2003). LSTM 
networks are designed to predict time-series data based 
on long-term dependencies. They have been success-
fully implemented in speech recognition and sentiment 
analysis (Huang et al. 2022; Oruh et al. 2022). Hence, our 
implementation of a system to predict values of functions 
based on CAN parameters uses LSTM networks.

Summary of our prior work
We propose a comprehensive intrusion detection system 
for the Controller Area Network. The overall architecture 
for such a system is shown in Fig. 4. The two main com-
ponents of this system are an anomaly detection engine 
and a decision engine. The anomaly detection engine is 
described in detail in our prior work (Tanksale 2020b, 
2021). The focus of this paper is the decision engine 
which is described in section  “Decision engine”. In this 
section, we briefly summarize our prior work.

We presented an LSTM parameter selection algorithm 
in Tanksale (2020b). We presented a design process for 
anomaly detection functions in Tanksale (2021). Multi-
ple strong functions are constructed using our function 
design process and LSTM networks are used to predict 
the values of these functions. We compare the predicted 
value ( ŷt ) with the computed value ( yt ) of the function. 
Let zt be a variable used to indicate if a CAN frame is 
labeled as anomalous by the function. zt = 1 if the frame 
is anomalous, zt = −1 if it is not. If |yt − ŷt | > ǫ , then we 

label the frame as anomalous. Figure 5 outlines this pro-
cess for one function.

We use multiple functions as part of our anomaly 
detection engine. Figure  6 outlines the design of our 
intrusion detection system thus far.

Attack model
To introduce anomalies in normal CAN traffic data, we 
modify CAN variable values using multiple techniques. 
For each of our experiments, the testing data contained 
1 % malicious CAN frames. The following modifications 
were made to CAN variable values: 

Scale	� Multiply the CAN variable values with a scal-
ing factor.

Shift	� Shift the CAN variable values.
Random	� Randomly generate CAN variable values to 

replace actual values.
Replay	� Repeat earlier CAN variable values.

The attacker can place malicious CAN frames in vari-
ous locations when executing an attack. When inserting 

Fig. 4  Intrusion detection system

Fig. 5  Labeling done by a function

Fig. 6  Intrusion detection system
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anomalous CAN frames to test our system, we chose 
multiple placement locations: 

Random	� Malicious frames are placed in ran-
dom locations in the frame sequence.

Single group	� Malicious frames are grouped 
together in one random location.

Multiple groups	� Malicious frames in n equal-sized 
groups are placed in n periodic 
locations.

Function design
Based on observations from prior experiments, we 
need to build a function that addresses the weaknesses 
of the preliminary function that we used. We are using 
CAN variables that are related to the critical function-
ality of the vehicle. A vast majority of the variables are 
collected and processed by the engine control module 
and the transmission control module. The matrix in 
Fig. 7 lists the CAN variables.

Using the mechanical and electrical properties of the 
CAN variables and their logical relationships, we built a 

Fig. 7  CAN variables relationship matrix
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relationship matrix as shown in Fig. 7. This matrix will 
be used to build rules that define relationships between 
CAN variables using various operations.

Operations and rules
Multiple types of relationships and dependencies exist 
between CAN variables. They can be directly or inversely 
proportional to one another, or they can be threshold or 
distance based, or they could be correlated. To capture the 
various relationships between CAN variables, we define a 
list of operations: 

1.	 correlation
2.	 multiplication
3.	 distance
4.	 boolean operations

The Pearson correlation coefficient of two variables p and q 
over n measurements is defined as

The rules file contains all operations between CAN vari-
ables. For ease of implementation and automation, each 
line in the rules file defines one function in postfix nota-
tion. A number is assigned to each CAN variable and a 
letter is assigned to each operation. An example rule is 
< 0,13,a > which represents the correlation (a) between 
brake position (0) and fuel pressure (13). Another rule is 
< 9,10,c > which is postfix representation of the mul-
tiplication of intake air temperature and multiplicative 
inverse of fuel consumption. Few other examples of rules 
are < 11,12,g > , < 19,0,a > , and < 2,3,c >.

Function properties
As discussed earlier, a function with only two arguments 
can be easily attacked. Hence, we need a minimum value 
for the number of CAN parameters passed to a func-
tion. We need to ensure that changing one CAN variable 
creates a cascade effect requiring the attacker to change 
multiple CAN variable values. Also, if a CAN variable 
is related to multiple variables, then any change in this 
variable’s value should significantly affect the value of the 
function. These desired function properties can be mod-
eled as a graph.

We use an undirected graph to model the relationship 
between two CAN variables in a function. We represent 
CAN variables, used in the function, as vertices in this 
graph. Operations between variables used in this func-
tion will be represented by an edge of this graph. Let 

(1)corrn(p, q) =
n�pjqj−�pj�qj√

[n�p2j −(�pj)2][n�q2j −(�qj)2]

G = (V ,E) be an undirected graph where V is the vertex 
set and E is the edge set. An edge in an undirected graph 
is a set {u, v} where u, v ∈ V  and u �= v . The degree of a 
vertex is the number of edges incident on it. The degree 
of the graph is the maximum of its vertices’ degrees. A 
path < v1, v2, . . . , vk > forms a cycle if k > 0 , v0 = vk , 
and edges on the path are distinct. The cycle is simple if 
v1, v2, . . . , vk are distinct. A Hamiltonian cycle is a simple 
cycle that contains each vertex in V.

