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Abstract 

In generating adversarial examples, the conventional black-box attack methods rely on sufficient feedback 
from the to-be-attacked models by repeatedly querying until the attack is successful, which usually results in thou-
sands of trials during an attack. This may be unacceptable in real applications since Machine Learning as a Service 
Platform (MLaaS) usually only returns the final result (i.e., hard-label) to the client and a system equipped with cer-
tain defense mechanisms could easily detect malicious queries. By contrast, a feasible way is a hard-label attack 
that simulates an attacked action being permitted to conduct a limited number of queries. To implement this 
idea, in this paper, we bypass the dependency on the to-be-attacked model and benefit from the characteristics 
of the distributions of adversarial examples to reformulate the attack problem in a distribution transform manner 
and propose a distribution transform-based attack (DTA). DTA builds a statistical mapping from the benign example 
to its adversarial counterparts by tackling the conditional likelihood under the hard-label black-box settings. In this 
way, it is no longer necessary to query the target model frequently. A well-trained DTA model can directly and effi-
ciently generate a batch of adversarial examples for a certain input, which can be used to attack un-seen models 
based on the assumed transferability. Furthermore, we surprisingly find that the well-trained DTA model is not sensi-
tive to the semantic spaces of the training dataset, meaning that the model yields acceptable attack performance 
on other datasets. Extensive experiments validate the effectiveness of the proposed idea and the superiority of DTA 
over the state-of-the-art.

Keywords Distribution transform-based attack, Query-limited adversarial attack, Adversarial examples, Conditional 
normalizing flow

Introduction
The recent progress in machine learning reveals a criti-
cal problem of deep neural networks (DNNs), which 
states that most of DNNs are vulnerable to adversarial 
examples, i.e., being misled by particular examples cor-
rupted by human imperceptible noise (Szegedy et  al. 
2014; Goodfellow et al. 2015; Kurakin et  al. 2017; Dong 

et  al. 2018). Such an unrobust property and its inexpli-
cability have attracted extensive research attention that 
was devoted to improving the model’s robustness and 
AI security. While most of the existing studies focus on 
adversarial attacks in a synthesizing way, i.e., the adver-
sarial examples are generated by directly modifying the 
pixels of digital images, certain trials have shown that it 
is possible to attack an AI system physically (Duan et al. 
2020; Liu et al. 2022). A typical scenario is autonomous 
driving, where the driving system relies on deep learning-
based techniques to identify traffic signs or other road 
information for accurate driving decisions. The studies by 
Liu et al. (2019a) and Eykholt et al. (2018) show that the 
well-designed disturbances imposed on the traffic signs 
can easily deceive the recognition module in the driving 
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system, bringing a significant threat to people lives and 
properties.

While various defense methods for adversarial attacks 
are constantly being proposed (Akhtar et al. 2018; Wang 
et  al. 2021; Madaan et  al. 2020; Zhang et  al. 2020; Guo 
et al. 2023), more powerful attack methods (Carlini and 
Wagner 2017; Sun et  al. 2018; Mirsky 2023) are emerg-
ing increasingly and have been able to fight against those 
defense methods. This attack-defense game will continue 
along with the development of deep learning and modern 
AI systems.

The literature on adversarial attacks can be grouped 
into two classes: white-box and black-box attacks. The 
white-box attack conveys the case that the details of the 
target model, such as the structure and the parameters, 
are known before designing the attack method. In con-
trast, the black-box setting states that the model details 
are inaccessible, but only the hard-label or the label prob-
ability returned by the target model concerning a spe-
cific input can be obtained via a querying-based attack. 
Clearly, the black-box attack is more feasible than the 
white-box attack in real applications since the technical 
details of an online artificial intelligence system are invis-
ible to the public in a general sense, especially for the 
hard-label setting.

A typical option for the attackers in the black-box set-
ting is to use thousands of queries to collect enough feed-
back for optimizing the adversarial example iteratively, 
which is called the optimization-based attack. Never-
theless, the problem here is that the querying-and-opti-
mizing process could result in massive consumption of 
computing resources and time (Guo et al. 2019; Tu et al. 
2019), which results in an inefficient way to perform a 
successful attack. On the other hand, an advanced AI sys-
tem could be equipped with certain defense mechanisms 
that resist intentional attacks (Wu et  al. 2020), a good 
case in point is the Google Cloud Vision API (GCV).1 
In this case, too many trials of attacking can be easily 
detected by the system. Hence, all these conditions dra-
matically limit the applicability of the black-box attack 
and pose the necessity of a query-limited hard-label 
attack strategy in practical applications.

Besides, the optimization-based attack methods tar-
get overly fitting the adversarial examples on the target 
model so as to achieve a high attack performance. We 
empirically find that those generated adversarial exam-
ples have low transferability and cannot attack other 
target models effectively. This limits the possibility of 
exploring the cross-model knowledge about adversarial 
robustness.

To solve the problems discussed above, in this paper, 
we formulate the synthesis of adversarial examples in a 
distribution transform manner. We advocate that the 
adversarial distribution and the normal distribution are 
misaligned but transferable. The common parts during 
transfer can be well-conditioned on the input example 
itself. The misaligned parts are enriched by employing a 
generative model that recovers the distributions based on 
random noise and conditions. Assuming that the vulner-
ability of different deep models exhibits similar effects, 
we can reasonably collect many adversarial examples 
from the existing attack methods, which are then used 
to characterize the adversarial distribution. In this way, 
it is possible to optimize the generative model that syn-
thesizes the adversarial examples in a statistical pipeline. 
As a result, the model can generate batches of examples 
for attacking without too many queries. To be clear, this 
advantage benefits from the distribution of the exist-
ing adversarial examples and their transferability, which 
are encoded by the generative model. It is also allowed 
to apply the attack model on a different data source that 
has not been involved in training. In the implementation, 
we develop a conditional normalizing flow-based model 
to achieve the above goal. The main contributions of this 
paper can be summarized as follows:

• We formulate the black-box attack problem as a 
generative framework from the perspective that the 
adversarial distribution can be translated from the 
normal distribution under certain conditions. Within 
this perspective, the adversarial examples are trans-
ferable across different models and different image 
contents.

• We develop a conditional normalizing flow-based 
attack method (DTA) that simulates the transforma-
tion from the normal distribution to the adversarial 
distribution. Unlike the existing black-box meth-
ods, which need thousands of queries, DTA signifi-
cantly reduces the query times during an attack while 
achieving an acceptable attack success rate. Notably, 
DTA requires only ONE query to perform a success-
ful attack in most cases.

• The proposed DTA can generate adversarial exam-
ples with high transferability to different black-box 
models. The well-trained model is not sensitive to 
the semantic spaces of the training dataset, and we 
empirically demonstrate that the model trained on 
ImageNet can be used to generate effective adversar-
ial examples on other datasets.

• Extensive evaluations on black-box attacks show that 
the proposed DTA beats the state-of-the-art hard-
label attacks in the aspects of attack success rate, 
query times and transferability, which demonstrate 1 https:// cloud. google. com/ vision.

https://cloud.google.com/vision
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the validity of the proposed DTA in the adversarial 
attack.

The rest of this paper is organized as follows. We briefly 
review the methods relating to adversarial attacks in 
“Related work” section. In “Preliminary” section, we pro-
vide the preliminaries of adversarial attack and normal-
izing flow. “Methodology” section introduces the details 
of the proposed DTA framework. The experiments are 
presented in “Experiments” section, with the conclusion 
drawn in “Conclusions” section.

Related work
In this section, we briefly review the most relevant meth-
ods to the current work. For comprehensive literature on 
adversarial attacks (including white-box and black-box), 
please refer to Ding and Xu (2020), Chakraborty et  al. 
(2018).

Black‑box attack
A typical case of adversarial attack is the black-box set-
ting that concerns the practice in real applications. Due 
to the limited information about the target model, the 
black-box attack is more difficult than the white-box one 
and receives limited attention from the community. The 
rationale of most existing methods is the transferability 
of the adversarial examples across models, which allows 
the examples generated using the white-box methods to 
attack the black-box models. For example, the integrated 
adversarial training method proposed by Tramèr et  al. 
(2018) and the image transformation method proposed 
by Guo et al. (2018) could effectively carry out the trans-
fer attack.

The ZOO attack proposed by Chen et  al. (2017) was 
one of the earliest black-box attack methods based on 
queries, which employed the zero-order optimization 
to construct a zero-step estimator by querying a target 
model and then, used the estimated gradient to mini-
mize the Carlini and Wagner (C &W) loss (Carlini and 
Wagner 2017) to find adversarial examples. Ilyas et  al. 
(2018) employed the normal distribution search den-
sity to estimate the gradient of the DNN classifier F(x) 
and adopted the projected gradient descent method to 
minimize the loss of generating adversarial examples. 
Instead of minimizing the target of adversarial example 
generation, N  ATTACK (Li et  al. 2019) tried to fit the 
distribution around the clean data, which was followed 
by the adversarial examples. In another work, Ilyas et al. 
(2019) observed that the gradient used by PGD showed 
a high correlation in time and data and then, used the 
slot machine optimization techniques to integrate the 
prior knowledge about gradients into the attack, thus 

proposing a method called Bandits & Priors which 
reduced the number of queries during an attack.

