
Tanksale Cybersecurity (2024) 7:4
https://doi.org/10.1186/s42400-023-00195-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Intrusion detection system for controller
area network
Vinayak Tanksale1*

Abstract

The rapid expansion of intra-vehicle networks has increased the number of threats to such networks. Most modern
vehicles implement various physical and data-link layer technologies. Vehicles are becoming increasingly autono-
mous and connected. Controller area network (CAN) is a serial bus system that is used to connect sensors and con-
trollers (electronic control units—ECUs) within a vehicle. ECUs vary widely in processing power, storage, memory,
and connectivity. The goal of this research is to design, implement, and test an efficient and effective intrusion
detection system for intra-vehicle CANs. Classic cryptographic approaches are resource-intensive and increase pro-
cessing delay, thereby not meeting CAN latency requirements. There is a need for a system that is capable of detect-
ing intrusions in almost real-time with minimal resources. Our research proposes a long short-term memory (LSTM)
network to detect anomalies and a decision engine to detect intrusions by using multiple contextual parameters. We
have tested our anomaly detection algorithm and our decision engine using data from real automobiles. We present
the results of our experiments and analyze our findings. After detailed evaluation of our system, we believe that we
have designed a vehicle security solution that meets all the outlined requirements and goals.

Keywords Controller area network, Deep learning, Intrusion detection system, Long short-term memory, Machine
learning, Recurrent neural networks

Introduction
Vehicular technology has been steadily improving to
enhance the safety and comfort of automobiles. Today’s
automobiles consist of a wide variety of networks such
as Controller Area Network, Local Interconnect Net-
work, and Media Oriented Systems Transport. The rapid
and omnipresent expansion of intra-vehicle networks
has increased the number of vulnerabilities to these net-
works. Most modern vehicle systems implement vari-
ous physical layer and data link layer technologies. Such
networks not only interface among themselves but also
with external networks. Vehicles are becoming increas-
ingly smart, connected, and part of the Internet. This

has given rise to multiple attack surfaces and vectors to
automobiles. In Miller and Valasek (2015) demonstrated
successful hacking of a car in motion on an interstate
by jamming the transmission system and disabling the
brakes at low speeds.

The number, severity, and variety of security attacks on
vehicles is increasing. From jamming transmissions to
disabling lane control systems, such attacks are a major
threat to the driver and their surrounding vehicles (Lar-
son and Nilsson 2008; Dibaei et al. 2020). Over the years,
multiple security solutions have been proposed (Woo
et al. 2016; Kim et al. 2021). Examples of such solutions
include firewalls, network segmentation, signature-based
scanning, and intrusion detection systems. Vehicular
technology is a mix of multiple physical and link layer
technologies. As new technologies are introduced for
vehicles, these technologies have to interface with leg-
acy technologies. The legacy technologies are widely
prevalent in all vehicles and they provide critical control

*Correspondence:
Vinayak Tanksale
vjtanksale@bsu.edu
1 Department of Computer Science, Ball State University, Muncie, IN
47306, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00195-4&domain=pdf
http://orcid.org/0000-0002-5775-6146

Page 2 of 21Tanksale Cybersecurity (2024) 7:4

functions. The advantages of legacy technologies are
reliability and low-latency (Lv et al. 2021). Security was
not an integral part of the design of legacy technologies
(Dibaei et al. 2019).

As technology evolves for autonomous vehicles, the
number of attack surfaces will increase. Most modern
vehicles are equipped with Adaptive Cruise Control
(ACC), Advanced Driver Assistance Systems (ADAS),
and Light Detection and Ranging (LIDAR) systems.
Using these systems, a lot of critical features such as
speed, lane control, navigation, and others are automati-
cally controlled with minimal driver interaction. Such
systems will continue to evolve as vehicles make rapid
progress towards full automation. For example, multi-
ple video cameras on the periphery of the vehicle are
currently being used to automatically and safely change
lanes, exit from a freeway, and stop at traffic lights and
signs. Although these advanced systems use newer and
faster physical and link layer technologies, the critical
control and safety systems still run on legacy networks.
There is a need to develop security solutions that will
protect critical systems from attacks.

This paper extends our prior work (Tanksale 2020b,
2021) in the area of intrusion detection for Control-
ler Area Networks. We presented an LSTM network to
detect anomalous CAN frames in Tanksale (2020b). We
presented an anomaly detection function design pro-
cess in Tanksale (2021). Each function outputs whether
a given CAN frame is anomalous or not. We use multiple
functions in our anomaly detection engine and have pre-
sented the rationale for this in our prior work. The major
contributions of this paper are (1) a decision engine that
uses the outputs of multiple functions and contextual
information to determine if an intrusion is occurring, (2)
a modified anomaly detection function design process,
and (3) validation on multiple real-world datasets includ-
ing various makes and models. The decision engine can
be generalized to make binary decisions based on contra-
dictory inputs from multiple sources. It carefully consid-
ers contextual information as part of its determination
process. All of these are novel contributions of the work
that is presented in this paper.

This paper is organized as follows. Section “Control-
ler area network” provides a brief introduction to the
Controller Area Network (CAN). Section “CAN secu-
rity” describes security weaknesses and attacks on CAN
communications. Relevant related research is summa-
rized in section “Background and related work”. Our
prior work that describes a Long Short-Term Memory
parameter selection algorithm (Tanksale 2020b) and
design of anomaly detection functions (Tanksale 2021) is

described in section “Summary of our prior work”. This
section also presents a modified anomaly detection func-
tion design process as a result of further evaluation of our
earlier algorithm. Section “Decision engine” presents the
rationale for the proposed decision engine parameters, a
process to handle functions with contradictory outputs,
design of the decision engine, and evaluation based on
real-world datasets. We perform a detailed comparative
analysis with other similar systems in section “System
analysis and discussion” and conclude the paper in sec-
tion. “Decision engine”.

Controller area network
Controller Area Network is the most common serial bus
system that is used to connect devices within automo-
biles. The connected devices are commonly called Elec-
tronic Control Units (ECU) although there is a subtle
distinction that is outlined later in this dissertation. Fig-
ure 1 demonstrates how ECU nodes are connected to a
CAN bus. An electronic control unit controls an electri-
cal subsystem in a vehicle. Most newer vehicles contain
an average of 120 ECUs. ECUs are used in transmission
control, engine control, speed control, airbag control,
powertrain control, and many other vehicle subsystems.

CAN with flexible data-rate (CAN FD) is the latest
communication standard that provides high data rates.
Classical CAN was introduced in 1986 and implemented
in 1988 and CAN FD was launched in 2012 and inter-
nationally standardized in 2015 in ISO 11898-1. Table 1
summarizes the communication speed for intra-vehicle
network technologies. Figure 2 shows the format of a
CAN-FD data frame.

CAN security
Security weaknesses
CAN messages are broadcast and do not contain the
sender’s address. All frames are received by all ECUs
and each ECU determines whether to act on the frame
based on the message identifier. A well-known flaw in
any broadcast transmission is that malicious nodes can
easily passively eavesdrop on all the frames transmitted
by other nodes. This will allow a rogue CAN sensor to

Fig. 1 CAN Bus and ECUs

Page 3 of 21Tanksale Cybersecurity (2024) 7:4

read the CAN data traffic and later use it for a fabrica-
tion attack. Traffic on the CAN is not encrypted. CAN
Message space is limited. It is fairly easy to capture
CAN traffic and analyze it for traffic and message pat-
terns. This allows attackers to passively monitor and
collect detailed metrics about CAN traffic. All of this
makes a replay attack fairly easy to execute. Lack of a
sender’s address in the CAN frame makes it a challenge
to verify if a message was indeed sent by an ECU that is
expected to send it. A rogue sensor could periodically
report incorrect wheel speed or oil temperature values.
Recall that a remote frame is used to solicit data from
CAN sensors. Any malicious sensor can potentially
respond to such a remote frame. Such malicious activ-
ity can potentially damage or disable critical control
systems.

Apart from maintenance of sender integrity, there
is no mechanism to verify data integrity (Xiong et al.
2019). Message Authentication Codes (MAC) are one
solution to enforce data integrity. The payload of CAN
frames can be at most 512 bits. There is not enough
space in the data field for the actual message and a
strong MAC. A majority of ECUs send very similar
messages with only minor changes to the content of the
message. This makes it easier to replay messages.

There are multiple interfaces into the CAN. The
OBD-II port provides direct physical access to the CAN
(Takefuji 2018). The OBD-II port only provides wired
access to the CAN. A majority of modern automobiles
are equipped with a multi-functional telematics system,
which supports GPS, media entertainment, Bluetooth,
cellular among others. All such interfaces are potential
vulnerabilities that can be used in any of the aforemen-
tioned attack scenarios.

To summarize, the CAN protocol has the following
weaknesses due to its design:

Communication
All nodes broadcast their messages on the CAN. A mali-
cious node on the CAN can easily sniff all traffic. Mes-
sage sent by a malicious node will be seen by all sensors.
Broadcast is required for the network to function. Elimi-
nating broadcast will necessitate a hardware and network
change which is not practical.

Low‑latency requirement
CAN messages are supposed to be sent and received in
real-time. Any security mechanism may significantly add
to the delay.

Lack of authentication
There is no support for source and message authentica-
tion. This makes the CAN network vulnerable to integrity
violations and replay attacks. Authentication procedures
will add to latency.

Our prior work (Tanksale 2019, 2020a, b, 2021) encom-
passes CAN security weaknesses and CAN security
requirements.

