
Hossain and Islam Cybersecurity (2024) 7:16
https://doi.org/10.1186/s42400-024-00205-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Enhanced detection of obfuscated malware
in memory dumps: a machine learning
approach for advanced cybersecurity
Md. Alamgir Hossain1* and Md. Saiful Islam1

Abstract

In the realm of cybersecurity, the detection and analysis of obfuscated malware remain a critical challenge, especially
in the context of memory dumps. This research paper presents a novel machine learning-based framework designed
to enhance the detection and analytical capabilities against such elusive threats for binary and multi type’s malware.
Our approach leverages a comprehensive dataset comprising benign and malicious memory dumps, encompass-
ing a wide array of obfuscated malware types including Spyware, Ransomware, and Trojan Horses with their sub-
categories. We begin by employing rigorous data preprocessing methods, including the normalization of memory
dumps and encoding of categorical data. To tackle the issue of class imbalance, a Synthetic Minority Over-sampling
Technique is utilized, ensuring a balanced representation of various malware types. Feature selection is meticu-
lously conducted through Chi-Square tests, mutual information, and correlation analyses, refining the model’s
focus on the most indicative attributes of obfuscated malware. The heart of our framework lies in the deployment
of an Ensemble-based Classifier, chosen for its robustness and effectiveness in handling complex data structures. The
model’s performance is rigorously evaluated using a suite of metrics, including accuracy, precision, recall, F1-score,
and the area under the ROC curve (AUC) with other evaluation metrics to assess the model’s efficiency. The proposed
model demonstrates a detection accuracy exceeding 99% across all cases, surpassing the performance of all existing
models in the realm of malware detection.

Keywords Obfuscated malware detection, Memory dump analysis, Advanced malware analytics, Malware behavioral
patterns, Advanced malware analytics, Machine learning in cybersecurity

Introduction
Obfuscated malware is a sophisticated cyber threat that
employs evasion techniques to conceal its presence, mak-
ing it particularly challenging to detect using conven-
tional security methods. This type of malware, adept at
camouflaging itself within regular computing operations,
poses a significant threat to digital systems. Our research

is centered on developing advanced methodologies to
effectively identify and analyze these covert threats, spe-
cifically within memory dumps, where they are known to
skillfully mask their activities (Asghar et al. 2023; Bozkir
et al. 2021; Brezinski and Ferens 2023).

Addressing the challenge of obfuscated malware detec-
tion is imperative in the current digital ecosystem, where
reliance on technology is at an all-time high (Gorment
et al. 2023). In an era where data is the new currency and
digital interactions underpin the majority of our daily
activities, the potential impact of malware intrusions is
vast and multifaceted. From compromising personal data
to disrupting critical infrastructure, the threats posed
by undetected malware can lead to significant financial,

*Correspondence:
Md. Alamgir Hossain
alamgir.cse14.just@gmail.com
1 Institute of Information and Communication Technology (IICT),
Bangladesh University of Engineering and Technology (BUET), Dhaka,
Bangladesh

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00205-z&domain=pdf
http://orcid.org/0000-0001-5120-2911

Page 2 of 23Hossain and Islam Cybersecurity (2024) 7:16

privacy, and security ramifications. As digital technolo-
gies continue to advance and integrate more deeply into
various aspects of life, ensuring robust defense mecha-
nisms against such covert cyber threats becomes not just
a technical necessity but a cornerstone for maintaining
trust and integrity in the digital landscape (Beaman et al.
2021; Mukhtar et al. 2023).

Tackling the issue of obfuscated malware detection
presents a complex challenge due to the ever-evolv-
ing nature of malware techniques. These sophisticated
threats are designed to dynamically alter their code or
appearance, thereby effectively evading traditional signa-
ture-based detection systems. Additionally, the sheer vol-
ume and variety of malware, compounded by the rapid
pace of technological advancements, make it increas-
ingly difficult to maintain up-to-date and effective detec-
tion methods. This complexity is further amplified in
memory analysis, where distinguishing between benign
and malicious activities requires nuanced understanding
and advanced analytical capabilities, as malware often
operates by mimicking legitimate processes (Finder et al.
2022; Hossain Faruk et al. 2021; Rudd et al. 2023). Con-
sequently, staying ahead in this cybersecurity arms race
demands continuous innovation and adaptation in detec-
tion strategies.

In our research, we adopt a multi-faceted approach to
address the challenge of obfuscated malware detection.
We leverage advanced machine learning algorithms,
specifically focusing on gradient boosting classifiers, to
analyze and interpret memory dumps where such mal-
ware often resides covertly. Our methodology includes
comprehensive data preprocessing, class balancing using
Synthetic Minority Over-sampling Technique (SMOTE),
and meticulous feature selection through statistical tests
and information gain metrics. This strategy enables us
to effectively discern the subtle patterns and anomalies
indicative of obfuscated malware, providing a robust
framework for its identification and analysis beyond the
capabilities of traditional detection systems. Our pri-
mary contributions to this research can be summarized
as follows:

• Establish a robust machine learning framework with
gradient-boosting classifiers to detect obfuscated
malware with heightened accuracy, addressing both
binary and multi-class scenarios within memory
dumps.

• Utilize advanced data preprocessing, including class
balancing with feature selection, using statistical and
information-theoretic approaches to isolate key mal-
ware characteristics.

• Create a versatile and adaptable detection model
tailored to counter the dynamic nature of malware,

effectively handling its various forms across diverse
digital environments, and offering improved perfor-
mance compared to existing models.

Our approach stands out primarily for its unparalleled
accuracy in detecting obfuscated malware, achieving a
remarkable 100% accuracy across all evaluation metrics
for both binary and multi-class classifications. This level
of precision is unprecedented in the field and represents
a significant advancement over existing methods. The
integration of gradient boosting classifiers, combined
with sophisticated data preprocessing and feature selec-
tion techniques, enables our system to identify even the
most skillfully disguised malware. This high accuracy
ensures reliable security in various digital environments,
significantly reducing the risk of undetected malware
intrusions. Furthermore, the adaptability of our model to
both binary and multi-class malware types demonstrates
its versatility and effectiveness in addressing a wide range
of cybersecurity threats, making it a valuable tool in the
evolving landscape of digital security. Table 1 provides a
concise list of acronyms and abbreviations used through-
out this paper, aiding in clarity and comprehension.

The structure of this paper unfolds as follows: We start
with a Literature Review, exploring previous studies and
theories relevant to our research. This section is followed
by the Development of the Proposed Methodology,
where we describe the development and intricacies of
our detection model. Next, we present the Results of our
Analysis, depicted through detailed Tables and Figures

Table 1 Acronyms and abbreviations utilized throughout this
paper

Short form Abbreviations

CA Pearson correlation analysis

DCNN Dilated CNN

ACC Accuracy

PR Precision

RE Recall

FS F1-score

FPR False positive rate

ER Error rate

CK Cohen’s kappa

AUC Area under the ROC curve (AUC)

RF Random forest ensemble

BG Bagging ensemble

VT Voting ensemble

ADB AdaBoost ensemble

GB Gradient boosting ensemble

SMOTE Synthetic minority over-sampling technique

OCC One-class classifier

Page 3 of 23Hossain and Islam Cybersecurity (2024) 7:16

that visually and statistically demonstrate our findings.
The paper concludes with a final section that summarizes
our main discoveries and insights, followed by a compre-
hensive list of References that support our research.

Literature review
The landscape of cybersecurity is perpetually challenged
by the escalating sophistication of obfuscated malware,
presenting a formidable barrier to maintaining digital
security. This literature review delves into both seminal
and contemporary research within the domain of mal-
ware detection, with a focused lens on memory analysis
and the burgeoning role of machine learning techniques.
In traversing this evolving field, we critically examine
existing models, assess their success rates, and identify
their inherent limitations. This exploration not only illu-
minates the current state of cybersecurity defenses but
also underscores the necessity for advanced detection
methods capable of contending with increasingly elusive
cyber threats.