Adversarial attacks using generative models
The existing adversarial attack methods based on genera-
tive models generally rely on the generative adversarial 
network (GAN), which is used to synthesize adversarial 
examples (Baluja and Fischer 2018; Wang and Yu 2019; 
Huang and Zhang 2020). Most of these methods focus 
on the white-box attack, where the gradient of the tar-
get model is required to update the parameters of GAN. 
In the black-box setting, a surrogate model is used to 
approximate the output of the target model, which also 
drives the gradients of the former to approximate that of 
the latter, such that the optimized model has similar vul-
nerability to the target model (Huang and Zhang 2020; 
Xiao et  al. 2018). The previous works which synthesize 
adversarial examples by the Normalizing Flow model are 
AdvFlow (Dolatabadi et  al. 2020) and CG-Attack (Feng 
et al. 2022). AdvFlow first map the input image to a hid-
den representation by the pre-trained Flow model and 
find a suitable disturbance in the hidden space, which 
then uses the natural evolution strategies (NES) to opti-
mize the most helpful disturbance in an iterative updat-
ing manner. While CG-Attack training a conditional Flow 
model (i.e., c-Glow Lu and Huang 2020) relies on the 
local white box models with an additional adv loss first 
and then carries black-box attack with this well-trained 
flow model. Note that both AdvFlow and CG-Attack are 
also query-based and need the models’ whole outputs 
(soft-label) for attacking, which requires many queries or 
the more detailed outputs from the target model for per-
forming a successful attack and is limited to attacking the 
physically deployed black-box models that only return 
the true label.

The discussion above shows that the existing black-box 
attack methods mostly require thousands of queries and 
more detailed outputs on the target model to estimate 
the gradient and then carry out the attack iteratively to 
obtain a compelling adversarial example. In this situation, 
the attack is inefficient and impractical, while the time 
and computational consumption could be very consid-
erable. In addition, the transferability of the adversarial 
examples obtained by querying and optimization is often 
limited; in other words, the generated adversarial exam-
ples are overly fit on the target model and are unquali-
fied to attack other target models. When considering 
the attack under different datasets, the existing methods 
possess very limited capability to perform a success-
ful attack. However, both the cross-model attack ability 
and the cross-dataset attack ability are sometimes valu-
able for real applications, especially when we do not have 
many chances to perform attack trials.
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Therefore, the black-box attack poses the request for 
a method that is direct, efficient, and effective to per-
form attacks for different models and different datasets 
within limited queries and information. To achieve this 
goal, we know from the previous studies that the adver-
sarial examples have a particular distribution related to 
the normal examples, and learning from such an adver-
sarial distribution could help us to explore the vulnerabil-
ity of different models. Hence, we are well motivated to 
develop a generative model that transfers from (or con-
ditioned on) the distribution of clean examples to adver-
sarial ones. It is also possible to achieve cross-dataset 
attacks by involving an increasing number of adversarial 
examples during offline learning.

Preliminary
Before introducing the details of the proposed frame-
work, in this section, we first present the preliminary 
knowledge about adversarial attacks and normalizing 
flows.

Adversarial attack
Given a well-trained DNN classifier f and a correctly clas-
sified input (x, y) ∼ D , we have f (x) = y , where D 
denotes the accessible dataset. The adversarial example x′ 
is a neighbor of x and satisfies that f (x′) �= y and 
∥

∥x′ − x
∥

∥

p
≤ ǫ , where the ℓp norm is used as the metric 

function and ǫ is usually a small value such as 8 and 16 
with the image intensity [0, 255]. With this definition, the 
problem of finding an adversarial example becomes a 
constrained optimization problem:

where ℓ stands for a loss function that measures the con-
fidence of the model outputs.

In the optimization-based methods, the above problem 
is solved by computing the gradients of the loss function 
in Eq. 1 to generate the adversarial example. By contrast, 
in this work, we formulate a statistical transformation 
from P(x) to P(x′) instead of involving an online optimi-
zation process.

Normalizing flow
The normalizing flows (Dinh et  al. 2015; Kingma and 
Dhariwal 2018) are a class of probabilistic generative 
models, which are constructed based on a series of com-
pletely reversible components. The reversible property 
allows to transform from the original distribution to a 
new one and vice versa. By optimizing the model, a sim-
ple distribution (such as Gaussian distribution) can be 
transformed into a complex distribution of real data. The 
training process of normalizing flows is indeed an explicit 

(1)xadv = arg max ℓ
�x′−x�p≤ǫ

(f (x′) �= y),

likelihood maximization. Considering that the model is 
expressed by a fully invertible and differentiable func-
tion which transfers a random vector z from the Gauss-
ian distribution to another vector x , we can employ such 
a model to generate high dimensional and complex data.

Specifically, given a reversible function f : Rd → R
d 

and two random variables z ∼ p(z) and z′ ∼ p(z′) where 
z′ = f (z) , the change of variable rule tells that

where det denotes the determinant operation. The above 
equation follows a chaining rule, in which a series of 
invertible mappings can be chained to approximate a suf-
ficiently complex distribution, i.e.,

where each f is a reversible function called a flow step. 
Equation 4 is the shorthand of fK (fk−1(...f1(x))) . Assum-
ing that x is the observed example and z is the hidden 
representation, we write the generative process as

where fθ is the accumulate sum of all f in Eq. 4. Based on 
the change-of-variables theorem, we write the log-den-
sity function of x = zK  as follows:

where we use zk = fk(zk−1) implicitly. The training pro-
cess of normalizing flow is minimizing the above func-
tion, which exactly maximizes the likelihood on the 
observed training data. Hence, the optimization is stable 
and easy to implement.

Conditional normalizing flow
In certain cases, the transformation between distribu-
tions is conditioned on external variables, for example a 
face is conditioned on age, gender, expression, etc. This 
has already been considered in the generative mod-
els such as CVAE (Sohn et  al. 2015) and CGAN (Mirza 
and Osindero 2014). In the flow-based models, the con-
ditional normalizing flows allow us to involve the con-
ditions in each flow step. Specifically, the reversible 
function f accepts both the input variable z and the con-
dition variable c as inputs, which is formally expressed as 
z′ = f (z; c) , while the inverse mapping is z = f −1(z′; c) . 

(2)p(z′) =p(z)

∣

∣

∣

∣

det
∂f −1

∂z′

∣

∣

∣

∣

,

(3)p(z) =p(z′)

∣

∣

∣

∣

det
∂f

∂z

∣

∣

∣

∣

,

(4)zK = fK ⊙ · · · ⊙ f2 ⊙ f1(z0),

(5)x = fθ (z),

(6)

− log pK (zK ) = − log p0(z0)−

K

k=1

log det
∂zk−1

∂zk
,
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By denoting the K-th flow step as fK  , the change of vari-
ables theorem says that

Given a well-trained flow model, we first sample z0 from 
the Gaussian distribution and then perform a forward 
flow as

If we are interested in computing the probability den-
sity of an observed example x , the inverse mapping is 
expressed as

Methodology
In this section, we introduce the whole framework of the 
proposed adversarial attack in the generative manner, 
and the details of the model learning and inference.

The DTA framework
Recall that the conventional attack methods generate 
the adversarial perturbation by performing a complex 
inference based on the target model, which is then 
added to the original example, resulting in the final 
adversarial example. This process is highly dependent 
on the inference result, which yields heavy computa-
tional cost and generally produces a single “optimal” 
example according to certain criteria. By contrast, in 
this paper, we start from a novel perspective and pro-
pose a novel generative adversarial attack method, 
which is called the distribution transform-based attack 
(DTA). Specifically, we advocate that all adversarial 

(7)

− log pK (zK ; c))

= − log p0(z0; c)−

K
∑

k=1

log

∣

∣

∣

∣

det
∂zk−1

∂fk(zk−1; c)

∣

∣

∣

∣

.

(8)x = fθ (z0; c).

(9)z0 = f −1
θ (x; c).

examples could follow a certain distribution that is 
misaligned with the normal distribution. This is mainly 
caused by the fixed training data involved in optimiz-
ing different deep models. In other words, the training 
data characterize a fixed distribution that is approxi-
mated by those models during training and hence, 
the distribution of the unseen data in training is com-
mon as well to the models. This explains why we con-
sider that the adversarial examples (most of which are 
unseen data in training) follow a misaligned distribu-
tion. At this point, we reasonably assume a transfor-
mation from the distribution of normal examples to 
the distribution of adversarial examples. Since those 
two types of data exhibit similar appearances, the two 
distributions ideally overlap with each other and can 
be transformed mutually.

