
Zhu et al. Cybersecurity            (2024) 7:12  
https://doi.org/10.1186/s42400-023-00202-8

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Atomic cross-chain swap based on private 
key exchange
Zeshuo Zhu1,2, Rui Zhang1,2 and Yang Tao1* 

Abstract 

Atomic Cross-Chain Swap (ACCS) is one important topic in cryptocurrency, where users can securely and trustlessly 
exchange assets between two different blockchains. However, most known ACCS schemes assume specific scripting 
functionalities of the underlying blockchains, such as Hash Time Locked Contracts (HTLC). In addition, these schemes 
are typically only applicable to certain digital signature schemes, like Schnorr or Elliptic Curve Digital Signature 
Algorithm (ECDSA) signatures. In this paper, we propose a generic ACCS scheme, independent from the underly-
ing blockchains. To the best of our knowledge, this is the first solution of this kind. Our results are as follows. First, 
we define a formal system model of ACCS. Next, we present a generic ACCS scheme meets our model. This scheme 
admits atomicity in cross-chain swaps without the need for a Trusted Third Party (TTP) and protects users’ privacy. 
Finally, by using the Non-Interactive Zero-Knowledge (NIZK) proof protocol as a tool, we instantiate our generic 
scheme for Elliptic Curve Discrete Logarithm Problem-based (ECDLP-based) signatures. In addition, we implement 
our scheme, and the experimental results show that our protocol outperforms the existing ACCS schemes, such 
as the HTLC-based schemes.

Keywords Fair exchanges, Atomic swaps, Non-interactive zero-knowledge proofs

Introduction
Atomic cross-chain swap (Herlihy 2018) is used to 
directly exchange assets between two different block-
chains without additional trust assumptions, such as 
trusted hardware or TTP. In ACCS, user A holds asset 
x on blockchain B1 , while user B holds asset y on block-
chain B2 , and both intend to exchange their assets. The 
main goal of ACCS is to ensure that if the swap is suc-
cessful, user A receives asset y and user B receives asset x. 
Otherwise, all assets are refunded to both users.

In recent years, with the maturity of blockchain tech-
nology, ACCS has gained much attention. The main 

reason is that in the early stages of blockchain develop-
ment, the necessity of interoperability between different 
blockchains was not considered. Therefore, each block-
chain operated in isolation, lacking efficient communica-
tion mechanisms, which led to what is commonly known 
as the “blockchain islands” phenomenon. This makes it 
difficult to exchange data and assets between different 
blockchains, thereby hindering the further development 
of blockchain technology. To address this limitation, 
ACCS emerged as a solution for achieving interoperabil-
ity between various blockchains. Its primary goal is to 
enable the transfer and exchange of data and value across 
different chains. By implementing ACCS, the “blockchain 
islands” phenomenon has been effectively broken, pro-
moting the continued progress of blockchain technology.

However, with the application of blockchain technol-
ogy in various industries, such as financial services (Guo 
and Liang 2016), healthcare (Agbo et al. 2019), and Inter-
net of Things (IoT) (Reyna et al. 2018), the mere circula-
tion of data and value is no longer sufficient to meet the 

*Correspondence:
Yang Tao
taoyang@iie.ac.cn
1 State Key Laboratory of Information Security, Institute of Information 
Engineering,  Chinese Academy of Sciences, No.19 Shucun Road, 
Beijing 100084, China
2 School of Cyber Security, University of Chinese Academy of Sciences, 
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00202-8&domain=pdf


Page 2 of 22Zhu et al. Cybersecurity            (2024) 7:12 

practical requirements for cross-chain interactions. Real-
world application scenarios present additional require-
ments for ACCS. For example, different enterprises often 
choose different blockchain platforms based on their 
industry characteristics. Therefore, they may require 
that the ACCS scheme can be used on any blockchain 
platform. Moreover, the cross-chain interaction process 
often involves sensitive private data. Thus, users or com-
panies typically want to prevent the leakage of sensitive 
information in ACCS. Finally, for some enterprises with 
high security requirements, they usually hope to imple-
ment ACCS without the need for TTP. These emerging 
requirements make it meaningful to conduct further 
research on ACCS.

Related work
Up to now, there were two popular ways to achieve trust-
less cross-chain swaps. The first approach uses on-chain 
scripts to simulate a TTP. It admits atomicity in cross-
chain swaps through the automatic execution of on-chain 
scripts, such as smart contracts. A seminal early work 
in this field is the HTLC proposed by TierNolan (2013). 
Subsequently, in 2016, Poon used HTLC to execute 
atomic swaps between payment channels in the Light-
ning Network (Poon and Dryja 2016). Later, in 2018, Her-
lihy formalized the theory of such ACCS (Herlihy 2018). 
However, ACCS schemes that rely on on-chain scripts 
may not be compatible with all blockchain platforms, as 
they depend on specific functionalities provided by each 
blockchain script. For example, a HTLC-based ACCS 
scheme requires that both blockchain scripts must sup-
port the same hash function. In addition, due to the fact 
that on-chain scripts are public, using them may compro-
mise users’ privacy (Deshpande and Herlihy 2020; Thya-
garajan et al. 2022).

In contrast, the second approach uses cryptographic 
techniques to simulate a TTP. It is more compatible 
than the first one and can protect users’ privacy. How-
ever, it typically relies on more complex cryptographic 
primitives, such as adaptor signatures (Fournier 2019) or 
lockable signatures (Thyagarajan and Malavolta 2021). 
In recent years, the ACCS schemes based on crypto-
graphic techniques have been thoroughly studied, and 
many practical schemes have been proposed. For exam-
ple, in 2020, Shlomovits designed a scriptless ACCS 
scheme (Shlomovits and Leiba 2020), where both players 
gradually released their private key shares. His scheme 
protected the users’ privacy, but was limited to block-
chains utilizing ECDLP-based signatures. In addition, it 
required a TTP called Provider to enhance system secu-
rity. Subsequently, in 2021, Thyagarajan proposed lock-
able signatures (Thyagarajan and Malavolta 2021), and 
in 2022, he further presented a generic scriptless ACCS 

based on lockable signatures (Thyagarajan 2022). His 
protocol enables fair exchange of coins among any cur-
rencies, while only requiring the minimal script from the 
underlying blockchain to verify payments, i.e. the verifi-
cation of digital signatures. Unfortunately, his protocol 
does not provide an efficient solution for blockchains 
that do not support adaptor signatures (Erwig et al. 2021; 
Hanzlik et al. 2022).

Tumblebit (Heilman et al. 2017), A2L (Tairi et al. 2021), 
and BlindHub (Qin et al. 2023) are atomic swap protocols 
that use an alternate route. In these protocols, a partici-
pant exchanges his coins through an untrusted interme-
diate party. When multiple swaps occur simultaneously, 
these protocols guarantee that neither intermediary nor 
any other participant can link the specific coins being 
exchanged, thereby protecting user privacy. However, 
Tumblebit relies on the HTLC scripts of the underlying 
blockchains, which results in poor compatibility and pri-
vacy. A2L improved this issue, but a later work (Glaeser 
et  al. 2022) found that A2L ’s security model had a gap 
that allowed key recovery attacks on specific instantia-
tions. Subsequently, Glaeser improved A2L and proposed 
A2L+ and A2LUC (Glaeser et al. 2022). However, neither 
of them is compatible with systems that lack adaptor sig-
nature support. In addition, since BlindHub also relies on 
adaptor signatures, it faces a similar compatibility issue 
(Hanzlik et al. 2022).

Challenges of the the previous work
To summarize, the known ACCS solutions have three 
limitations thus are desirable to overcome the following 
challenges:

– Generality. It means that the ACCS scheme is inde-
pendent of the underlying blockchain platforms. The 
main reason for the formation of blockchain islands 
is that the underlying architecture and data structure 
of each blockchain are different. For example, Bit-
coin uses the Unspent Transaction Output (UTXO) 
model (Nakamoto 2008), while Ethereum uses the 
account-based transaction model (Buterin 2013). 
The heterogeneity between blockchains leads to the 
complexity and incompatibility of cross-chain inter-
actions.

– Privacy. In ACCS, users’ privacy includes: (i) On-
chain data privacy (Deshpande and Herlihy 2020). 
The process of cross-chain swap may leak users’ 
on-chain data. For instance, the utilization of public 
smart contracts could disclose sensitive information 
such as transaction amounts or participant identi-
ties. (ii) Transaction privacy, which includes transac-
tion unlinkability and transaction indistinguishability. 
The former means that adversaries who do not par-



Page 3 of 22Zhu et al. Cybersecurity            (2024) 7:12  

ticipate in ACCS cannot associate two cross-chain 
transactions. For example, HTLC-based ACCS can-
not achieve transaction unlinkability, because two 
cross-chain transactions use the same hash value, 
which makes it easy for adversaries to infer that they 
may come from the same user. The latter means that 
observers who do not participate in ACCS cannot 
distinguish the cross-chain transactions from stand-
ard transactions (Thyagarajan et al. 2022).

– Atomicity without TTP. It means that the scheme 
admits atomicity in cross-chain swaps without rely-
ing on a TTP. ACCS can be easily implemented 
using a TTP. However, introducing TTP contradicts 
the decentralized nature of blockchain. In addition, 
TTP may bring additional security threats, such as 
single point of failure or trust problems. Unfortu-
nately, Zamyatin et  al. (2021) pointed out that in 
the deterministic system model of distributed ledg-
ers, achieving Correct Cross-Chain Communication 
(CCC) is impossible in asynchronous settings with-
out a TTP. Therefore, one of the technical challenges 
in this field is to design an ACCS scheme in which 
the distributed ledger platform, on-chain scripts or 
cryptographic primitives within the system serve as 
an implicit TTP, thereby guaranteeing atomicity in 
cross-chain swaps.

Hence, we raise the following question: “Is it possible to 
design an ACCS scheme without the above three limita-
tions, namely, to meet generality, privacy and atomicity 
without TTP?”

Our contribution
In this paper, we focus on designing a generic ACCS 
scheme without TTP, and give an affirmative answer to 
the above question. Our contributions are summarized as 
follows:

Model for ACCS. We give a formal system model of 
ACCS and the corresponding security definitions. Our 
model is applicable to one-to-one ACCS scenarios on any 
blockchain. To the best of our knowledge, this is the first 
work in this field.

Generic Atomic Cross-Chain Swaps Scheme. We pre-
sent a generic ACCS scheme that solves all above-
mentioned challenges, namely, generality, privacy and 
atomicity without TTP. In addition, this scheme has been 
proven to be secure in our model. We outline the com-
parison between our scheme and other existing schemes 
in Table 1. Notably, our scheme is not only applicable to 
existing blockchain platforms, but can also be adapted to 
potential future platforms.

New Tool: NIZK for the Correct Commitment of Dis-
crete Logarithm (DL). To show the practicability of our 

generic scheme, we instantiate it in ECDLP-based block-
chains. To achieve this instantiation, we present a NIZK 
protocol �CCNIZK for the correct commitment of DL, 
which is an effective tool to instantiate our scheme. It 
is used to verify the correctness of the secret segments 
released by each player, thereby achieving fair exchange 
of private key shares. We regard this zero-knowledge 
proof as an independent property, which may bring other 
interesting applications.

Technical overview
We briefly review our technical treatments below.