Background of obfuscated malware in memory dumps
In the ever-evolving landscape of cybersecurity, the term
“obfuscated malware” encapsulates a formidable category
of digital threats that transcend conventional detection
mechanisms. These sophisticated adversaries deploy
evasion techniques with unparalleled finesse, seeking
to cloak their true identities and activities within the
vast expanse of digital operations. Obfuscated malware
achieves this by employing a myriad of tactics, includ-
ing code encryption, polymorphic behavior, and other
obfuscation techniques that challenge traditional signa-
ture-based detection systems (Dang 2024; Gorment et al.
2023).

Within the realm of cybersecurity analysis, memory
dumps emerge as a crucial battleground for uncovering
the covert activities of obfuscated malware. A memory
dump is, essentially, a snapshot capturing the intricate
contents of a computer’s RAM at a specific moment in
time. In the context of malware analysis, this ephemeral
repository becomes a treasure trove, providing unpar-
alleled insights into the runtime behavior of programs
and processes (Naeem et al. 2022). Obfuscated malware,
cognizant of the volatility of RAM, strategically conceals
itself within memory, exploiting the dynamic nature of
the digital environment. The analysis of memory dumps
becomes a nuanced art, as these insidious entities often
masquerade as legitimate processes, rendering the
boundary between benign and malicious activities indis-
tinct. The challenge lies not only in uncovering these
malevolent actors but also in understanding the intri-
cate change they perform within the confines of volatile
memory.

In navigating the intricacies of memory dumps,
researchers unlock the potential to decipher the behav-
ioral patterns of obfuscated malware, transcending the
limitations of traditional detection methods. As digital
threats continue to evolve in sophistication, the signifi-
cance of memory dump analysis becomes increasingly
pronounced, necessitating innovative and adaptive
approaches to fortify the cybersecurity arsenal.

Review on detection approaches of obfuscated malware
in memory dumps
Historically, signature-based detection methods served
as the cornerstone of cybersecurity defenses. These
methods, predicated on identifying malware through
predefined patterns and known signatures, were once
highly effective against traditional threats. However, their
efficacy has waned considerably in the face of obfuscated
malware. The principal limitation of signature-based sys-
tems lies in their inherent dependency on known threat
databases. This characteristic renders them notably inad-
equate in detecting novel or heavily obfuscated malware
variants that deviate from recognized patterns (Haidros
Rahima Manzil & Manohar Naik 2023; Lee et al. 2023).
Further, heuristic-based approaches, which sought to
address some of the shortcomings of signature-based
methods by incorporating a degree of behavioral analy-
sis, have also shown vulnerabilities. Although these
approaches marked a significant advancement by ana-
lyzing program behaviors and attributes, their efficacy
is frequently undermined by sophisticated obfuscation
techniques. Modern malware, with its ability to mimic
benign behavior or effectively conceal its malicious activ-
ities, often eludes the heuristic analysis. This limitation is
primarily due to the heuristic methods’ reliance on pre-
defined behavioral rules and patterns, which may not
encompass the innovative tactics employed by new mal-
ware strains (Dugyala et al. 2022).

Recent advancements in machine learning have ush-
ered in a variety of approaches for obfuscated malware
detection, with researchers exploring classifiers such
as DT (Abu Al-Haija et al. 2022; Akhtar and Feng 2022;
Lashkari et al. 2021), OCC (Al-Qudah et al. 2023), RF
(Manzil and Manohar Naik 2023), and MLP (Sawa-
dogo et al. 2023). These methods have shown promising
results, particularly in binary classification scenarios,
achieving detection accuracies ranging from approxi-
mately 93–99%. Such high accuracy rates underscore
the potential of machine learning in discerning between
benign and malicious entities in a binary context. How-
ever, the application of these machine learning classifi-
ers in multi-classification scenarios reveals a significant
limitation. While effective in binary classification tasks,
where the objective is to distinguish between two classes

Page 4 of 23Hossain and Islam Cybersecurity (2024) 7:16

(malicious or benign), their performance diminishes
when tasked with identifying multiple malware families.
In scenarios requiring the classification of various mal-
ware types, such as distinguishing among spyware, ran-
somware, trojans, and also their sub-categories, these
approaches demonstrate considerably lower accuracy.
This discrepancy in performance can be attributed to the
increased complexity and nuanced distinctions between
multiple malware families, which present a more chal-
lenging landscape for classification algorithms originally
optimized for binary decisions. The intricate behavioral
patterns and subtle variances in attributes that differen-
tiate one malware family from another require a more
sophisticated analytical approach, one that can navigate
the intricate and often overlapping characteristics of vari-
ous malware types.

Mezina and Burget (2022) evaluated the effectiveness
of a dilated CNN (DCNN) in identifying obfuscated
malware through memory analysis. While the DCNN
showcased impressive accuracy in binary classification
(99.92%), its performance in multiclass scenarios, spe-
cifically in differentiating between four major malware
families, was notably lower (83.53%). This suggests a limi-
tation in the model’s ability to discern specific malware
types in complex classification tasks. Additionally, the
DCNN’s substantial computational requirements, due
to its intricate architecture with multiple convolutional
layers and a high neuron count, pose a challenge for
implementation on resource-constrained devices. These
findings highlight a critical balance that needs to be
struck in advanced malware detection models between
accuracy, specificity, and computational efficiency.

Roy et al. (2023) introduced MalHyStack, a model
designed to detect obfuscated malware in network envi-
ronments. This innovative approach combines a stacked
ensemble learning framework, in its initial layer, and
a deep learning layer as a subsequent stage. Prior to
deploying this classification model, an optimal subset of
features is determined through CA. Despite its sophisti-
cated architecture, the model’s performance metrics indi-
cate certain limitations. Specifically, in categorizing four
attack types, MalHyStack achieved an accuracy of 85.04%
and a recall rate of 85.17%. In a more complex scenario
involving 16 malware categories, the detection rate fell
to 66.96%, with a precision of 66.94%. These figures, par-
ticularly in the context of multi-classification, suggest
the model’s limited effectiveness in the rapidly evolving
digital security landscape, where higher accuracy and
precision are critical for effective malware detection and
prevention.

In a notable contribution to the field of malware detec-
tion, Shafin et al. (2023) introduced an approach named
RobustCBL, aimed at categorizing various malware

types. While the model represents an innovative step
in multi-class malware detection, its efficacy in accu-
rately identifying different malware categories reveals
certain limitations. The performance of RobustCBL,
when applied to specific malware families, demonstrates
moderate success rates: it detects ransomware in 67% of
cases, spyware in 69%, and Trojans in 71%. These figures,
while indicative of the model’s potential, also highlight
its challenges in consistently and accurately identify-
ing these prevalent malware types. The relatively lower
detection rates in these categories suggest a need for
further refinement in the model’s ability to discern the
nuanced characteristics and behaviors that define these
specific malware families. Moreover, when the scope of
RobustCBL’s application is expanded to encompass all
16 individual malware classes in the dataset, the model
achieves an overall accuracy of 72.60%. While this dem-
onstrates a fair level of proficiency in multi-classification,
the accuracy rate is not as high as might be desired for
robust cybersecurity applications. Additionally, a signifi-
cant concern with RobustCBL is its high False Positive
Rate (FPR). A high FPR implies that the model frequently
misclassifies benign software or processes as malicious,
which can lead to unnecessary or disruptive actions and
erode trust in the system’s reliability.

In summarizing the condition from recent literature,
in the field of malware detection, a notable gap emerges
in the development and evaluation of models adept at
identifying sophisticated, obfuscated malware within
constrained system environments, especially for malware
category detection with high TPR. This gap is particu-
larly pronounced in the context of models that must bal-
ance robust detection capabilities with minimal FPR. Our
research addresses this critical need by introducing an
innovative framework. This process is designed not only
to excel in binary classification tasks but also to adeptly
navigate the complexities of categorizing and identifying
diverse malware families. Through rigorous evaluation,
our model demonstrates its efficacy against the latest
iterations of cyber threats, thereby offering a significant
contribution to the arsenal of tools in combating evolving
digital security challenges.