Attacks on CAN communication
The following attack scenarios are possible:

• Modification—Malicious ECU sniffs frame and
changes frame data

• Interception—Passively scan all traffic on CAN
• Fabrication—Malicious ECU generates frame that is

supposed to be generated by other ECU(s)
• Interruption—Denial of Service attack where mali-

cious ECU continuously sends frames with lower IDs
to thwart transmission of higher priority frames

The U.S. Industrial Control Systems Cyber Emergency
Response Team (ICS-CERT) recently published an alert
about a selective denial-of-service attack against the
CAN standard which doesn’t involve the transmission of
any frames for its execution, and thus would be undetect-
able via frame-level analysis (NCCIC/ICS-CERT 2017).
Some recent experiments have revealed vulnerabilities

Fig. 2 CAN-FD frame format (size in bits)

Table 1 Communication speed

Type Speed

Low-speed CAN 40–125 Kbps

High-speed CAN 40 Kbps–1 Mbps

CAN-FD 8 Mbps

MOST 100–150 Mbps

LIN 20 Kbps

Page 4 of 21Tanksale Cybersecurity (2024) 7:4

in the CAN and ECU architecture. White-hat hackers
were able to gain access to the transmission system of a
vehicle by gaining access to it via the infotainment sys-
tem (Meyer 2019). Attackers are likely to focus on vehicle
entry-points such as Bluetooth, over-the-air diagnos-
tics, Wi-Fi, Zigbee, infotainment systems, and mobile
applications.

The attack shown in Fig. 3 was demonstrated by Miller
and Valasek (2015) on a Toyota Prius. The CAN message
that sends the vehicle’s speed to the speedometer for dis-
play was manipulated. As a result, the speedometer was
displaying the incorrect speed which results in a danger-
ous driving condition. The Counter (CN) and the Mes-
sage ID (0x00B4) were unchanged. The Checksum (CS)
was recomputed for the modified data. The current vehi-
cle speed of 64.23 mph (0x2877) was replaced with 8.66
mph (0x575) in the highlighted frames. This caused the
driver of the vehicle to accelerate and the vehicle reached
a dangerously high speed.

Background and related work
In this section, we review prior research, in the areas of
confidentiality and integrity of CAN communications,
that utilizes classifiers, intrusion detection, and various
types of deep neural networks. Kleberger et al. (2011)
survey the current research related to securing the con-
nected car, with a focus on the security of the in-vehi-
cle network. Taylor et al. (2016) use Long Short-Term

Memory (LSTM) networks to detect sequential anom-
alies in CAN data, however their approach results in
higher than acceptable false positive rate. Desta et al.
(2020) propose an LSTM network to predict the next
CAN arbitration ID and compare it with the actual arbi-
tration ID, however their proposed scheme is vulnerable
to replay attacks. A broad survey of current intrusion
detection systems for all types of in-vehicle networks is
presented in Wu et al. (2020). Nie et al. (2020) propose
an intrusion detection system, using convolution neural
networks, for Internet of Vehicles using road side units.
We adopt some of their feature extraction techniques in
our research.

Gated Recurrent Units (GRU) use fewer gates and
parameters than LSTM, however, prediction accu-
racy of LSTMs is higher than the prediction accuracy
of GRUs (Tanksale 2023) for temporal vehicle data.
A system proposed in Lee et al. (2022) uses periodic
properties of CAN messages to detect masquerade
attacks. There are many problems with this approach.
It does not detect attacks on CAN messages that are
not periodic. Their results and analysis are based on
data from 2 vehicles which is not nearly enough to
validate any system. The system relies on project-
ing when a normal ECU suspends message trans-
mission and then flags frames sent after that time as
intrusive. Another approach uses Convolution Neural
Networks and Gated Recurrent Units to flag intru-
sions (Javed et al. 2021). This system performs well

Fig. 3 Normal CAN sequence (left), modified CAN sequence (right)

Page 5 of 21Tanksale Cybersecurity (2024) 7:4

to detect intrusions and considers different types of
attacks on the CAN. One of the attacks that this sys-
tem specifically addresses is an impersonation attack.
One potential drawback of this approach is that the
hacker can send fabricated frames with the same fre-
quency as normal CAN messages and such an attack
may not be detected. CAN message sequencing and
corresponding timing analysis is used to detect intru-
sions (Marchetti and Stabili 2017). This system is vul-
nerable to fabricated and replay CAN frames that are
inserted using the same periodicity as normal CAN
frames. Attacks on multiple CAN parameters are not
detected with high sensitivity. Generative pretrained
transformer (GPT) is a well-researched technique for
natural language generation. Researchers have used
GPT to detect intrusions in CAN (Nam et al. 2021).
Their system is designed to detect only injection
attacks. It works well when a limited number of CAN
message types are used in the attack. The researchers
recognize that their system will not detect all types
of attacks and attacks launched using multiple CAN
message types.

Jin, Chung, and Xu propose a signature-based intru-
sion detection system (Jin et al. 2021) that can detect
replay and interruption attacks. Katragadda et al. (2020)
propose a system to detect low-rate replay attacks how-
ever it their solution works only for specific types of
replay attacks. Wu et al. (2018) use statistical measure-
ments related to the message id to attempt to thwart
replay and reverse-engineering attacks on the CAN. A
basic LSTM network was used to classify CAN frames as
normal frames or attack frames in Hossain et al. (2020).
There is no novel approach proposed here and although
accuracy is extremely high there is no discussion of
sensitivity.

Support vector machines (SVM) were first introduced
by Cortes and Vapnik (1995); Vapnik (2013). A Support
Vector Machine-based classification and prediction
approach is detailed in Tanksale (2019). A weakness of
this approach is the absence of contextual time-series
information in classifying CAN frames. Kang and Kang
propose an efficient intrusion detection system based
on a deep neural network for the security of in-vehic-
ular network (Kang and Kang 2016). The use of Sup-
port Vector Machines (SVM) for the detection of DoS
attacks have been discussed in Mukkamala and Sung
(2003). The performance of the proposed method has
been validated experimentally and shown that proposed
SVM-based detection approach achieves very high
detection accuracy. A general classification problem
in n-dimensional space is defined in Cristianini et al.
(2000). Attacks on safety-critical CANs are summarized

in Fröschle and Stühring (2017) and we incorporate
these ideas in some of our experiments. A general
machine learning based detection system is presented
in Minawi et al. (2020) but it was not tested on real
world attack data. Zhou et al. (2019) propose a novel
intrusion detection system using ECU fingerprinting by
calculating statistical features of the bit time of reces-
sive and dominant bits.

Sekar et al. (2002) combine specification-based with
statistical anomaly detection techniques to ease the
task of model construction and to reduce false alarm
rate. The authors acknowledge that such a system is vul-
nerable during training. SVM is a supervised machine
learning model which is well-known for its great per-
formance in pattern recognition and classification tasks
with high dimensional data (Peng et al. 2015). Nguyen
and Armitage (2008) describe machine learning tech-
niques for Internet traffic classification. The techniques
described therein do not rely on well-known port num-
bers but on statistical traffic characteristics. Multiple
ECUs on a high-speed CAN bus and a low-speed CAN
bus, connected using a bridge, were simulated using
CANoe (Vector https:// www. vector. com/ int/ en/ produ
cts/ produ cts-a- z/ softw are/ canoe/) software to imple-
ment a replay attack by Hoppe and Dittman (2007). An
ECU on the low-speed CAN bus was able to capture
messages from and replay those messages to the high-
speed CAN bus.

Machine learning is often employed to implement
anomaly-based intrusion detection. The network traffic
is collected from the Network Interface Card or from a
packet capture file containing previously captured net-
work traffic. The packets are then filtered and sent to a
feature extraction engine, which computes flow-based
and header-based attributes. These attributes are assem-
bled into a feature vector, which provides the input data
for the training or classification phases of a classifier.
Tavallaee et al. (2008) proposed an anomaly detection
scheme using the correlation information contained in
groups of network traffic samples. The main idea is to
compare the signs in the covariance matrix of a group
of sequential samples with the signs in the covariance
matrix of the normal data obtained during the training
process. Machine learning techniques have been widely
used in detecting network anomalies because machine
learning can construct models automatically based on the
given training data. Machine learning techniques have
achieved good performance on anomaly-based detection
systems. Some typical methods used in network traffic
anomaly detection include Bayesian networks, support
vector machine (Sung and Mukkamala 2003), fuzzy logi-
cal (Hoang et al. 2009), genetic algorithm (Li 2004), and
decision trees.

https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/

Page 6 of 21Tanksale Cybersecurity (2024) 7:4

To summarize, a variety of intrusion detection systems
have been proposed over the years. CAN data is tempo-
ral-based as future vehicle behavior is dependent on past
and current behavior. Dependence on periodic properties
(Lee et al. 2022) of CAN is vulnerable to attack frames
that are inserted at regular intervals in the CAN traffic.
Systems that use CNNs and GRUs (Javed et al. 2021)
also depend on periodic properties of the CAN net-
work. Classification and prediction models are unable to
address contextual time-series-based nature of the CAN
data (Tanksale 2019; Mukkamala and Sung 2003). LSTM
networks are designed to predict time-series data based
on long-term dependencies. They have been success-
fully implemented in speech recognition and sentiment
analysis (Huang et al. 2022; Oruh et al. 2022). Hence, our
implementation of a system to predict values of functions
based on CAN parameters uses LSTM networks.

Summary of our prior work
We propose a comprehensive intrusion detection system
for the Controller Area Network. The overall architecture
for such a system is shown in Fig. 4. The two main com-
ponents of this system are an anomaly detection engine
and a decision engine. The anomaly detection engine is
described in detail in our prior work (Tanksale 2020b,
2021). The focus of this paper is the decision engine
which is described in section “Decision engine”. In this
section, we briefly summarize our prior work.

We presented an LSTM parameter selection algorithm
in Tanksale (2020b). We presented a design process for
anomaly detection functions in Tanksale (2021). Multi-
ple strong functions are constructed using our function
design process and LSTM networks are used to predict
the values of these functions. We compare the predicted
value (ŷt) with the computed value (yt) of the function.
Let zt be a variable used to indicate if a CAN frame is
labeled as anomalous by the function. zt = 1 if the frame
is anomalous, zt = −1 if it is not. If |yt − ŷt | > ǫ , then we

label the frame as anomalous. Figure 5 outlines this pro-
cess for one function.

We use multiple functions as part of our anomaly
detection engine. Figure 6 outlines the design of our
intrusion detection system thus far.