Model for ACCS. In our system model, there are two 
entities, player P1 and player P2 , and we focus on a one-
to-one ACCS between these two entities. To ensure 
the generality of this model, we represent each block-
chain as a distributed ledger, independent of the specific 

Table 1 Comparison with existing schemes1

 The “Security” indicator is used to evaluate whether the scheme provides a 
security model, security analysis, or security proof. The specific evaluation 
contents of “Generality”, “Privacy” and “Atomicity without TTP” indicators 
are shown in this section. In addition, unless the scheme indicates that 
the introduced third party does not need to be trusted, we will treat it as a 
TTP. Including but not limited to third-party blockchain, trusted execution 
environment, trusted execution hardware, etc

Schemes Security Generality Privacy Atomicity 
without 
TTP

 Li et al. (2022) � × � ×

 Mazumdar (2022) � × × �

 Bentov et al. (2019) � × � ×

 Hei et al. (2022) � � × ×

 Hoenisch et al. (2022) � × � �

 Shlomovits and Leiba 
(2020)

� × � �

 Wang and Nixon (2021) � � × ×

 Thyagarajan et al. (2022) � × � �

 Heilman et al. (2017) � × × �

 Tairi et al. (2021) � × � �

 Glaeser et al. (2022) 
( A2L+)

� × � �

 Glaeser et al. (2022) 
( A2LUC)

� × � �

 Qin et al. (2023) � × � �

 Herlihy et al. (2019) � × × �

 Manevich and Akavia 
(2022)

� × × �

 Gugger (2020) × × � �

 Hoenisch and Pino 
(2021)

× × � �

 Deshpande and Herlihy 
(2020)

× × � �

Ours � � � �



Page 4 of 22Zhu et al. Cybersecurity            (2024) 7:12 

blockchain implementation. To better describe the ACCS 
in the real world, we divide it into five phases: setup, 
freeze, exchange, complete and timeout. In terms of 
security, we consider possible security threats from a 
malicious adversary, and formally define the security 
of ACCS. Therefore, once our scheme is proven in this 
model, it means that the scheme is sufficiently secure.

Generic Construction of Atomic Cross-Chain Swaps. 
The technical difficulty in building our generic ACCS 
scheme lies in solving the three above-mentioned chal-
lenges, namely generality, privacy and atomicity without 
TTP.

To solve the first and second challenges, we move pri-
vate key exchange off-chain. Our scheme uses crypto-
graphic techniques instead of on-chain scripts, making 
it independent of the specific blockchain architecture. 
Specifically, we use a Fair Exchange (FE) protocol to 
achieve off-chain private key exchange, and utilize Veri-
fiable Timed Signatures (VTS) (Thyagarajan et  al. 2020) 
for asset refund. As a result, the cross-chain transactions 
generated by our scheme are indistinguishable from the 
standard one-to-one transactions.

Then, to solve the third challenge, we use the idea of 
gradual release to achieve fair exchange of private keys. 
Zamyatin et al. (2021) pointed out the similarity between 
the ACCS problem and the FE problem (Asokan 1998). 
Specifically, their properties of effectiveness (Asokan 
1998) and timeliness (Zamyatin et  al. 2021) are similar, 
and the fairness (Asokan 1998) in FE is similar to the ato-
micity (Zamyatin et al. 2021) in ACCS. Therefore, we can 
regard the atomicity property in ACCS as the fairness 
property in private key fair exchange. However, unlike 
the fair exchange of items, in ACCS, the sender does not 
lose the knowledge of the private key after the swap. Due 
to the fact that private key represents ownership of asset 
in blockchain, this will result in both players eventu-
ally owning the asset. To solve this problem, we let the 
players exchange the private key shares rather than the 
complete private keys. Specifically, we introduce a joint 
address (Thyagarajan et al. 2022) that is jointly controlled 
by both players, and each player holds a private key share. 
Then, they exchange their private key shares fairly to gain 
ownership of the joint address.

Unfortunately, it has been shown by Cleve (1986) that 
without a majority of honest parties, it is generally impos-
sible to achieve complete fairness. However, achieving 
partial fairness (Gordon and Katz 2012) is possible, and 
gradual release is one of the widely used ideas. It allows 
both parties to exchange their secrets little by little, where 
one party can obtain an advantage over the other party, 
but this advantage is polynomially bounded. Our generic 
scheme is based on this idea. In our scheme, both players 
first divide the private key shares into multiple segments, 

then exchange the commitments of these segments and 
their corresponding proofs, and finally alternately release 
each segment. In this way, a player can only have at most 
one segment advantage over the other player.

Next, we give a high-level overview of our generic 
scheme. First, both players transfer their assets to joint 
addresses. To prevent indefinite locking of assets, we 
introduce a timeout mechanism for refund. Next, using 
the FE protocol with gradual release, players exchange 
their private key shares. Finally, they can reconstruct the 
complete private keys of the joint addresses to transfer 
assets. In addition, this scheme is proven to be secure in 
our system model.

New Tool: NIZK for the Correct Commitment of DL. 
We borrow the idea from Camacho (Camacho 2013) to 
build a new zero-knowledge proof protocol. Camacho 
(2013) proposed a short signature exchange without TTP 
by gradually releasing the blinding factor of the signature. 
However, his scheme can only achieve bit-by-bit private 
key exchange. We replace the bit commitment proof in 
the original protocol with Bulletproofs range proof, ena-
bling it to support segment-by-segment private key share 
exchange.

Preliminaries
In this section, we review some useful notations and 
notions.

Notations. For m, n ∈ N , where m < n , [n] repre-
sents the set of integers {1, ..., n} , and [m..n] represents 
the set of integers {m,m+ 1, ..., n− 1, n} . Let � ∈ N be 
a security parameter, 1� denotes a unary string with � 
ones, and p represents a prime number with � bits. We 
say that the function negl : N → [0, 1] is negligible in 
� , if for every polynomial q(·) there exists �0 such that 
∀� > �0 : negl(�) < 1/q(�) . We use x

R
←−X to rep-

resent an element x randomly and uniformly chosen 
from the set X, and use x ← v to represent the vari-
able x assigned the value v. We represent a protocol as 
(output1,output2) ← Protocol�P1(input1),P2(input2)�  , 
where P1 inputs input1 and obtains output output1 , and P2 
inputs input2 and obtains output output2.

Let G and GT be two groups with the same prime order 
p, i.e., p = |G| = |GT| , where G is an additive group and 
GT is a multiplication group. Let G represents a random 
generator in G , and Zp represents a ring of integer mod-
ule p. The notation Zp\{0} is defined as Z∗

p.
The vector �v is defined as �v = (vi)i∈(n] , where each com-

ponent vi represents a value associated with the corre-
sponding index i. If the vector contains elements in Zn

p , 
it can also be written as B(·] = (B[1],B[2], ...,B[n]) . We 
define l and κ as symbols that satisfy κ = ⌈ �

l
⌉ . Let θ ∈ Z

∗
p , 

and the κ-Segmentation of θ refers to dividing θ into κ 
segments. Each segment has a length of l bits, and if the 



Page 5 of 22Zhu et al. Cybersecurity            (2024) 7:12  

length is less than l, leading zeros are added. We denote 
the vector of κ-Segmentation of θ as θ [·] = (θ [1], ..., θ [κ]) , 
where θ can be expressed as θ = i∈[κ] θ [i]2

(i−1)l . Addi-
tionally, let P(·) represent a formal polynomial with 
coefficients in Zp , and P[·] represent the vector of its 
coefficients. If the degree of polynomial P(·) is denoted as 
d = deg(P) , then P(X) =

∑
i∈[d+1] P[i]X

i−1.

Number theoretic assumptions
Bilinear Maps. Consider the G , GT , p and G defined 
above, assuming that ECDLP in G and GT is difficult. We 
define e : G×G → GT as a bilinear map, which satisfies 
the following properties:

– Bilinearity: For ∀P,Q ∈ G, a, b ∈ Z
∗
p , there is 

e(aP, bQ) = e(P,Q)ab.
– Non-degenerate: Let P be the generator of G . 

Then, e(P,  P) is the generator of GT , which means 
e(P,P)  = 1.

– Efficiently computable: Let G be the generator of G , 
Ĝ and ĜT be groups of size p (p is a prime number of 
� bits), with ê being an efficient algorithm to compute 
the map. There exists an algorithm BMGen that takes 
as input 1� , and outputs (p, Ĝ, ĜT, ê,G) . For sim-
plicity, we will not distinguish between Ĝ, ĜT, ê and 
G,GT, e.

Let N ∈ N . The common public parameters 
of the following assumptions are denoted by 
pp = �(p,G,GT, e,G), (G0,G1,G2, ...,GN )� . For i ∈ [0..N ] , 
we have Gi = siG , where s is randomly chosen from Z∗

p.

Definition 1 (N-Diffie-Hellman Inversion (N-DHI)  
Assumption (Mitsunari et al. 2002)). The N-DHI problem 
is to compute 1s G given pp . For any Probabilistic Poly-
nomial-Time (PPT) adversary A , we say that the N-DHI 
assumption holds, if we have:

Definition 2 (N-Bilinear Diffie-Hellman Inversion 
(N-BDHI) Assumption).  The N-BDHI problem is to com-
pute e(G,G)

1
s given pp . For any PPT adversary A , we say 

that the N-BDHI assumption holds, if we have:

Definition 3 (N-Strong Diffie-Hellman (N-SDH)  
Assumption (Boneh and Boyen 2008)). The N-SDH 
problem is to compute (c, 1

s+cG) given pp . For any PPT 

Adv
N−DHI(A, κ , N) = Pr[

1

s
G ← A(1κ , pp)] = negl(κ)

Adv
N−BDHI(A, κ ,N ) = Pr[e(G,G)

1
s ← A(1κ ,pp)] = negl(κ)

adversary A , we say that the N-SDH assumption holds, 
if we have:

Digital signatures schemes
Digital Signatures Scheme.  A digital signature scheme 
�DS consists of three algorithms. A key generation algo-
rithm (pk, sk) ← KGen(1�) takes as input a security 
parameter 1� , and outputs the public-private key pair 
(pk, sk) . A signature algorithm σ ← Sign(sk,m) takes 
as input the private key sk and message m ∈ {0, 1}∗ , 
and outputs the signature σ . A verification algorithm 
0/1 ← Vf(pk,m, σ) , outputs 1 if σ is a valid signature for 
the message m under the public key pk , otherwise it out-
puts 0.

Threshold Secret Sharing.  A (t,  n)-threshold secret 
sharing scheme �TSS of a secret x consists of n shares 
x1, ..., xn . For any set |S| ≥ t + 1 , there exists an efficient 
algorithm x ← Recon({xi}i∈[S]) that takes as input t + 1 
of these shares and outputs the secret x. However, if only 
t or fewer shares are provided, no information about the 
secret x will be revealed.

Threshold Signatures. The (t,  n)-threshold signature 
scheme �Th is used to distribute signatures to a group of 
n players P1, ...,Pn , such that any at least t + 1 players can 
co-generate a signature, while t or fewer players cannot. 
More formally, a (t,  n)-threshold signature scheme �Th 
for a signature scheme �DS = (KGen,Sign,Vf) consists 
of two parts (Gennaro and Goldfeder 2018):

– (pk, sk1, ..., skn) ← ThKGen(1�, t, n) . This distrib-
uted key generation protocol takes as input a security 
parameter 1� , and outputs a public key pk and Pi ’s 
private key share ski to each player Pi . The private key 
shares sk1, ..., skn form a (t, n)-threshold secret shar-
ing of the private key sk.

– σ ← ThSign�{Pi(ski,m)}i∈[S]� . For |S| ≥ t + 1 , this 
distributed signing protocol takes as public input a 
message m ∈ {0, 1}∗ to be signed as well as a private 
input ski from each player Pi , and outputs a signature 
σ ∈ {�DS.Sign(sk,m)}.