The whole framework of the proposed method is 
illustrated in Fig. 1. Based on the above discussion, we 
propose to collect a large number of adversarial exam-
ples X ′ by employing the existing white-box attack 
methods. While these examples look similar to the 
normal examples X  , a direct transformation between 
these two types of examples is nevertheless difficult or 
even prohibitive. This is because the small perturbation 
could be overwhelmed by the complex structures and 
textures in the normal example, and is therefore insen-
sitive to the generation model. To alleviate this issue, 
we consider that the small perturbations should be 
conditioned on the normal inputs, which provide cues 
in the generative process. Specifically, the conditional 
normalizing flow is employed to implement the con-
ditional generation process, which allows synthesizing 
the adversarial example based on the normal example 
and a random variable (Lu and Huang 2020; Pumarola 
et al. 2020; Liu et al. 2019b). The random variable could 
diversify the generated example, that is, when the flow 
model is well trained, we can randomly sample in the 

Fig. 1 The framework of the Distribution transform-based attack. X ′ is the adversarial space characterized by the collected adversarial examples 
and X  is the space of the corresponding original clean examples. The hidden space Z follows a simple Gaussian distribution



Page 6 of 18Liu et al. Cybersecurity             (2024) 7:8 

latent space Z to generate a batch of adversarial exam-
ples, which are inferenced forwardly by the flow model. 
The details of the flow model and the training and infer-
ence processes are discussed in the following sections.

Conditional normalizing flow for attack
To implement a powerful normalizing flow that has a 
strong ability of processing image textures, we employ 
the basic GLOW model (Kingma and Dhariwal 2018), 
which involves the convolutional operation, the coupling 
operation, and the normalization operation in the model 
construction. Since the original GLOW model does not 
consider conditions in the probabilistic modeling, we fol-
low the work in Ardizzone et  al. (2019), Lu and Huang 
(2020) to properly integrate the image content in condi-
tions. The architecture of the flow model is illustrated in 
Fig. 2. As seen, a basic flow step is a stack of the Actnorm 
layer, the 1x1 convolutional layer, and the affine cou-
pling layer. A single flow block is constructed by cascad-
ing a squeeze layer, K flow steps, and a split layer. Then, 
the whole architecture is built up by repeating the flow 
block for L− 1 times, followed by the final layers, which 
consist of a squeeze layer and K flow steps. The details 
of the Actnorm layer, the 1x1 convolutional layer, the aff-
ine coupling layer, and the squeeze and split layers can 
be found from GLOW (Kingma and Dhariwal 2018). 
Regarding the conditions involved in each layer, it is 
proved that the original image is unsuitable to be directly 
fed to the condition. This is because the original image 
provides very low-level features which are insufficient for 
feature modeling and can burden the sub-networks in the 
affine coupling layer. Instead, high-level features are pref-
erable. Hence, we follow the options in Ardizzone et al. 
(2019), Lu and Huang (2020), which suggests employing 
a pre-trained deep model to extract high-level features 
that are used as the condition. Specifically, we use the 
VGG-19 model pre-trained on CIFAR-10, SVHN, and 

ImageNet, respectively, and extract the features from the 
last conv layers. It is also possible to replace the VGG-19 
model with other proper choices. During model training, 
the VGG-19 model can be fixed or optimized jointly with 
the flow model. In the current work, we fix this feature 
extraction model for simplicity.

Adversarial data collection
Recall that the adversarial examples obtained by using the 
existing white-box attack methods play a key role in the 
proposed framework. Hence, regarding how these exam-
ples are obtained, we present the details here instead of in 
the experiment section.

The concerned datasets in the current work include 
CIFAR-10 (Krizhevsky et al. 2009), SVHN (Netzer et al. 
2011), and ImageNet (Russakovsky et al. 2015), while the 
to-be-attacked models are also trained on these datasets. 
Specifically, the training sets of CIFAR-10 and SVHN are 
selected, while for ImageNet, we choose about 30,000 
images from the validation set. All these data are used 
as normal examples by the white-box attack methods to 
generate adversarial examples. On CIFAR-10, the PGD 
method (Carlini and Wagner 2017) is employed as the 
attacker, whereas the pre-trained ResNet-50 is employed 
as the target model. The MI-FGSM method based on 
multi-model integration (Dong et  al. 2018) is employed 
on SVHN and ImageNet. For SVHN, ResNet-50 (He 
et  al. 2016b), InceptionV3 (Szegedy et  al. 2016), and 
SeNet-18 (Hu et al. 2018) are integrated, while the mod-
els are modified versions of the public ones2 and trained 
from scratch. For ImageNet, InceptionV4 (Szegedy et al. 
2017), InceptionResnetV2 (Szegedy et  al. 2017), and 
ResNetV2-101 (He et  al. 2016a) are integrated, while 
the models are pre-trained and publicly accessible.3 The 
adversarial examples are generated under two perturba-
tion levels, including ǫ = 8 and ǫ = 16 . The other hyper-
parameter settings of the attack methods follow the 
respective papers (Madry et  al. 2018; Guo et  al. 2019; 
Dolatabadi et al. 2020). In this way, we collect a batch of 
adversarial examples that will be used to optimize the 
proposed flow model. Note that the generated adversarial 
examples on a certain dataset are used to train the flow 
model that attacks the target model of the corresponding 
dataset. The cross-dataset attack is not applicable.

To make a fair comparison in experiments, the normal 
examples for test are different from those for training. 
Specifically, for CIFAR-10 and SVHN, the test sets are 
employed as the input examples. For ImageNet, we ran-
domly select 1000 images from the validation set, which 

Fig. 2 The conditional normalizing flow model for attack. The left 
depicts a basic conditional flow step, while the right plots the whole 
architecture

2 https:// github. com/ kuang liu/ pytor ch- cifar.
3 https:// github. com/ tenso rflow/ models/ tree/ master/ resea rch/ slim.

https://github.com/kuangliu/pytorch-cifar
https://github.com/tensorflow/models/tree/master/research/slim
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are completely different from the 30,000 ones mentioned 
above.

Training details
As introduced in “Conditional normalizing flow” sec-
tion, the training of the conditional normalizing flow 
is to maximize the likelihood function on the training 
data with respect to the model parameters. Formally, 
assume that the collected adversarial example is denoted 
by x′ ∼ X

′ . The normal example is denoted by x ∼ X , 
where the condition network produces the features as 
c(x) (short for c). The hidden representation follows the 
Gaussian distribution, i.e. z ∼ N (0, 1) . The flow model is 
denoted by f, parameterized θ , which have x′ = fθ (z; c) 
and z = f −1(x′; c) . Then, the loss function to be mini-
mized is expressed as

where the right-hand side of the above equation can be 
expanded layer-wisely according to Eq. 7. By optimizing 
the above objective, the learned distribution p(x′|z; c, θ) 
characterizes the adversarial distribution as expected.

Considering that the interested task here is to gener-
ate an adversarial example that has a similar appear-
ance to the example fed into the condition. Hence, we 
must ensure that the generation process from z to x′ 
would bring no surprising result. To implement this, 
we impose an MSE loss in the training process. Spe-
cifically, the difference between the generated adver-
sarial example x′ and the original input x′

tr is minimized 
according to

where z is randomly sampled from the Gaussian distribu-
tion in each training iteration.

Note that the above losses in Eqs. 10 and 11 consider 
the supervision in different spaces, where the former 
computes the loss in the hidden space while the latter 
concerns the adversarial space. Optimizing the losses 
simultaneously can bring unexpected effects since the 
loss propagation directions are conflicting. Hence, we 
propose to perform back-propagation based on the two 

(10)

L(θ; z, x′, c) = − log p(x′|z; c, θ)

= − log pz(f
−1
θ (x′; c); c)− log

∣

∣

∣

∣

∣

det
∂f −1

θ (x′; c)

∂x′

∣

∣

∣

∣

∣

,

(11)LMSE(θ; z, c) = ||fθ (z; c)− x
′

tr ||2,

losses alternatively. To be clear, in each iteration, we first 
update the model parameters based on Eq.  10. Then, 
given the input batch just used which contains x , we ran-
domly sample a batch of z and perform a forward flow to 
generate a batch of x′ . The MSE loss between x′ and x′

tr is 
computed to update the model parameters, followed by 
the next iteration.

In the training process, we use the Adam algorithm to 
optimize the model parameters, while the learning rate is 
set as 10−4 , the momentum is set to 0.999, and the maxi-
mal iteration number is 10,000.