Attack model
To introduce anomalies in normal CAN traffic data, we
modify CAN variable values using multiple techniques.
For each of our experiments, the testing data contained
1 % malicious CAN frames. The following modifications
were made to CAN variable values:

Scale Multiply the CAN variable values with a scal-
ing factor.

Shift Shift the CAN variable values.
Random Randomly generate CAN variable values to

replace actual values.
Replay Repeat earlier CAN variable values.

The attacker can place malicious CAN frames in vari-
ous locations when executing an attack. When inserting

Fig. 4 Intrusion detection system

Fig. 5 Labeling done by a function

Fig. 6 Intrusion detection system

Page 7 of 21Tanksale Cybersecurity (2024) 7:4

anomalous CAN frames to test our system, we chose
multiple placement locations:

Random Malicious frames are placed in ran-
dom locations in the frame sequence.

Single group Malicious frames are grouped
together in one random location.

Multiple groups Malicious frames in n equal-sized
groups are placed in n periodic
locations.

Function design
Based on observations from prior experiments, we
need to build a function that addresses the weaknesses
of the preliminary function that we used. We are using
CAN variables that are related to the critical function-
ality of the vehicle. A vast majority of the variables are
collected and processed by the engine control module
and the transmission control module. The matrix in
Fig. 7 lists the CAN variables.

Using the mechanical and electrical properties of the
CAN variables and their logical relationships, we built a

Fig. 7 CAN variables relationship matrix

Page 8 of 21Tanksale Cybersecurity (2024) 7:4

relationship matrix as shown in Fig. 7. This matrix will
be used to build rules that define relationships between
CAN variables using various operations.

Operations and rules
Multiple types of relationships and dependencies exist
between CAN variables. They can be directly or inversely
proportional to one another, or they can be threshold or
distance based, or they could be correlated. To capture the
various relationships between CAN variables, we define a
list of operations:

1. correlation
2. multiplication
3. distance
4. boolean operations

The Pearson correlation coefficient of two variables p and q
over n measurements is defined as

The rules file contains all operations between CAN vari-
ables. For ease of implementation and automation, each
line in the rules file defines one function in postfix nota-
tion. A number is assigned to each CAN variable and a
letter is assigned to each operation. An example rule is
< 0,13,a > which represents the correlation (a) between
brake position (0) and fuel pressure (13). Another rule is
< 9,10,c > which is postfix representation of the mul-
tiplication of intake air temperature and multiplicative
inverse of fuel consumption. Few other examples of rules
are < 11,12,g > , < 19,0,a > , and < 2,3,c >.

Function properties
As discussed earlier, a function with only two arguments
can be easily attacked. Hence, we need a minimum value
for the number of CAN parameters passed to a func-
tion. We need to ensure that changing one CAN variable
creates a cascade effect requiring the attacker to change
multiple CAN variable values. Also, if a CAN variable
is related to multiple variables, then any change in this
variable’s value should significantly affect the value of the
function. These desired function properties can be mod-
eled as a graph.

We use an undirected graph to model the relationship
between two CAN variables in a function. We represent
CAN variables, used in the function, as vertices in this
graph. Operations between variables used in this func-
tion will be represented by an edge of this graph. Let

(1)corrn(p, q) =
n�pjqj−�pj�qj√

[n�p2j −(�pj)2][n�q2j −(�qj)2]

G = (V ,E) be an undirected graph where V is the vertex
set and E is the edge set. An edge in an undirected graph
is a set {u, v} where u, v ∈ V and u �= v . The degree of a
vertex is the number of edges incident on it. The degree
of the graph is the maximum of its vertices’ degrees. A
path < v1, v2, . . . , vk > forms a cycle if k > 0 , v0 = vk ,
and edges on the path are distinct. The cycle is simple if
v1, v2, . . . , vk are distinct. A Hamiltonian cycle is a simple
cycle that contains each vertex in V.

To enforce the cascade effect mentioned earlier, we
can require our graph to have a Hamiltonian cycle.
Changes to the value of a CAN variable, that is related
to multiple variables in the function, will require
changes to values of multiple CAN variables. This will
make it difficult for the hacker to modify all required
CAN variables such that the computed value of the
function is close to its predicted value. To enforce this,
we need to ensure that the degree of at least one graph
vertex is close to the degree of the graph. It is possible
that based on the variables that are part of the function
and the existing relationships between them, we may
generate a graph that does not meet the desired prop-
erties. Hence, we introduce the concept of an artificial
edge between vertices. Such as edge does not represent
any physical or mechanical relationship between the
respective CAN variables. We use artificial edges so
that we can efficiently achieve our desired properties.
We need to be careful that we do not use multiple arti-
ficial edges as that will weaken the function. Hence, as
we add artificial edges to our graph, we make sure that
the number of artificial edges is always less than a third
of the number of natural edges. Thus, we propose that
the graph representing an anomaly detection function
(function graph) meet the following properties. Let m
represent the number of CAN variables used in the
function.

Property 1 m ≥ 5.

Our experiments have shown that we need a minimum
number of CAN variables passed to a function to ensure
that the hacker cannot easily attack the function.

Property 2 Function graph must contain at least one
node of degree ≥ m − 2 or a Hamiltonian cycle.

A Hamiltonian cycle is a closed loop through a graph
that visits each node exactly once. Changes to the value
of a CAN variable that is related to multiple CAN vari-
ables within a function causes significant changes in the

Page 9 of 21Tanksale Cybersecurity (2024) 7:4

function’s computed value. The hacker will need to mod-
ify the values for all the CAN variables that are related to
the first variable. A similar cascade effect can be achieved
if the CAN variables passed to a function are related to
each other in a cycle. In both cases, it becomes difficult
for the hacker to launch a successful attack.

Property 3 Total number of artificial edges in the func-
tion graph must be less than a third of the total number of
edges.

The computed value of a function is composed of oper-
ations defined between pairs of CAN variables. Given
these operations between CAN variables, if we are unable
to construct a function that is not vulnerable to attack,
then we add new relationships between CAN variables.
The purpose of this is to design a function that is not vul-
nerable to attack. The new relationships are added one
at a time and each new added relationship weakens the
functions. Our experiments have demonstrated that the
number of new relationships between CAN variables can
at most be a third of the number of actual relationships
without making the function vulnerable.

Property 4 Node(s) with degree ≥ m − 2 from Property
2 can have at most one artificial edge.

The rationale for having a CAN variable related to
multiple CAN variables is that it will be difficult for the
hacker to modify all CAN variables so that the computed
value of the function does not change. If new relation-
ships between CAN variables are added to such a vari-
able then they need to be limited so that the function is
not vulnerable.

Property 5 Total number of artificial edges within the
Hamiltonian cycle from Property 2 must be less than a
third of the total number of edges in that Hamiltonian
cycle.

The goal of having CAN variables related to each other
in a cycle is to make it challenging for the hacker to attack
the function. The number of new relationships added
to the function must be limited or else the function will
become vulnerable.

Function design process
In this section, we describe an algorithm for designing
anomaly detection functions that meet the proper-
ties listed in section “Function properties”. All of our

functions contain at least 5 CAN variables. To begin,
we create a set of all m-tuples (m=5) of CAN variables
and our algorithm tries to construct a function using
each tuple. A random m-tuple is selected from the set
of all m-tuples. All rules that contain these m CAN
variables are considered. A function graph is then
constructed using selected rules and the m CAN vari-
ables. A function graph must meet the 5 properties
outlined in section “Function properties”. If it does
not, then we add an artificial edge and check to see
if all properties are being met. If such a function can-
not be constructed, then we discard this m-tuple and
select the next one.

A function may contain one or more artificial edges
to satisfy the graph’s properties. An artificial edge does
not define an operation. By adding an artificial edge we
are adding a new term in the function definition. For
this reason, we need to assign one of our operations
to the artificial edge. Also, this newly added operation
must not contribute to the function’s output as much
as the other edges. Hence, we assign a weight between
(0, 1] to this operation. We use a grid-search process
to create different variations of the function. To do so,
once a function graph meets all required properties,
we construct multiple variations of the function using
all operations on all artificial edges, with all weights,
of the function graph. Each variation of the function is
trained using the LSTM training process detailed ear-
lier. We test the model generated by each variation of
the function by introducing all four anomaly types in
all three locations in the test dataset. For each anomaly
type and location, we measure the sensitivity and spec-
ificity. We calculate the mean sensitivity and specific-
ity over all anomaly types and locations. Game-theory
principles are used to find the optimal threshold values
for intrusion detection system metrics (Laszka et al.
2016; Creech and Hu 2014). These values are passed
as input to the algorithm (ηse = 0.92 and ηsp = 0.97).
We only consider function variations that achieve a
mean sensitivity of at least ηse and a mean specificity
of at least ηsp . Such a function variation is added to our
list of function candidates. Once we have completed
evaluating all possible function variations, we choose
the function variation with the highest sensitivity. This
function variation is added to our final list of func-
tions. We repeat this process, making sure that we
don’t select the same m-tuple, until we construct the
desired minimum number of functions. If all m-tuples
are exhausted, then we increase the value of m and
repeat the process. Algorithm 1 outlines the process of
designing and selecting anomaly detection functions.

Page 10 of 21Tanksale Cybersecurity (2024) 7:4

Decision engine
The decision engine is the second component of our
intrusion detection system for the CAN. The detection
of anomalous CAN frames by the various functions that
make up the anomaly detection engine does not neces-
sarily indicate that an intrusion is occurring. The deci-
sion engine utilizes the output of the anomaly detection
engine and other contextual data to determine if the
vehicle is being intruded on.

Intrusion
We define an intrusion into a vehicle as the malicious
presence of anomalous CAN frames on the CAN bus.
CAN frames that are sent in response to an intrusion may
not be detected as anomalous by the anomaly detection
engine. However, the decision engine should be able to
determine these as intrusive. Our decision engine design
takes into consideration contextual and temporal data in
addition to the output of the anomaly detection engine.

Page 11 of 21Tanksale Cybersecurity (2024) 7:4

In the next sections, we design a model for the decision
engine that uses multiple parameters to determine if the
vehicle is being intruded upon.