Notice that �Th.ThSign will output a valid signature 
under the centralized signing protocol �DS.Sign . There-
fore, the verification algorithm of both �Th and �DS 
remains the same, denoted as �DS.Vf.

Verifiable Timed Signatures. The VTS algorithm (Thya-
garajan et al. 2020) is a variant of verifiably encrypted sig-
natures (Boneh et al. 2003; Hanser et al. 2015), designed 
to decrypt and reveal the signature without TTP. In VTS, 
the committer generates a timed commitment C for a 

Adv
N−SDH(A, κ , N) = Pr[(c,

1

s+ c
G) ← A(1κ , pp)] = negl(κ)



Page 6 of 22Zhu et al. Cybersecurity            (2024) 7:12 

signature σ of a message m under the public key pk . This 
commitment C can only be opened after a predefined 
time T (chosen arbitrarily by the committer). In addi-
tion, the committer generates a proof π to prove that C 
contains a valid signature σ . Its formal definition is as 
follows:

Definition 4 (Verifiable Timed Signatures (Thyagarajan 
et al. 2020)). A VTS scheme �VTS for a signature scheme 
�DS = (KGen,Sign,Vf) consists of the following four 
operations:

– (C ,π) ← Commit(σ ,T) : This randomized commit 
algorithm takes as input a signature σ (generated 
using �DS.Sign(sk,m) ) and a hiding time T , and 
outputs a commitment C and a proof π.

– 0/1 ← Verify(pk,m,C ,π) : This verify algorithm 
takes as input a public key pk , a message m, a com-
mitment C of hardness T and a proof π . It outputs 
1 if and only if the value σ embedded in C satisfies 
�DS.Vf(pk,m, σ) = 1 , otherwise it outputs 0.

– (σ , r) ← Open(C) : This open algorithm is run by the 
committer, takes as input a commitment C, and out-
puts the committed signature σ and the randomness 
r used in generating C.

– σ ← ForceOp(C) : This force open algorithm takes 
as input a commitment C, and outputs the commit-
ted signature σ.

Commitment schemes
A commitment scheme �Com consists of three algo-
rithms. A generation algorithm h ← Gen(1�) takes as 
input a security parameter 1� , and outputs a public value 
h. A commit algorithm (c, d) ← Com(h,m) takes as input 
a public value h and a message m ∈ {0, 1}∗ , and outputs 
a commitment c and an opening value d. A verification 
algorithm 0/1 ← Vf(h,m, c, d) , outputs 1 if the verifica-
tion succeeds, otherwise, it outputs 0.

The model of ACCS
In this section, we give the model and the security defini-
tions of ACCS.

System model
Consider two distributed ledgers represented as B1 and 
B2 . We assume that there are two players, P1 and P2 , 
where P1 owns asset v1 on B1 , and P2 owns asset v2 on B2 , 
and they want to exchange assets. The players commu-
nicate using secure and authenticated channels, where 
messages are public and sent sequentially. We assume 
the network to be synchronous, which is widely adopted 

by blockchain protocols (Garay et al. 2015; Zamani et al. 
2018; Kiayias et al. 2017; Luu et al. 2016).

In this model, we use the public key to represent the 
wallet address and the private key to represent asset 
ownership. Moreover, a transaction is used to represent 
the process of transferring assets between addresses. 
For example, tx(pk,pk′, v) denotes the transfer of asset v 
from the address corresponding to pk to the address cor-
responding to pk′ . A valid transaction must be signed by 
a private key corresponding to the source address of the 
asset.

Our system model consists of 8 algorithms and 2 
protocols:

– pp ← Setup(1�) . On input a security parameter 1� , 
the algorithm outputs public parameters pp.

– (pk, sk) ← KeyGen(1�) . On input a security param-
eter 1� , the algorithm outputs a public-private key 
pair (pk, sk).

– (pk′, sk′1, sk
′
2) ← JointKeyGen(1�) . On input a 

security parameter 1� , the algorithm outputs a public 
key pk′ to each player, and a private output sk′i to Pi 
as his private key share.

– tx ← GenTx(pk, pk′, v) . On input public keys pk , pk′ 
and asset v, the algorithm outputs a transaction tx.

– ((com,π), (σ )) ← CommitRfnd�P1(T, sk
′
1, pk

′, tx),

P2(T, sk
′
2, pk

′, tx)� . When P1 inputs a timed param-
eter T , a private key share sk′1 , a public key pk′ and 
a transaction tx , and P2 inputs a timed parameter T , 
a private key share sk′2 , a public key pk′ and a trans-
action tx , the protocol outputs a timed commitment 
com , which commits to the signature of the transac-
tion, and its corresponding proof π to P1 . It also out-
puts a signature σ of the transaction to P2.

– 0/1 ← Verify(pk′, tx, com,π) . On input a public key 
pk′ , a transaction tx , a timed commitment com and 
its corresponding proof π , the algorithm outputs 0 to 
indicate validation failure, and outputs 1 to indicate 
validation success.

– σ ′ ← Freeze(sk, tx′) . On input a private key sk and 
a transaction tx′ , the algorithm outputs a signature σ ′ 
of the transaction.

– ((sk′′2), (sk
′
1)) ← Exchange�P1(sk

′
1),P2(sk

′′
2)�  . 

When P1 and P2 respectively input their private key 
shares sk′1 and sk′′2 , the protocol outputs sk′′2 to P1 
and sk′1 to P2.

– σ ′′ ← Complete(sk′1, sk
′
2, tx

′′) . On input private key 
shares sk′1 and sk′2 , and a transaction tx′′ , the algo-
rithm outputs a signature σ ′′ of the transaction.

– σ ← UnFreeze(com) . On input a timed commit-
ment com , the algorithm outputs a signature σ 
embedded in the commitment.



Page 7 of 22Zhu et al. Cybersecurity            (2024) 7:12  

Security definition
In this section, we discuss the security threats and 
give the formal security definitions of ACCS. We con-
sider a PPT adversary who corrupts one of the play-
ers. The corrupt player can deviate from the protocol 

in any arbitrary manner, e.g., by sending invalid or 
inconsistent messages, or aborting interactions. We 
assume that once a player obtains the private key share 
of joint address from the other player, he will immedi-
ately generate a signature of the swap transaction and 
publish it on distributed ledger to transfer assets in the 
joint address. We denote the player’s state using a state 
set state = {0, 1} , where stateA = 0 represents a failed 
swap for player A, meaning that player A does not 
obtain player B’s asset and successfully refund, while 
stateA = 1 represents a successful swap for player A, 
meaning that player A obtains player B’s asset and loses 
his own asset. We now give the formal security defini-
tions as follows.

Definition 5 (Completeness).  The completeness of 
ACCS guarantees that there exists a negligible function 
negl(�) , such that when all players execute honestly, the 
execution result of ACCS is:

Intuitively, it means that if both players are honest, 
then ACCS must end with both players’ states being 
either all 0 or all 1. To better understand this defini-
tion, we discuss two situations: timeout and no time-
out. Timeout means that a player fails to complete the 
asset swap within the predefined time. In this case, 
the completeness requires the states of both players 
are 0, i.e., stateA = 0 ∧ stateB = 0 . On the contrary, 
no timeout means that the players complete the asset 
swap within the predefined time. In this case, the com-
pleteness requires the states of both players are 1, i.e., 

stateA = 1 ∧ stateB = 1.

Pr
[
(stateA = 0 ∧ stateB = 1) ∨ (stateA = 1 ∧ stateB = 0)

]
≤ negl(�)

Definition 6 (Soundness).  The soundness of ACCS 
guarantees that there exists a negligible function negl(�) , 
such that for all PPT adversaries A and all � ∈ N , given 
the correct public key pk , transaction tx and timed 
parameter T generated during protocol execution, we 
have:

Intuitively, it means that a PPT adversary A cannot 
generate a commitment com∗ and its corresponding 
proof π∗ such that they can be successfully verified by 
the Verify algorithm. However, when using the UnFreeze 
algorithm to open the commitment after the predefined 
time, the obtained result is not the correct signature.

Definition 7 (Timed Privacy). We use the symbols ≪ 
to represent “much less than”, and ≫ to represent “much 
greater than”, where b ≪ a implies that the result of a+ b 
is approximately equal to a. In addition, the symbol 
const1 represents a constant, specified by the system in 
the setup phase. We say that an ACCS satisfies timed pri-
vacy if both of the following conditions hold:

– There exists a negligible function negl(�) such 
that for all PPT adversaries A with running time 
t ≪ T− const1 , all transaction messages m ∈ {0, 1}∗ 

and all � ∈ N , given the correct public key pk and 
transaction tx generated during protocol execution, 
we have: 

– There exists a negligible function negl(�) such 
that for all honest players A with running time 
t ≫ T+ const1 , all transaction messages m ∈ {0, 1}∗ 
and all � ∈ N , given the correct public key pk , trans-
action tx and commitment com generated by the pro-
tocol, we have: 

Intuitively, the former condition implies that a PPT 
adversary A cannot obtain a valid signature when the 
running time t is much less than T− const1 . The latter 

Pr

[
(com∗,π∗) ← A(1�), σ ∗ ← UnFreeze(com∗) :

1 ← Verify(pk, tx, com∗,π∗) ∧ 0 ← �DS.Vf(pk, tx, σ
∗)

]
≤ negl(�)

Pr
[
σ ∗ ← A(1�) : 1 ← �DS.Vf(pk, tx, σ

∗)
]
≤ negl(�)

Pr
[
σ ← UnFreeze(com) : 0 ← �DS.Vf(pk, tx, σ)

]
≤ negl(�)



Page 8 of 22Zhu et al. Cybersecurity            (2024) 7:12 

condition implies that an honest player A will not obtain 
an invalid signature after running the UnFreeze algo-
rithm when the running time t is much greater than 
T+ const1.

Definition 8 (Partial Fairness). We define the par-
tial fairness of ACCS through the following experi-

ment. Assuming that the adversary A corrupts player 
B. Therefore, player A is honest. If A aborts before the 
end of ACCS, let sk∗B[1...i] represents the partial private 
key share obtained by player A. At this point, we assume 
that player A will randomly select some elements in the 
remaining space of size 2�−i as B’s tentative private key 
share, denoted as sk′

B . Similarly, A will also output the 
tentative private key share of A, denoted as sk′

A . We use 

const2 to represent a constant, specified by the system in 
the setup phase.

The partial fairness of ACCS guarantees that there exists 
a negligible function negl(�) such that for all PPT adver-
saries A , we have:

Our generic atomic cross‑chain swaps scheme
In this section, first we present a generic scheme for 
one-to-one atomic swap, which shows the feasibility 
and be seen as a framework for further optimizations. 
Second, we explain the entire process of an atomic swap 
between user A and B as a concrete example. Finally, we 
prove the security of the scheme in our model.

|Pr[sk
(AB)

A
= sk

′
A] − Pr[sk

(BA)
B

= sk′B]| ≤
2const2

2�−i
+ negl(�)

Fig. 1 Generic atomic cross-chain swaps scheme - Part I 2Note: In the practical application of the system model, variables are usually defined 
to represent various parameters and are initially set to default values, such as 0, and then assigned to the actual values of specific parameters 
at runtime. To simplify the representation, the variables are directly assigned values in the Setup algorithm



Page 9 of 22Zhu et al. Cybersecurity            (2024) 7:12  

Given the digital signature scheme �DS , commit-
ment scheme �Com , threshold signatures scheme �Th , 
threshold secret sharing scheme �TSS , VTS scheme 
�VTS , range proofs protocol �RP and NIZK protocol 
�NIZK , we constructed our generic scheme based on 
the system model, which consists of 8 algorithms and 
2 protocols. The complete generic scheme is shown in 
Figs. 1 and 2, where the complete Exchange protocol is 
postponed to Appendix A.