Generation of adversarial examples
Given a well-trained flow model fθ , the hidden rep-
resentations of the collected adversarial examples are 
expected to follow the assumed Gaussian distribution 
N (0, 1) . But in practice, we find that these represen-
tations have shifted mean and standard deviation (std) 
values. This may be because the training data is insuf-
ficient. We may consider that the involved MSE loss 
could bias the center of the Gaussian distribution, 
but experiments tell that the shift occurs even with-
out the MSE loss. Based on this observation, we also 
surprisingly find that sampling z based on the shifted 
mean and std values can bring improved performance 
than sampling from N (0, 1) . Hence, before generat-
ing adversarial examples, we compute the hidden rep-
resentations of all the training adversarial examples, 
which are used to calculate the mean value µ and the 
std value σ , resulting in a new distribution N (µ, σ 2).

To generate an adversarial example, given an input 
normal example x , we first randomly sample z from 
N (µ, σ 2) and then perform a forward process via 
xgen = fθ (z; c(x)) . For the fairness of comparison, we 
follow the existing attack methods which constrain the 
perturbation within a certain range. Once we obtain the 
adversarial example xgen , we employ the clip function

to ensure the imperceptible property of the perturbation, 
where ǫ is the acceptable noise budget during the attack. 
Two common cases are considered, including ǫ = 8 and 
ǫ = 16 for the pixel value ∈ [0, 255] (it will be scaled to 
ǫ = 8/255. and ǫ = 16/255. as the pixel value ∈ [0, 1] in 
code implementation).

(12)x
′ = Clip(x + Clip(xgen − x,−ǫ, ǫ), 0, 1)
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Input: Xtr: a batch of clean examples used for
training; X ′

tr: a batch of adversarial examples
collected based on white-box attack methods,
is used for training; α: the learning rate; T :
the maximal training iterations; Q: the maxi-
mal querying number; ε: the noise budget; xte:
a clean example used for test; M : the target
model to be attacked.

Output: The adversarial example x′ is used for
attack.

Parameter: The flow model fθ.
1: Initialize the parameters of the flow model fθ;
2: for i = 1 to T do
3: Optimize fθ according to Eq. 10;
4: Optimize fθ according to Eq. 11;
5: if Convergence reached then
6: break;
7: end if
8: end for
9: Obtain optimized fθ;

10: Compute the hidden representations of all
examples in X ′

tr via z = f−1(x
′

tr; c(xtr));
11: Compute µ and σ from the hidden represen-

tations obtained in last step;
12: for i = 1 to Q do
13: Sample z from the distribution N (µ, σ2);
14: Compute the adversarial example via x′ =

f(z; c(xte));
15: Clip the example via Eq. 12;
16: if Successfully attack M by x′ then
17: break.
18: end if
19: end for

Algorithm 1 Distribution Transform-based Attack

The whole algorithm of DTA is listed in Alg. 1, 
which could help readers to reimplement our method 
step-by-step.

Experiments
In this section, we evaluate the performance of the pro-
posed DTA on black-box adversarial attacks through 
extensive experiments and comparisons.

Settings
As mentioned previously, three popular datasets are con-
sidered, including CIFAR-10 (Krizhevsky and Hinton 
2009), SVHN (Netzer et al. 2011), and ImageNet (Russa-
kovsky et al. 2015).

Regarding the target models to be attacked, we employ 
the public models pre-trained on the corresponding 
datasets or the models that are trained from scratch if not 

publicly accessible. Specifically, we mainly target models 
include the VGG-16 (Simonyan and Zisserman 2015), 
the MobileNetV2 (Sandler et  al. 2018), and the Shuffle-
NetV2 (Ma et al. 2018). For CIFAR-10 and ImageNet, we 
use their pre-trained weights from the GitHub reposi-
tory pytorch-cifar-models4 and the PyTorch,5 respectively. 
While for SVHN, we trained these models from scratch, 
where the training process of each model is stopped until 
the best performance is obtained, in which condition the 
classification accuracy on the test set is above 90%.

To objectively evaluate the performance of the pro-
posed framework, we make a comparison with the 
related state-of-the-art decision-based (hard-label) 
methods, including Bandits (Ilyas et al. 2019), Sign-OPT 
(Cheng et  al. 2020), Rays (Chen and Gu 2020), Tangent 
Attack (Tangent) (Ma et  al. 2021), Triangle Attack (TA) 
(Wang et  al. 2022) and CGBA (Reza et  al. 2023). The 
implementations of these methods are based on the 
released codes with default settings in the corresponding 
papers. The proposed DTA is implemented by using the 
PyTorch framework. To make a quantitative comparison, 
we use the metrics of attack success rate (ASR), average 
query count and median query count as the previous 
works use (Chen and Gu 2020; Dong et al. 2022).

All the experiments are conducted on a GPU server 
with a single Tesla V100 32GB GPU, 2 x Xeon Silver 4208 
CPU, and RAM 256GB.

Quantitative comparison with the state‑of‑the‑arts
Evaluation on ASR and query times: Recall that the pro-
posed DTA aims to lower the query times while maintain-
ing a pleasing attack success rate. The success rate with 
sufficiently high query times may reach a certain bound, 
but this is not the scope of the current work. Hence, we 
make the comparison under a set of limited queries by 
setting the maximal number of queries to 100, 200, 300, 
400, and 500. The selected competitors are all hard-label 
attacks. Thus, an attack is successful only within the pre-
defined query number and otherwise, failure occurs. The 
comparisons on CIFAR-10 under ǫ = 8 and ǫ = 16 are 
shown in Table  1, while the results on SVHN are listed 
in Table 2. It can be seen that DTA achieves higher attack 
success rates than the competitors in most cases, which 
validates that the proposed generative model can synthe-
size effective adversarial examples. It should be especially 
noted that the average query number required by DTA is 
much smaller than that required by the other methods.

The experiment on ImageNet poses a challenging case 
for our end-to-end adversarial example generation since 

4 https:// github. com/ cheny aofo/ pytor ch- cifar- models.
5 https:// github. com/ pytor ch.

https://github.com/chenyaofo/pytorch-cifar-models
https://github.com/pytorch
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the data is much more complex than CIFAR-10 and 
SVHN. The results on ImageNet are listed in Table  3, 
where we consider the perturbation level of ǫ = 16 . The 

maximal number of queries is limited to 100, 200, 300, 400, 
and 500. We see that our method is superior to baselines 
on all metrics and is competitive with Rays on ASR in most 

Table 1 The performance comparison of black-box adversarial attack on the CIFAR-10 dataset, with the perturbation ǫ = 8 and ǫ = 16

The bold results are the best

We report the attack success rate (ASR (%)), average query number, and median query number under the max query limited in 100, 200, 300, 400 and 500, respectively

ǫ Target Model Methods Attack success rate (%) Avg. query number Med. query number

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

8 VGG-16 Sign-OPT – 0.54 3.54 2.56 3.74 – 148.8 256.94 257.04 310.17 – 144 264 255.5 264

Bandits 18.26 18.92 20.42 21.62 25.48 26.66 39.56 62.83 73.28 100.44 14 18 26 28 38

Rays 7.45 17.34 25.24 32.00 37.97 65.71 122.73 161.38 208.26 233.01 61.5 126 161 205 215

Tangent 3.04 3.62 3.91 4.44 4.95 21.01 48.84 48.84 87.31 141.95 28 28 28 28 28

TA 3.70 3.93 4.14 4.37 5.18 16.46 27.28 20.51 37.58 45.75 6 5 5 5 5

CGBA 2.11 3.33 5.49 6.62 7.64 71.91 99.68 153.87 190.72 230.89 89 93 149 159 216

Ours 69.35 71.23 72.36 73.00 73.57 5.76 9.45 12.40 15.02 19.02 3 5 4 5 5
MobileNetv2 Sign-OPT – 0.11 6.77 5.59 8.71 – 152.00 251.86 256.60 295.20 – 152 255 254 273

Bandits 36.53 45.32 47.38 51.62 51.85 24.84 43.54 66.49 51.62 103.84 14 18 30 40 50

Rays 12.11 30.38 43.72 56.84 59.91 68.48 123.19 168.73 207.71 235.22 66 124.5 170 208.5 224

Tangent 7.15 8.51 8.22 9.42 10.53 20.93 47.10 48.75 81.57 129.79 28 28 28 28 28

TA 8.24 8.42 8.54 8.87 8.97 12.48 21.30 21.46 22.98 27.62 5 5 5 5 5

CGBA 2.71 4.26 6.55 7.95 8.95 63.31 94.16 148.26 182.03 212.24 45 91 147 152 211

Ours 78.01 79.2 80.48 81.31 81.53 4.45 6.91 9.93 12.46 14.55 3 3 4 4 4
ShuffleNetv2 Sign-OPT – 0.22 3.99 5.00 5.27 – 186.00 260.03 265.8 288.69 – 186 262 261 272