Decision engine rationale
Each anomaly detection function labels a CAN frame as
anomalous or not. If all functions unanimously agree in
their labeling of a frame, then the decision engine makes
the same decision that all functions agree on for that
frame. When there is no unanimous agreement between
the functions for a particular frame, we propose to eval-
uate various parameters and then decide if the frame is
part of an intrusion.

We need to determine each CAN sensor’s role in the
composition of a function. A vertex in a function graph
that represents a CAN variable could be connected to
multiple vertices. In this case, any change in the value of
this CAN variable has a significant impact on the out-
put of the function. As a consequence, this will impact
the labeling of this message frame as anomalous or not.
Additionally, if this sensor is closely related to the CAN
message frame that is being analyzed then the labeling
done by the function is important. The classification done
by a function that contains multiple such variables is very
important in making a decision on the frame. If the RPM
sensor is being attacked and the CAN message frame
is a response to an RPM request, then this is important
contextual information and the decision engine needs
to weigh this accordingly. If a function contains multiple
CAN variables that are not related to the CAN message
then the classification of the message by this function is
less significant and the decision engine needs to weigh
this accordingly.

As mentioned earlier, it is possible that a vertex repre-
senting a CAN sensor is connected to a majority of ver-
tices in the function graph. In addition, it is possible that
this sensor is closely related to the message. Consider a
situation where such a sensor is used in multiple func-
tions. If the labels by these functions are in agreement,
then the decision engine needs to consider this. Alterna-
tively, if the labels by these functions are contradictory
to each other then the decision engine needs to evaluate
this situation in detail. The decision engine should utilize
the role of these CAN variables in other anomaly detec-
tion engine functions and the corresponding labels of
these functions.

Decision engine parameters
Based on the design discussion from the earlier section,
we use multiple parameters to construct the decision
engine. We consider the relationship between each CAN
variable and the message when determining intrusions.

We define a value γ as a way of measuring relationships
between CAN variables and messages. γ values are deter-
mined based on input from subject matter experts and
γ ∈ (0, 1] . A γ value closer to 1 indicates that the sensor
is closely related to the message. For example, γ(wheel
speed sensor, request RPM message) is close to 1 whereas
γ(door sensor, request oil temperature) is close to 0. Let
γij be the γ value for CAN variable cj and message Mi . For
each function Fk , per message Mi , we construct a vector
−→γik = < γij >.

It is possible that all or a majority of CAN variables
passed to a function Fk are closely related to message Mi .
On the other hand, it possible that none or very few of
CAN variables passed to Fk are closely related to Mi . In
the former case, the labeling done by a function needs to
be given more importance since all or majority of vari-
ables are closely related to the message under considera-
tion. In the latter case, the labeling done by this function
needs to be given less importance since none or very few
of the CAN variables are related to the message. With
each function making its own labeling for each mes-
sage, we need a measurement to decide which functions’
labeling for that message carries more weight. We use
this principle to construct a measurement later in this
section.

If any two CAN variables are physically or mechani-
cally related to each other, then there exists a natural
edge between them in the function graph. The degree of a
vertex in a function graph is the number of natural edges
that are incident on it. This degree is directly propor-
tional to the effect this variable has on the labeling done
by this function. To take into account the effect of chang-
ing a CAN variable (as part of an attack) on the labeling
done by a function, we need to consider the ratio of the
degree of this vertex to the degree of the graph of the
function (using only the natural edges). The higher the
ratio, the more effect a change in the value of the CAN
variable will have on the labeling done by function. We
define

which gives us the vector −→rk = < rj > for function Fk . For
example, given the following function graph in Fig. 8 for
the function defined in Eq. 3

where x0 : brake position, x1 : brake pressure, x2 : wheel
speed, x3 : accelerator pedal position, x4 : engine torque,
its −→r = < 1,

1
4
,
1

2
,
1

2
,
1

4
> . This implies that CAN variable

(2)rj =
degree of vertex cj

degree of graph

(3)
F(x0, x1, x2, x3, x4) =

x0

x1
+ corr(x0, x4) +

x3

x2
+

corr(x0, x3) + corr(x0, x2)

Page 12 of 21Tanksale Cybersecurity (2024) 7:4

x0 has the most effect on the labeling done by this func-
tion whereas CAN variables x1 and x4 have the least effect
on this function’s labeling.

To summarize, for each function Fk per message Mi ,
we have −→γik that measures how closely related each
sensor is to the frame being considered. We also have
−→rk that measures how much each CAN sensor in a
frame proportionally contributes to the labeling done
by the function. −→rk is independent of Mi . As men-
tioned earlier, if a particular CAN parameter with a
high rj value is under attack then any changes to its
value will affect the labeling done by the function. In
addition, if this CAN parameter is closely related to
the message, then the labeling done by this function
is important. To measure the effect of both of these,
we multiply the two for each CAN sensor cj per func-
tion Fk per message Mi . This value will ∈ (0, 1] because
γ ∈ (0, 1] and r ∈ (0, 1] . Observe that if this value is
closer to 1, then it indicates that this sensor is closely
related to the message and is connected to a lot of the
other sensors used by the function. For example, if
the vertex representing the accelerator pedal position
is connected to a majority of vertices in the function
graph and if the message being analyzed is about the
RPM (high γ value), then the product of γ and r for
the accelerator pedal position will be close to 1. Any
malicious change in the value of this sensor will affect
the computed value of the function. As a result, the
message frame will be labeled as anomalous by the
function. Hence, we call this quantity the evidence
provided by the sensor to support the function’s labe-
ling (zik).

We collect evidence for each of the variables to sup-
port the function’s labeling and call it an evidence score
for message Mi provided by the variables in function
Fk . Each of the functions are composed using a differ-
ing number of CAN variables. To be able to compare the
evidence score of multiple functions with varying num-
ber of parameters we normalize its value. More formally,
evidence score denoted by ESik for message Mi and func-
tion Fk that is composed of nk CAN variables is com-
puted as

Each function Fk makes a labeling zik for message Mi .
Consider two functions that contradict each other in their
labels for message Mi . There are multiple possibilities to
consider to resolve this contradictory labeling between
each pair of functions. We need to analyze the evidence
scores for both functions. If both functions present high
evidence scores then we need to closely examine the com-
position of each function. If one of the two functions pre-
sents high evidence score and the other does not, then
we need to give more weight to the labeling of the func-
tion that presents high evidence score. Consider the case
where both functions do not share a lot of CAN variables
between them and both present high evidence scores. This
implies that for message Mi , each function presents high
evidence score while not sharing a lot of the CAN variables
with the other function, but contradicts the other func-
tion in its labeling. To resolve this, we need to consider the
role each CAN sensor in each function plays in the labe-
ling of all other anomaly detection engine functions. If
the functions share a lot of variables, then there is no way
to resolve the contradiction and we make no decision on
intrusive behavior. To determine the extent to which func-
tions share CAN variables, we propose to use a distance
measure d(Fp, Fq) between two functions. Let Cp be the
set of CAN variables that are passed to Fp and let Cq be
the set of CAN variables that are passed to Fq . We need to
know how similar (or dissimilar) these two functions are in
terms of the CAN variables used in each of them. The Jac-
card similarity coefficient is used to measure the similarity
between two sets and the Jaccard distance is used to meas-
ure the dissimilarity. Jaccard distance d is defined as

We use the Jaccard distance to determine how far apart
the two functions are in terms of CAN variables. A higher
value of the Jaccard distance indicates that the functions
do not share a lot of CAN variables. In the next two sec-
tions, we discuss the design of the decision engine.

Functions with contradictory labels
Using the design principles described in section “Deci-
sion engine rationale” and the measurements from sec-
tion “Decision engine parameters”, we now design a decision
engine to determine intrusions. Given a message frame Mi ,
the decision engine’s goal is to determine if an intrusion is
occurring. If the decision engine cannot conclusively make
a determination that a message frame is part of an intrusion,
then the frame is classified as part of normal CAN traffic.

(4)ESik =

−→γik ·
−→rk

nk

(5)d(Fp, Fq) = 1 −
|Cp ∩ Cq|

|Cp ∪ Cq|

Fig. 8 Graph for function defined in Eq. 3

Page 13 of 21Tanksale Cybersecurity (2024) 7:4

Each function has labeled a frame as anomalous or not.
There is an evidence score for each frame per function.
We propose to use a heuristically-determined thresh-
old for evidence score. Any evidence score above this
threshold will be considered a strong evidence score. It is
assumed that each frame is non-intrusive unless the deci-
sion engine determines it to be intrusive. A tally is used
to keep track of the interim results and determinations
made by the decision engine. For each function that pos-
sesses a high evidence score and has labeled the frame as
anomalous, the tally leans towards intrusion. Similarly, for
each function that possesses a high evidence score and
has labeled the frame as normal, the tally leans towards
non-intrusion. In our experience, it is rare that all func-
tions unanimously agree in the labeling of a frame.

Our approach seeks to resolve the contradictions in the
labels of a message frame by performing further analy-
sis using the measurements defined in section “Decision
engine parameters”. The decision engine does a pair-wise
comparison of functions whose labels are contradictory
to each other. For each such pair, the tally will either lean
towards intrusion or non-intrusion or not lean towards
either direction. Within each function pair, one function
may possess a strong evidence score and the other may
not. This implies that the labeling of the function with
the strong evidence score is more significant than the
labeling of the other function. In this case, the decision
engine weighs the labeling of the function with the strong
evidence score. This weight is determined by comparing
the evidence scores of both functions. As a result, the tally
will lean in one of two directions—intrusion or non-intru-
sion. Another case to consider is when both functions in
the function pair do not present strong evidence. The tally
does not lean in either direction in such a situation.