Here, we provide an example of the generic construc-
tion that considers an atomic swap between two users, 
namely user A and user B. In this scenario, A owns 
asset v1 on B1 , while B owns asset v2 on B2 . To simplify 
the description, we define that the payment from A to 
B involves the keys, transactions and signatures with 
(AB), while the payment from B to A involves the keys, 

transactions and signatures with (BA). The complete pro-
cess is postponed to Appendix B.

Theorem  1 Assume the underlying digital signature 
scheme �DS , commitment scheme �Com , threshold sig-
natures scheme �Th , threshold secret sharing scheme 
�TSS , VTS scheme �VTS , range proofs protocol �RP and 
NIZK protocol �NIZK are secure, the atomic swap proto-
col described in Appendix B is secure, and has the proper-
ties of completeness, soundness, timed privacy and partial 
fairness.

The proof is postponed to Appendix C.

Fig. 2 Generic atomic cross-chain swaps scheme - Part II



Page 10 of 22Zhu et al. Cybersecurity            (2024) 7:12 

NIZK for the correct commitment of DL
In this section, we propose a tool, the NIZK protocol for 
the correct commitment of DL, to instantiate our generic 
scheme for ECDLP-based signatures. It is designed to 
prove that the commitment vector (Ci)i∈[κ] encrypts the 
κ-Segmentation of θ without revealing any additional 
knowledge. Here, θ represents the DL of a group element 
D in the group G . This proof consists of two parts: the 
segmented range proof, denoted as �BulletRP , and the 
NIZK proof of correct commitment, denoted as �CCNIZK . 
Moreover, since our scheme only involves cross-chain 
swap between two parties, the zero-knowledge proof 
protocol does not need the property of non-malleability 
(Sahai 1999).

Segmentation range proofs
Our construction is based on a slight variation of the Ped-
ersen commitment scheme. Consider a common reference 
string CRS = (G, sG, s2G, ..., sNG) = (G0,G1, ...,GN ) , 
where s R

←−Z
∗
p is a trapdoor. Here, we require that s 

contains a factor 2l . To commit the segment θ [i] at 
position i using the randomness ri ∈ Zp , we compute 
Commit(θ[i], ri, i) = Ci = riG + θ [i]Gi . The com-
mitment of randomness �r = (ri)i∈[N ] to the vector 
θ [·] = (θ [1], ..., θ [N ]) is realized through a vector formed 
by the commitment to each segment in position i. This 
vector is denoted as �C = (Ci)i∈[N ] . Alternatively, we 
can express this relationship as �C = Commit(θ[·], �r) . 
For each commitment Ci , we use the Bulletproofs range 
proof �BulletRP to prove that it encrypts a segment with a 
binary length of l (if the length is less than l, we fill in the 

Fig. 3 The NIZK protocol �CCNIZK



Page 11 of 22Zhu et al. Cybersecurity            (2024) 7:12  

leading zeros), indicating that the value of the segment 
falls within the interval [0, ..., 2l − 1].

Zero‑knowledge proof protocol of correct commitment
In this section, we present a NIZK protocol �CCNIZK . 
Let θ

R
←−Z

∗
p . Consider the commitment to the κ

-Segmentation of θ . This commitment is denoted as 
�C = (Ci)i∈[κ] = (riG + θ [i]Gi)i∈[κ] , where ri ∈ Z

∗
p for 

each i ∈ [κ] . Additionally, D = θG . �CCNIZK is used 
to prove that each commitment item Ci at position i 
indeed encrypts the i-th item in the κ-Segmentation 
of θ . Here, θ represents the DL of D, which is denoted 
as D = θG . This proof enables us to create segmented 
commitments to the private key share of the joint 
address, and gradually release each segment of the pri-
vate key share without revealing any additional knowl-
edge. The complete NIZK protocol �CCNIZK is shown in 
Fig. 3.

For the given θ ∈ Z
∗
p and �C = (riG + θ [i]Gi)i∈[κ] , our 

proof protocol does as follows: 

(1) The prover computes D′ =
∑

i∈[κ] Ci − rG =
∑

i∈[κ] riG+∑
i∈[κ] θ [i]Gi − rG , where r =

∑
i∈[κ] ri . In this 

step, the prover obtains a compressed representa-
tion of the segmented vector commitment, and 
removing the randomness.

(2) Using the common reference string CRS and 
the segmented vector θ [·] , the prover computes 
U = 1

s D
′ = 1

s (
∑

i∈[κ] θ [i]Gi) =
∑

i∈[κ] θ [i]Gi−1  , 
where G0 = G . This step ensures that once the 
equation e(D′,G) = e(U ,G1) holds, it can be 
proven that r is indeed the accumulation of the ran-
domness in the segmented vector commitments. 
If r  =

∑
i∈[κ] ri , it would imply a break in certain 

assumptions, which is impossible.
(3) The prover lets 

U =
∑

i∈[κ] θ[i]Gi−1 =
∑

i∈[κ] θ[i]s
i−1G = P(s)G  , 

where the symbol P(·) represents the poly-
nomial P(X) =

∑
i∈[κ] θ[i]X

i−1 , and so 
P(2l) =

∑
i∈[κ] θ [i]2

l(i−1) = θ . To prove that 
the compressed segmented vector commitment 
U =

∑
i∈[κ] θ[i]Gi−1 is “equivalent” a single com-

mitment θG , the prover needs to prove that 
P(s)− P(2l) = P(s)− θ can be divisible by s − 2l . 
Specifically, the prover does:

• Computes the coefficients of the formal polynomial 
W (·) such that P(X)− P(2l) = W (X)(X − 2l).

• Computes V = W (s)G using the common refer-
ence string CRS.

  Therefore, once the equation 
e(U − D,G) = e(V ,G1 − 2lG) = e(V , (s − 2l)G) 

holds, it can be ensured that the coefficients of 
the polynomial P(·) correspond to the κ-Segmen-
tation of θ (that is, θ = P(2l)).

Theorem 2 The protocol in Fig. 3 is a NIZK proof that 
proves the κ-Segments of D’s elliptic curve DL correspond 
to the committed segment vectors in (Ci)i∈[κ] . This NIZK 
proof has perfect completeness, computational soundness 
and perfect zero-knowledge under the assumption of κ
-SDH.

The proof is postponed to Appendix D.

Instantiation: ACCS for ECDLP‑based signatures
Instantiation of the generic construction
To show the practicability of our generic construction, 
we instantiate it in ECDLP-based blockchains. Specifi-
cally, we use the ECDSA signature scheme to instantiate 
it, where we instantiate �DS as �ECDSA . In addition, we 
instantiate each algorithm in the Exchange protocol as 
follows: First, we employ the Bulletproofs range proof 
protocol (Bünz et al. 2018) to implement the range proof 
protocol, resulting in �RP being instantiated as �BulletRP . 
Second, we utilize the Pedersen commitment scheme to 
implement the commitment scheme, leading to �Com 
being instantiated as �PedCom . Third, we use the NIZK 
protocol �DLNIZK proposed in (Camenisch and Stadler 
1997) to generat the proof πpk . Finally, we use the NIZK 
protocol �CCNIZK described in Sect.   to generate the 
proof πcc.

Extensions
In this section, we propose some possible extensions of 
our scheme.

Replace the VTS Algorithm with the Verifiable Timed 
Discrete Logarithm (VTD) Algorithm. To enhance the 
efficiency of our scheme, we can replace the VTS algo-
rithm with the VTD algorithm (Thyagarajan et al. 2020). 
In VTD, the committer no longer needs to prove that the 
signature of the commitment is valid, but only needs to 
prove that the commitment value is the DL of a known 
group element in the group, which is a simpler alge-
braic statement (Thyagarajan et al. 2022). Therefore, the 
VTD algorithm is more efficient in commitment genera-
tion and verification than VTS, which can significantly 
improve the efficiency in freeze phase.

In our ECDLP-based ACCS scheme, using the VTD 
algorithm, players can make a commitment to their own 
private key share associated with the joint address. Spe-
cifically, user B generates a commitment com(A) for his 
private key share sk(AB)B  and sends it to user A, while 



Page 12 of 22Zhu et al. Cybersecurity            (2024) 7:12 

user A generates a commitment com(B) for his private 
key share sk(BA)A  and sends it to user B. After timeout, 
they can forcibly open the commitment to obtain the 
other user’s private key share. By combining their own 
private key share with the obtained one, each user can 
reconstruct the complete private key of the joint address, 
allowing them to refund their respective assets.

In terms of security, replacing VTS with the VTD algo-
rithm will not compromise the security of our proto-
col, as both VTS and VTD have the same properties of 
soundness and privacy (Thyagarajan et al. 2020; Thyaga-
rajan 2022).

Multi-Asset Atomic Swaps. The existing HTLC has 
functional limitations as it only supports one-to-one 
asset swaps. However, the current cryptocurrency prices 
vary greatly, making it more difficult for two exchanges 
on different blockchains to match. In addition, there are 
also many users who have a need for multi-asset swaps, 
such as the exchanges. They hold assets in different 
blockchains and have different combinations of swap 
needs. This makes further research on multi-asset ACCS 
meaningful, where A can exchange his Nakamoto (2008), 
Buterin (2013) and Litecoin (2011) for B’s Noether (2014) 
and Schwartz et al. (2014) through a single ACCS. There-
fore, we provide two ways to achieve multi-asset ACCS 
for our scheme, one is to swap assets on the same curve, 
and the other is to swap assets cross different curves.

• The same curve swaps. First, we consider the case 
where all coins to be swapped between A and B 
are on blockchains that use the same elliptic curve. 
That is, all coins of A are on blockchains that use 
the elliptic curve cyclic group G1 , with generator G1 
and prime order value p1 . And all coins of B are on 
blockchains that use the elliptic curve cyclic group 
G2 , with generator G2 and prime order value p2 . In 
addition, all coins participating in the swap are on 
ECDLP-based blockchains. Therefore, if both play-
ers use the same private key share to generate the 
joint addresses on different blockchains, then it can 
be ensured that multiple coins can be swapped with 
only once private key share exchange. This greatly 
improves the efficiency of multi-asset ACCS. Moreo-
ver, using the same private key share will not com-
promise the privacy of the players. Because the other 
player can generate a random private key share, 
resulting in different final joint addresses and ensur-
ing the unlinkability of cross-chain transactions 
(Deshpande and Herlihy 2020).

• Cross-curve swaps. Next, we consider the case where 
all coins to be swapped between user A and user B 
are on blockchains that use different elliptic curves. 

Specifically, all coins of A are on blockchains that use 
the elliptic curve cyclic groups (G1i)i∈[n] , with gen-
erators (G1i)i∈[n] and prime order values (p1i)i∈[n] . 
All coins of B are on blockchains that use the ellip-
tic curve cyclic groups (G2i)i∈[ñ] , with generators 
(G2i)i∈[ñ] and prime order values (p2i)i∈[ñ] . In this 
case, we can still use the solution employed in the 
same curve swaps. However, it’s important to note 
that the parameters of the elliptic curves used for 
each coin are different, resulting in different gener-
ated public key shares even when the same private 
key share are used. Therefore, it is difficult to verify 
whether two joint addresses are generated by the 
same private key share. To deal with this challenge, 
we introduce an additional zero-knowledge proof 
to prove that different public key shares on differ-
ent curves have the same DL (i.e., private key share), 
thereby ensuring the correctness of the generated 
joint address. This proof can be implemented using 
NIZK proof mechanism proposed in Noether (2018) 
or Chase et al. (2022).