To enforce the cascade effect mentioned earlier, we 
can require our graph to have a Hamiltonian cycle. 
Changes to the value of a CAN variable, that is related 
to multiple variables in the function, will require 
changes to values of multiple CAN variables. This will 
make it difficult for the hacker to modify all required 
CAN variables such that the computed value of the 
function is close to its predicted value. To enforce this, 
we need to ensure that the degree of at least one graph 
vertex is close to the degree of the graph. It is possible 
that based on the variables that are part of the function 
and the existing relationships between them, we may 
generate a graph that does not meet the desired prop-
erties. Hence, we introduce the concept of an artificial 
edge between vertices. Such as edge does not represent 
any physical or mechanical relationship between the 
respective CAN variables. We use artificial edges so 
that we can efficiently achieve our desired properties. 
We need to be careful that we do not use multiple arti-
ficial edges as that will weaken the function. Hence, as 
we add artificial edges to our graph, we make sure that 
the number of artificial edges is always less than a third 
of the number of natural edges. Thus, we propose that 
the graph representing an anomaly detection function 
(function graph) meet the following properties. Let m 
represent the number of CAN variables used in the 
function.

Property 1  m ≥ 5.

Our experiments have shown that we need a minimum 
number of CAN variables passed to a function to ensure 
that the hacker cannot easily attack the function.

Property 2  Function graph must contain at least one 
node of degree ≥ m − 2 or a Hamiltonian cycle.

A Hamiltonian cycle is a closed loop through a graph 
that visits each node exactly once. Changes to the value 
of a CAN variable that is related to multiple CAN vari-
ables within a function causes significant changes in the 
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function’s computed value. The hacker will need to mod-
ify the values for all the CAN variables that are related to 
the first variable. A similar cascade effect can be achieved 
if the CAN variables passed to a function are related to 
each other in a cycle. In both cases, it becomes difficult 
for the hacker to launch a successful attack.

Property 3  Total number of artificial edges in the func-
tion graph must be less than a third of the total number of 
edges.

The computed value of a function is composed of oper-
ations defined between pairs of CAN variables. Given 
these operations between CAN variables, if we are unable 
to construct a function that is not vulnerable to attack, 
then we add new relationships between CAN variables. 
The purpose of this is to design a function that is not vul-
nerable to attack. The new relationships are added one 
at a time and each new added relationship weakens the 
functions. Our experiments have demonstrated that the 
number of new relationships between CAN variables can 
at most be a third of the number of actual relationships 
without making the function vulnerable.

Property 4  Node(s) with degree ≥ m − 2 from Property 
2 can have at most one artificial edge.

The rationale for having a CAN variable related to 
multiple CAN variables is that it will be difficult for the 
hacker to modify all CAN variables so that the computed 
value of the function does not change. If new relation-
ships between CAN variables are added to such a vari-
able then they need to be limited so that the function is 
not vulnerable.

Property 5  Total number of artificial edges within the 
Hamiltonian cycle from Property 2 must be less than a 
third of the total number of edges in that Hamiltonian 
cycle.

The goal of having CAN variables related to each other 
in a cycle is to make it challenging for the hacker to attack 
the function. The number of new relationships added 
to the function must be limited or else the function will 
become vulnerable.

Function design process
In this section, we describe an algorithm for designing 
anomaly detection functions that meet the proper-
ties listed in section  “Function properties”. All of our 

functions contain at least 5 CAN variables. To begin, 
we create a set of all m-tuples (m=5) of CAN variables 
and our algorithm tries to construct a function using 
each tuple. A random m-tuple is selected from the set 
of all m-tuples. All rules that contain these m CAN 
variables are considered. A function graph is then 
constructed using selected rules and the m CAN vari-
ables. A function graph must meet the 5 properties 
outlined in section  “Function properties”. If it does 
not, then we add an artificial edge and check to see 
if all properties are being met. If such a function can-
not be constructed, then we discard this m-tuple and 
select the next one.

A function may contain one or more artificial edges 
to satisfy the graph’s properties. An artificial edge does 
not define an operation. By adding an artificial edge we 
are adding a new term in the function definition. For 
this reason, we need to assign one of our operations 
to the artificial edge. Also, this newly added operation 
must not contribute to the function’s output as much 
as the other edges. Hence, we assign a weight between 
(0,  1] to this operation. We use a grid-search process 
to create different variations of the function. To do so, 
once a function graph meets all required properties, 
we construct multiple variations of the function using 
all operations on all artificial edges, with all weights, 
of the function graph. Each variation of the function is 
trained using the LSTM training process detailed ear-
lier. We test the model generated by each variation of 
the function by introducing all four anomaly types in 
all three locations in the test dataset. For each anomaly 
type and location, we measure the sensitivity and spec-
ificity. We calculate the mean sensitivity and specific-
ity over all anomaly types and locations. Game-theory 
principles are used to find the optimal threshold values 
for intrusion detection system metrics (Laszka et  al. 
2016; Creech and Hu 2014). These values are passed 
as input to the algorithm ( ηse = 0.92 and ηsp = 0.97 ). 
We only consider function variations that achieve a 
mean sensitivity of at least ηse and a mean specificity 
of at least ηsp . Such a function variation is added to our 
list of function candidates. Once we have completed 
evaluating all possible function variations, we choose 
the function variation with the highest sensitivity. This 
function variation is added to our final list of func-
tions. We repeat this process, making sure that we 
don’t select the same m-tuple, until we construct the 
desired minimum number of functions. If all m-tuples 
are exhausted, then we increase the value of m and 
repeat the process. Algorithm 1 outlines the process of 
designing and selecting anomaly detection functions.
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Decision engine
The decision engine is the second component of our 
intrusion detection system for the CAN. The detection 
of anomalous CAN frames by the various functions that 
make up the anomaly detection engine does not neces-
sarily indicate that an intrusion is occurring. The deci-
sion engine utilizes the output of the anomaly detection 
engine and other contextual data to determine if the 
vehicle is being intruded on.