Consider the situation where both functions in the func-
tion pair possess strong evidence. If both functions do not
share any CAN variables or share a few variables, then it
implies that their labeling was done using sets of CAN vari-
ables with little overlap. On the other hand, if these func-
tions share a majority of CAN sensors then that implies
that both functions possess strong evidence towards con-
tradictory labeling and they came to that decision using
mostly the same CAN variables. In this situation, the deci-
sion engine cannot make a determination on which way the
tally would lean for this function pair. The decision engine
uses a heuristically-determined threshold to determine
if functions are apart from each other using the Jaccard
distance measurement mentioned in section “Decision
engine parameters”. If the Jaccard distance is more than this
threshold, then we propose to analyze this further.

To recap, we are analyzing two functions, each possess-
ing strong evidence scores, that are sufficiently distant from
each other. Since there is little overlap in the CAN variables

used in these functions, the decision engine looks at each
CAN variable used by each function and analyzes its effect
in all other functions of the anomaly detection engine. Each
such variable used in the other anomaly detection engine
functions possesses a relationship to the message frame
(γ) and a ratio defined in Eq. 2. The function in which this
CAN variable is used has its labeling as well. We weigh this
labeling using the γ value and the ratio from Eq. 2. As this
process is being completed for all CAN variables used in
the function-pair, we accumulate the weighed labels. At
the end of this process, the decision engine cumulatively
analyzes the weighed labels and makes a determination as
to which direction the tally should lean after resolving the
contradictory labels of the functions in the function-pair.
We reiterate here that there has to sufficient information to
determine if a frame is intrusive, if not then it is deemed
non-intrusive. Hence, we use a heuristically-determined
threshold that the weighed labels should meet for the tally
to lean towards an intrusion.

The entire analysis of a message frame is now complete.
The decision engine is ready to determine if this frame
is intrusive. Throughout its analysis, the decision engine
has been collecting information using the tally. As men-
tioned earlier, there must be sufficient information to
determine if a frame is intrusive. Hence, we use another
heuristically-determined threshold which the tally has
to meet for the decision engine to determine if this mes-
sage frame is intrusive. The lack of sufficient information
results in the frame being labeled as non-intrusive.

Decision engine design
The overall decision engine algorithm is detailed in Algo-
rithm 2. Further analysis, which is required for one situa-
tion, is detailed in Algorithm 3.

Algorithm 2 begins by initializing a decision variable that
is eventually used to determine if an intrusion is occur-
ring. If all functions agree in their respective z values, then
all functions unanimously agree in their labeling and that
result is returned. However, if that is not the case, then we
perform further analysis. The labeling (z) of a function,
whose evidence score is higher than the threshold β , is
considered significant and the decision variable is updated
accordingly. The algorithm then considers functions that do
not agree in their z values. It does so by analyzing each pair
of functions that contradict each other in their labels. The
reason for doing so is to determine how much one func-
tion’s result is significant over the other function. If the evi-
dence presented by both functions is strong but they don’t
agree in their labels, then we look at and compare the com-
position of both the functions. The Jaccard distance is used
to determine how similar the two functions are in terms
of CAN parameters used by each function. A distance of 1
indicates there are no common CAN parameters between

Page 14 of 21Tanksale Cybersecurity (2024) 7:4

the two functions. A distance of 0 indicates that both func-
tions share all of their CAN parameters. For the case where
one function presents a strong evidence score and the other
does not, we compute the ratio of the stronger evidence
score to the sum of the evidence scores. This ration is used
as a weight and is multiplied with the z value of the func-
tion with the stronger evidence score.

Now that we have addressed the cases where only one
function presents strong evidence or both functions pre-
sent weak evidence, we consider the case where both func-
tions present strong evidence. If both functions present
strong evidence and are sufficiently distant from each other,
as measured by the Jaccard distance, then we analyze them
further with the RESOLVE procedure outlined in Algo-
rithm 3. Let α be the threshold to determine if the functions
are sufficiently apart. The RESOLVE procedure returns
either 0 or 1 or -1. Return value of 1 contributes towards
intrusion, -1 contributes towards non-intrusion, and 0
indicates that no decision can be made. The return value is
added to the decision variable in Algorithm 2. Within the
RESOLVE procedure, we take the union of CAN variables

that are part of the two functions being considered. Next,
we consider all the functions, that are part of the anomaly
detection engine, that contain the above set of CAN vari-
ables. Given the contradictory labels of the two functions
being considered, we want to consider the labels of other
functions that contain these CAN variables. We also want
to weigh the function labeling by taking into account the
γ value of the CAN variable and CAN message and the
degree ratio (r). The result variable, initialized to 0 when the
procedure begins, keeps track of the weighted labels of the
functions. If result value is greater than or equal to a thresh-
old (φ) then we return either 1 or −1, else we return 0.

After analyzing a CAN message frame through the
various data paths and decisions, the algorithm makes
a determination on intrusion based on the value of the
decision variable. A non-negative value greater than a
threshold (θ) suggests that an intrusion is occurring.
If a conclusive decision cannot be made for the CAN
message frame under consideration, then the algorithm
determines that no intrusion is occurring.

Page 15 of 21Tanksale Cybersecurity (2024) 7:4

Figure 9 outlines the design of the intrusion detection
system.

Datasets
Table 2 lists some of our datasets. Each entry consists of
the data source, vehicle make and model, and number of
CAN frames (rounded to nearest thousandth).

Example
The decision engine’s purpose is to look at all contex-
tual CAN data and the labels of the multiple functions
of the anomaly detection engine and determine if an
intrusion is occurring. To that effect, we generate func-
tions using the function design process. These func-
tions are now part of the anomaly detection engine.
We train the anomaly detection engine using the same
techniques we used in all earlier experiments. We
compute the Jaccard distance metric for all pairs of
functions. The evidence score metric depends on the
message and is computed while the decision engine is

running for each message. Consider the following five
functions that are generated by the function design
process. Function F1 is defined in Eq. 6 and its function
graph and CAN parameters are shown in Fig. 10. Func-
tion F1 meets the Hamiltonian cycle property.

Function F2 is defined in Eq. 7 and its function graph
and CAN parameters are shown in Fig. 11. Function F2
meets the Hamiltonian cycle property.

Function F3 is defined in Eq. 8 and its function graph
and CAN parameters are shown in Fig. 12. Function F3
meets the minimum degree property as the degree of
vertex x1 is 3 (number of vertices is 5).

Function F4 is defined in Eq. 9 and its function graph
and CAN parameters are shown in Fig. 13. Function F4
meets the minimum degree property.

(6)

F1(x0, x1, x2, x3, x4) =
x0

x1
+ corr(x1, x2) + corr(x2, x3)+

x3

x4
+ w0 ∗ operation0(x4, x0)

(7)

F2(x0, x1, x2, x3, x4) = corr(x0, x1) +
x1

x2
+

w1 ∗ operation1(x2, x3) +
x3

x4
+ x4.x0

(8)

F3(x0, x1, x2, x3, x4) = x2.x0 + corr(x4, x1) +
x2

x1
+

corr(x4, x3) +
x3

x1

Fig. 9 Intrusion detection system

Table 2 Training, validation, and testing data

Source Make, Model, Year Frames

Miller and Valasek https://
illma tics. com/ carha cking.
html

Toyota Prius 17K

Lee et al. (2017) Kia Soul 4600K

Dupont et al. (2019) Opel Astra, Renault Clio 520K

Cephas Barreto (2018) Chevrolet Agile 23K

Personal vehicle Toyota Venza 157K

Miller and Valasek https://
illma tics. com/ carha cking.
html

Ford Escape 13K

Personal vehicle Chrysler Town & Country 25K

https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html
https://illmatics.com/carhacking.html

Page 16 of 21Tanksale Cybersecurity (2024) 7:4

Function F5 is defined in Eq. 10 and its function graph
and CAN parameters are shown in Fig. 14. Function
F5 meets both the Hamiltonian cycle property and the
minimum degree property.

Although the remote transmission frame and cor-
responding data frame use the same message ID,
the RTR bit is used for discernment. The data frame
is prioritized over the remote frame as it contains a
dominant RTR bit. Since this is part of normal CAN
operation and since we want to model the same
behavior, we do not pre-process RTR frames in any
special manner. We want to launch our attack in a
way to trick the overall system. We manipulate 5 CAN
parameters using the techniques mentioned earlier.
The attack is designed to increase the speed of the
vehicle by changing multiple values related to the
speed and acceleration. Changing multiple values is an
attempt to trick the system into believing that there is

(9)

F4(x0, x1, x2, x3, x4) = corr(x2, x3) +
x0

x2
+

x3.x1 + corr(x0, x3) +
x3

x4
+ x4.x1

(10)

F5(x0, x1, x2, x3, x4) =
x2

x1
+ corr(x0, x1)+

w1 ∗ operation1(x3, x4)+

x4.x0 + corr(x4, x2) +
x3

x2

no intrusion occurring. We launch our attack by mak-
ing the following changes:

• Multiply wheel speed by 1.2
• Set brake position to 0
• Multiply engine torque by 1.5
• Change current gear to the next lower position
• Multiply longitudinal acceleration by 1.2

The decision engine algorithm was ran on the Lee et al.
(2017) dataset for Cars 7 and 8. During testing, we ana-
lyzed evidence scores of all functions per frame and
determined the floor value (β) to correctly determine
intrusions. For each intrusive frame, we analyzed the
decision variable value to determine a value for θ . We
tested the RESOLVE function by calling it on all pairs of

Fig. 10 Function graph and CAN parameters for F1 (Eq. 6)

Fig. 11 Function graph and CAN parameters for F2 (Eq. 7)

Fig. 12 Function graph and CAN parameters for F3 (Eq. 8)

Fig. 13 Function graph and CAN parameters for F4 (Eq. 9)

Table 3 Evidence score for some example messages per
function

CAN message Function

F1 F2 F3 F4 F5

Request engine speed 0.71 0.63 0.23 0.25 0.82

RPM response 0.68 0.65 0.19 0.22 0.77

Change gear 0.77 0.52 0.62 0.71 0.51

Increase speed 0.82 0.49 0.59 0.75 0.48

Change steering angle 0.47 0.51 0.23 0.12 0.57

Request fuel pressure 0.39 0.27 0.3 0.37 0.32

Decrease brake pressure 0.7 0.62 0.19 0.64 0.78

Page 17 of 21Tanksale Cybersecurity (2024) 7:4

functions and analyzing the value of φ for correct deter-
mination of intrusion. Table 3 lists the evidence score
per function for a few of the CAN message frames in this
dataset.