Experimental analysis
In this section, we evaluate and analyze our scheme 
through experiments. First, we evaluate the performance 
of our NIZK protocol. Next, we instantiate our ACCS 
scheme for ECDLP-based signatures, and compare it 
with other ACCS schemes. All experiments are run on 
the Windows 10 Enterprise LTSC operating system, uti-
lizing an Intel Core i5-6200U CPU @ 2.30GHz, with 8GB 
of memory and a 465GB hard disk capacity.

Performance analysis of NIZK protocol
Implementation details. To evaluate the practical perfor-
mance of our NIZK protocol �CCNIZK , we give a refer-
ence implementation of python language. It relies on the 
ecpy library (Midorikawa 2019) for elliptic curve related 
operations, and the sympy library (Smith 2023) for sci-
entific calculations. The code runs on the elliptic curve 
secp256k1, which is also used in Bitcoin. The experimen-
tal results show that segment lengths longer than 50 bits 
have no significant impact on the experimental results, 
so we set the segment length in the range of 1 bit to 50 
bits. We measure the average time of over 1000 runs and 
report our results in milliseconds.

Time costs and communication costs. We evaluate the 
time costs of the proof phase and verification phase of 
the NIZK protocol under different segment lengths, con-
sidering both cases of 256-bit and 128-bit private keys. 
Our experimental results are shown in Fig. 4. The results 
show that in the case of a 128-bit private key, the running 



Page 13 of 22Zhu et al. Cybersecurity            (2024) 7:12  

time of the proof phase does not exceed 1100 ms, and 
the verification phase can be completed within 50 ms. In 
the case of a 256-bit private key, the running time of the 
proof phase does not exceed 2300 ms, and the verifica-
tion phase can be completed within 80 ms.

In addition, we also calculate the communication cost 
of our protocol. We measure the communication cost 
as the amount of information that each party needs to 
exchange during protocol execution, which in our proto-
col is the size of the proof πcc . Specifically, it includes an 
element on Z∗

p and two elements on G . When we set the 
elliptic curve to the secp256k1 curve with a 256-bit group 
order, the experimental results show that the communi-
cation cost of our protocol is approximately 160 bytes.

Comparison. Compared with the original protocol 
proposed by Camacho (Camacho 2013), for the proof 
phase, our protocol can reduce the time cost by up to 
about 91.62% (set 128-bit private key and 50-bit segment 
length) and 94.56% (set 256-bit private key and 50-bit 
segment length). For the verification phase, our protocol 
can reduce the time cost by up to about 76.28% (set 128-
bit private key and 45-bit segment length) and 86.44% 
(set 256-bit private key and 50-bit segment length). In 
addition, the communication costs of the two protocols 
are similar. It can be seen that our NIZK protocol greatly 
reduces the time cost without increasing the communi-
cation cost of the original protocol.

Comparison with other schemes
(1) On-chain costs

Implementation details. According to Hanzlik et  al. 
(2022), a typical metric to measure on-chain costs is to 
evaluate the transaction fees associated with all transac-
tions that appear on-chain in the protocol. Therefore, we 

define on-chain execution costs measured in USD1 as the 
amount of Ethereum transaction fees required to execute 
each operation: create, redeem and refund. The create 
operation represents the process of creating an HTLC 
contract or generating a joint address and depositing 
assets into it. The redeem operation represents the trans-
fer process of assets in the case of successful swap, and 
the refund operation represents the transfer process of 
assets in the case of timeout. We implement and execute 
our ACCS scheme designed for ECDLP-based signatures 
on the Ethereum platform, and calculate the gas cost for 
each operation and an ACCS (including two create oper-
ations and two redeem operations). For each experimen-
tal result, we conduct 100 tests and take the average.

 Comparison. We compare the gas cost of our scheme 
with other ACCS schemes. Such as, Hatch’s HTLC 
scheme (Hatch 2019) (denoted as Hat19), Lisi’s ACCS 
scheme (Lisi et  al. 2020), which includes two parts of 
implementation, one is the payment permission (denoted 
as LDM20-I) and the other is the review reward (denoted 
as LDM20-II), Foundry’s scheme (Foundry 2020) 
(denoted as Fou20), Tsabary’s Mutual-Assured-Destruc-
tion Hashed Time-Locked Contract (MAD-HTLC) 
scheme (Tsabary et  al. 2021) (denoted as TYM21), and 
two implementations of Hoenisch (Hoenisch 2020, 2020) 
(denoted as Hoe20-I and Hoe20-II).

The gas costs of three operations for different scheme 
are shown in Fig.  5, and the gas costs of an ACCS are 
shown in Fig. 6. The experimental results show that com-
pared with other schemes, our scheme reduces the gas 
costs by approximately 84.37% to 96.67% in the create 
operation. In the redeem operation, our scheme reduces 

Fig. 4 Time costs of NIZK protocol

1 The costs are in USD as per exchange rates of 19 Oct. 2023: ETH/USD 
1555.18. Note that the data shown in Figs. 5 and 6 only retains two decimal 
places.



Page 14 of 22Zhu et al. Cybersecurity            (2024) 7:12 

gas costs by approximately 39.54% to 77.17%. In the 
refund operation, our scheme can reduce gas costs by up 
to approximately 63.83%. When performing an ACCS, 
compared with other schemes, our scheme reduces gas 
costs by approximately 77.91% to 94.17%. This is because 
our ACCS scheme requires only a standard ETH transfer 
between two players, which is a basic inexpensive opera-
tion in Ethereum. However, HTLC implementations 
often require significant gas costs to perform the create 
operation. Therefore, compared to existing schemes, the 
on-chain gas costs of our scheme are very low.

 (2) Off-chain costs
Implementation details.  Li et  al. (2022) showed that 

the time costs of ACCS can be roughly divided into on-
chain transaction confirmation time and other time over-
head of off-chain protocol execution. Since transaction 
confirmation time is specific to the blockchain platform 
used, we only consider the off-chain time costs. Accord-
ing to Heilman et  al. (2017), we calculate the off-chain 
time costs of our scheme without considering network 
latency. We use the libsecp256k1 library (Poelstra 2018) 
to implement bulletproofs range proofs, and the liblhtlp 
library (Bhat 2020) to implement the VTS scheme. All 
experimental results are averages of 1000 runs, and we 
report the results in seconds.

Time costs of Exchange phase. We evaluate the off-chain 
time cost of the Exchange phase under different seg-
ment lengths, considering both cases of 256-bit and 128-
bit private keys. Our experimental results are shown in 
Fig. 7. The results show that when the private key length 
is 128 bits, the off-chain time cost in the Exchange phase 
does not exceed 2.7 s. When the private key length is 256 
bits, the off-chain time cost does not exceed 5.3 s.

Comparison I.  In the case of a 256-bit private key, we 
compare the off-chain time costs of our scheme with 
other schemes in the Exchange phase. Such as, Li’s 
ZeroCross scheme (Li et  al. 2022) (denoted as LWL22-
I and LWL22-II), Chen’s scheme (Chen et  al. 2023) 
(denoted as CYS23), Qin’s Blindhub scheme and its opti-
mized scheme (Qin et  al. 2023) (denoted as QPM23-I 
and QPM23-II), Tairi’s A2L scheme (Tairi et  al. 2021) 
(denoted as TMM21), and Hanzlik’s Sweep-UC scheme 
(Hanzlik et  al. 2022) (denoted as HLT22). Our experi-
mental results are shown in Fig. 8. The results show that 
the average time cost of our scheme in the Exchange 
phase is better than other schemes.

Time costs of an ACCS. In the case of a 256-bit pri-
vate key, we calculate the time costs of our scheme to 
execute an ACCS. The average off-chain time cost of our 
scheme is 16.85 s, which has no significant impact on the 

Fig. 5 Gas costs of three operations for different schemes

Fig. 6 Gas costs of an ACCS for different schemes



Page 15 of 22Zhu et al. Cybersecurity            (2024) 7:12  

efficiency of ACCS according to (Li et al. 2022). Because 
compared with the on-chain transaction confirmation 
time2, the off-chain time cost of our scheme is very low. 
Therefore, its impact on the existing system is very small.

Comparison II. In the case of a 256-bit length private 
key, we compare the off-chain time costs of our scheme 
with other schemes in executing an ACCS. Such as, Qin’s 
Blindhub scheme and its optimized scheme (Qin et  al. 
2023) (denoted as QPM23-I and QPM23-II), Zamyatin’s 
XCLAIM scheme (Zamyatin et  al. 2019) (denoted as 
ZHL19), and Hanzlik’s Sweep-UC scheme (Hanzlik et al. 
2022) (denoted as HLT22). Our experimental results are 

shown in Table  2. The results show that the off-chain 
time cost of our scheme is as practical as other schemes.

 (3) Experimental conclusion
In summary, although ACCS functionality is easy to be 

implemented using smart contracts such as HTLC, our 
protocol is preferable due to its advantages, such as lower 
on-chain overhead, and practical off-chain time costs 
similar to other schemes.

Conclusion
In this paper, we propose a generic ACCS scheme, inde-
pendent from the underlying blockchains. To the best 
of our knowledge, this is the first solution of this kind. 
Our results are as follows. First, we define a formal sys-
tem model of ACCS. Next, we present a generic ACCS 
scheme meets our model. This scheme admits atomic-
ity in cross-chain swaps without the need for a TTP 
and protects users’ privacy. Finally, by using the NIZK 
protocol as a tool, we instantiate our generic scheme for 
ECDLP-based signatures. In addition, we implement our 
scheme, and the experimental results show that our pro-
tocol outperforms the existing ACCS schemes, such as 
the HTLC-based schemes.

Fig. 7 Time costs of Exchange phase

Fig. 8 Time costs of Exchange phase for different schemes

Table 2 Time costs of an ACCS for different schemes

Schemes Ours average QPM23‑I QPM23‑II ZHL19 HLT22

Time costs (s) 16.85 17.24 9.15 358.8 12.37

2 Taking Ethereum (Buterin 2013), Bitcoin (Nakamoto 2008), and Monero 
(Noether 2014) as examples, their transaction confirmation times are 180 s, 
3600 s, and 3840 s respectively.



Page 16 of 22Zhu et al. Cybersecurity            (2024) 7:12 

However, although our research provides some insights 
into the field of ACCS, we must also acknowledge the 
limitations and unresolved issues of this research. There-
fore, we propose some possible future work here. On the 
one hand, we will further improve the efficiency of our 
scheme in the future. The current scheme can meet the 
requirements of generality, privacy, and atomicity with-
out TTP at the same time. However, there is still room 
for improvement in efficiency of our scheme. In the 
future, we will explore more effective cross-chain proto-
cols to improve the real-time nature of transactions. On 
the other hand, we will expand the cross-chain function-
ality of the scheme in the future. Our scheme is mainly 
applicable to ACCS, however, the transfer of assets and 
data between different chains is also a common applica-
tion scenario. Here, we take ACCS as a starting point, 
and in our future work, we will further study solutions 
that can achieve other cross-chain functions to meet the 
constantly evolving market demand.

In a word, we believe these future works will contribute 
to the development of the blockchain and cryptocurrency 
fields. We encourage more researchers to participate in 
this field to unlock its potential value and promote its 
further development.

Appendix A Exchange protocol
The Exchange protocol consists of 6 algorithms.

– sk1[·] ← DivideSegment(sk1, l, κ) . Given a private 
key share sk1 , the algorithm divides it into κ seg-
ments, denoted as sk1[·] = (sk1[1], ..., sk1[κ]) . Each 
segment’s length is l bits (with leading zeros added if 
the length is less than l).