Proposed methodology
In our research, the Proposed Methodology, depicted
comprehensively in Fig. 1, represents a sophisticated
and multi-faceted approach to enhancing malware
detection and analysis. This methodology integrates
advanced machine learning techniques, encompass-
ing various ensemble models such as GB, RF, ADB,
VT, and BG, each tailored to address the intricate chal-
lenges of classifying obfuscated malware. By leveraging
a combination of data preprocessing, feature selection,

Page 5 of 23Hossain and Islam Cybersecurity (2024) 7:16

and ensemble learning strategies, our approach aims
to significantly improve the accuracy and reliability of
malware detection. The systematic and holistic nature
of this methodology, as outlined in Fig. 1, not only
exemplifies cutting-edge research in cybersecurity but
also sets a new benchmark in the field, demonstrating a
deep understanding of both the technical complexities
and the practical implications of malware analysis.

Dataset acquisition and preprocessing
In this research, the “Dataset Acquisition and Pre-
processing” phase is meticulously structured to ensure
the dataset’s readiness for advanced machine learning
analysis. In this research, we employed the Obfuscated-
MalMem2022 dataset (Carrier et al. 2022), an extensive
and meticulously curated collection of memory dumps,
both benign and malicious, designed to mirror real-
world scenarios in cybersecurity. The features and their
detailed descriptions are comprehensively presented

Fig. 1 Pipeline of the proposed methodology

Page 6 of 23Hossain and Islam Cybersecurity (2024) 7:16

in the “Appendix” section. This dataset is pivotal in this
whole analysis, providing a representation of benign data
and various malware classes, including Ransomware,
Spyware, and Trojan Horses. The detailed enumeration
of data points, categorized into binary classes, malware
categories, and specific malware families, is systemati-
cally presented in Table 2. This comprehensive dataset
not only enriches our research with a diverse range of
samples but also ensures the robustness and validity of
our proposed detection model.

To ensure data integrity, the dataset is first cleansed of
missing and infinite values. This involves replacing infi-
nite values with NaN (Not a Number) and subsequently
removing these NaN values. Mathematically, this is rep-
resented as: data = data.replace({∞,−∞},NaN) , and
data = data.dropna().This step is important to avoid
computational errors and biases that can arise from
incomplete or corrupt data.

Data categorization and encoding
In the research, the process of “Data Encoding and
Normalization” plays a pivotal role, primarily due to
the intrinsic characteristics of the dataset and the
requirements of machine learning algorithms. This
process serves two fundamental purposes: transform-
ing categorical data into a machine-readable format
and standardizing the range of continuous numerical
features (Hossain and Islam 2023a, b). The categorical
nature of some features in the dataset, particularly the
‘Category’ column, necessitates encoding. This dataset
encompasses various malware types like Ransomware,
Spyware, and Trojan, each represented as a string.

Machine learning algorithms inherently require numer-
ical input. To address this, we employ Label Encoding,
represented as a mapping function: f : C → Z . Here,
C is the set of categorical labels (e.g., ‘Benign’, ‘Ran-
somware’, ‘Spyware’, ‘Trojan’), and Z represents the set
of integers. If ci is a categorical value in the dataset, its
encoded value zi is given by zi = f (ci) , where f is the
label encoding function mapping each unique label to
a unique integer. For instance, we have labels {Benign,
Ransomware, Spyware, Trojan}, these could be encoded
as {0, 1, 2, 3} respectively.

The dataset contains numerical features varying in
ranges. Without normalization, features with larger
ranges could disproportionately influence the model,
leading to biased learning. This issue is particularly
pertinent in datasets with diverse feature scales, as is
the case in cybersecurity datasets. StandardScaler is
utilized, which normalizes a feature by subtracting the
mean and dividing by the standard deviation, effectively
transforming the data to have a mean of zero and a
standard deviation of one. For a given feature X with n
samples, X = [x1, x2, . . . , xn] , the normalization process
adjusts the values of X so that they have a mean of zero
and a standard deviation of one. The normalized value
xi′ of each sample xi in X is calculated using the for-
mula (1).

where µx is the mean of the feature X , calculated as
µx = 1

n
n
i=1 xi , and σx is the standard deviation of X ,

calculated as:

(1)x
′
i =

xi − µx

σx

Table 2 Distribution of data: a detailed breakdown by classification type and malware families

Dataset Binary class with counts Malware category with counts (4 class) Malware families with counts (16 class)

Obfuscated-MalMem2022 Benign (29,298) (50%) Benign (29,298) (50%) Benign (29,298) (50%)

Malware (29,298) (50%) Ransomware (9791) (16.71%) Shade (2128) (3.63%)

Ako (2000) (3.41%)

Conti (1988) (3.39%)

Maze (1958) (3.35%)

Pysa (1717) (2.93%)

Spyware (10,020) (17.10%) Transponder (2410) (4.11%)

Gator (2200) (3.75%)

180Solutions (2000) (3.41%)

Coolwebsearch (2000) (3.41%)

TIBS (1410) (2.41%)

Trojan Horse (9487) (16.19%) Refroso (2000) (3.41%)

Scar (2000) (3.41%)

Emotet (1967) (3.36%)

Zeus (1950) (3.33%)

Reconyc (1570) (2.68%)

Page 7 of 23Hossain and Islam Cybersecurity (2024) 7:16

The encoding ensures that categorical data is interpret-
able by the algorithms, while normalization standardizes
the feature scales, allowing the model to learn and make
predictions without bias towards any particular feature’s
numeric scale.

Handling class imbalance with SMOTE
The original dataset likely has imbalanced class distri-
butions, meaning some types of malware are underrep-
resented. This imbalance can bias the machine learning
model towards the majority class, reducing its effective-
ness in accurately identifying less common malware
types. By generating synthetic samples for minority
classes, SMOTE (Asniar et al. 2022) helps in creating a
more balanced dataset, which contributes to a more
robust and generalized model capable of detecting vari-
ous malware types effectively.

For each sample xi in the minority class, SMOTE com-
putes its k − nearest neighbors. Let Nk(xi) denote the set
of k − nearest neighbors of xi in the feature space. The
distance metric, often Euclidean, for two samples xi and
xj is given by Eq. (3).

where m is the number of features.
A synthetic instance xnew is generated by interpolating

between the sample xi and one randomly chosen nearest
neighbor xni ∈ Nk(xi) . The formula for creating a syn-
thetic sample is:

where � is a random number between 0 and 1. This
ensures that the synthetic sample xnew lies along the line
segment between xi and xni in the feature space. The aim
is to balance the class distribution between the majority
and minority classes. If the size of the minority class is
Smin and the desired size after oversampling is Sdesired , the
number of synthetic samples Nsynth to be generated for
the minority class is Sdesired − Smin . The process involves
repeatedly applying the synthetic sample generation step
until Nsynth samples are created, thereby augmenting the
minority class to achieve the desired class balance.

In this research, the application of SMOTE is a crucial
step to mitigate the bias caused by imbalanced class dis-
tribution. This enhances the model’s capability to learn
generalized patterns and improves its performance in

(2)σx =

√

√

√

√

1

n

n
∑

i=1

(xi − µx)2

(3)d
(

xi, xj
)

=

√

√

√

√

m
∑

l=1

(

xil − xjl
)2

(4)xnew = xi + � ∗ (xni − xi)

accurately classifying various malware types, which is
essential in the context of cybersecurity.