Bandits 26.91 36.80 39.80 43.97 49.72 30.66 48.70 75.78 103.57 113.88 20 26 46 52 58

Rays 12.16 26.93 37.19 48.57 55.6 67.88 121.65 153.27 197.38 224.49 66.5 124 148 190 194.00

Tangent 3.83 4.71 4.54 5.12 5.80 19.58 49.85 48.75 89.25 140.08 28 28 28 28 28

TA 5.42 6.42 6.69 7.34 8.25 17.98 15.98 39.62 41.53 46.82 5 5 6 6 5

CGBA 3.34 5.12 8.14 9.92 11.44 73.60 100.10 157.20 188.55 228.53 89 93 150 156 215

Ours 75.08 77.00 78.15 78.72 79.05 4.36 7.24 10.29 12.09 15.27 4 4 4 5 5
16 VGG-16 Sign-OPT – 1.07 9.33 9.18 11.98 – 151.60 259.14 267.55 286.43 – 151 266 268.5 266.5

Bandits 54.14 58.86 66.27 63.96 66.52 27.14 39.71 45.45 56.68 63.47 18 24 22 24 28

Rays 21.17 43.12 60.66 70.90 80.32 65.70 118.04 161.62 187.88 211.81 65 118.5 162 184 196

Tangent 14.72 18.45 18.04 20.92 22.92 22.05 50.09 50.93 92.62 134.20 28 28 28 28 28

TA 16.63 17.26 18.51 20.27 22.74 14.84 18.32 19.27 27.90 33.79 5 5 5 5 5

CGBA 4.10 6.67 10.07 12.21 13.85 58.28 90.84 145.05 183.00 216.49 41 89 144 151 211

Ours 75.32 77.95 79.11 79.96 80.59 4.53 7.93 11.86 13.43 15.43 1 1 1 1 1
MobileNetv2 Sign-OPT – 1.19 16.99 20.44 25.59 – 178.09 250.44 262.80 298.54 – 174 255 264 268

Bandits 74.02 79.16 85.55 84.58 87.10 23.04 29.08 34.68 43.22 48.94 16 16 16 18 16

Rays 34.64 60.60 74.87 85.35 89.71 69.67 108.94 133.98 152.75 179.82 69 104 117 132 149

Tangent 27.57 32.84 33.29 36.68 39.01 21.36 47.12 50.15 77.49 126.86 28 28 28 28 28

TA 31.92 33.44 38.63 39.45 42.41 12.60 18.01 22.70 27.31 32.31 5 5 5 5 5

CGBA 7.59 10.06 14.88 16.69 19.43 53.71 77.82 131.22 158.47 200.29 40 44.5 97 143 158

Ours 86.14 88.7 89.66 90.30 91.05 4.26 7.78 9.79 11.93 13.90 1 1 1 1 1
ShuffleNetv2 Sign-OPT – 0.11 9.70 11.62 15.26 – 183.00 261.43 268.28 309.84 – 183 263 266 275

Bandits 63.19 73.59 74.76 76.68 77.23 26.82 38.57 48.33 57.23 63.78 20 20 24 24 24

Rays 31.79 58.19 74.73 83.37 86.11 63.64 108.71 138.37 156.16 179.90 63 102 129 139 146.5

Tangent 16.28 20.20 20.00 22.68 25.17 21.59 49.42 52.29 90.03 131.56 28 28 28 28 28

TA 23.77 25.80 26.79 28.80 29.48 15.00 25.43 30.14 36.07 42.08 5 5 5.5 5 5

CGBA 6.37 10.05 15.29 18.12 20.81 59.07 87.28 148.99 182.12 218.26 42 87 147 152 212

Ours 82.11 84.91 86.1 87.29 87.82 5.28 8.60 12.02 15.07 17.05 1 1 1 1 1
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instances. Again, DTA requires a very limited number of 
queries to perform a successful attack. Considering the 
attack performance in query-limited scenarios, we report 

the empirical results of Bandits, Rays, TA, and CGBA in 
the following sections. Besides, we prefer to report the 
results under the noise budget ǫ = 16 in most cases.

Table 2 The performance comparison of black-box adversarial attack on the SVHN dataset, with the perturbation ǫ = 8 and ǫ = 16

The bold results are the best

We report the attack success rate (ASR (%)), average query number, and median query number under the max query limited in 100, 200, 300, 400 and 500, respectively

ǫ Target Model Methods Attack success rate (%) Avg. query number Med. query number

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

8 VGG-16 Sign-OPT – – 1.85 2.27 1.30 – – 257.24 261.00 325.33 – – 257 253 288

Bandits 11.22 20.71 24.23 26.85 32.19 33.79 60.30 103.77 13.61 145.20 26 40 76 106 104

Rays 9.77 22.72 35.87 45.84 51.50 69.34 126.15 172.37 207.28 234.90 76.5 131 175 205 221

Tangent 1.35 1.51 1.56 1.74 1.88 20.28 50.47 45.73 88.24 139.75 28 28 28 28 28

TA 4.30 4.41 4.63 4.77 5.05 29.93 42.65 48.88 53.91 57.58 19 33.5 18 21 20.5

CGBA 5.21 9.60 13.81 18.22 19.09 78.42 107.65 155.97 189.58 215.50 94 99 154 161 217

Ours 47.62 51.29 53.03 54.44 55.36 6.11 10.96 15.86 20.45 24.66 4 5 5 6 7
MobileNetv2 Sign-OPT – – 2.42 1.86 1.44 – – 256.52 257.56 290.21 – – 250 257 260

Bandits 10.90 14.71 21.11 25.29 26.26 35.77 72.76 114.28 139.97 173.94 32 52 96 101 138

Rays 5.22 16.75 27.33 36.07 45.31 71.50 138.94 179.41 225.09 255.95 71 140.5 181 232 249

Tangent 0.98 1.11 1.14 1.27 1.32 20.07 48.55 46.87 88.34 116.83 28 28 28 28 28

TA 2.19 2.11 2.77 2.69 3.01 19.38 40.50 37.82 45.42 45.07 5 25.5 16 16 7

CGBA 3.94 7.38 11.04 13.08 14.92 78.50 109.73 160.55 188.97 217.22 94.5 99 155 161 218

Ours 37.66 41.09 43.10 44.53 47.47 6.06 11.29 15.77 20.72 25.80 5 6 7 7 7
ShuffleNetv2 Sign-OPT – – 1.89 2.02 1.89 – – 254.06 248.90 268.45 – – 257 247 254

Bandits 9.35 14.93 20.84 20.75 27.42 38.09 72.95 110.80 130.09 172.42 30 60 80 110 122

Rays 7.32 18.49 35.10 41.40 47.08 72.32 131.56 175.13 227.31 255.19 74 137 176 234 244.5

Tangent 0.93 0.98 1.13 1.18 1.27 18.82 50.48 43.97 89.16 103.99 11 28 28 28 28

TA 2.62 2.20 2.21 2.49 2.56 21.36 24.48 43.81 62.21 46.00 7 6 23 32.5 16

CGBA 3.97 7.59 12.25 14.92 16.58 78.79 107.34 158.09 192.36 216.83 95 100 156 161 218

Ours 40.09 43.76 45.63 46.78 49.76 5.97 11.05 15.82 20.07 24.70 5 7 8 8 9
16 VGG-16 Sign-OPT – – 3.81 5.93 5.63 – – 257.51 259.55 297.23 – – 257 261 263

Bandits 28.14 33.51 34.05 41.51 42.11 32.51 50.42 65.74 104.86 130.52 24 32 36 50 62

Rays 23.98 53.68 70.91 81.58 85.13 70.65 116.16 152.35 173.04 194.00 68.5 115 148 165 173

Tangent 4.24 5.32 5.03 6.04 6.61 20.57 52.42 48.75 97.55 148.16 28 28 28 28 28

TA 10.65 12.35 13.16 14.39 15.33 25.55 34.89 53.00 61.44 55.61 12 15 25.5 25.5 14

CGBA 9.29 17.48 26.95 31.91 36.33 77.52 108.66 160.72 194.79 227.29 93 99 155 161 220

Ours 71.61 72.63 74.39 78.41 84.11 10.04 15.87 22.28 27.64 37.28 3 3 4 4 4
MobileNetv2 Sign-OPT – – 4.64 4.44 4.32 – – 261.43 260.54 278.17 – – 262 260 258

Bandits 22.75 29.23 35.77 35.18 40.33 37.86 60.04 76.75 101.23 126.68 32 36 44 53 66

Rays 13.92 33.65 55.86 68.38 75.63 73.39 125.95 170.54 205.98 233.09 72 131 166 201.5 210.5