– (�r, �com, (πrpi)i∈[κ],πcc ,πpk) ← ComProofGen(sk1[·])  . 
Given κ-Segmentation of sk1 , the algorithm outputs a 
commitment vector �com for each segment in sk1[·] , 
its corresponding range proofs (πrpi)i∈[κ] , a correct 
commitment proof πcc , and a Zero-Knowledge Proof 
of Knowledge (ZKPoK) for the private key share sk1 , 
denoted as πpk . Specifically, the algorithm does the 
following: 

1. For each i ∈ [κ] , runs 
(comi, (sk1[i], ri)) ← �Com.Com(h, sk1[i]) 
to generate commitment comi for the i-th seg-

ment of the private key share. Next, it runs 
πrpi ← �RP.Proof(comi) to generate a range 
proof πrpi for the i-th commitment. This range 
proof is used to verify that the commitment comi 
encrypts a segment with a binary length of l (if 
the length is less than l, leading zeros are filled).

2. Let �com = (comi)i∈[κ] and �r = (r)i∈[κ] . Next, 
runs πcc ← �NIZK.Proof( �com) to generate a 
proof of correct commitment. This proof is used 
to verify that each commitment item comi at 
position i indeed encrypts the i-th item in the κ
-Segmentation of sk1.

3. Runs πpk ← �NIZK.Proof(sk1) to generate a 
ZKPoK for sk1 , where sk1 is the correct private 
key share corresponding to the public key.

4. Takes (�r, �com, (πrpi)i∈[κ],πcc,πpk) as the output.

– 0/1 ← ComProofCheck((πrpi)i∈[κ],πcc,πpk) . Given 
range proofs (πrpi)i∈[κ] , a correct commitment proof 
πcc , and a ZKPoK πpk , the algorithm outputs 0 to 
indicate validation failure and outputs 1 to indicate 
validation success. Specifically, the algorithm does 
the following: 

1. For each i ∈ [κ] , runs 0/1 ← �RP.Verify(πrpi) , if 
it outputs 0, aborts and returns 0 as output.

2. Runs 0/1 ← �NIZK.Verify(πcc) , if it outputs 0, 
aborts and returns 0 as output.

3. Runs 0/1 ← �NIZK.Verify(πpk) , if it outputs 0, 
aborts and returns 0 as output.

4. Returns 1 as output.

– (sk1[i], ri) ← SegComOpen(sk1, �r, i) . Given a pri-
vate key share sk1 , a random value vector �r , and the 
index i of the commitment to be opened, the algo-
rithm outputs the opening value (sk1[i], ri) of the 
commitment.

– 0/1 ← SegComCheck(h, sk1[i], com, (sk1[i], ri))  . 
Given a public value h of the commitment, 
the i-th segment of a private key share, a com-
mitment com , and a corresponding open-
ing value (sk1[i], ri) , the algorithm runs 
0/1 ← �Com.Vf(h, sk1[i], com, (sk1[i], ri)) and out-
puts the result.

– sk1 ← ConnectSegment(sk1[·]) . Given sk1 ’s κ-Seg-
mentation, the algorithm outputs sk1.



Page 17 of 22Zhu et al. Cybersecurity            (2024) 7:12  

Appendix B One‑to‑one ACCS protocol
Our ACCS protocol can be divided into five phases: setup 
phase, freezing phase, exchange phase, complete phase 
and timeout phase. The complete one-to-one ACCS pro-
tocol is shown in Fig. 9 and 10.

Appendix C Proof of Theorem 1
Completeness. To prove the correctness of the protocol 
in Appendix B, we discuss two scenarios: timeout and no 
timeout. 

Fig. 9 One-to-one ACCS protocol - part I



Page 18 of 22Zhu et al. Cybersecurity            (2024) 7:12 

1.  No timeout. Assuming that both users participating 
in ACCS follow the protocol, in the case of no time-
out, they freeze their assets to the joint addresses 
and successfully exchange their private key shares. 
Therefore, they can sign the swap transactions and 
publish the signatures to swap their assets. This 
results in both users’ states being 1 at the end of the 
protocol, i.e., stateA = 1 ∧ stateB = 1.

2.  Timeout. Assuming that both users participat-
ing in ACCS follow the protocol, the timeout is 

usually caused by one user being offline, resulting 
in the failure of the Exchange protocol. In the case 
of timeout, users will be unable to reconstruct the 
complete private key corresponding to the joint 
address. Consequently, they will not execute the 
complete phase but execute the unfreeze phase 
to obtain the signature of the refund transaction, 
and then publish it for refund. This results in both 
users’ states being 0 at the end of the protocol, i.e., 
stateA = 0 ∧ stateB = 0.

Fig. 10 One-to-one ACCS protocol - part II



Page 19 of 22Zhu et al. Cybersecurity            (2024) 7:12  

Soundness. We use proof by contradiction to prove that 
the protocol in Appendix B satisfies the soundness prop-
erty. Assuming that an adversary A generates a commit-
ment com∗ and its corresponding proof π∗ , such that the 
output of the Verify algorithm is 1, but the output of the 
�DS.Vf algorithm is 0. This would imply that the adver-
sary has broken the soundness property of the underlying 
VTS module �VTS (Thyagarajan et al. 2020; Thyagarajan 
2022).

Timed Privacy. We use proof by contradiction to prove 
that the protocol in Appendix B  satisfies the timed pri-
vacy property. Assuming a PPT adversary A with run-
ning time t ≪ T− const1 generates a valid signature σ ∗ , 
resulting in the output of the �DS.Vf algorithm being 1. 
This implies that the adversary has broken the privacy 
property of the underlying VTS module �VTS (Thyaga-
rajan et al. 2020; Thyagarajan 2022). Similarly, if an hon-
est user A with running time t ≫ T+ const1 executes the 
UnFreeze algorithm and obtains an invalid signature σ , 
resulting in the output of the �DS.Vf algorithm being 0. 
It also indicates that the adversary has broken the privacy 
property of the underlying VTS module �VTS (Thyagara-
jan et al. 2020; Thyagarajan 2022).

Partial Fairness. The partial fairness property of the 
protocol ensures that the following situation is impos-
sible: |Pr[sk(AB)A = sk

′

A] − Pr[sk
(BA)
B = sk

′

B]| is greater 
than 2const2

2�−i + negl(�) , where � = |sk
(AB)
A | = |sk

(BA)
B | is 

the security parameter representing the length of the pri-
vate key share. Here, i represents the prefix bit length of 
the private key share sk(BA)B  obtained by user A when the 
Exchange protocol aborts, and const2 = l represents the 
segment bit length specified by the system in the setup 
phase.

Let A be an adversary who breaks the partial fair-
ness property of our protocol. To prove that the proto-
col in Appendix B satisfies the partial fairness property, 
we distinguish between two types of adversaries. Type 
I represents an adversary A that cannot lie. This type 
of adversary follows the protocol but may abort prema-
turely. Type II represents an adversary A that can lie, 
meaning they may forge range proofs, NIZK proofs, and/
or segment commitments. 

1.  Type I ‑ User A is corrupted. In this case, the 
adversary A may choose to abort the Exchange 
protocol either before or after user B sends the 
opening value of a segment commitment dur-
ing the protocol execution. First, we assume that 
the adversary A aborts the Exchange protocol 
before user B sends the opening value of a seg-
ment commitment during the protocol execution. 
At this point, the adversary A obtains the first i 

bits of sk(BA)B  , and user B obtains the first i + l bits 

of sk(AB)A  . Thus, we have Pr[sk(AB)A = sk
′

A] =
1

2�−i−l  

and Pr[sk
(BA)
B = sk

′

B] =
1

2�−i , which leads to 

|Pr[sk
(AB)

A
= sk

(AB)′

A
] − Pr[sk

(BA)

B
= sk

′

B
]| = 2l−1

2�−i

≤ 2l

2�−i
+ negl(�) . Therefore, in this case, our pro-

tocol satisfies the property of partial fairness. 
Next, we assume that the adversary A aborts the 
Exchange protocol after user B sends the open-
ing value of a segment commitment during the 
protocol execution. At this point, the adver-
sary A obtains the first i bits of sk(BA)B  , and user B 
also obtains the first i bits of sk(AB)A  . Thus, we have 
Pr[sk

(AB)

A
= sk

′

A
] = Pr[sk

(BA)

B
= sk

′

B
] = 1

2�−i
 , which 

 results in |Pr[sk(AB)
A

= sk
′

A
] − Pr[sk

(BA)

B
= sk

(BA)′

B
]|

= 0 ≤ 2l

2�−i
+ negl(�) . Therefore, in this case, our 

protocol satisfies the property of partial fairness.
2.  Type I ‑ User B is corrupted. In this case, the adver-

sary A may choose to abort the Exchange proto-
col either before or after user A sends the opening 
value of a segment commitment during the proto-
col execution. First, we assume that the adversary A 
aborts the Exchange protocol before user A sends 
the opening value of a segment commitment dur-
ing the protocol execution. At this point, the user 
A obtains the first i bits of sk(BA)B  , and adversary A 
also obtains the first i bits of sk(AB)A  . Thus, we have  
Pr[sk

(AB)
A = sk

′

A] = Pr[sk
(BA)
B = sk

′

B] =
1

2�−i , which  

leads to |Pr[sk(AB)
A

= sk
′

A
] − Pr[sk

(BA)

B
= sk

(BA)′

B
]|

= 0 ≤ 2l

2�−i
+ negl(�) . Therefore, in this case, 

our protocol satisfies the property of par-
tial fairness. Next, we assume that the adver-
sary A aborts the Exchange protocol after user 
A sends the opening value of a segment com-
mitment during the protocol execution. At this 
point, the user A obtains the first i bits of sk(BA)B  , 
and adversary A obtains the first i + l bits of 
sk

(AB)
A  . Thus, we have Pr[sk

(AB)
A = sk

′

A] =
1

2�−i−l  

and Pr[sk
(BA)
B = sk

′

B] =
1

2�−i , which results in 

|Pr[sk
(AB)

A
= sk

(AB)′

A
] − Pr[sk

(BA)

B
= sk

′

B
]| = 2l−1

2�−i

≤ 2l

2�−i
+ negl(�) . Therefore, in this case, our proto-

col satisfies the property of partial fairness.
3.  Type II. For Type II, We use proof by contradic-

tion to prove that the protocol in Appendix B sat-
isfies the partial fairness property. Assuming that 
an adversary A forges a range proof π∗

1  , a NIZK 
proof π∗

2  and/or a segment commitment com∗ that 



Page 20 of 22Zhu et al. Cybersecurity            (2024) 7:12 

can pass the ComProofCheck and SegComCheck 
algorithms. This implies that the adversary has bro-
ken the soundness property of the underlying zero-
knowledge proof module �RP and/or �NIZK , and/
or the binding property of the underlying commit-
ment scheme module �Com.

Appendix D Proof of Theorem 2
Before proceeding with formal proof, we first emphasize 
the role of range proofs, which use Bulletproofs for effi-
cient instantiation. To intuitively understand the reasons 
behind this, first we describe a possible attack. Subse-
quently, we will explain why Bulletproofs range proofs 
can effectively resist such attack.

The zero-knowledge proof protocol of correct 
commitment proves that Ci encrypts θ [i] , such that 
P(2l) =

∑
i∈[κ] θ [i]2

l(i−1) = θ , where θ is the DL of D. 
However, this alone does not guarantee the correctness of 
the protocol, as there exists a simple attack that involves 
generating commitments for shifted segments, such that 
Ci encrypts plaintext that shifts θ [i] . In this attack, the 
final sum of plaintext remains the same, i.e., θ , but each 
Ci will be opened incorrectly. Specifically, the meaning of 
this attack is that if the malicious user A aborts during 
the gradual release of secret segments, then the honest 
user B will have nothing, while A will have all the correct 
secret segments that have already been released by B.