Feature selection and scaling
In this research, “Feature Selection and Scaling” is a criti-
cal stage, crucial for enhancing the model’s performance
and interpretability. This stage involves two main pro-
cesses: feature selection using SelectKBest with chi2 and
mutual_info_classif methods, and feature scaling using
MinMaxScaler. The chi-squared test assesses the inde-
pendence of two variables, making it suitable for feature
selection where the aim is to identify features that are
most likely to be independent of class labels (Mamdouh
Farghaly and Abd El-Hafeez 2023). For a given feature X
and a class label Y , the chi-squared statistic is calculated
as:

where Oi is the observed frequency, Ei is the expected fre-
quency under the null hypothesis of independence, and
n is the number of distinct values in X . The higher the
chi-squared value, the more likely the feature is depend-
ent on the class and thus important for classification.

Mutual information measures the amount of infor-
mation one can obtain about one random variable by
observing another (Federici et al. 2023). For features X
and class label Y , it is defined as:

where P
(

x, y
)

 is the joint probability distribution of X
and Y , and P(x) , P

(

y
)

 are the marginal probability dis-
tributions of X and Y , respectively. Features with higher
mutual information values are considered more relevant
for predicting the class label.

Post feature selection, scaling is essential to normal-
ize feature values within a bounded range, typically [0,
1]. MinMaxScaler transforms each feature x using the
formula:

where xmin and xmax are the minimum and maximum
values of the feature x , respectively. This scaling method
preserves the shape of the dataset’s distribution and is
beneficial when the features have varying scales and
ranges. In the context of this research, the combination
of chi-squared and mutual information for feature selec-
tion, followed by MinMaxScaler for scaling, ensures that
the model focuses on the most informative features that

(5)X2(X ,Y) =

n
∑

i=1

(Oi − Ei)
2

Ei

(6)I(X;Y) =
∑

x∈X ,y∈Y

P
(

x, y
)

log

(

P
(

x, y
)

P(x)P
(

y
)

)

(7)xscaled =
x − xmin

xmax − xmin

Page 8 of 23Hossain and Islam Cybersecurity (2024) 7:16

contribute significantly to the classification task. This
approach not only improves the model’s predictive power
but also enhances its efficiency by reducing computa-
tional complexity, crucial for handling large and complex
cybersecurity datasets.

Upon completing the preprocessing and feature
selection stages, we applied various ensemble-based
approaches, including GB, VT, ADB, RF, and BG, each
with meticulous hyperparameter tuning. The section
below offers a concise description of each of these
updated ensemble-based methods, outlining their
unique characteristics and roles in our research.

Model training process with gradient boosting classifier
In this research, the utilization of the Gradient Boost-
ing Classifier (GBC) for classifying multiple malware
types is grounded in its ensemble-based methodology
and sophisticated handling of complex datasets. The
GBC’s effectiveness in managing intricate data relation-
ships is attributed to its ensemble learning approach
and the optimization of specific hyperparameters. The
GBC lies in constructing an additive model in a forward
stage-wise manner (Chen and Ren 2023). Formally, this
is expressed as:

where F(x) is the final model, M is the number of trees
(stages), hm(x) is the base learner (decision tree), and γm
is the weight of each tree.

From the Hyperparameter Number of Estimators set
to 10, it dictates the number of sequential trees built,
Learning Rate with a value of 0.1, this parameter scales
the contribution of each tree, affecting the model’s con-
vergence rate. It adjusts the step size in the gradient
descent process, Max Depth Limited to 3, it controls
the maximum depth of individual trees, curbing model
complexity and overfitting.

GBC optimizes a differentiable loss function
L
(

y, F(x)
)

 , where y is the actual value and F(x) is the
model prediction. The loss is minimized using gradient
descent, with each tree built to model the negative gra-
dient of the loss function concerning the predictions.
The model iteratively updates the predictions based on
the equation:

where ν the learning rate, and N is is the number of sam-
ples. The classification process is detailed in Algorithm 1.

(8)F(x) =

M
∑

m=1

γmhm(x)+ const

(9)Fm+1(x) = Fm(x)+ ν

n
∑

i=1

γmhm(xi)

Algorithm 1: Malware Classification Process of the
Model with GBC.

1. Begin with an initial model, typically a constant
value. This is often the log odds in the case of clas-
sification:

 F0(x) = argminγ
N
∑

i=1

L
(

yi, γ
)

 ; where L is the loss

function, yi are the true labels, and N is the number
of samples.

2. For each iteration m = 1, 2, …, M (where M is the
number of trees):

a. Compute the pseudo-residuals for each instance
in each class k:

b. Fit a decision tree hmk(x) to these residuals for
each class.

3. Determine the output values for the leaf nodes in
each tree:

4. Update the model for each class k:

5. For a new memory dump xnew , the model outputs a
set of scores for each class k. The softmax function is
then applied to these scores to obtain probabilities:

 P
(

y = k|xnew
)

=
eFMk(xnew)

∑k
l=1 e

FMl(xnew)
 ; where K is the total

number of classes. (For attack family classification).
 P

(

y = k|xnew
)

= 1
1+e−FM(xnew)

 ; (For Benign and Mal-
ware classification).

6. The class with the highest probability from the soft-
max output is selected as the final prediction for xnew.

In Algorithm 1, delineating the Malware Classifica-
tion Process of the Model with Gradient Boosting Clas-
sifier (GBC), the procedure commences with initializing
an initial model, often a constant value represented
as F0(x) , typically the log odds in classification sce-
narios. Subsequently, for each iteration m = 1, 2,…, M
(where M is the number of trees), the algorithm com-
putes pseudo-residuals for each instance in each class

rikm = −

[

∂L
(

yi, F(xi)
)

∂Fk(xi)

]

F(x)=Fm−1(x)

γjkm = argminγ
∑

xi∈Rjm

L
(

yi, Fm−1(xi)+ γ
)

Fmk(x) = Fm−1,k(x)+ ν

J
∑

j=1

γjkmI
(

x ∈ Rjm

)

Page 9 of 23Hossain and Islam Cybersecurity (2024) 7:16

k. These pseudo-residuals, denoted as rikm , capture the
difference between the true labels yi and the current
model’s predictions F(xi). A decision tree hmk(x) is then
fitted to these residuals for each class. The output val-
ues for the leaf nodes in each tree, γjkm , are determined,
and the model is updated for each class k based on
these values. For a new memory dump xnew , the model
outputs scores for each class k. The softmax function
is applied to these scores to obtain probabilities, and
the class with the highest probability is chosen as the
final prediction. This iterative process of fitting deci-
sion trees and updating the model enhances the mod-
el’s predictive capabilities through sequential learning,
making it effective in capturing complex relationships
within the data.

Incorporating the softmax function in the multi-class
setting allows the GBC to effectively handle classifica-
tion tasks with multiple malware types. This approach
ensures that each memory dump is assigned a prob-
ability distribution across all possible malware catego-
ries, allowing for a nuanced classification based on the
highest likelihood. The softmax function’s ability to
convert raw scores into probabilities that sum up to one
makes it an ideal choice for multi-class classification in
the context of malware detection. The Gradient Boost-
ing Classifier, through its ensemble learning approach
and meticulous tuning of hyperparameters, exemplifies
a powerful method for tackling the multifaceted chal-
lenge of malware classification in cybersecurity. This
model, adept in handling complex data and reducing
overfitting, signifies a sophisticated approach in the
domain of machine learning for malware detection and
analysis.

Model training process with BG ensemble
The Bagging ensemble method is particularly effective for
classifying obfuscated malware due to its inherent abil-
ity to mitigate overfitting, a common challenge in com-
plex classification tasks. By aggregating predictions from
multiple decision trees, each trained on different subsets
of the data, Bagging introduces diversity in the learning
process (Ngo et al. 2022). This diversity is crucial in deal-
ing with obfuscated malware, where subtle variations in
data patterns can significantly impact classification accu-
racy. The ensemble approach ensures that the model does
not overly rely on specific attributes of the data, thereby
enhancing its ability to generalize and accurately identify
even sophisticated, disguised malware threats. The clas-
sification process is detailed in Algorithm 2.