Tangent 3.40 3.68 3.96 4.24 4.73 21.15 48.75 54.76 94.45 133.37 28 28 28 28 28

TA 5.38 7.41 6.15 7.32 8.12 22.49 28.70 35.22 45.56 63.19 8 8 13 11 16

CGBA 7.47 13.75 22.74 28.06 31.83 80.14 110.20 168.95 203.78 232.06 94 100 157 216 221

Ours 65.41 68.07 71.90 73.27 78.18 12.64 17.55 21.30 27.79 30.24 4 4 3 3 4
ShuffleNetv2 Sign-OPT – 0.11 4.41 4.57 5.24 – 197.00 255.91 259.00 308.15 – 197 255.5 254 276.5

Bandits 22.97 28.07 32.26 35.24 38.21 36.35 64.62 84.43 104.09 125.30 30 44 48 54 62

Rays 17.22 44.02 64.49 74.63 80.19 74.07 125.03 174.63 193.11 222.37 76 127 176 180.5 208

Tangent 2.81 3.15 3.20 3.91 4.19 20.93 53.41 51.26 88.87 149.96 28 28 28 28 29

TA 5.68 7.14 8.33 7.45 7.79 29.20 38.74 45.35 47.85 73.89 16.5 17.5 17.5 22 32

CGBA 7.71 14.59 23.36 29.14 32.75 78.06 107.36 160.92 203.51 234.70 94 99 156 215 222

Ours 67.99 72.84 75.74 77.26 78.72 10.68 17.57 19.83 26.07 38.08 4 5 4 4 4



Page 11 of 18Liu et al. Cybersecurity             (2024) 7:8  

Evaluation on defense model To evaluate the perfor-
mance of the DTA on attacking robust models, we make a 
comparison by employing adv-inception-v3 (Adv-Inc-v3) 

(Tramèr et  al. 2018), Ens3-adv-inception-v3 (Inc-v3ens3 ) 
(Tramèr et al. 2018), Ens4-adv-inception-v3 (Inc-V3ens4 ) 
(Tramèr et  al. 2018), and Ens-adv-inception-resnet-v2 

Table 3 The performance comparison of black-box adversarial attack on the ImageNet dataset, with the perturbation ǫ = 8 and ǫ = 16

The bold results are the best

We report the attack success rate (ASR (%)), average query number, and median query number under the max query limited in 100, 200, 300, 400 and 500, respectively

ǫ Target Model Methods Attack success rate (%) Avg. query number Med. query number

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

8 VGG-16 Sign-OPT – – 4.77 4.49 4.77 – – 261.09 273.72 306.38 – – 260.5 264 272.5

Bandits 21.35 26.63 30.28 45.84 48.28 26.92 52.78 87.87 122.02 140.74 12 26 56 75 84

Rays 13.18 24.72 35.53 45.58 48.25 70.41 114.20 159.00 202.66 235.97 72 110 152 199 229

Tangent 4.63 4.91 5.47 4.77 5.61 19.56 39.27 34.04 69.47 27.10 11 11 11 11 11

TA 23.70 26.23 27.35 28.61 28.47 21.04 31.01 40.86 56.43 53.12 11 16 18 18 18

CGBA 5.89 9.68 12.90 18.23 22.16 75.98 103.77 145.72 205.66 246.06 93.5 98 155 191.5 232

Ours 24.86 28.37 33.06 39.79 44.21 9.98 28.01 25.06 43.20 44.46 2 3 3 4 4
MobileNetv2 Sign-OPT – – 6.34 6.90 7.61 – – 265.78 269.82 279.50 – – 264 269 267.5

Bandits 28.17 28.38 36.49 33.85 39.68 23.83 51.22 85.94 112.80 131.95 6 17 42 64 67

Rays 20.14 29.44 33.86 45.15 61.35 65.73 95.56 150.64 194.50 220.72 60 83 134 196 224

Tangent 5.92 6.20 7.32 5.49 6.76 14.35 23.00 18.22 26.93 42.14 11 11 11 11 11

TA 22.54 24.37 24.93 26.48 27.46 20.12 37.42 42.45 49.54 65.22 10 12 11 14 18

CGBA 5.21 8.87 12.54 17.32 19.15 59.16 91.32 138.74 192.17 215.53 45 95 104 162 165

Ours 29.77 35.64 38.94 47.71 49.82 10.08 24.51 35.06 31.71 40.36 2 3 4 3 3
ShuffleNetv2 Sign-OPT – – 7.03 8.17 9.80 – – 264.16 266.86 313.85 – – 262 262 273

Bandits 46.08 48.63 53.46 57.74 61.54 25.14 46.79 64.81 80.80 105.21 8 18 26 29 40

Rays 30.61 47.71 58.27 60.98 69.61 64.88 100.25 129.83 152.97 173.68 60 90.5 109 127 141

Tangent 8.01 8.66 8.01 8.33 8.17 12.69 24.27 27.62 28.17 57.64 11 11 11 11 11

TA 32.35 36.11 38.56 40.36 41.99 22.46 31.78 41.78 47.26 56.74 10.05 10 15 19 18

CGBA 7.84 13.56 18.14 23.53 27.94 72.75 117.12 155.18 194.99 241.50 93 106 157 160 228

Ours 50.82 53.76 58.74 61.21 65.88 7.73 12.11 17.44 19.97 31.31 1 2 2 2 2
16 VGG-16 Sign-OPT – – 7.43 9.40 10.94 – – 258.72 274.02 289.83 – – 257 270 269

Bandits 47.14 63.64 60.94 58.11 76.06 26.36 46.69 66.86 83.26 107.32 14 24 30 32 44

Rays 29.92 45.14 61.34 69.61 74.16 69.80 106.72 144.76 168.45 195.82 72 101 131 148.5 163

Tangent 11.78 11.78 11.64 12.90 13.60 17.76 31.93 36.09 52.86 57.12 11 11 11 11 11

TA 53.72 60.45 61.29 59.19 61.99 15.12 25.61 36.08 36.19 42.51 8 10 13 10 10

CGBA 10.80 16.83 24.26 31.98 36.47 66.95 95.88 141.29 194.05 227.48 54 96 151 163 224

Ours 64.97 67.44 70.79 71.20 78.84 9.05 11.95 18.09 17.83 28.58 1 1 1 1 1
MobileNetv2 Sign-OPT – – 10.56 11.13 13.52 – – 264.23 272.06 294.81 – – 263 268 269

Bandits 34.85 42.42 52.31 56.84 68.12 23.65 47.20 66.63 87.53 115.71 10 14 20 27 42

Rays 20.14 29.44 43.86 55.15 61.35 65.73 95.56 150.64 194.50 220.72 60 93 134 196 224

Tangent 11.69 12.25 12.25 12.96 14.08 15.97 21.68 39.32 42.07 77.54 11 11 11 11 11

TA 46.48 48.87 50.85 51.13 52.39 20.66 29.80 36.10 40.07 51.54 7 11 11 12 14

CGBA 10.99 15.77 20.85 26.34 31.97 55.63 82.38 113.97 167.17 209.34 45 52.5 95.5 153 161

Ours 54.81 58.02 59.39 60.92 63.74 9.75 15.63 23.40 24.62 26.46 1 1 1 1 1
ShuffleNetv2 Sign-OPT – – 15.69 17.49 19.94 – – 266.94 270.48 306.49 – – 268 267 277.5

Bandits 43.33 46.65 55.85 64.70 72.83 19.71 33.76 44.29 55.39 64.94 10 12 12 14 16

Rays 30.08 37.69 43.01 48.40 61.50 59.76 89.20 112.59 127.91 139.31 57 75 84 96 102.5

Tangent 23.20 22.39 22.88 23.69 23.37 17.01 33.34 32.24 50.87 52.71 11 11 11 11 11

TA 43.73 46.99 50.59 53.26 64.02 15.23 22.92 31.56 29.37 42.94 5 6 6 6 8

CGBA 14.38 22.39 32.35 37.58 42.81 71.03 94.04 13.76 180.45 214.59 91.5 95 131 157 218

Ours 47.31 54.85 58.21 66.54 71.67 8.18 12.51 22.28 26.80 33.01 1 1 1 1 1
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(IncRes-v2ens ) (Tramèr et al. 2018) as the target models, 
all of which are adversarially trained. We first employ the 
selected 1000 images mentioned above to generate cor-
responding adversarial images on VGG-16 and then to 
test these generated examples’ attack performance on 
these four defense models. All these pre-trained models’ 
parameters can be available from the GitHub repository 
tf_to_pytorch_model.6 The results illustrated in Table  4 
show that DTA has achieved about 11.32–15.77% attack 
success rate on these robust models. The baseline meth-
ods, Bandits, Rays, TA and CGBA, however, can only 
obtain 5.74–13.65%, 3.14–7.79%, 2.88–5.19% and 0.77–
3.44%, respectively. It implies that the adversarial exam-
ples generated by DTA are more prone to attack deep 
models successfully, even on defense models.