We use an example to illustrate the harm of this 
attack. Assuming that the adversary only changes two 
secret segments, namely the i-th segment and the i + 1

-th segment. The modified values are θ [i]′ = θ [i] + b[i] 
and θ [i + 1]′ = θ [i + 1] + b[i + 1] . After modification, 
the commitment value for the i-th segment becomes 
C ′
i = riG + θ [i]′Gi = riG + (θ [i] + b[i])Gi , and the 

commitment value for the i + 1-th segment becomes 
C
′
i+1

= ri+1G + θ[i + 1]′Gi+1 = ri+1G + (θ[i + 1]+
b[i + 1])Gi+1 . During the gradual release of secret seg-
ments, the adversary sends θ [i]′ and θ [i + 1]′ to the 
verifier, claiming that they are θ [i] and θ [i + 1] . The veri-
fier can only check whether the commitment has been 
opened correctly, but cannot determine whether the 
opened plaintext is the correct secret segment θ [i] , or 
a shift of it, i.e., θ [i]′ = θ [i] + b[i] . As a result, the com-
mitments of both secret segments are opened to incor-
rect values. Specifically, the i-th segment is opened to 
θ [i] + b[i] �= θ [i] , and the i + 1-th segment is opened to 
θ [i + 1] + b[i + 1] �= θ [i + 1].

However, this attack can be avoided with a high proba-
bility by generating Bulletproofs range proof for commit-
ment Ci . Next, we show how Bulletproofs range proofs 

prevent this specific attack, and extend it to all possible 
changes to the encrypted segments θ [·] . There are four 
cases of this attack: 

1. θ [i]′ ∈ [0, ..., 2l − 1] ∧ θ [i + 1]′ ∈ [0, ..., 2l − 1].
2. θ [i]′ /∈ [0, ..., 2l − 1] ∧ θ [i + 1]′ ∈ [0, ..., 2l − 1].
3. θ [i]′ ∈ [0, ..., 2l − 1] ∧ θ [i + 1]′ /∈ [0, ..., 2l − 1].
4. θ [i]′ /∈ [0, ..., 2l − 1] ∧ θ [i + 1]′ /∈ [0, ..., 2l − 1].

For the latter three cases, there is a high probabil-
ity that at least one Bulletproofs range proof can-
not be verified. In the first case, in order to pass 
the verification of the zero-knowledge proof proto-
col of correct commitment, it is necessary to satisfy ∑

i∈[κ] b[i]2
l(i−1) +

∑
i∈[κ] b[i + 1]2l(i−1) = np , where np 

is a multiple of the order. Every option except n = 0 and 
b[i] = b[i + 1] = 0 will cause b[i] and b[i + 1] to be out of 
the interval [0, ..., 2l − 1] with a very high probability.

Perfect Completeness. Since the prover knows the com-
mon reference string CRS and the segment vector θ [·] , 
he can compute U = 1

s (
∑

i∈[κ] Ci − rG) without knowing 
s. Here, U =

∑
i∈[κ] θ[i]Gi−1 . Similarly, since the prover 

knows the common reference string CRS and the coeffi-
cients of the formal polynomial W (·) , he can compute V. 
Here, V =

∑
i∈[κ−1]W [i]Gi−1.

Computational Soundness. We assume that the one 
who breaks the soundness of the protocol is the PPT 
adversary A , and B is an adversary we built. B receives 
(G0,G1,G2, ...,Gκ ) and uses this tuple as the CRS , then 
sends it to A . A returns the following values:

• θ ∈ Z
∗
p.

• θ∗ ∈ Z
∗
p such that D = θ∗G and θ  = θ∗.

• For each i ∈ [κ] there exist (ri, θ[i]) ∈ (Z∗
p × Z

∗
p)

κ 
such that �C = (Ci)i∈κ , where Ci = riG + θ [i]Gi.

• π = (r,U ,V ) ∈ Z
∗
p ×G×G.

The proof is divided into two steps. First we assume that 
r  =

∑
i∈[κ] ri mod p . In this case, we can deduce that 

U = 1
s ((

∑
i∈[κ] ri − r)G +

∑
i∈[κ] θ [i]s

iG) . Since θ [i] is 
known, B can compute 1s θ [i]s

iG = θ [i]si−1G = θ [i]Gi−1 . 

Consequently, B can deduce 
∑

i∈[κ] ri−r

s G . Given that 

δ =
∑

i∈[κ] ri − r �= 0mod p is known, 1s G = 1
δ
(U − θ [i]Gi−1) 

can be easily computed, thus breaking the κ-DHI 
assumption.

Next, we assume that 
∑

i∈[κ] ri = r . When the verifi-
cation of V passes, it implies that we have 
V =

∑
i∈[κ](θ [i]s

i−1−θ∗[i]2l(i−1))

s−2l
G . If the adversary A wins, 

it means that there exists some j ∈ [κ] such that 
θ [j] �= θ∗[j] . Further analysis reveals that Bulletproofs 



Page 21 of 22Zhu et al. Cybersecurity            (2024) 7:12  

guarantee the length of θ [i] and θ∗[i] to be l, making it 
impossible to encrypt shifted segment. Thus, we have �

=
∑

i∈[κ] 2
l(i−1)(θ [i] − θ∗[i]) �= 0mod p . We can 

rephrase V as V = (
�

s−2l
+

∑
i∈[κ] θ [i]s

i−1−θ [i]2l(i−1)

s−2l
)G

= (
�

s−2l
+

∑
i∈[κ] θ [i](s

i−1−2l(i−1))

s−2l
)G = (

�

s−2l
+ Z(s))G  . 

Because ∀i ∈ [κ] : s − 2l |si−1 − 2l(i−1) (where s is 
required to contain a factor 2l ), B can efficiently com-
pute the coefficients of the polynomial Z(·) . Further-
more, because 

�
∈ Z

∗
p is also known, this allows B to 

compute 1

s−2l
G = 1� (V − Z(s)G) , thus breaking the κ-

SDH assumption.
Perfect Zero-Knowledge. The simulator correctly 

generates the common reference string CRS and 
saves the trapdoor s. For the given statements D and 
�C = (Ci)i∈[κ] , the simulator chooses a random number 
r′ ∈ Z

∗
p , and reveal it as the randomness of 

∑
i∈[κ] Ci . 

Then, the simulator computes U ′ = 1
s (
∑

i∈[κ] Ci − r′G) 
and V ′ = 1

s−2
(U ′ − D) . The following shows that the 

r′,U ′,V ′ generated by the simulator are indistinguish-
able from the r, U, V in the real experiment:

• r′ is uniformly distributed as well as r.
• Let the function f1 : G → G be defined as 

f1(x) =
∑

i∈[κ] Ci − xG . In the simulated experi-
ment, D′ = f1(r

′) , and in the real experiment, 
D′ = f1(r).

• Let the function f2 : G → G be defined as 
f2(x) =

1
s f1(x) . In the simulated experiment, 

U ′ = f2(r
′) , and in the real experiment, U = f2(r).

• Let the function f3 : G → G be defined as 
f3(x) =

1
s−2

(f2(x)− D) . In the simulated experi-
ment, V ′ = f3(r

′) , and in the real experiment, 
V = f3(r).

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable 
comments.

Authors’ contributions
The author(s) read and approved the final manuscript.

Funding
This work was supported by National Natural Science Foundation of China 
(Nos. 62172404, 62172411, 61972094, 62202458).

Availability of data and materials
Not applicable.

Declarartions

Competing interests
The authors declare that they have no competing interests.

Received: 15 August 2023   Accepted: 14 December 2023

References
Agbo CC, Mahmoud QH, Eklund JM (2019) Blockchain technology in health-

care: a systematic review. Healthcare 7:56
Asokan N (1998) Fairness in electronic commerce
Bentov I, Ji Y, Zhang F, Breidenbach L, Daian P, Juels A (2019) Tesseract: Real-

time cryptocurrency exchange using trusted hardware. In: Proceedings 
of the 2019 ACM SIGSAC conference on computer and communications 
security, pp. 1521–1538

Bhat A (2020) Linearly homomorphic time lock puzzle library. https:// github. 
com/ verifi able- timed- signa tures/ liblh tlp

Boneh D, Boyen X (2008) Short signatures without random oracles and the 
SDH assumption in bilinear groups. J Cryptol 21(2):149–177

Boneh D, Gentry C, Lynn, B, Shacham H (2003) Aggregate and verifiably 
encrypted signatures from bilinear maps. In: Advances in Cryptology-
EUROCRYPT 2003: international conference on the theory and applica-
tions of cryptographic techniques, Warsaw, 2003 Proceedings 22, pp. 
416–432. Springer

Buterin V (2013) Ethereum white paper. GitHub Repository 1:22–23
Bünz B, Bootle J, Boneh D, Poelstra A, Wuille P, Maxwell G (2018) Bulletproofs: 

short proofs for confidential transactions and more. In: 2018 IEEE sympo-
sium on security and privacy (SP), pp. 315–334. IEEE

Camacho P (2013) Fair exchange of short signatures without trusted third 
party. In: Topics in cryptology–CT-RSA 2013: the cryptographers’ track 
at the RSA conference 2013, San Francisco. Proceedings, pp. 34–49 . 
Springer

Camenisch J, Stadler M (1997) Proof systems for general statements about dis-
crete logarithms. Technical Report/ETH Zurich, Department of Computer 
Science 260

Chase M, Orrù M, Perrin T, Zaverucha G (2022) Proofs of discrete logarithm 
equality across groups. Cryptology ePrint Archive

Chen L, Yao Z, Si X, Zhang Q (2023) Three-stage cross-chain protocol based on 
notary group. Electronics 12(13):2804

Cleve R (1986) Limits on the security of coin flips when half the processors 
are faulty. In: Proceedings of the eighteenth annual ACM symposium on 
theory of computing, pp. 364–369

Deshpande A, Herlihy M (2020) Privacy-preserving cross-chain atomic swaps. 
In: International conference on financial cryptography and data security, 
pp. 540–549. Springer

Erwig A, Faust S, Hostáková K, Maitra M, Riahi S (2021) Two-party adaptor 
signatures from identification schemes. In: IACR international conference 
on public-key cryptography, pp. 451–480. Springer

Foundry F (2020) HTLC solidity implementation. https:// github. com/ funct ional 
found ry/ ether eum- htlc

Fournier L (2019) One-time verifiably encrypted signatures aka adaptor 
signatures

Garay J, Kiayias A, Leonardos N (2015) The bitcoin backbone protocol: analysis 
and applications. In: Annual international conference on the theory and 
applications of cryptographic techniques, pp. 281–310. Springer

Gennaro R, Goldfeder S (2018) Fast multiparty threshold ECDSA with fast 
trustless setup. In: Proceedings of the 2018 ACM SIGSAC conference on 
computer and communications security, pp. 1179–1194

Glaeser N, Maffei M, Malavolta G, Moreno-Sanchez P, Tairi E, Thyagarajan SAK 
(2022) Foundations of coin mixing services. In: Proceedings of the 2022 
ACM SIGSAC conference on computer and communications security, pp. 
1259–1273

Gordon SD, Katz J (2012) Partial fairness in secure two-party computation. J 
Cryptol 25(1):14–40

Gugger J (2020) Bitcoin-monero cross-chain atomic swap. Cryptology ePrint 
Archive

Guo Y, Liang C (2016) Blockchain application and outlook in the banking 
industry. Financ Innov 2:1–12