The Jaccard distance d between each pair of functions
is shown in Table 4. The Jaccard distance ranges from
0.75 to 1.00 which implies that there are not a lot of CAN
variables that are common between the functions.

The decision engine performs a detailed analysis
for each frame. Consider a decision engine that deter-
mines if a frame is intrusive based on a simple major-
ity of functions’ labeling. We measured sensitivity and
specificity for such a decision engine. Here are some
decision engine observations:

1. All function labels unanimously agree for 7% of CAN
frames.

2. Simple majority decision engine’s sensitivity is 0.9132
and specificity is 0.7021.

3. Evidence score ranges from 0.12 to 0.93.
4. Jaccard distance between functions ranges from 0.75

to 1.00.
5. Minimum evidence score of 0.63 is required to cor-

rectly identify intrusive frames.
6. θ = 2.7 to achieve 99% sensitivity.
7. φ = 0.72 for 99% sensitivity to determine intrusion

and φ = 0.532 for 99% sensitivity to detect normal
frame.

8. α = 0.8 for RESOLVE function to get called and cor-
rectly determine result.

Based on the above observations, we set the values
for the decision engine’s thresholds. We evaluated
the decision engine using Car 9 and Car 10 data and
Table 5 lists these results. The results indicate that our
system can detect the intrusion with high sensitivity
and low false-positive rate. Additionally, comparing
our decision engine with a simple majority decision
engine, we can see that sensitivity has improved and
the false positive rate has reduced drastically. We
believe that the detailed analysis done by the deci-
sion engine per frame significantly reduces the false

positive rate and improves the sensitivity. In the next
section, we will compare our anomaly detection and
decision engines with systems proposed by other
researchers.

System analysis and discussion
Intrusion Detection Systems for CAN have been pro-
posed by other researchers. Each system uses a differ-
ent approach so it will be useful to compare and contrast
results. The researchers Bozdal et al. (2021); Seo et al.
(2018, 2020) test their system using the Lee et al. (2017)
dataset that we have used in our research. Three types of
attacks—Denial of Service, Gear Spoofing, and Fuzzy—
are used to evaluate their systems. We test our intrusion
detection system using the same attacks and compare
the results. In addition, Bozdal et al. (2021) use another
dataset (Dupont et al. 2019) that we use to evaluate their
system. Bozdal et al. (2021) propose a wavelet-based
intrusion detection system for vehicular networks. CAN’s
transmission pattern is analyzed and any changes in its
behavior is marked as an anomaly. Seo et al. (2018) use
generative adversarial networks to design their intrusion
detection system. They train two discriminators, one for
known attacks and one for unknown attacks. A generator
and the discriminator for unknown attacks are trained
using an adversarial process. Seo et al. (2020) propose a
specification-based intrusion detection system. Security
specifications are designed by extracting expected system
behavior. Their focal points for expected system behavior
are timing and frequency of CAN messages.

The Denial of Service attack is launched by flooding the
CAN network with frames with a message identifier of
0x000. This message has the highest priority and hence no
other node in the network can transmit any messages as
long as the malicious frames are being sent. This results
in denying service to all nodes attached to the CAN net-
work. Since the functions from the section “Decision
engine” subsection “Example” use the same data set, we
use the same functions and anomaly detection engine
parameters to test our system. Data from Cars 9 and 10
was attacked by inserting messages with identifier 0x000
to execute the denial of service attack. We measured

Fig. 14 Function graph and CAN parameters for F5 (Eq. 10)

Table 4 Jaccard distance

Functions d Functions d

F1, F2 0.8889 F2, F4 0.8889

F1, F3 0.75 F2, F5 1

F1, F4 1 F3, F4 0.8889

F1, F5 0.8889 F3, F5 1

F2, F3 1 F4, F5 0.75

Page 18 of 21Tanksale Cybersecurity (2024) 7:4

sensitivity of our system and compared it with other sys-
tems. It can be seen that our system performed as well
as other proposed systems. The system designed by
Bozdal et al. (2021) is based on detecting attacks that are
launched towards a specific message identifier. Since the
denial of service attack does not target a specific message,
most likely their sensitivity is not as high as others. Our
system performs better than Bozdal, Samie, Jennions and
comparable to the others in terms of sensitivity. Our false
positive rate is better than Olufowobi et al. and compara-
ble to others. With respect to both sensitivity and speci-
ficity considered together, our system outperforms three
systems. Results are summarized in Table 6.

The Gear Spoofing attack targets a specific message
identifier. Recall that remote frames are used to request
data. When an ECU receives a remote frame for data that
it is responsible for, then this ECU is expected to transmit
a response data frame immediately. In this attack, a rogue
ECU responds to the current gear remote frame request
with malicious response. We tested our system by inject-
ing test data with spoofed current gear response frames,
the same way in which the other systems executed this
attack. Our system performs better than Seo, Song, Kim
and comparable to the other two in terms of sensitivity.
The results for specificity mimic the ones for the denial
of service attack. Overall, our system performs better in
terms of sensitivity and specificity considered together.
Results are summarized in Table 7.

Fuzzy attack is a type of injection attack. CAN frames,
with multiple targeted message identifiers, containing
random data are transmitted on the bus by the mali-
cious node. Unintended and dangerous consequences
such as shaking of the steering wheel, unexpected gear
shifts, blinking indicators on the panel, etc. Lee et al.
(2017) occur as a result of such an attack. We repeated
the same experiment on our system and compared the
results (Table 8). For the fuzzy attack, our system per-
forms comparable to Seo, Song, Kim and Olufowobi et al.
in terms of sensitivity. However, sensitivity performance
of Bozdal, Samie, Jennions is not good as the fuzzy attack
targets random message identifiers and their system is
designed to tackle attacks on specific message identifiers.
Similar to the gear spoofing attack, the false positive rate
of Olufowobi et al. is extremely high. Our false positive
rate is comparable to Bozdal, Samie, Jennions.

None of the peer-reviewed intrusion detection systems
make a distinction between anomalies and intrusions.
We believe that our decision engine improves the per-
formance of the overall system by identifying intrusions
with high sensitivity and reducing the number of false
positives. In most approaches, presence of an anomaly
is treated as an intrusion whereas our approach per-
forms a detailed analysis to determine if an intrusion has
occurred. Rare erratic driving behavior can cause irreg-
ular CAN traffic. Any security system should be able to
handle such situations by reducing the number of false
positives that will be triggered by such behavior.

The high false positive rate of Olufowobi et al. is most
likely due to the fact that their system treats any anoma-
lous frame as an intrusion. There is no further analysis
of the frame to check if the anomaly is caused due to an
intrusion or another reason such as rare erratic driver
behavior or sudden change in driving conditions. Our
function design algorithm takes into account multiple
attack and deception techniques adopted by hackers. The
proposed properties of our function graphs ensure that
our anomaly detection system cannot be spoofed easily
by manipulating multiple CAN parameters.

Limitations
We recognize that there are certain limitation to our pro-
posed solution. We were limited by the amount of data
that we had access to. We evaluated our solution on data
from multiple major vehicle manufacturers but not from
all of the major manufacturers. In certain datasets, we
did not have access to as many CAN parameters as others
thereby reducing the number of functions for the anom-
aly detection engine.

Table 5 Decision engine results

Sensitivity Specificity

Car 9 0.9903 0.9891

Car 10 0.9872 0.9836

Table 6 Denial of service attack

System Sensitivity Specificity

Proposed system 0.9952 0.9943

Seo et al. (2018) 0.9960 –

Olufowobi et al. (2020) 1.000 0.8929

Bozdal et al. (2021) 0.9415 0.9962

Table 7 Gear spoofing attack

System Sensitivity Specificity

Proposed system 0.9872 0.9928

Seo et al. (2018) 0.9650 –

Olufowobi et al. (2020) 0.9702 0.4256

Bozdal et al. (2021) 0.9845 0.9993

Page 19 of 21Tanksale Cybersecurity (2024) 7:4

Future work
We believe that selecting functions from a pool of func-
tions for the anomaly detection engine will further
strengthen our system. A random function selection
algorithm that runs periodically, similar to a key refresh
process in cryptography, will also be an improvement.
Continuous training of the anomaly detection engine will
ensure that the system’s will perform as intended. We
believe that overnight training, while the car is idle, will
help maintain the performance of our system.

Conclusion
Designing, implementing, and enforcing security coun-
termeasures in vehicles is a big challenge. As outlined ear-
lier, security requirements and corresponding resource
constraints, lack of security in the network design, and
multiple attack surfaces are a few of the challenges for a
robust vehicle security system. Our goal was to design
a light-weight, almost real-time, and extensible security
system for intra-vehicle networks. We designed unique
measurements to be used by the decision engine. The evi-
dence score underscores the importance of the relation
between CAN messages types and CAN sensors. The
evidence score uses a ratio that is used to determine the
influence of CAN sensors within each anomaly detection
engine function. We also propose a mechanism to resolve
conflicts between anomalous frame markings of various
functions. The Jaccard distance plays an important role in
this process. Our decision engine presented in this paper
and our anomaly detection engine presented in our ear-
lier papers together deliver a vehicle security solution
that meets all the outlined goals and requirements.

Acknowledgements
Not available.

Author contributions
Dr. Vinayak Tanksale is the sole author of the manuscript.

Funding
Not available.

Availability of data and materials
Most data used in the paper is publicly available and has been referenced
accordingly. The rest of the data will be made available upon reasonable
request.

Code availability
Not available.

Declarations

Ethical approval and consent to participate
Not available.

Consent for publication
Not available.

Competing interests
None of the authors have any competing interests in the manuscript.