Intrusion
We define an intrusion into a vehicle as the malicious 
presence of anomalous CAN frames on the CAN bus. 
CAN frames that are sent in response to an intrusion may 
not be detected as anomalous by the anomaly detection 
engine. However, the decision engine should be able to 
determine these as intrusive. Our decision engine design 
takes into consideration contextual and temporal data in 
addition to the output of the anomaly detection engine. 
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In the next sections, we design a model for the decision 
engine that uses multiple parameters to determine if the 
vehicle is being intruded upon.

Decision engine rationale
Each anomaly detection function labels a CAN frame as 
anomalous or not. If all functions unanimously agree in 
their labeling of a frame, then the decision engine makes 
the same decision that all functions agree on for that 
frame. When there is no unanimous agreement between 
the functions for a particular frame, we propose to eval-
uate various parameters and then decide if the frame is 
part of an intrusion.

We need to determine each CAN sensor’s role in the 
composition of a function. A vertex in a function graph 
that represents a CAN variable could be connected to 
multiple vertices. In this case, any change in the value of 
this CAN variable has a significant impact on the out-
put of the function. As a consequence, this will impact 
the labeling of this message frame as anomalous or not. 
Additionally, if this sensor is closely related to the CAN 
message frame that is being analyzed then the labeling 
done by the function is important. The classification done 
by a function that contains multiple such variables is very 
important in making a decision on the frame. If the RPM 
sensor is being attacked and the CAN message frame 
is a response to an RPM request, then this is important 
contextual information and the decision engine needs 
to weigh this accordingly. If a function contains multiple 
CAN variables that are not related to the CAN message 
then the classification of the message by this function is 
less significant and the decision engine needs to weigh 
this accordingly.

As mentioned earlier, it is possible that a vertex repre-
senting a CAN sensor is connected to a majority of ver-
tices in the function graph. In addition, it is possible that 
this sensor is closely related to the message. Consider a 
situation where such a sensor is used in multiple func-
tions. If the labels by these functions are in agreement, 
then the decision engine needs to consider this. Alterna-
tively, if the labels by these functions are contradictory 
to each other then the decision engine needs to evaluate 
this situation in detail. The decision engine should utilize 
the role of these CAN variables in other anomaly detec-
tion engine functions and the corresponding labels of 
these functions.

Decision engine parameters
Based on the design discussion from the earlier section, 
we use multiple parameters to construct the decision 
engine. We consider the relationship between each CAN 
variable and the message when determining intrusions. 

We define a value γ as a way of measuring relationships 
between CAN variables and messages. γ values are deter-
mined based on input from subject matter experts and 
γ ∈ (0, 1] . A γ value closer to 1 indicates that the sensor 
is closely related to the message. For example, γ(wheel 
speed sensor, request RPM message) is close to 1 whereas 
γ(door sensor, request oil temperature) is close to 0. Let 
γij be the γ value for CAN variable cj and message Mi . For 
each function Fk , per message Mi , we construct a vector 
−→γik = < γij >.

It is possible that all or a majority of CAN variables 
passed to a function Fk are closely related to message Mi . 
On the other hand, it possible that none or very few of 
CAN variables passed to Fk are closely related to Mi . In 
the former case, the labeling done by a function needs to 
be given more importance since all or majority of vari-
ables are closely related to the message under considera-
tion. In the latter case, the labeling done by this function 
needs to be given less importance since none or very few 
of the CAN variables are related to the message. With 
each function making its own labeling for each mes-
sage, we need a measurement to decide which functions’ 
labeling for that message carries more weight. We use 
this principle to construct a measurement later in this 
section.

If any two CAN variables are physically or mechani-
cally related to each other, then there exists a natural 
edge between them in the function graph. The degree of a 
vertex in a function graph is the number of natural edges 
that are incident on it. This degree is directly propor-
tional to the effect this variable has on the labeling done 
by this function. To take into account the effect of chang-
ing a CAN variable (as part of an attack) on the labeling 
done by a function, we need to consider the ratio of the 
degree of this vertex to the degree of the graph of the 
function (using only the natural edges). The higher the 
ratio, the more effect a change in the value of the CAN 
variable will have on the labeling done by function. We 
define

which gives us the vector −→rk  = < rj > for function Fk . For 
example, given the following function graph in Fig. 8 for 
the function defined in Eq. 3

where x0 : brake position, x1 : brake pressure, x2 : wheel 
speed, x3 : accelerator pedal position, x4 : engine torque, 
its −→r  = < 1,

1
4
,
1

2
,
1

2
,
1

4
> . This implies that CAN variable 

(2)rj =
degree of vertex cj

degree of graph

(3)
F(x0, x1, x2, x3, x4) =

x0

x1
+ corr(x0, x4) +

x3

x2
+

corr(x0, x3) + corr(x0, x2)
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x0 has the most effect on the labeling done by this func-
tion whereas CAN variables x1 and x4 have the least effect 
on this function’s labeling.