Algorithm 2: Malware Classification Process of the
Model with BG.

1. Define Bagging ensemble:
BaggingClf = {RF1,RF2, . . . ,RFn}

2. For each RF1 in BaggingClf :

a. Bootstrap sample: Di ← BootstrapSample(D)

b. Construct decision tree DTij for each Di:

3. Random feature selection: Fij ← RandomSubset(F)

4. For node N , find split s minimizing Gini impurity:

5. Grow tree to maximum depth MaxDepth or until
criterion met.

3. Ensemble prediction for sample x:

In Algorithm 2, outlining the Malware Classification
Process of the Model with Bagging (BG), the Bagging
ensemble, denoted as BaggingClf, is defined as a col-
lection of individual Random Forest classifiers, repre-
sented as RF1 , RF2 , up to RFn . For each RFi BaggingClf,
a bootstrap sampling operation is performed, generating
a bootstrap dataset Di from the original dataset D. Sub-
sequently, a decision tree (DTij) is constructed for each
Di . The construction involves random feature selection,
where a subset Fij of features is randomly chosen. For
each node N in the tree, the optimal split s* is determined
by minimizing the Gini impurity criterion. The Gini
impurity Gini(N) measures the impurity or disorder in a
set of samples. The tree is grown to either the maximum
depth (MaxDepth) or until a specified criterion is met.
The ensemble prediction for a given sample x is then cal-
culated as the mode of predictions from all RFi classifiers.
This approach leverages the diversity introduced by boot-
strap sampling and random feature selection, enhanc-
ing the overall robustness and accuracy of the Bagging
ensemble in the context of malware classification. The
ensemble’s ability to aggregate predictions reduces the
risk of overfitting, making it particularly effective for
complex classification tasks like malware detection in
memory dumps.

Model training process with VT ensemble
The Voting Ensemble method is also employed for the
classification of memory dumps into benign or various
malware categories (Vashishtha et al. 2023). This ensem-
ble technique combines the predictions from multiple

Gini(N) = 1−
∑

(Pk)
2

s∗ = argmins∈SGini(N)

ypred(x) = mode{RF1(x),RF2(x), . . . ,RFn(x)}

Page 10 of 23Hossain and Islam Cybersecurity (2024) 7:16

distinct classifiers Decision Tree, Logistic Regression,
and Support Vector Classifier (SVC) each contribut-
ing unique insights. The complete process is detailed in
Algorithm 3.

Algorithm 3: Construction of the Soft Voting Classifier
and Prediction Process.

1. Defining Classifiers for VT ensemble:

2. Voting Classifier Construction:

3. For each classifier clfi in the ensemble, the train-
ing process involves fitting the model to the training
data.

4. For a given sample x, the probability of belonging to
class k as predicted by classifier clfi is Pik(x).

5. The final prediction for class k is then the weighted
average of these probabilities:

 Pensemble,k(x) =
1
N

N
∑

i=1

wi.Pik(x) ; where N is the num-

ber of classifiers, and wi are the weights assigned to
each classifier’s prediction.

6. The class with the highest probability Pensemble,k(x)
across all k classes is chosen as the final prediction.

7. Final Prediction: ypred = argmaxkPensemble,k(x).

In the instantiation of the Soft Voting Classifier, Algo-
rithm 3 outlines the construction and prediction process
for a robust ensemble of classifiers. Individual classifiers,
namely clf1 (DecisionTreeClassifier), clf2 (LogisticRe-
gression with increased max_iter), and clf3 (SVC with
probability estimation) are defined for the ensemble.
The Voting Classifier (eclf) is then formed, incorporat-
ing these classifiers with a ‘soft’ voting strategy. During
training, each classifier clfi undergoes a fitting process
to the training data. For a given sample x, the probability
of belonging to class k as predicted by clfi is denoted as
Pik(x).The final prediction for class k in the ensemble is
calculated as the weighted average of these probabilities,
where N represents the number of classifiers, and wi sig-
nifies the weights assigned to each classifier’s prediction.
The class with the highest probability across all classes

clf 1 ← DecisionTreeClassifier()

clf 2 ← LogisticRegression(max_iter = 1000)

clf 3 ← SVC
(

probability = True
)

eclf ← VotingClassifier
(

estimators =
[(

′dt ′, clf 1
)

,
(

′lr′, clf 2
)

,
(

′svc′, clf 3
)]

, voting =′ soft ′
)

is selected as the final prediction (ypred), implementing
the argmax operation. This approach leverages the col-
lective decision-making of diverse classifiers, enhancing
the model’s adaptability and predictive accuracy in the
domain of malware detection.

This training process of the ensemble ensures that each
classifier contributes its understanding of the data, and
their combined predictions offer a comprehensive view,
thereby enhancing the overall predictive performance
and robustness of the model. This approach, combining
Decision Tree, Logistic Regression, and SVC in a soft
voting mechanism, allows for a comprehensive decision-
making process, leveraging the strengths of each clas-
sifier. The ensemble’s aggregated predictions provide a
more balanced and accurate classification, essential in the
intricate task of malware detection.

Training and classification process of the model with ADB
ensemble
The ADB Ensemble method stands out as a robust
approach for enhancing the classification of memory
dumps into benign or various malware categories. ADB,
short for Adaptive Boosting, excels in refining the clas-
sification process by iteratively focusing on difficult-to-
classify instances (Hossain and Islam 2023a). It combines
multiple weak learners, typically simple decision trees,
to form a strong classifier. Each successive learner is
adapted to emphasize the data points that previous learn-
ers misclassified, thereby progressively improving the
model’s accuracy. The complete process is detailed in
Algorithm 4.

Algorithm 4: Training and Prediction Process of the
Model with ADB.

1. Initialization: Start with a dataset D and weights
wi =

1
N for each instance i, where N is the total num-

ber of instances.
2. For t = 1 to T (where T = 10 is the number of estima-

tors):

a. Train a weak learner
Lt(DecisionTreewithmax_depth = 1) on the
dataset using the current weights.

b. Calculate the error εt of Lt:

Page 11 of 23Hossain and Islam Cybersecurity (2024) 7:16

 εt =

∑N
i=1 wi .I(yi �=Lt (xi))

∑N
i=1 wi

 ; where I is the indicator

function, yi is the true label, and Lt(xi) is the pre-
diction.

c. Compute the learner’s weight αt:

d. Update weights for each instance:

e. Normalize the weights so that they sum up to 1.

3. The final model is a weighted combination of the
weak learners:

4. For a new sample xnew , the final AdaBoost model
provides the classification:

Algorithm 4 outlines the Training and Prediction Pro-
cess of the Model with AdaBoost (ADB) for malware
detection. The process begins with initializing a data-
set D and assigning weights wi =

1
n for each instance i,

where N is the total number of instances. For each itera-
tion t = 1 to T(where T = 10 is the number of estima-
tors), a weak learner Lt , specifically a Decision Tree with
max_depth = 1, is trained on the dataset using the cur-
rent weights. The error εt or Lt is calculated, representing
the misclassification rate. The learner’s weight αt is then
computed based on εt . The weights for each instance are
updated using αt , and normalization ensures they sum
up to 1. The final model is a weighted combination of the
weak learners, and for a new sample xnew , the AdaBoost
model provides the classification ypred . This iterative
boosting process focuses on instances that are misclassi-
fied in previous iterations, enhancing the model’s ability
to adapt and improve its performance over time.

AdaBoost’s strength lies in focusing more on instances
that are harder to classify, thereby improving the ensem-
ble’s overall performance. This method is particularly
effective in complex classification tasks, such as distin-
guishing between different types of malware, due to its
adaptive nature and capability to enhance the perfor-
mance of simple models.