Besides the above comparisons, we are also inter-
ested in evaluating the performance of our method and 
the competitors by using different metrics. DEEPSEC 
(Ling et  al. 2019) is a useful tool for the assessment of 
adversarial examples, which provides ten evaluation 
indicators. Specifically, from the perspective of classifi-
cation outcomes, DEEPSEC provides (1) Misclassifica-
tion Ratio (MR), (2) Average Confidence of Adversarial 
Class (ACAC), and (3) Average Confidence of True Class 

(ACTC). From the perspective of imperceptibility, DEEP-
SEC provides (1) Average Lp Distortion ALDp , including 
L0 , L2 , and L∞ , (2) Average Structural Similarity (ASS), 
and (3) Perturbation Sensitivity Distance (PSD). From 
the perspective of the robustness of adversarial sam-
ples, DEEPSEC provides (1) Noise Tolerance Estima-
tion (NTE), (2) Robustness to Gaussian Blur (RGB), (3) 
Robustness to Image Compression (RIC), and (4) Com-
putation Cost (CC). We select 7 indicators as the evalu-
ation metrics, as shown in Table  5. In this experiment, 
we optimize the ResNet-20 model (He et  al. 2016b) on 
CIFAR-10 until the best performance ( ≥ 90% ) on the 
test set is obtained. Then, 1000 images are selected as the 
normal examples by DEEPSEC (according to the given 
instructions). The adversarial examples are generated by 
Bandits, Rays, TA, CGBA, and DTA. The maximal query 
number is set to 100. The target model is ResNet-20. 
Given all generated adversarial examples during the 
attack, we finally employ DEEPSEC to compute the cor-
responding metrics. As shown in Table 5, our method is 
superior to other methods in terms of misclassification 
rate and robustness by MR (45.98%), ACAC (0.73), ACTC 
(0.19), PSD (153.63) and NTE (0.51), which reveals that 
the adversarial examples generated by DTA have stronger 
attack capabilities and anti-detection capabilities.

Query distribution
To see the advantage of the proposed framework on 
query number for each attack, we plot the histogram of 
query numbers used to perform a successful attack in 
Fig. 3 for CIFAR-10 and SVHN. The test sets of CIFAR-
10 and SVHN are used to compute the statistics, while 
ShuffleNetV2 (Ma et al. 2018) is employed as the target 
model. The maximal query number is limited to 500. For 
clearance, each bar denotes how many normal exam-
ples yield successful attacks with the times as noted in 
the x-axis. As observed, in all cases, the proposed DTA 
can perform a successful attack based on most examples 

Table 4 Evaluation adversarial robust accuracy (lower is better, 
↓ ) on defense models

The bold results are the best

We first report the clean accuracy of the selected 1000 images, and the following 
results come from the generated adversarial examples by each attack method

Method Adv‑Inc‑v3 Inc‑v3ens3 Inc‑v3ens4 IncRes‑v2ens

Clean 94.80 93.20 91.30 97.40

Bandits 86.15 87.5 88.16 92.69

Rays 87.01 82.91 83.03 91.66

TA 89.61 90.32 86.94 92.63

CGBA 91.34 92.43 88.22 96.25

Ours 79.03 79.4 79.98 83.39

Table 5 Evaluation of attacks by DEEPSEC

The bold results are the best

Where the MR, ACAC, ACTC and PSD are lower the better ( ↓ ), and the NTE, RGB and RIC are higher the better ( ↑)

Method MR (%) ACAC ACTC PSD NTE RGB RIC

Bandits 31.34 0.53 0.44 197.6 0.27 0.33 0.32

Rays 27.81 0.65 0.30 182.17 0.33 0.52 0.63
TA 34.62 0.61 0.27 167.25 0.41 0.46 0.54

CGBA 12.67 0.58 0.38 164.97 0.45 0.47 0.49

Ours 45.98 0.73 0.19 153.63 0.51 0.33 0.45

6 https:// github. com/ ylhz/ tf_ to_ pytor ch_ model.

https://github.com/ylhz/tf_to_pytorch_model
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with only ONE time. The average counts of query times 
by DTA for CIFAR-10 and SVHN are only 17.05 and 
38.08 under ǫ = 16 , respectively. Notably, on Shuffle-
NetV2, DTA helps 88% and 90% examples to attack suc-
cessfully within a handful of query times when ǫ = 8 and 
ǫ = 16 , respectively. On the other hand, Rays and Bandits 
often require hundreds of queries to perform a success-
ful attack, and a small number of queries (such as ≤ 100 ) 
could not allow these methods to work well. As Guo 
et al. (2019) indicates, the distribution of the histogram is 
highly right-skewed and hence, the median query count 
is a more representative aggregate statistic than the aver-
age query count. The results show that the median values 
of our method are only ONE in all cases on CIFAR-10, 
which sufficiently validates the proposed generative idea 
on generating adversarial examples.

Transferability
The motivation of the current work states that the gen-
eration of adversarial examples is generally based on the 
assumption of transferability, which is saying that an 
adversarial example generated according to a model can 
be used to attack the other different models. To see this 
assumption is valid for black-box attacks, here, we fol-
low the previous work (Zhao et al. 2020; Dolatabadi et al. 
2020) and examine the transferability of the generated 
adversarial examples across different models on CIFAR-
10 and SVHN. Specifically, we select 8 models includ-
ing ResNet-50 (He et  al. 2016b), VGG-16 (Simonyan 
and Zisserman 2015), VGG-19 (Simonyan and Zisser-
man 2015), ShuffleNetV2 (Ma et al. 2018), MobileNetV2 

(Sandler et  al. 2018), InceptionV3 (Szegedy et  al. 2016), 
DenseNet-169 (Huang et al. 2017), and GoogLeNet (Sze-
gedy et al. 2015). Following the settings in Kurakin et al. 
(2017), we randomly select 1000 images from the test set, 
which are classified correctly by the model whereas the 
corresponding adversarial examples are misclassified. 
The generated adversarial examples are used to attack the 
other models. For a fair comparison, we set ǫ = 16 and 
the maximal query number to 500 for all cases.

DTA is compared with Bandits, Rays and TA in the 
untargeted black-box attack settings. The ASR matrix 
on the two datasets is shown in Fig.  4. The row repre-
sents which model is targeted during the generation of 

Fig. 3 Histogram of the query number that is required to perform 
a successful attack on CIFAR-10 and SVHN. The median and mean 
lines denote the median query count and the average query count 
of the corresponding method (indicated by color), respectively

Fig. 4 The attack success rate matrix of Bandits, Rays, TA and DTA 
on CIFAR-10 (left) and SVHN (right)
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adversarial examples (we only preserve these adversarial 
examples that can attack the target model successfully), 
while the column represents which model is attacked by 
the aforementioned generated examples. From this fig-
ure, we can see that the transferability ASR on CIFAR-10 
of DTA is from 33.6 to 79.6%, while the baseline methods 
are 11.6–52.0%, 7.5–40.3% and 8.7–52.9%, respectively. 
It means that the examples generated by DTA produce 
a higher(about 26.1–27.0% higher in most cases) attack 
success rate on changed models than those by Bandits 
and Rays, validating the superior transferability of DTA. 
This is because baseline methods heavily rely on the feed-
back of the target model during each query and cannot 
extract transferable features. By contrast, our method 
learns the adversarial distribution that does not collapse 
to a certain model.

Dataset‑ and model‑agnostic attack
To evaluate the performance of DTA on the examples 
with different semantics and model structures, we first 
conduct the attack experiments on other datasets than 
the training ImageNet dataset. Specifically, the test data-
sets include VOC 2007 (VOC-07) (Everingham et  al. 
2010), VOC 2012 (VOC-12) (Everingham et  al. 2010), 
Plasces365 (Pla-365) (Zhou et al. 2017), and Caltech101 
(Cal-101) (Fei-Fei et al. 2004). The target models include 
VGG-19 (Simonyan and Zisserman 2015), InceptionV3 
(Szegedy et al. 2016), ResNet-152 (He et al. 2016b), and 
WideResNet-50 (Zagoruyko and Komodakis 2016), all of 

which are implemented in PyTorch. The attack results are 
illustrated in Table 6, which shows that the DTA trained 
on ImageNet is available to generate effective adversarial 
examples on other datasets without retraining. In certain 
situations, the attack success rate can exceed 90%, where 
the maximal query size is limited to 100. To be clear, we 
do not care about how the ground truth labels of those 
datasets affect the current DTA, but only calculate the 
attack success rate by comparing the outputs of the origi-
nal clean image and the corresponding adversarial coun-
terpart, just as the Evasion Rate (Matachana et al. 2020).