Received: 31 July 2023 Accepted: 5 November 2023

References
Bozdal M, Samie M, Jennions IK (2021) Winds: a wavelet-based intrusion detec-

tion system for controller area network (can). IEEE Access 9:58621–58633.
https:// doi. org/ 10. 1109/ ACCESS. 2021. 30730 57

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297.
https:// doi. org/ 10. 1007/ BF009 94018

Creech G, Hu J (2014) A semantic approach to host-based intrusion detection
systems using contiguous and discontiguous system call patterns. IEEE
Trans Comput 63(4):807–819

Cristianini N, Shawe-Taylor J, Shawe-Taylor DCSRHJ, Books24x7 I, Press CU
(2000) An introduction to support vector machines and other kernel-
based learning methods. Cambridge University Press, USA. https:// books.
google. com/ books? id=_ PXJn_ cxv0AC

Desta AK, Ohira S, Arai I, Fujikawa K (2020) Id sequence analysis for intrusion
detection in the can bus using long short term memory networks. In:
2020 IEEE International Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops), pp 1–6

Dibaei M, Zheng X, Jiang K, Abbas R, Liu S, Zhang Y, Xiang Y, Yu S (2020) Attacks
and defences on intelligent connected vehicles: a survey. Digit Commun
Netw 6(4):399–421. https:// doi. org/ 10. 1016/j. dcan. 2020. 04. 007

Dibaei M, Zheng X, Jiang K, Maric S, Abbas R, Liu S, Zhang Y, Deng Y, Wen S,
Zhang J, Xiang Y, Yu S (2019) An overview of attacks and defences on
intelligent connected vehicles. arXiv. https:// doi. org/ 10. 48550/ ARXIV.
1907. 07455. arXiv: 1907. 07455

Dupont G, Lekidis A, Hartog JJ, Etalle SS (2019) Automotive Controller Area
Network (CAN) Bus Intrusion Dataset v2. 4TU.ResearchData. https:// doi.
org/ 10. 4121/ uuid: b74b4 928- c377- 4585- 9432- 2004d fa20a 5d . https://
data. 4tu. nl/ artic les/ datas et/ Autom otive_ Contr oller_ Area_ Netwo rk_ CAN_
Bus_ Intru sion_ Datas et/ 12696 950/2

Fröschle S, Stühring A (2017) Analyzing the capabilities of the can attacker. In:
Foley SN, Gollmann D, Snekkenes E (eds) Computer Security - ESORICS
2017. Springer, Cham, pp 464–482

Hoang XD, Hu J, Bertok P (2009) A program-based anomaly intrusion detec-
tion scheme using multiple detection engines and fuzzy inference. J
Netw Comput Appl 32(6):1219–1228. https:// doi. org/ 10. 1016/j. jnca. 2009.
05. 004

Hoppe T, Dittman J (2007) Sniffing/replay attacks on can buses: a simulated
attack on the electric window lift classified using an adapted cert
taxonomy. In: Proceedings of the 2nd workshop on embedded systems
security (WESS), pp 1–6

Hossain MD, Inoue H, Ochiai H, Fall D, Kadobayashi Y (2020) Long short-term
memory-based intrusion detection system for in-vehicle controller area
network bus. In: 2020 IEEE 44th annual computers, software, and applica-
tions conference (COMPSAC), pp 10–17

Huang F, Li X, Yuan C, Zhang S, Zhang J, Qiao S (2022) Attention-emotion-
enhanced convolutional lstm for sentiment analysis. IEEE Trans Neural
Netw Learn Syst 33(9):4332–4345. https:// doi. org/ 10. 1109/ TNNLS. 2021.
30566 64

Table 8 Fuzzy attack

System Sensitivity Specificity

Proposed system 0.9948 0.9968

Seo et al. (2018) 0.9950 –

Olufowobi et al. (2020) 0.9958 0.5130

Bozdal et al. (2021) 0.8339 0.9977

https://doi.org/10.1109/ACCESS.2021.3073057
https://doi.org/10.1007/BF00994018
https://books.google.com/books?id=_PXJn_cxv0AC
https://books.google.com/books?id=_PXJn_cxv0AC
https://doi.org/10.1016/j.dcan.2020.04.007
https://doi.org/10.48550/ARXIV.1907.07455
https://doi.org/10.48550/ARXIV.1907.07455
http://arxiv.org/abs/1907.07455
https://doi.org/10.4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://doi.org/10.4121/uuid:b74b4928-c377-4585-9432-2004dfa20a5d
https://data.4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_Intrusion_Dataset/12696950/2
https://data.4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_Intrusion_Dataset/12696950/2
https://data.4tu.nl/articles/dataset/Automotive_Controller_Area_Network_CAN_Bus_Intrusion_Dataset/12696950/2
https://doi.org/10.1016/j.jnca.2009.05.004
https://doi.org/10.1016/j.jnca.2009.05.004
https://doi.org/10.1109/TNNLS.2021.3056664
https://doi.org/10.1109/TNNLS.2021.3056664

Page 20 of 21Tanksale Cybersecurity (2024) 7:4

Javed AR, Rehman SU, Khan MU, Alazab M, Reddy TG (2021) Canintelliids:
detecting in-vehicle intrusion attacks on a controller area network using
cnn and attention-based gru. IEEE Trans Netw Sci Eng 8(2):1456–1466.
https:// doi. org/ 10. 1109/ TNSE. 2021. 30598 81

Jin S, Chung J-G, Xu Y (2021) Signature-based intrusion detection system (ids)
for in-vehicle can bus network. In: 2021 IEEE international symposium on
circuits and systems (ISCAS), pp 1–5. https:// doi. org/ 10. 1109/ ISCAS 51556.
2021. 94010 87

Kang M-J, Kang J-W (2016) Intrusion detection system using deep neural
network for in-vehicle network security. PLoS ONE 11(6):1–17. https:// doi.
org/ 10. 1371/ journ al. pone. 01557 81

Katragadda S, Darby PJ, Roche A, Gottumukkala R (2020) Detecting low-rate
replay-based injection attacks on in-vehicle networks. IEEE Access
8:54979–54993. https:// doi. org/ 10. 1109/ ACCESS. 2020. 29805 23

Kim K, Kim JS, Jeong S, Park J-H, Kim HK (2021) Cybersecurity for autonomous
vehicles: review of attacks and defense. Comput Secur 103:102150.
https:// doi. org/ 10. 1016/j. cose. 2020. 102150

Kleberger P, Olovsson T, Jonsson E (2011) Security aspects of the in-vehicle
network in the connected car. In: 2011 IEEE intelligent vehicles sympo-
sium (IV), pp 528–533. https:// doi. org/ 10. 1109/ IVS. 2011. 59405 25

Larson UE, Nilsson DK (2008) Securing vehicles against cyber attacks. In: Pro-
ceedings of the 4th annual workshop on cyber security and information
intelligence research: developing strategies to meet the cyber security
and information intelligence challenges ahead. CSIIRW’08. Association for
Computing Machinery, New York, NY, USA. https:// doi. org/ 10. 1145/ 14131
40. 14131 74

Laszka A, Abbas W, Sastry SS, Vorobeychik Y, Koutsoukos X (2016) Optimal
thresholds for intrusion detection systems. In: Proceedings of the sympo-
sium and bootcamp on the science of security. HotSos’16. Association for
Computing Machinery, New York, NY, USA, pp 72–81. https:// doi. org/ 10.
1145/ 28983 75. 28983 99

Lee S, Jo HJ, Cho A, Lee DH, Choi W (2022) Ttids: Transmission-resuming time-
based intrusion detection system for controller area network (can). IEEE
Access 10:52139–52153. https:// doi. org/ 10. 1109/ ACCESS. 2022. 31743 56

Lee H, Jeong SH, Kim HK (2017) Otids: a novel intrusion detection system for
in-vehicle network by using remote frame. In: 2017 15th annual confer-
ence on privacy, security and trust (PST), vol. 00, pp 57–5709. https:// doi.
org/ 10. 1109/ PST. 2017. 00017

Li W (2004) Using genetic algorithm for network intrusion detection. In:
Proceedings of the United States Department of Energy Cyber Security
Group 2004 Training Conference, pp 24–27

Lv Z, Lou R, Singh AK (2021) Ai empowered communication systems for intel-
ligent transportation systems. IEEE Trans Intell Transp Syst 22(7):4579–
4587. https:// doi. org/ 10. 1109/ TITS. 2020. 30171 83

Marchetti M, Stabili D (2017) Anomaly detection of can bus messages through
analysis of id sequences. In: 2017 IEEE intelligent vehicles symposium (IV),
pp 1577–1583. https:// doi. org/ 10. 1109/ IVS. 2017. 79959 34

Meyer S (2019) Vehicle hacking, the new data security threat. Accessed 17 Mar
2019. https:// www. cpoma gazine. com/ cyber- secur ity/ vehic le- hacki ng-
the- new- data- secur ity- threat/

Miller C, Valasek C (2015) Remote exploitation of an unaltered passenger
vehicle. In: Proceedings of the Black Hat USA 2015

Miller C, Valasek C. Car hacking data. https:// illma tics. com/ carha cking. html
Minawi O, Whelan J, Almehmadi A, El-Khatib K (2020) Machine learning-based

intrusion detection system for controller area networks. In: Proceedings
of the 10th ACM symposium on design and analysis of intelligent vehicu-
lar networks and applications. DIVANet’20. Association for Computing
Machinery, New York, NY, USA, pp 41–47. https:// doi. org/ 10. 1145/ 34160
14. 34245 81

Mukkamala S, Sung AH (2003) Detecting denial of service attacks using sup-
port vector machines. In: The 12th IEEE international conference on fuzzy
systems, 2003. FUZZ’03., vol. 2, pp 1231–12362. https:// doi. org/ 10. 1109/
FUZZ. 2003. 12066 07

Nam M, Park S, Kim DS (2021) Intrusion detection method using bi-directional
gpt for in-vehicle controller area networks. IEEE Access 9:124931–124944.
https:// doi. org/ 10. 1109/ ACCESS. 2021. 31105 24

NCCIC/ICS-CERT: CAN Bus Standard Vulnerability (2017). Accessed 10 Aug
2018. https:// www. cisa. gov/ news- events/ ics- alerts/ ics- alert- 17- 209- 01