αt =
1

2
log

(

1− εt

εt

)

wi,new = wi.e
−αt .yi .Lt (xi)

AdaBoostModel(x) = sign

(

T
∑

t=1

αt .Lt(x)

)

ypred = AdaBoostModel(xnew)

Random forest ensemble approach for the malware
classification
In this research, the Random Forest (RF) Ensemble
method is also employed as a key analytical tool for the
classification of memory dumps, distinguishing between
benign data and various types of malware (Hossain
2023). This method is revered for its robustness and
accuracy, particularly in handling complex datasets with
numerous features. RF combines multiple decision trees,
reducing the risk of overfitting while capturing a broad
spectrum of data characteristics. Each tree contributes a
unique perspective, and their collective decision-making
offers a balanced and comprehensive classification. The
adaptability and efficacy of the RF Ensemble make it an
invaluable component of our research, enhancing our
capabilities in malware detection and analysis. The com-
plete process is detailed in Algorithm 5.

Algorithm 5: Random Forest Ensemble in Malware
Classification.

1. Initialization: Define RF with n_estimators = 10 and
random_state = 42.

2. For each tree t in RF:

a. Randomly select samples with replacement from
Xtrain to create a bootstrap dataset Dt.

b. Grow t on Dt by recursively splitting nodes based
on feature subsets. At each node:

1. Select m features randomly from the total features.
2. Choose the best split based on an impurity criterion

like Gini:
 Gini(S) = 1−

c
∑

i=1

(Pi)
2 ; where Pi is the proportion of

samples in class i.
3. After training, for a new sample x, each tree t in RF

predicts a class yt.
4. The final class prediction yRF is the mode of all yt:

5. Predict whether xnew is benign or a specific malware
type using RF:

In the initial stage of the algorithm, the Random Forest
(RF) Ensemble for Malware Classification is instantiated
with crucial parameters, specifically setting n_estimators

yRF(x) = mode
{

y1(x), y2(x), . . . , y10(x)
}

ynew = yRF(xnew)

Page 12 of 23Hossain and Islam Cybersecurity (2024) 7:16

to 10 and random_state to 42. This establishes an ensem-
ble of 10 decision trees with a fixed random seed, ensur-
ing both diversity and reproducibility. Subsequently, for
each tree t within the RF, a bootstrap sampling process is
initiated by randomly selecting samples with replacement
from the training dataset (Xtrain) , creating a distinctive
bootstrap dataset Dt for each tree. The tree growth phase
unfolds as each decision tree t is constructed on Dt ,
involving the recursive splitting of nodes based on ran-
domly chosen feature subsets. At each node, m features
are randomly selected from the total feature set, and the
optimal split is determined using an impurity criterion,
such as Gini impurity. Following the training phase, each
tree t contributes to predicting the class yt for a new
sample x. The final ensemble prediction yRF for the new
sample is then computed as the mode of all yt.

The RF Ensemble method is particularly effective for
this research due to its ability to handle high-dimensional
data and its robustness against overfitting. By combining
the predictions of multiple decision trees, each trained
on different subsets of the data, RF provides a compre-
hensive approach to classifying complex and nuanced
patterns typical in malware detection. This approach
ensures a balance between bias and variance, leading to
more accurate and reliable classification results.

Following the training phase, the model undergoes
testing with a designated set of test data. The next sec-
tion of this paper will detail the results obtained from
various evaluation metrics, highlighting the effectiveness
of the model. Additionally, this section will include com-
parative analyses, showcasing how the model performs in
relation to existing methodologies in obfuscated malware
detection.

Results and analysis
In this research on advanced malware classification, the
experimental setup is conducted on a high-performance
ASUS device, powered by an 11th Gen Intel(R) Core(TM)
i7-11700 processor with a base speed of 2.50 GHz and
equipped with 16.0 GB of RAM. Operating on a 64-bit
Windows 11 Pro system, the implementation utilizes the
Anaconda Navigator for managing software environ-
ments, primarily employing Jupyter Notebook for devel-
opment. Key Python libraries such as Pandas, Matplotlib,
Seaborn, Scikit-learn, and Imbalanced-learn are integral
to the research, facilitating tasks from data preprocess-
ing to machine learning model evaluation. A suite of
machine learning techniques, including RandomForest,
Bagging, DecisionTree, LogisticRegression, SVC, Voting,
AdaBoost, and GradientBoosting classifiers, is employed,
evaluated using metrics like accuracy, precision, recall,
and F1-score, ensuring a thorough assessment of model
performance in malware detection. This setup provides

the necessary computational power and versatility for
handling the complex demands of cybersecurity research.

The comprehensive evaluation of the framework in
this study leverages the Obfuscated-MalMem2022 data-
set, a pivotal resource for analyzing advanced malware
detection techniques. This dataset undergoes a division
into training and testing subsets, utilizing the “train_
test_split” method from the scikit-learn library. A strate-
gic split of 75% for training and 25% for testing ensures
a robust training process while providing a substantial
dataset for validation. Emphasis is placed on the testing
data, which comprises 25% of the dataset, to present all
results in this section. To assess the model’s effectiveness
and accuracy, a range of evaluation metrics are meticu-
lously employed. These metrics, crucial for establishing
the model’s performance, are detailed in Table 3, com-
plete with corresponding equations. This methodical
approach underlines the rigor and precision inherent in
the evaluation process of the proposed malware detec-
tion framework.

Figure 2 depicts the class distribution before applying
the SMOTE. Initially, the distribution of the different
malware categories Benign, Ransomware, Spyware, and
Trojan exhibits a significant imbalance. As illustrated
in the pie chart, Benign instances constitute half of the
dataset at 50%, while the malware categories (Ransom-
ware, Spyware, and Trojan) have smaller representations
ranging from 16.19 to 17.10%. This imbalance is a com-
mon challenge in machine learning, particularly in cyber-
security contexts, as it can lead to biased models that
underperform in detecting less represented classes.

After the application of SMOTE, an impressive trans-
formation in class distribution is observed. Each category
now contains an equal number of instances, specifi-
cally 29,298. This equalization is crucial for the develop-
ment of an unbiased and effective classification model.
SMOTE achieves this by oversampling the minority
classes in this case, Ransomware, Spyware, and Trojan
until they match the number of instances in the major-
ity class, which is Benign. The balanced distribution
post-SMOTE enhances the model’s ability to learn from
an equally representative dataset, ensuring that each mal-
ware type is given equal importance during the training
phase. This approach mitigates the risk of overfitting to
the majority class and improves the model’s capability
to detect and classify malware types that were initially
underrepresented. The resulting uniform distribution
across all categories sets a strong foundation for build-
ing a robust and effective malware classification model,
essential for addressing the diverse and evolving nature
of cyber threats.

Table 4 provides a comprehensive evaluation of
various ensemble classifiers for multi-class malware

Page 13 of 23Hossain and Islam Cybersecurity (2024) 7:16

classification, comparing their performance both with
and without the application of the SMOTE balancing
technique. The metrics offer a holistic view of the model’s
performance for various ensemble classifiers. A striking
observation from the table is the superior performance
of the Gradient Boosting (GB) ensemble across all met-
rics, especially when combined with SMOTE balancing,
achieving perfect scores in ACC, PR, RE, FS, and AUC.
This indicates that the GB ensemble, when applied to a
balanced dataset, can effectively identify and classify

different malware types with utmost accuracy and reli-
ability. Comparatively, other ensemble methods like
Random Forest (RF), Bagging (BG), Voting (VT), and
AdaBoost (ADB) show varied performance. While RF,
BG, and VT perform admirably well without balancing,
their effectiveness increases with SMOTE, evident from
the improved scores in most metrics. However, the Ada-
Boost ensemble exhibits a noticeable dip in performance
when balancing is applied, suggesting that it may not be
as effective in handling balanced datasets in this specific
context.