We further apply our DTA to attack transformers, 
which are pretty different from traditional CNN, includ-
ing ViT-16 (Dosovitskiy et al. 2021), ViT-32 (Dosovitskiy 
et al. 2021), and Swin-B (Liu et al. 2021). Where the DTA 
is trained on the collected data pairs from CNNs with 
noise budget ǫ = 16 , the empirical results we report in 
Table  7 show that DTA can obtain 26–41% attack suc-
cess rate with limited queries. This phenomenon demon-
strates that even in attacking transformers, DTA can still 
generate adversarial examples and achieve an acceptable 
attack effect on different ViT models. Furthermore, it 
illustrates the high adaptability of DTA in model-agnostic 
black-box scenarios.

Ablation study
Loss and hyper‑parameters
The proposed method concerns the settings of the MSE 
loss and the hyper-parameters, such as L and K, which 
affect the model depth. We examine the influence of 
these factors on the CIFAR-10 dataset. The target model 
is the pre-trained VGG-16 (Simonyan and Zisserman 

Table 6 The attack success rates on other datasets that are not 
involved in the DTA training progress

Here we report the Evasion Rate Matachana et al. (2020) of each dataset on the 
victim models, which are pre-trained on ImageNet

Metric VOC‑07 VOC‑12 Pla‑365 Cal‑101

VGG-19 91.7 93 90.9 93.5

InceptionV3 87.5 90.8 91.1 93.6

ResNet-152 85.1 89.2 87.3 94.4

WideResNet-50 86.1 89.7 84.1 93.4

Table 7 The attack success rate (ASR, %) versus average queries (Avg.Q) of different transformers trained on the ImageNet dataset

Metric Model 100 200 300 400 500

ASR ViT-16 29.93 33.04 35.16 35.91 37.53

ViT-32 34.35 38.08 39.28 40.61 41.01

Swin-B 26.63 29.35 29.23 30.77 31.48

Avg.Q ViT-16 15.59 2.89 40.50 49.03 60.91

ViT-32 13.79 24.58 34.24 41.51 43.57

Swin-B 17.00 29.83 36.35 48.08 56.22

Table 10 The attack success rate (ASR(%)) and average query 
number (Avg.Q) under different L’s, here we fix the flow steps K 
as K = 3

Metric L=1 L=2 L=3 L=4

ASR(%) 81.40 81.98 81.82 81.77

Avg. Q 12.86 14.17 13.54 14.57
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2015). During the attack, the maximal number of queries 
is limited to 500.

First, we evaluate the performance of DTA with and 
without the MSE loss. If the MSE loss is not used, we 
mean that the updating step in the 4-th line of Alg. 1 is 
omitted. The comparison is listed in Table 8, which shows 
that the flow model could benefit from the MSE loss, 
yielding notable improvement on both attack success rate 
and average query number.

Next, we test how model depth or representative 
capacity affects the attack performance. Two experi-
ments are considered here. In the first one, we fix L = 3 
and examine the influence of K from {2, 4, 6, 8} . In the 
second one, we fix K = 2 and evaluate the performance 
of L from {1, 2, 3, 4} . The results are shown in Tables  9 
and 10, respectively. As seen, different settings produce 
a similar performance on both ASR and average query 
number, which suggests that the attack ability of the pro-
posed model on CIFAR-10 does not benefit from the 
increasing of the model depth. This may be because the 
data in CIFAR-10 is simple and hence, we set K = 2 and 
L = 2 in small datasets, e.g., CIFAR-10 and SVHN. But 
in ImageNet, which contains complex data, we set K = 8 
and L = 5.

Furthermore, we examine the generalization ability of 
the adversarial examples generated by DTA, i.e., testing 
the performance of DTA by involving different numbers 
of white-box attack models. Specifically, we use ten pre-
trained models on ImageNet, including VGG-19 (Simon-
yan and Zisserman 2015), ResNet-152 (He et al. 2016b), 
InceptionV3 (Szegedy et al. 2016), DenseNet-201 (Huang 
et  al. 2017), WideResNet-50 (Zagoruyko and Komoda-
kis 2016), VGG-16 (Simonyan and Zisserman 2015), 

ResNet-101 (He et  al. 2016b), MobileNetV2 (Sandler 
et  al. 2018), DenseNet-121 (Huang et  al. 2017), and 
DenseNet-169 (Huang et al. 2017). The first five models 
are used for generating the training adversarial exam-
ples, while the rest are used as the black-box test models 
to evaluate the attack effect of DTA. In this experiment, 
we select different numbers of models from the first five 
ones for example generation, where the results are plot-
ted in Fig.  5. It can be clearly observed that the more 
models used in performing the attack, the better per-
formance can be obtained on all the target models. This 
indicates that we can use more models in the process of 
sample adversarial examples to gain an increased univer-
sal success rate on black-box attacks.

Improved performance by shifted means and stds
It is common to sample from a Gaussian distribution dur-
ing the inverse of a normalized flow model to generate 
the expected data; however, in this work, we found that 
if we simply sample from N (0, 1) to obtain the adversar-
ial examples, the attack performance will behave badly. 
Instead, for the well-trained normalized flow model, we 
first input the training data to obtain its correspond-
ing latent space z , then count the mean µ̂ and variance 
δ̂ of z and use it as the Gaussian distribution N̂ (µ̂, δ̂2) 
as the adversarial latent space ẑ for sampling to enhance 
the attack performance. We report the empirical results 
in Table  11, as the results show, equipment the shifted 
mean µ̂ and std δ̂ , the attack success rate are improved 
by 49.16–59.65%, 35.35–36.72% and 26.38–37.49% over 
CIRAR-10, SVHN and ImageNet, respectively. These 
results have demonstrated well that the latent space has 
been shifted guided by the adversarial-clean example 
pairs.

Table 8 The attack performance comparison of DTA optimized 
with and without the MSE loss, w. means with MSE loss, w.o. 
means without MSE loss

Metric ǫ = 8 w. ǫ = 8 w.o. ǫ = 16 w. ǫ = 16 w.o.

ASR(%) 74.75 62.31 88.67 81.79

Avg. Q 15.41 11.69 17.33 16.39

Table 9 TThe attack success rate (ASR(%)) and average query 
number (Avg.Q) under different K’s, here we fix the flow block L 
as L = 3

Metric K=2 K=4 K=6 K=8

ASR(%) 81.81 81.44 81.87 81.65

Avg. Q 13.64 14.97 14.71 14.46

Fig. 5 The performance of DTA when using different numbers 
of attack models
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Compare with GAN‑based
As we declared above, the adversarial and normal 
examples come from different distributions, which are 
misaligned but transferable, and we characterize the 
adversarial distribution with locally collected adversarial 
examples in a generative manner; more specifically, a 
conditional normalized flow is involved in learning the 
transformation in this paper. To verify whether other 
generative models are qualified for this task well or not, 
we apply the whole same pipeline to the GAN borrowed 
from GAP (Poursaeed et al. 2018) and present the attack 
performance in Fig. 6. As the results show, the GAN can 
also learn the mapping relationship between these two 
types of samples, but its attack capability is unsatisfac-
tory; in addition, as the query budget increases, the attack 
success rate of DTA will increase significantly, while the 
GAN-based method will not. Again, these results dem-
onstrate the superiority of our proposed conditional 
likelihood-based DTA method in generating examples 
belonging to adversarial distributions.

Conclusions
In this paper, we propose a novel hard-label black-box 
adversarial attack framework based on a generative 
idea. The motivation states that the public datasets 
enforce the public models to learn a common distri-
bution, causing that the models exhibit similar vulner-
ability. Hence, the adversarial distributions of different 
models could also be similar, which inspires the trans-
ferability assumption in many adversarial attack meth-
ods. Based on such an assumption, we advocate that 
there could be a certain mapping from the distribution 
of normal examples to the distribution of adversarial 
examples. Along with this, a conditional normalizing 
flow-based generative model is developed to imple-
ment the mapping function. We can optimize the flow 
model to explicitly correlate the adversarial examples 
with Gaussian-style hidden representations by collect-
ing a batch of adversarial examples from the existing 
white-box attacks. To diversify the generation process, 
the normal examples are fed into the conditions of the 
probabilistic model. An elaborated generation process 
helps us to improve the performance of the generated 
examples. Extensive experiments validate the proposed 
idea and demonstrate the superiority of DTA on attack 
success rate, average query number and median query 
number. Especially, our method can achieve a success-
ful attack within only ONE query, which verifies that 
we have learned the adversarial distribution. By con-
trast, the other hard-label methods generally require 
hundreds of queries to accomplish an attack. We also 
surprisingly find that the proposed model can perform 
effective cross-dataset attacks, which means that the 
model is not sensitive to the label space of the classi-
fication task. In summary, this work provides a prom-
ising framework with the advantages of low query 
times, high success rate, and an efficient inference pro-
cess, which could guide future research on adversarial 
attacks in a new direction.
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