To summarize, for each function Fk per message Mi , 
we have −→γik that measures how closely related each 
sensor is to the frame being considered. We also have 
−→rk  that measures how much each CAN sensor in a 
frame proportionally contributes to the labeling done 
by the function. −→rk  is independent of Mi . As men-
tioned earlier, if a particular CAN parameter with a 
high rj value is under attack then any changes to its 
value will affect the labeling done by the function. In 
addition, if this CAN parameter is closely related to 
the message, then the labeling done by this function 
is important. To measure the effect of both of these, 
we multiply the two for each CAN sensor cj per func-
tion Fk per message Mi . This value will ∈ (0, 1] because 
γ ∈ (0, 1] and r ∈ (0, 1] . Observe that if this value is 
closer to 1, then it indicates that this sensor is closely 
related to the message and is connected to a lot of the 
other sensors used by the function. For example, if 
the vertex representing the accelerator pedal position 
is connected to a majority of vertices in the function 
graph and if the message being analyzed is about the 
RPM (high γ  value), then the product of γ  and r for 
the accelerator pedal position will be close to 1. Any 
malicious change in the value of this sensor will affect 
the computed value of the function. As a result, the 
message frame will be labeled as anomalous by the 
function. Hence, we call this quantity the evidence 
provided by the sensor to support the function’s labe-
ling ( zik).

We collect evidence for each of the variables to sup-
port the function’s labeling and call it an evidence score 
for message Mi provided by the variables in function 
Fk . Each of the functions are composed using a differ-
ing number of CAN variables. To be able to compare the 
evidence score of multiple functions with varying num-
ber of parameters we normalize its value. More formally, 
evidence score denoted by ESik for message Mi and func-
tion Fk that is composed of nk CAN variables is com-
puted as

Each function Fk makes a labeling zik for message Mi . 
Consider two functions that contradict each other in their 
labels for message Mi . There are multiple possibilities to 
consider to resolve this contradictory labeling between 
each pair of functions. We need to analyze the evidence 
scores for both functions. If both functions present high 
evidence scores then we need to closely examine the com-
position of each function. If one of the two functions pre-
sents high evidence score and the other does not, then 
we need to give more weight to the labeling of the func-
tion that presents high evidence score. Consider the case 
where both functions do not share a lot of CAN variables 
between them and both present high evidence scores. This 
implies that for message Mi , each function presents high 
evidence score while not sharing a lot of the CAN variables 
with the other function, but contradicts the other func-
tion in its labeling. To resolve this, we need to consider the 
role each CAN sensor in each function plays in the labe-
ling of all other anomaly detection engine functions. If 
the functions share a lot of variables, then there is no way 
to resolve the contradiction and we make no decision on 
intrusive behavior. To determine the extent to which func-
tions share CAN variables, we propose to use a distance 
measure d(Fp, Fq) between two functions. Let Cp be the 
set of CAN variables that are passed to Fp and let Cq be 
the set of CAN variables that are passed to Fq . We need to 
know how similar (or dissimilar) these two functions are in 
terms of the CAN variables used in each of them. The Jac-
card similarity coefficient is used to measure the similarity 
between two sets and the Jaccard distance is used to meas-
ure the dissimilarity. Jaccard distance d is defined as

We use the Jaccard distance to determine how far apart 
the two functions are in terms of CAN variables. A higher 
value of the Jaccard distance indicates that the functions 
do not share a lot of CAN variables. In the next two sec-
tions, we discuss the design of the decision engine.

Functions with contradictory labels
Using the design principles described in section  “Deci-
sion engine rationale” and the measurements from sec-
tion “Decision engine parameters”, we now design a decision 
engine to determine intrusions. Given a message frame Mi , 
the decision engine’s goal is to determine if an intrusion is 
occurring. If the decision engine cannot conclusively make 
a determination that a message frame is part of an intrusion, 
then the frame is classified as part of normal CAN traffic.

(4)ESik =

−→γik ·
−→rk

nk

(5)d(Fp, Fq) = 1 −
|Cp ∩ Cq|

|Cp ∪ Cq|

Fig. 8  Graph for function defined in Eq. 3
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Each function has labeled a frame as anomalous or not. 
There is an evidence score for each frame per function. 
We propose to use a heuristically-determined thresh-
old for evidence score. Any evidence score above this 
threshold will be considered a strong evidence score. It is 
assumed that each frame is non-intrusive unless the deci-
sion engine determines it to be intrusive. A tally is used 
to keep track of the interim results and determinations 
made by the decision engine. For each function that pos-
sesses a high evidence score and has labeled the frame as 
anomalous, the tally leans towards intrusion. Similarly, for 
each function that possesses a high evidence score and 
has labeled the frame as normal, the tally leans towards 
non-intrusion. In our experience, it is rare that all func-
tions unanimously agree in the labeling of a frame.