Nguyen TTT, Armitage G (2008) A survey of techniques for internet traffic clas-
sification using machine learning. IEEE Commun Surv Tutor 10(4):56–76.
https:// doi. org/ 10. 1109/ SURV. 2008. 080406

Nie L, Ning Z, Wang X, Hu X, Cheng J, Li Y (2020) Data-driven intrusion detec-
tion for intelligent internet of vehicles: a deep convolutional neural
network-based method. IEEE Trans Netw Sci Eng 7(4):2219–2230. https://
doi. org/ 10. 1109/ TNSE. 2020. 29909 84

Olufowobi H, Young C, Zambreno J, Bloom G (2020) Saiducant: specification-
based automotive intrusion detection using controller area network (can)
timing. IEEE Trans Veh Technol 69(2):1484–1494. https:// doi. org/ 10. 1109/
TVT. 2019. 29613 44

Oruh J, Viriri S, Adegun A (2022) Long short-term memory recurrent neural
network for automatic speech recognition. IEEE Access 10:30069–30079.
https:// doi. org/ 10. 1109/ ACCESS. 2022. 31593 39

Peng S, Hu Q, Chen Y, Dang J (2015) Improved support vector machine algo-
rithm for heterogeneous data. Pattern Recognit 48(6):2072–2083. https://
doi. org/ 10. 1016/j. patcog. 2014. 12. 015

Sekar R, Gupta A, Frullo J, Shanbhag T, Tiwari A, Yang H, Zhou S (2002) Specifi-
cation-based anomaly detection: a new approach for detecting network
intrusions. In: Proceedings of the 9th ACM conference on computer and
communications security. CCS ’02. ACM, New York, NY, USA, pp 265–274.
https:// doi. org/ 10. 1145/ 586110. 586146

Seo E, Song HM, Kim HK (2018) Gids: Gan based intrusion detection system for
in-vehicle network. In: 2018 16th annual conference on privacy, security
and trust (PST), pp 1–6. https:// doi. org/ 10. 1109/ PST. 2018. 85141 57

Silveira Barreto CA (2018) OBD-II datasets. Kaggle. https:// doi. org/ 10. 34740/
KAGGLE/ DSV/ 83155 . https:// www. kaggle. com/ dsv/ 83155

Sung AH, Mukkamala S (2003) Identifying important features for intrusion
detection using support vector machines and neural networks. In: 2003
Proceedings of the symposium on applications and the internet, pp
209–216. https:// doi. org/ 10. 1109/ SAINT. 2003. 11830 50

Takefuji Y (2018) Connected vehicle security vulnerabilities [commentary]. IEEE
Technol Soc Mag 37(1):15–18. https:// doi. org/ 10. 1109/ MTS. 2018. 27950 93

Tanksale V (2019) Intrusion detection for controller area network using support
vector machines. In: 2019 IEEE 16th international conference on mobile
ad hoc and sensor systems workshops (MASSW), pp 121–126. https:// doi.
org/ 10. 1109/ MASSW. 2019. 00032

Tanksale V (2020a) Controller area network security requirements. In: 2020
International conference on computational science and computational
intelligence (CSCI), pp 157–162. https:// doi. org/ 10. 1109/ CSCI5 1800. 2020.
00034

Tanksale V (2020b) Anomaly detection for controller area networks using long
short-term memory. IEEE Open J Intell Transp Syst 1:253–265. https:// doi.
org/ 10. 1109/ OJITS. 2020. 30430 66

Tanksale V (2021) Design of anomaly detection functions for controller area
networks. IEEE Open J Intell Transp Syst 2:312–321. https:// doi. org/ 10.
1109/ OJITS. 2021. 31044 95

Tanksale V (2023) Gated recurrent units for intrusion detection. In: 2023 IEEE
IAS global conference on emerging technologies (GlobConET), pp 1–5.
https:// doi. org/ 10. 1109/ GlobC onET5 6651. 2023. 10149 912

Tavallaee M, Lu W, Iqbal SA, Ghorbani AA (2008) A novel covariance matrix
based approach for detecting network anomalies. In: 6th annual com-
munication networks and services research conference (cnsr 2008), pp
75–81. https:// doi. org/ 10. 1109/ CNSR. 2008. 80

Taylor A, Leblanc S, Japkowicz N (2016) Anomaly detection in automobile
control network data with long short-term memory networks. In: 2016
IEEE international conference on data science and advanced analytics
(DSAA), pp 130–139

Vapnik V (2013) The nature of statistical learning theory. Springer, New York
Vector: CANoe. Vector. https:// www. vector. com/ int/ en/ produ cts/ produ cts-a- z/

softw are/ canoe/
Woo S, Jo HJ, Kim IS, Lee DH (2016) A practical security architecture for in-

vehicle can-fd. IEEE Trans Intell Transp Syst 17(8):2248–2261. https:// doi.
org/ 10. 1109/ TITS. 2016. 25194 64

Wu W, Kurachi R, Zeng G, Matsubara Y, Takada H, Li R, Li K (2018) Idh-can: a
hardware-based id hopping can mechanism with enhanced security for
automotive real-time applications. IEEE Access 6:54607–54623. https://
doi. org/ 10. 1109/ ACCESS. 2018. 28706 95

https://doi.org/10.1109/TNSE.2021.3059881
https://doi.org/10.1109/ISCAS51556.2021.9401087
https://doi.org/10.1109/ISCAS51556.2021.9401087
https://doi.org/10.1371/journal.pone.0155781
https://doi.org/10.1371/journal.pone.0155781
https://doi.org/10.1109/ACCESS.2020.2980523
https://doi.org/10.1016/j.cose.2020.102150
https://doi.org/10.1109/IVS.2011.5940525
https://doi.org/10.1145/1413140.1413174
https://doi.org/10.1145/1413140.1413174
https://doi.org/10.1145/2898375.2898399
https://doi.org/10.1145/2898375.2898399
https://doi.org/10.1109/ACCESS.2022.3174356
https://doi.org/10.1109/PST.2017.00017
https://doi.org/10.1109/PST.2017.00017
https://doi.org/10.1109/TITS.2020.3017183
https://doi.org/10.1109/IVS.2017.7995934
https://www.cpomagazine.com/cyber-security/vehicle-hacking-the-new-data-security-threat/
https://www.cpomagazine.com/cyber-security/vehicle-hacking-the-new-data-security-threat/
https://illmatics.com/carhacking.html
https://doi.org/10.1145/3416014.3424581
https://doi.org/10.1145/3416014.3424581
https://doi.org/10.1109/FUZZ.2003.1206607
https://doi.org/10.1109/FUZZ.2003.1206607
https://doi.org/10.1109/ACCESS.2021.3110524
https://www.cisa.gov/news-events/ics-alerts/ics-alert-17-209-01
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.1109/TNSE.2020.2990984
https://doi.org/10.1109/TNSE.2020.2990984
https://doi.org/10.1109/TVT.2019.2961344
https://doi.org/10.1109/TVT.2019.2961344
https://doi.org/10.1109/ACCESS.2022.3159339
https://doi.org/10.1016/j.patcog.2014.12.015
https://doi.org/10.1016/j.patcog.2014.12.015
https://doi.org/10.1145/586110.586146
https://doi.org/10.1109/PST.2018.8514157
https://doi.org/10.34740/KAGGLE/DSV/83155
https://doi.org/10.34740/KAGGLE/DSV/83155
https://www.kaggle.com/dsv/83155
https://doi.org/10.1109/SAINT.2003.1183050
https://doi.org/10.1109/MTS.2018.2795093
https://doi.org/10.1109/MASSW.2019.00032
https://doi.org/10.1109/MASSW.2019.00032
https://doi.org/10.1109/CSCI51800.2020.00034
https://doi.org/10.1109/CSCI51800.2020.00034
https://doi.org/10.1109/OJITS.2020.3043066
https://doi.org/10.1109/OJITS.2020.3043066
https://doi.org/10.1109/OJITS.2021.3104495
https://doi.org/10.1109/OJITS.2021.3104495
https://doi.org/10.1109/GlobConET56651.2023.10149912
https://doi.org/10.1109/CNSR.2008.80
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://www.vector.com/int/en/products/products-a-z/software/canoe/
https://doi.org/10.1109/TITS.2016.2519464
https://doi.org/10.1109/TITS.2016.2519464
https://doi.org/10.1109/ACCESS.2018.2870695
https://doi.org/10.1109/ACCESS.2018.2870695

Page 21 of 21Tanksale Cybersecurity (2024) 7:4

Wu W, Li R, Xie G, An J, Bai Y, Zhou J, Li K (2020) A survey of intrusion detec-
tion for in-vehicle networks. IEEE Trans Intell Transp Syst 21(3):919–933.
https:// doi. org/ 10. 1109/ TITS. 2019. 29080 74

Xiong W, Gülsever M, Kaya KM, Lagerström R (2019) A study of security vulner-
abilities and software weaknesses in vehicles. In: Askarov A, Hansen RR,
Rafnsson W (eds) Secure IT systems. Springer, Cham, pp 204–218

Zhou J, Joshi P, Zeng H, Li R (2019) Btmonitor: bit-time-based intrusion detec-
tion and attacker identification in controller area network. ACM Trans
Embed Comput Syst 18(6):3362034. https:// doi. org/ 10. 1145/ 33620 34

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TITS.2019.2908074
https://doi.org/10.1145/3362034

	Intrusion detection system for controller area network
	Abstract
	Introduction
	Controller area network
	CAN security
	Security weaknesses
	Communication
	Low-latency requirement
	Lack of authentication

	Attacks on CAN communication

	Background and related work
	Summary of our prior work
	Attack model
	Function design
	Operations and rules
	Function properties
	Function design process

	Decision engine
	Intrusion
	Decision engine rationale
	Decision engine parameters
	Functions with contradictory labels
	Decision engine design
	Datasets
	Example

	System analysis and discussion
	Limitations
	Future work

	Conclusion
	Acknowledgements
	References