Table 4 underlines the effectiveness of ensemble meth-
ods in multi-class malware classification, with Gradient
Boosting, in particular, standing out for its unparalleled
performance, especially when combined with SMOTE
balancing. This insight underscores the importance of
choosing appropriate machine learning techniques and
balancing strategies to enhance model accuracy and reli-
ability in cybersecurity applications.

The confusion matrix depicted in Fig. 3, derived from
the binary classification of ‘Benign’ versus ‘Malware’, pro-
vides a compelling illustration of the model’s exceptional
performance in malware detection. The diagonal cells
represent the number of true positive and true negative
predictions, which are remarkably high for both classes.
Specifically, the model has successfully identified 7279
instances as ‘Benign’ and 7370 as ‘Malware’ with absolute
precision, as indicated by the absence of false positives
and false negatives. This perfect classification indicates
that the model has an exceptional ability to differentiate

Table 3 Evaluation metrics with proper description

Evaluation metrics Description

Accuracy (ACC) Accuracy, defined as the ratio of correctly predicted observations to the total observations, is calculated
as Accuracy = True Positives (TP)+True Negatives (TN)

Total Observations
 , providing a fundamental measure of the models overall predictive correctness

Precision (PR) Precision, a key metric in model evaluation, is quantified as True Positives (TP)
True Positives (TP)+False Positives (FP)

 , reflecting the proportion of true
positive predictions among all positive predictions made by the model

Recall (RE) Recall, an essential metric in classification models, is determined by the formula Recall = True Positives (TP)
True Positives (TP)+False Negatives(FN)

 , cap-
turing the model’s ability to correctly identify all relevant instances within a dataset

F1-score (FS) F1-score, a crucial metric that balances precision and recall, is calculated using the formula F1−score = 2 ∗ Precision×Recall
Precision+Recall

 ,
thereby providing a harmonic mean that encapsulates the model’s accuracy in classifying data points correctly

False positive rate (FPR) FPR, a critical metric in assessing classification errors, is FPR =
False Positives (FP

False Positives (FP)+True Negatives (TN)
 , computed as quantifying

the proportion of negative instances incorrectly classified as positive by the model

Error rate (ER) Error rate, a metric that quantifies the overall prediction inaccuracies of a model, is calculated
as Error Rate = False Positives (FP)+False Negatives (FN)

Total Observations
 , effectively measuring the proportion of all predictions that the model got

wrong

AUC score (AUC) The Area Under the Curve (AUC) Score, a measure of the model’s ability to distinguish between classes, is calculated by plot-
ting the TPR against the FPR at various threshold settings, with the AUC value ranging from 0 to 1, where a higher value
indicates better classification performance

Cohen’s Kappa (KP) Cohen’s Kappa, a statistical measure of inter-rater agreement for categorical items, is calculated as Kappa = Po−Pe
1−Pe

 , where Po
represents the relative observed agreement among raters, and Pe is the hypothetical probability of chance agreement, provid-
ing a robust assessment of the model’s predictive accuracy beyond random chance

Fig. 2 Distribution of malware categories prior to SMOTE balancing

Page 14 of 23Hossain and Islam Cybersecurity (2024) 7:16

between benign and malicious software with maximum
sensitivity and specificity. The heatmap visualization
of the confusion matrix further emphasizes the model’s
accuracy. The distinct contrast between the high values
on the diagonal (true classifications) and the zeros off the
diagonal (false classifications) visually reaffirms the mod-
el’s effectiveness.

The results presented in the confusion matrix are a
testament to the robustness and reliability of the model
in binary classification tasks within cybersecurity. The
impeccable precision in distinguishing between ’Benign’
and ‘Malware’ classes demonstrates the model’s potential
as an invaluable tool in malware detection and cyberse-
curity, capable of providing accurate and reliable defenses
against digital threats.

Table 5, showcasing the outcomes of the GB ensemble
model in a binary classification context, reflects an exem-
plary level of performance with perfect scores across all
key metrics: accuracy, precision, recall, and F1-score,
each achieving the maximum possible value of 1.00000.
This remarkable achievement highlights the model’s
unparalleled effectiveness in accurately distinguishing
between ‘Benign’ and ‘Malware’ classes. Such a level of
precision is especially significant in the field of cyberse-
curity, where the ability to reliably identify and classify

Table 4 Performance metrics (weighted) of the model utilizing diverse ensemble techniques

Metrics Without balancing Balancing with SMOTE

GB RF BG VT ADB GB RF BG VT ADB

ACC 0.99966 0.99932 0.99932 0.99951 0.83378 1.0000 0.99956 0.99997 0.99997 0.74783

PR 0.99966 0.99932 0.99932 0.99951 0.91541 1.0000 0.99956 0.99997 0.99997 0.87412

RE 0.99966 0.99932 0.99932 0.99951 0.83378 1.0000 0.99956 0.99997 0.99997 0.74783

FS 0.99966 0.99932 0.99932 0.99951 0.77772 1.0000 0.99956 0.99997 0.99997 0.66387

FPR 0.00017 0.00021 0.00021 0.00011 0.05020 1.0000 0.00015 0.00001 0.00001 0.08421

ER 0.00034 0.00068 0.00068 0.00049 0.16622 1.0000 0.00044 0.00003 0.00003 0.25217

CK 0.99949 0.99898 0.99898 0.99937 0.75105 1.0000 0.99941 0.99995 0.99995 0.66386

AUC 1.00000 0.99998 1.00000 0.99999 0.91667 1.0000 0.99997 1.00000 1.00000 0.91667

Fig. 3 Confusion matrix for the binary classification

Table 5 Outcomes of the model in a binary classification
context

Class ACC PR RE FS

Benign (0) 1.0000 1.0000 1.0000 1.0000

Malware (1) 1.0000 1.0000 1.0000 1.0000

Fig. 4 LIME explanation for malware classification

Page 15 of 23Hossain and Islam Cybersecurity (2024) 7:16

digital threats is paramount. The model’s impeccable
performance in all these metrics indicates a balanced and
highly efficient approach to classification, demonstrating
its potential as a robust and reliable tool in advanced mal-
ware detection, crucial for safeguarding against evolving
cyber threats.

Figure 4 illustrates the local interpretability of the
developed model in the context of malware detection.
LIME (Local Interpretable Model-agnostic Explanations)
is employed to elucidate the decision-making process of
the underlying model with the GB classifier, promoting
transparency and understanding in artificial intelligence.

In this scenario, the second instance from the test data
pertains to the classification of whether it represents
malware or not. The figure visually encapsulates the key
factors contributing to the model’s decision for the given
instance. The intercept value of 0.18 represents the base
rate of the model’s prediction, indicating the likelihood
of a generic prediction without considering specific fea-
tures. Local prediction 0.82 is the model’s output for the
instance under consideration, reflecting the probability of
it being classified as malware. The right prediction prob-
ability of 0.82 signifies the model’s confidence in correctly
classifying the instance as malware.

Utilizing the “LimeTabularExplainer”, local explana-
tions for the model are generated. The visualized explana-
tion provides an intuitive representation of the influential
features of the local prediction. The middle portion of the
figure accompanying the figure details the contribution
of each feature to the model’s decision. This LIME-driven
approach facilitates model interpretability by presenting
a transparent depiction of the decision rationale, a crucial
aspect in ensuring trust and reliability in AI applications,
particularly in the domain of cybersecurity where accu-
rate and interpretable predictions are paramount.

The confusion matrix shown in Fig. 5 encapsulates
the outstanding performance of the machine learning
model in the classification of diverse malware types with
the SMOTE balancing technique. The matrix, a crucial
tool for evaluating the accuracy of classification models,
reveals the model’s exceptional precision in distinguish-
ing between benign and malicious software. Notably, the
model accurately identified 7300 instances as benign,
7364 as ransomware, 7388 as spyware, and 7246 as tro-
jan malware, without a single misclassification, indi-
cating zero false positives and false negatives across all
these categories. Such a level of accuracy in distinguish-
ing between different malware types, especially in the
complex realm of obfuscated malware, is a remarkable
achievement. This result indicates not only the model’s
capability to detect and analyze a wide array of sophisti-
cated cyber threats but also underscores its potential as a
reliable tool in the arsenal against cybersecurity threats.
The perfect score in the confusion matrix highlights the
model’s proficiency in nuanced detection, which is vital
for both preventing false alarms and ensuring that no
malicious activity goes unnoticed.