Our approach seeks to resolve the contradictions in the 
labels of a message frame by performing further analy-
sis using the measurements defined in section “Decision 
engine parameters”. The decision engine does a pair-wise 
comparison of functions whose labels are contradictory 
to each other. For each such pair, the tally will either lean 
towards intrusion or non-intrusion or not lean towards 
either direction. Within each function pair, one function 
may possess a strong evidence score and the other may 
not. This implies that the labeling of the function with 
the strong evidence score is more significant than the 
labeling of the other function. In this case, the decision 
engine weighs the labeling of the function with the strong 
evidence score. This weight is determined by comparing 
the evidence scores of both functions. As a result, the tally 
will lean in one of two directions—intrusion or non-intru-
sion. Another case to consider is when both functions in 
the function pair do not present strong evidence. The tally 
does not lean in either direction in such a situation.

Consider the situation where both functions in the func-
tion pair possess strong evidence. If both functions do not 
share any CAN variables or share a few variables, then it 
implies that their labeling was done using sets of CAN vari-
ables with little overlap. On the other hand, if these func-
tions share a majority of CAN sensors then that implies 
that both functions possess strong evidence towards con-
tradictory labeling and they came to that decision using 
mostly the same CAN variables. In this situation, the deci-
sion engine cannot make a determination on which way the 
tally would lean for this function pair. The decision engine 
uses a heuristically-determined threshold to determine 
if functions are apart from each other using the Jaccard 
distance measurement mentioned in section  “Decision 
engine parameters”. If the Jaccard distance is more than this 
threshold, then we propose to analyze this further.

To recap, we are analyzing two functions, each possess-
ing strong evidence scores, that are sufficiently distant from 
each other. Since there is little overlap in the CAN variables 

used in these functions, the decision engine looks at each 
CAN variable used by each function and analyzes its effect 
in all other functions of the anomaly detection engine. Each 
such variable used in the other anomaly detection engine 
functions possesses a relationship to the message frame 
( γ ) and a ratio defined in Eq. 2. The function in which this 
CAN variable is used has its labeling as well. We weigh this 
labeling using the γ value and the ratio from Eq. 2. As this 
process is being completed for all CAN variables used in 
the function-pair, we accumulate the weighed labels. At 
the end of this process, the decision engine cumulatively 
analyzes the weighed labels and makes a determination as 
to which direction the tally should lean after resolving the 
contradictory labels of the functions in the function-pair. 
We reiterate here that there has to sufficient information to 
determine if a frame is intrusive, if not then it is deemed 
non-intrusive. Hence, we use a heuristically-determined 
threshold that the weighed labels should meet for the tally 
to lean towards an intrusion.

The entire analysis of a message frame is now complete. 
The decision engine is ready to determine if this frame 
is intrusive. Throughout its analysis, the decision engine 
has been collecting information using the tally. As men-
tioned earlier, there must be sufficient information to 
determine if a frame is intrusive. Hence, we use another 
heuristically-determined threshold which the tally has 
to meet for the decision engine to determine if this mes-
sage frame is intrusive. The lack of sufficient information 
results in the frame being labeled as non-intrusive.

Decision engine design
The overall decision engine algorithm is detailed in Algo-
rithm 2. Further analysis, which is required for one situa-
tion, is detailed in Algorithm 3.

Algorithm 2 begins by initializing a decision variable that 
is eventually used to determine if an intrusion is occur-
ring. If all functions agree in their respective z values, then 
all functions unanimously agree in their labeling and that 
result is returned. However, if that is not the case, then we 
perform further analysis. The labeling (z) of a function, 
whose evidence score is higher than the threshold β , is 
considered significant and the decision variable is updated 
accordingly. The algorithm then considers functions that do 
not agree in their z values. It does so by analyzing each pair 
of functions that contradict each other in their labels. The 
reason for doing so is to determine how much one func-
tion’s result is significant over the other function. If the evi-
dence presented by both functions is strong but they don’t 
agree in their labels, then we look at and compare the com-
position of both the functions. The Jaccard distance is used 
to determine how similar the two functions are in terms 
of CAN parameters used by each function. A distance of 1 
indicates there are no common CAN parameters between 
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the two functions. A distance of 0 indicates that both func-
tions share all of their CAN parameters. For the case where 
one function presents a strong evidence score and the other 
does not, we compute the ratio of the stronger evidence 
score to the sum of the evidence scores. This ration is used 
as a weight and is multiplied with the z value of the func-
tion with the stronger evidence score.

Now that we have addressed the cases where only one 
function presents strong evidence or both functions pre-
sent weak evidence, we consider the case where both func-
tions present strong evidence. If both functions present 
strong evidence and are sufficiently distant from each other, 
as measured by the Jaccard distance, then we analyze them 
further with the RESOLVE procedure outlined in Algo-
rithm 3. Let α be the threshold to determine if the functions 
are sufficiently apart. The RESOLVE procedure returns 
either 0 or 1 or -1. Return value of 1 contributes towards 
intrusion, -1 contributes towards non-intrusion, and 0 
indicates that no decision can be made. The return value is 
added to the decision variable in Algorithm 2. Within the 
RESOLVE procedure, we take the union of CAN variables 

that are part of the two functions being considered. Next, 
we consider all the functions, that are part of the anomaly 
detection engine, that contain the above set of CAN vari-
ables. Given the contradictory labels of the two functions 
being considered, we want to consider the labels of other 
functions that contain these CAN variables. We also want 
to weigh the function labeling by taking into account the 
γ value of the CAN variable and CAN message and the 
degree ratio (r). The result variable, initialized to 0 when the 
procedure begins, keeps track of the weighted labels of the 
functions. If result value is greater than or equal to a thresh-
old ( φ ) then we return either 1 or −1, else we return 0.