Hanser C, Rabkin M, Schröder D (2015) Verifiably encrypted signatures: security 
revisited and a new construction. In: Computer Security–ESORICS 2015: 

https://github.com/verifiable-timed-signatures/liblhtlp
https://github.com/verifiable-timed-signatures/liblhtlp
https://github.com/functionalfoundry/ethereum-htlc
https://github.com/functionalfoundry/ethereum-htlc


Page 22 of 22Zhu et al. Cybersecurity            (2024) 7:12 

20th European symposium on research in computer security, Vienna, 
2015, Proceedings, Part I 20, pp. 146–164 . Springer

Hanzlik L, Loss J, Thyagarajan SA, Wagner B (2022) Sweep-uc: swapping coins 
privately. Cryptology ePrint Archive

Hatch C (2019) Hashed timelock contract ethereum. https:// github. com/ 
chatch/ hashed- timel ock- contr act- ether eum

Hei Y, Li D, Zhang C, Liu J, Liu Y, Wu Q (2022) Practical AgentChain: a compat-
ible cross-chain exchange system. Futur Gener Comput Syst 130:207–218

Heilman E, Alshenibr L, Baldimtsi F, Scafuro A, Goldberg S (2017) Tumblebit: an 
untrusted bitcoin-compatible anonymous payment hub. In: Network and 
distributed system security symposium

Herlihy M (2018) Atomic cross-chain swaps. In: Proceedings of the 2018 ACM 
symposium on principles of distributed computing, pp. 245–254

Herlihy M, Liskov B, Shrira L (2019) Cross-chain deals and adversarial com-
merce. arXiv preprint arXiv: 1905. 09743

Hoenisch P, Mazumdar S, Moreno-Sanchez P, Ruj S (2022) Lightswap: an atomic 
swap does not require timeouts at both blockchains. In: International 
workshop on data privacy management, pp. 219–235. Springer

Hoenisch P, Pino LS (2021) Atomic swaps between bitcoin and monero. arXiv 
preprint arXiv: 2101. 12332

Hoenisch P (2020) COMIT contracts. https:// github. com/ comit- netwo rk/ block 
chain- contr acts/ blob/ 82cf3 3c0d0 1e445 f2bd0 5bf3e b32a0 143e6 72ab5/ 
src/ ether eum/ rfc003/ ether_ htlc. rs

Hoenisch P (2020) COMIT contracts. https:// github. com/ comit- netwo rk/ block 
chain- contr acts/ blob/ 82cf3 3c0d0 1e445 f2bd0 5bf3e b32a0 143e6 72ab5/ 
src/ ether eum/ rfc003/ erc20_ htlc. rs

Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure 
proof-of-stake blockchain protocol. In: Annual international cryptology 
conference, pp. 357–388 . Springer

Li Y, Weng J, Li M, Wu W, Weng J, Liu J-N, Hu S (2022) ZeroCross: a sidechain-
based privacy-preserving cross-chain solution for Monero. J Parallel 
Distrib Comput 169:301–316

Lisi A, De Salve A, Mori P, Ricci L (2020) Practical application and evaluation of 
atomic swaps for blockchain-based recommender systems. In: Proceed-
ings of the 2020 3rd international conference on blockchain technology 
and applications, pp. 67–74

Litecoin (2011) https:// litec oin. com/ en/
Luu L, Narayanan V, Zheng C, Baweja K, Gilbert S, Saxena P (2016) A secure 

sharding protocol for open blockchains. In: Proceedings of the 2016 
ACM SIGSAC conference on computer and communications security, pp. 
17–30

Manevich Y, Akavia A (2022) Cross chain atomic swaps in the absence of time 
via attribute verifiable timed commitments. In: 2022 IEEE 7th european 
symposium on security and privacy (EuroS &P), pp. 606–625. IEEE

Mazumdar S (2022) Towards faster settlement in HTLC-based cross-chain 
atomic swaps. In: 2022 IEEE 4th international conference on trust, privacy 
and security in intelligent systems, and applications (TPS-ISA), pp. 
295–304. IEEE

Midorikawa S (2019) Elliptic-Curve Cryptography Library. https:// github. com/ 
ellip tic- shiho/ ecpy

Mitsunari S, Sakai R, Kasahara M (2002) A new traitor tracing. IEICE Trans Fun-
dam Electron Commun Comput Sci 85(2):481–484

Nakamoto S (2008) Bitcoin whitepaper. URL: https://bitcoin. org/bitcoin. pdf-(: 
17.07. 2019)

Noether S (2014) Review of cryptonote white paper. HYPERLINK http:// mon-
ero. cc/ downl oads/ white paper_ review. pdf

Noether S (2018) Discrete logarithm equality across groups
Poelstra A (2018) Library for EC operations on curve secp256k1. https:// github. 

com/ apoel stra/ secp2 56k1- zkp
Poon J, Dryja T (2016) The bitcoin lightning network: scalable off-chain instant 

payments
Qin X, Pan S, Mirzaei A, Sui Z, Ersoy O, Sakzad A, Esgin MF, Liu JK, Yu J, Yuen 

TH (2023) Blindhub: Bitcoin-compatible privacy-preserving payment 
channel hubs supporting variable amounts. In: 2023 IEEE symposium on 
security and privacy (SP), pp. 2462–2480. IEEE

Reyna A, Martín C, Chen J, Soler E, Díaz M (2018) On blockchain and its integra-
tion with IoT. Challenges and opportunities. Future Gener Comput Syst 
88:173–190

Sahai A (1999) Non-malleable non-interactive zero knowledge and adaptive 
chosen-ciphertext security. In: 40th annual symposium on foundations of 
computer science (Cat. No. 99CB37039), pp. 543–553. IEEE

Schwartz D, Youngs N, Britto A (2014) The ripple protocol consensus algo-
rithm. Ripple Labs Inc White Paper 5(8):151

Shlomovits O, Leiba O (2020) Jugglingswap: scriptless atomic cross-chain 
swaps. arXiv preprint arXiv: 2007. 14423

Smith C (2023) SymPy. https:// github. com/ sympy/ sympy
Tairi E, Moreno-Sanchez P, Maffei M (2021) A 2 l: Anonymous atomic locks for 

scalability in payment channel hubs. In: 2021 IEEE symposium on security 
and privacy (SP), pp. 1834–1851. IEEE

Thyagarajan SAK, Malavolta G (2021) Lockable signatures for blockchains: 
scriptless scripts for all signatures. In: 2021 IEEE symposium on security 
and privacy (SP), pp. 937–954. IEEE

Thyagarajan SA (2022) Cryptographic locks for scriptless cryptocurrency pay-
ments. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg 
(FAU)

Thyagarajan SAK, Bhat A, Malavolta G, Döttling N, Kate A, Schröder D (2020) 
Verifiable timed signatures made practical. In: Proceedings of the 2020 
ACM SIGSAC conference on computer and communications security, pp. 
1733–1750

Thyagarajan SA, Malavolta G, Moreno-Sanchez P (2022) Universal atomic 
swaps: secure exchange of coins across all blockchains. In: 2022 IEEE 
symposium on security and privacy (SP), pp. 1299–1316. IEEE

TierNolan (2013) Atomic Swap - Bitcoin Wiki. https:// en. bitco in. it/ wiki/ Atomic_ 
swap

Tsabary I, Yechieli M, Manuskin A, Eyal I (2021) MAD-HTLC: because htlc is 
crazy-cheap to attack. In: 2021 IEEE symposium on security and privacy 
(SP), pp. 1230–1248. IEEE

Wang G, Nixon M (2021) Intertrust: towards an efficient blockchain interop-
erability architecture with trusted services. In: 2021 IEEE international 
conference on blockchain (Blockchain), pp. 150–159 . IEEE

Zamani M, Movahedi M, Raykova M (2018) Rapidchain: scaling blockchain via 
full sharding. In: Proceedings of the 2018 ACM SIGSAC conference on 
computer and communications security, pp. 931–948

Zamyatin A, Al-Bassam M, Zindros D, Kokoris-Kogias E, Moreno-Sanchez P, 
Kiayias A, Knottenbelt WJ (2021) Sok: communication across distributed 
ledgers. In: Financial cryptography and data security: 25th international 
conference, FC 2021, Virtual Event, Part II 25, pp. 3–36. Springer

Zamyatin A, Harz D, Lind J, Panayiotou P, Gervais A, Knottenbelt W (2019) 
Xclaim: trustless, interoperable, cryptocurrency-backed assets. In: 2019 
IEEE symposium on security and privacy (SP), pp. 193–210. IEEE

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Yang Tao Yang Tao (Email: taoyang@iie.ac.cn) is the corresponding 
author of this paper. She is an engineer in the State Key Laboratory 
of Information Security, Institute of Information Engineering, Chinese 
Academy of Sciences, China. She obtained her PhD from the Institute 
of Information Engineering, Chinese Academy of Sciences. Her main 
research interests include post-quantum cryptography and lattice-
based cryptography.

https://github.com/chatch/hashed-timelock-contract-ethereum
https://github.com/chatch/hashed-timelock-contract-ethereum
http://arxiv.org/abs/1905.09743
http://arxiv.org/abs/2101.12332
https://github.com/comit-network/blockchain-contracts/blob/82cf33c0d01e445f2bd05bf3eb32a0143e672ab5/src/ethereum/rfc003/ether_htlc.rs
https://github.com/comit-network/blockchain-contracts/blob/82cf33c0d01e445f2bd05bf3eb32a0143e672ab5/src/ethereum/rfc003/ether_htlc.rs
https://github.com/comit-network/blockchain-contracts/blob/82cf33c0d01e445f2bd05bf3eb32a0143e672ab5/src/ethereum/rfc003/ether_htlc.rs
https://github.com/comit-network/blockchain-contracts/blob/82cf33c0d01e445f2bd05bf3eb32a0143e672ab5/src/ethereum/rfc003/erc20_htlc.rs
https://github.com/comit-network/blockchain-contracts/blob/82cf33c0d01e445f2bd05bf3eb32a0143e672ab5/src/ethereum/rfc003/erc20_htlc.rs
https://github.com/comit-network/blockchain-contracts/blob/82cf33c0d01e445f2bd05bf3eb32a0143e672ab5/src/ethereum/rfc003/erc20_htlc.rs
https://litecoin.com/en/
https://github.com/elliptic-shiho/ecpy
https://github.com/elliptic-shiho/ecpy
http://monero.cc/downloads/whitepaper_review.pdf
http://monero.cc/downloads/whitepaper_review.pdf
https://github.com/apoelstra/secp256k1-zkp
https://github.com/apoelstra/secp256k1-zkp
http://arxiv.org/abs/2007.14423
https://github.com/sympy/sympy
https://en.bitcoin.it/wiki/Atomic_swap
https://en.bitcoin.it/wiki/Atomic_swap

	Atomic cross-chain swap based on private key exchange
	Abstract 
	Introduction
	Related work
	Challenges of the the previous work
	Our contribution
	Technical overview

	Preliminaries
	Number theoretic assumptions
	Digital signatures schemes
	Commitment schemes

	The model of ACCS
	System model
	Security definition

	Our generic atomic cross-chain swaps scheme
	NIZK for the correct commitment of DL
	Segmentation range proofs
	Zero-knowledge proof protocol of correct commitment

	Instantiation: ACCS for ECDLP-based signatures
	Instantiation of the generic construction
	Extensions

	Experimental analysis
	Performance analysis of NIZK protocol
	Comparison with other schemes

	Conclusion
	Appendix A Exchange protocol
	Appendix B One-to-one ACCS protocol
	Appendix C Proof of Theorem 1
	Appendix D Proof of Theorem 2
	Acknowledgements
	References