After analyzing a CAN message frame through the 
various data paths and decisions, the algorithm makes 
a determination on intrusion based on the value of the 
decision variable. A non-negative value greater than a 
threshold ( θ ) suggests that an intrusion is occurring. 
If a conclusive decision cannot be made for the CAN 
message frame under consideration, then the algorithm 
determines that no intrusion is occurring.



Page 15 of 21Tanksale ﻿Cybersecurity             (2024) 7:4 	

Figure 9 outlines the design of the intrusion detection 
system.

Datasets
Table 2 lists some of our datasets. Each entry consists of 
the data source, vehicle make and model, and number of 
CAN frames (rounded to nearest thousandth).

Example
The decision engine’s purpose is to look at all contex-
tual CAN data and the labels of the multiple functions 
of the anomaly detection engine and determine if an 
intrusion is occurring. To that effect, we generate func-
tions using the function design process. These func-
tions are now part of the anomaly detection engine. 
We train the anomaly detection engine using the same 
techniques we used in all earlier experiments. We 
compute the Jaccard distance metric for all pairs of 
functions. The evidence score metric depends on the 
message and is computed while the decision engine is 

running for each message. Consider the following five 
functions that are generated by the function design 
process. Function F1 is defined in Eq. 6 and its function 
graph and CAN parameters are shown in Fig. 10. Func-
tion F1 meets the Hamiltonian cycle property.

Function F2 is defined in Eq. 7 and its function graph 
and CAN parameters are shown in Fig. 11. Function F2 
meets the Hamiltonian cycle property.

Function F3 is defined in Eq. 8 and its function graph 
and CAN parameters are shown in Fig. 12. Function F3 
meets the minimum degree property as the degree of 
vertex x1 is 3 (number of vertices is 5).

Function F4 is defined in Eq. 9 and its function graph 
and CAN parameters are shown in Fig. 13. Function F4 
meets the minimum degree property.

(6)

F1(x0, x1, x2, x3, x4) =
x0

x1
+ corr(x1, x2) + corr(x2, x3)+

x3

x4
+ w0 ∗ operation0(x4, x0)

(7)

F2(x0, x1, x2, x3, x4) = corr(x0, x1) +
x1

x2
+

w1 ∗ operation1(x2, x3) +
x3

x4
+ x4.x0

(8)

F3(x0, x1, x2, x3, x4) = x2.x0 + corr(x4, x1) +
x2

x1
+

corr(x4, x3) +
x3

x1

Fig. 9  Intrusion detection system

Table 2  Training, validation, and testing data

Source Make, Model, Year Frames

Miller and Valasek https://​
illma​tics.​com/​carha​cking.​
html

Toyota Prius 17K

Lee et al. (2017) Kia Soul 4600K

Dupont et al. (2019) Opel Astra, Renault Clio 520K

Cephas Barreto (2018) Chevrolet Agile 23K

Personal vehicle Toyota Venza 157K

Miller and Valasek https://​
illma​tics.​com/​carha​cking.​
html

Ford Escape 13K

Personal vehicle Chrysler Town & Country 25K

https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
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Function F5 is defined in Eq. 10 and its function graph 
and CAN parameters are shown in Fig.  14. Function 
F5 meets both the Hamiltonian cycle property and the 
minimum degree property.

Although the remote transmission frame and cor-
responding data frame use the same message ID, 
the RTR bit is used for discernment. The data frame 
is prioritized over the remote frame as it contains a 
dominant RTR bit. Since this is part of normal CAN 
operation and since we want to model the same 
behavior, we do not pre-process RTR frames in any 
special manner. We want to launch our attack in a 
way to trick the overall system. We manipulate 5 CAN 
parameters using the techniques mentioned earlier. 
The attack is designed to increase the speed of the 
vehicle by changing multiple values related to the 
speed and acceleration. Changing multiple values is an 
attempt to trick the system into believing that there is 

(9)

F4(x0, x1, x2, x3, x4) = corr(x2, x3) +
x0

x2
+

x3.x1 + corr(x0, x3) +
x3

x4
+ x4.x1

(10)

F5(x0, x1, x2, x3, x4) =
x2

x1
+ corr(x0, x1)+

w1 ∗ operation1(x3, x4)+

x4.x0 + corr(x4, x2) +
x3

x2

no intrusion occurring. We launch our attack by mak-
ing the following changes:

•	 Multiply wheel speed by 1.2
•	 Set brake position to 0
•	 Multiply engine torque by 1.5
•	 Change current gear to the next lower position
•	 Multiply longitudinal acceleration by 1.2

The decision engine algorithm was ran on the Lee et al. 
(2017) dataset for Cars 7 and 8. During testing, we ana-
lyzed evidence scores of all functions per frame and 
determined the floor value ( β ) to correctly determine 
intrusions. For each intrusive frame, we analyzed the 
decision variable value to determine a value for θ . We 
tested the RESOLVE function by calling it on all pairs of 

Fig. 10  Function graph and CAN parameters for F1 (Eq. 6)

Fig. 11  Function graph and CAN parameters for F2 (Eq. 7)

Fig. 12  Function graph and CAN parameters for F3 (Eq. 8)

Fig. 13  Function graph and CAN parameters for F4 (Eq. 9)

Table 3  Evidence score for some example messages per 
function

CAN message Function

F1 F2 F3 F4 F5

Request engine speed 0.71 0.63 0.23 0.25 0.82

RPM response 0.68 0.65 0.19 0.22 0.77

Change gear 0.77 0.52 0.62 0.71 0.51

Increase speed 0.82 0.49 0.59 0.75 0.48

Change steering angle 0.47 0.51 0.23 0.12 0.57

Request fuel pressure 0.39 0.27 0.3 0.37 0.32

Decrease brake pressure 0.7 0.62 0.19 0.64 0.78
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functions and analyzing the value of φ for correct deter-
mination of intrusion. Table  3 lists the evidence score 
per function for a few of the CAN message frames in this 
dataset.

The Jaccard distance d between each pair of functions 
is shown in Table  4. The Jaccard distance ranges from 
0.75 to 1.00 which implies that there are not a lot of CAN 
variables that are common between the functions.

The decision engine performs a detailed analysis 
for each frame. Consider a decision engine that deter-
mines if a frame is intrusive based on a simple major-
ity of functions’ labeling. We measured sensitivity and 
specificity for such a decision engine. Here are some 
decision engine observations: 

1.	 All function labels unanimously agree for 7% of CAN 
frames.

2.	 Simple majority decision engine’s sensitivity is 0.9132 
and specificity is 0.7021.

3.	 Evidence score ranges from 0.12 to 0.93.
4.	 Jaccard distance between functions ranges from 0.75 

to 1.00.
5.	 Minimum evidence score of 0.63 is required to cor-

rectly identify intrusive frames.
6.	 θ = 2.7 to achieve 99% sensitivity.
7.	 φ = 0.72 for 99% sensitivity to determine intrusion 

and φ = 0.532 for 99% sensitivity to detect normal 
frame.

8.	 α = 0.8 for RESOLVE function to get called and cor-
rectly determine result.

Based on the above observations, we set the values 
for the decision engine’s thresholds. We evaluated 
the decision engine using Car 9 and Car 10 data and 
Table 5 lists these results. The results indicate that our 
system can detect the intrusion with high sensitivity 
and low false-positive rate. Additionally, comparing 
our decision engine with a simple majority decision 
engine, we can see that sensitivity has improved and 
the false positive rate has reduced drastically. We 
believe that the detailed analysis done by the deci-
sion engine per frame significantly reduces the false 

positive rate and improves the sensitivity. In the next 
section, we will compare our anomaly detection and 
decision engines with systems proposed by other 
researchers.

System analysis and discussion
Intrusion Detection Systems for CAN have been pro-
posed by other researchers. Each system uses a differ-
ent approach so it will be useful to compare and contrast 
results. The researchers Bozdal et  al. (2021); Seo et  al. 
(2018, 2020) test their system using the Lee et al. (2017) 
dataset that we have used in our research. Three types of 
attacks—Denial of Service, Gear Spoofing, and Fuzzy—
are used to evaluate their systems. We test our intrusion 
detection system using the same attacks and compare 
the results. In addition, Bozdal et al. (2021) use another 
dataset (Dupont et al. 2019) that we use to evaluate their 
system. Bozdal et  al. (2021) propose a wavelet-based 
intrusion detection system for vehicular networks. CAN’s 
transmission pattern is analyzed and any changes in its 
behavior is marked as an anomaly. Seo et  al. (2018) use 
generative adversarial networks to design their intrusion 
detection system. They train two discriminators, one for 
known attacks and one for unknown attacks. A generator 
and the discriminator for unknown attacks are trained 
using an adversarial process. Seo et al. (2020) propose a 
specification-based intrusion detection system. Security 
specifications are designed by extracting expected system 
behavior. Their focal points for expected system behavior 
are timing and frequency of CAN messages.

The Denial of Service attack is launched by flooding the 
CAN network with frames with a message identifier of 
0x000. This message has the highest priority and hence no 
other node in the network can transmit any messages as 
long as the malicious frames are being sent. This results 
in denying service to all nodes attached to the CAN net-
work. Since the functions from the section  “Decision 
engine” subsection “Example” use the same data set, we 
use the same functions and anomaly detection engine 
parameters to test our system. Data from Cars 9 and 10 
was attacked by inserting messages with identifier 0x000 
to execute the denial of service attack. We measured 

Fig. 14  Function graph and CAN parameters for F5 (Eq. 10)

Table 4  Jaccard distance

Functions d Functions d

F1, F2 0.8889 F2, F4 0.8889

F1, F3 0.75 F2, F5 1

F1, F4 1 F3, F4 0.8889

F1, F5 0.8889 F3, F5 1

F2, F3 1 F4, F5 0.75
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sensitivity of our system and compared it with other sys-
tems. It can be seen that our system performed as well 
as other proposed systems. The system designed by 
Bozdal et al. (2021) is based on detecting attacks that are 
launched towards a specific message identifier. Since the 
denial of service attack does not target a specific message, 
most likely their sensitivity is not as high as others. Our 
system performs better than Bozdal, Samie, Jennions and 
comparable to the others in terms of sensitivity. Our false 
positive rate is better than Olufowobi et al. and compara-
ble to others. With respect to both sensitivity and speci-
ficity considered together, our system outperforms three 
systems. Results are summarized in Table 6.

The Gear Spoofing attack targets a specific message 
identifier. Recall that remote frames are used to request 
data. When an ECU receives a remote frame for data that 
it is responsible for, then this ECU is expected to transmit 
a response data frame immediately. In this attack, a rogue 
ECU responds to the current gear remote frame request 
with malicious response. We tested our system by inject-
ing test data with spoofed current gear response frames, 
the same way in which the other systems executed this 
attack. Our system performs better than Seo, Song, Kim 
and comparable to the other two in terms of sensitivity. 
The results for specificity mimic the ones for the denial 
of service attack. Overall, our system performs better in 
terms of sensitivity and specificity considered together. 
Results are summarized in Table 7.

Fuzzy attack is a type of injection attack. CAN frames, 
with multiple targeted message identifiers, containing 
random data are transmitted on the bus by the mali-
cious node. Unintended and dangerous consequences 
such as shaking of the steering wheel, unexpected gear 
shifts, blinking indicators on the panel, etc. Lee et  al. 
(2017) occur as a result of such an attack. We repeated 
the same experiment on our system and compared the 
results (Table  8). For the fuzzy attack, our system per-
forms comparable to Seo, Song, Kim and Olufowobi et al. 
in terms of sensitivity. However, sensitivity performance 
of Bozdal, Samie, Jennions is not good as the fuzzy attack 
targets random message identifiers and their system is 
designed to tackle attacks on specific message identifiers. 
Similar to the gear spoofing attack, the false positive rate 
of Olufowobi et  al. is extremely high. Our false positive 
rate is comparable to Bozdal, Samie, Jennions.

None of the peer-reviewed intrusion detection systems 
make a distinction between anomalies and intrusions. 
We believe that our decision engine improves the per-
formance of the overall system by identifying intrusions 
with high sensitivity and reducing the number of false 
positives. In most approaches, presence of an anomaly 
is treated as an intrusion whereas our approach per-
forms a detailed analysis to determine if an intrusion has 
occurred. Rare erratic driving behavior can cause irreg-
ular CAN traffic. Any security system should be able to 
handle such situations by reducing the number of false 
positives that will be triggered by such behavior.

The high false positive rate of Olufowobi et al. is most 
likely due to the fact that their system treats any anoma-
lous frame as an intrusion. There is no further analysis 
of the frame to check if the anomaly is caused due to an 
intrusion or another reason such as rare erratic driver 
behavior or sudden change in driving conditions. Our 
function design algorithm takes into account multiple 
attack and deception techniques adopted by hackers. The 
proposed properties of our function graphs ensure that 
our anomaly detection system cannot be spoofed easily 
by manipulating multiple CAN parameters.

Limitations
We recognize that there are certain limitation to our pro-
posed solution. We were limited by the amount of data 
that we had access to. We evaluated our solution on data 
from multiple major vehicle manufacturers but not from 
all of the major manufacturers. In certain datasets, we 
did not have access to as many CAN parameters as others 
thereby reducing the number of functions for the anom-
aly detection engine.

Table 5  Decision engine results

Sensitivity Specificity

Car 9 0.9903 0.9891

Car 10 0.9872 0.9836

Table 6  Denial of service attack

System Sensitivity Specificity

Proposed system 0.9952 0.9943

Seo et al. (2018) 0.9960 –

Olufowobi et al. (2020) 1.000 0.8929

Bozdal et al. (2021) 0.9415 0.9962

Table 7  Gear spoofing attack

System Sensitivity Specificity

Proposed system 0.9872 0.9928

Seo et al. (2018) 0.9650 –

Olufowobi et al. (2020) 0.9702 0.4256

Bozdal et al. (2021) 0.9845 0.9993
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Future work
We believe that selecting functions from a pool of func-
tions for the anomaly detection engine will further 
strengthen our system. A random function selection 
algorithm that runs periodically, similar to a key refresh 
process in cryptography, will also be an improvement. 
Continuous training of the anomaly detection engine will 
ensure that the system’s will perform as intended. We 
believe that overnight training, while the car is idle, will 
help maintain the performance of our system.

Conclusion
Designing, implementing, and enforcing security coun-
termeasures in vehicles is a big challenge. As outlined ear-
lier, security requirements and corresponding resource 
constraints, lack of security in the network design, and 
multiple attack surfaces are a few of the challenges for a 
robust vehicle security system. Our goal was to design 
a light-weight, almost real-time, and extensible security 
system for intra-vehicle networks. We designed unique 
measurements to be used by the decision engine. The evi-
dence score underscores the importance of the relation 
between CAN messages types and CAN sensors. The 
evidence score uses a ratio that is used to determine the 
influence of CAN sensors within each anomaly detection 
engine function. We also propose a mechanism to resolve 
conflicts between anomalous frame markings of various 
functions. The Jaccard distance plays an important role in 
this process. Our decision engine presented in this paper 
and our anomaly detection engine presented in our ear-
lier papers together deliver a vehicle security solution 
that meets all the outlined goals and requirements.
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