In Table 6, the assessment metrics for various mal-
ware categories after implementing the SMOTE and
without the SMOTE technique are presented. The table
showcases an exemplary level of performance across all
classes, with each metric accuracy, precision, recall, and
F1 score reaching the maximum value of 1.0000. This
uniformity in results across all categories signifies an
exceptional standard of model effectiveness, particularly
after balancing the dataset with SMOTE. The achieve-
ment of perfect scores in each metric for every class

Fig. 5 Confusion matrix illustrating performance for various malware
categories

Table 6 Assessment metrics for various malware categories

Category Without balancing Balancing with SMOTE

ACC PR RE FS ACC PR RE FS

Benign (0) 0.9997 0.9993 1.0000 0.9997 1.0000 1.0000 1.0000 1.0000

Ransomware (1) 0.9997 1.0000 0.9979 0.9990 1.0000 1.0000 1.0000 1.0000

Spyware (2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Trojan (3) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Page 16 of 23Hossain and Islam Cybersecurity (2024) 7:16

(labeled as 0, 1, 2, and 3) demonstrates the model’s pro-
found capability to detect and classify different types of
malware with impeccable accuracy. On the other hand,
the assessment metrics for the same malware catego-
ries without the application of SMOTE. Here, while the
results are marginally lower than those, they still display
an outstanding level of model performance. For class 0,
the accuracy is 0.9997, with a precision of 0.9993, and an
F1 score of 0.9997, while recall remains perfect at 1.0000.
Class 1 shows a slight decrease in recall to 0.9979 but
maintains high levels in other metrics. Classes 2 and 3,
similar to the balanced case, maintain perfect scores
across all metrics.

The comparison between these two values from two
different situations highlights the model’s robustness and
adaptability in varying data scenarios. The use of SMOTE
has clearly enhanced the model’s performance in han-
dling class imbalance, as evidenced by the improvement
in metrics for classes 0 and 1. This improvement is sig-
nificant because it showcases the model’s effectiveness
not only in detecting malware but also in maintaining
high precision and recall in a balanced dataset, which
is often a challenge in machine learning models dealing
with imbalanced data.

Figure 6, presenting the Receiver Operating Charac-
teristic (ROC) curves for each class in the model, is a
testament to its extraordinary effectiveness in malware
classification. The ROC curve is a graphical represen-
tation that illustrates the diagnostic ability of a binary
classifier system, with its performance measured by the
area under the curve (AUC). In this case, each of the
classes 0, 1, 2, and 3 corresponds to different types of
malware. Remarkably, the AUC for each class in Fig. 5 is
1.00, a rare and commendable achievement in machine
learning models, especially in the complex domain of

cybersecurity. This perfect score indicates that the model
has an exceptional ability to differentiate between the
classes with maximum sensitivity and specificity. Sensi-
tivity (or True Positive Rate) reflects the model’s ability to
correctly identify positives, while specificity (or 1—False
Positive Rate) indicates its capability to correctly classify
negatives. The ROC curves for all classes lie at the top-
left corner of the plot, which is the ideal position, indicat-
ing a negligible false positive rate and a high true positive
rate across all classes. This implies that the model is
highly efficient in distinguishing between different types
of malware, with minimal misclassification.

The perfection of these curves, especially in a multi-
class setting, suggests that the underlying algorithms,
preprocessing methods, and feature selection techniques
are exceptionally well-tuned. Achieving an AUC of 1.00
for multiple classes in a complex field such as malware
detection is not trivial and speaks volumes about the
meticulousness of the model’s design and implementa-
tion. The impeccable AUC scores for all classes reinforce
the model’s status as a robust tool in cybersecurity, capa-
ble of delivering high-precision classifications. This level
of accuracy is crucial for effective cybersecurity meas-
ures, where the cost of misclassification can be exceed-
ingly high. The model’s demonstrated capability makes it
a significant advancement in the ongoing battle against
cyber threats, offering promising prospects for future
applications in digital security.

Figure 7, depicting the training versus cross-validation
scores as a function of training set size, offers a compre-
hensive view of the model’s learning dynamics and its
effectiveness in classifying malware. The graph, plotted
with the training set sizes on the x-axis and the accuracy
scores on the y-axis, is an essential tool for evaluating the
model’s performance and generalizability. In this figure,
the training score (depicted in red) and the cross-val-
idation score (illustrated in purple) both display a trend
of convergence as the training set size increases. This
convergence is a hallmark of a well-performing model,
indicating that it is not only learning effectively from the
training data but also generalizing well to unseen data, as
reflected in the cross-validation scores.

Notably, both the training and cross-validation accu-
racy scores are exceptionally high, which is indicative
of the model’s robustness. The high accuracy in train-
ing suggests that the model is effectively capturing the
underlying patterns in the data. More importantly, the
high cross-validation accuracy points towards the mod-
el’s ability to maintain this performance on new, unseen
data, a critical aspect for practical applications.

The results presented in Table 7 underscore the remark-
able effectiveness and consistency of the model with Gra-
dient Boosting Classifier in malware classification, both Fig. 6 ROC curve of the model

Page 17 of 23Hossain and Islam Cybersecurity (2024) 7:16

with and without the application of the Synthetic Minor-
ity Over-sampling Technique (SMOTE). In the first part,
detailing the results of cross-validation without balanc-
ing, the model exhibits excellent performance across all
folds. The ACC, PR, RE, and FS are consistently high,
with values predominantly at 0.9997, except for Fold 3,
which shows a marginally lower yet still impressive score
of 0.9994. The mean scores across all metrics stand at
0.9997, accompanied by a very low standard deviation
of 0.0002. This consistency indicates not only the mod-
el’s high capability in correctly classifying various mal-
ware types but also its robustness and reliability across
different subsets of data. The second part, presenting
the results with SMOTE balancing, displays even more
exceptional performance, with perfect scores of 1.0000

across all metrics and folds. This indicates that the model
when trained on a balanced dataset, can achieve flawless
classification with no variation in performance across dif-
ferent cross-validation folds. The standard deviation of
0.0000 further reinforces the model’s stability and reli-
ability, highlighting its effectiveness in handling class
imbalances, a common challenge in machine learning.

These results demonstrate the model’s extraordinary
accuracy and consistency in detecting and classifying
malware, crucial in the cybersecurity field where the cost
of misclassification can be significant. The use of SMOTE
to balance the dataset enhances the model’s ability to
generalize across different data distributions, a key aspect
in ensuring its applicability to real-world scenarios where
data may often be imbalanced.

Fig. 7 Learning curve of the model

Table 7 Aggregated cross-validation results for multi-class classification

Folds Without balancing Balancing with SMOTE

Acc PR RE FS Acc PR RE FS

Fold 1 0.9997 0.9997 0.9997 0.9997 1.0000 1.0000 1.0000 1.0000

Fold 2 0.9997 0.9997 0.9997 0.9997 1.0000 1.0000 1.0000 1.0000

Fold 3 0.9994 0.9994 0.9994 0.9994 1.0000 1.0000 1.0000 1.0000

Fold 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Fold 5 0.9997 0.9997 0.9997 0.9997 1.0000 1.0000 1.0000 1.0000

Mean 0.9997 0.9997 0.9997 0.9997 1.0000 1.0000 1.0000 1.0000

Standard deviation 0.0002 0.0002 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000

Page 18 of 23Hossain and Islam Cybersecurity (2024) 7:16

Table 8 meticulously contrasts the performance
metrics of the proposed model against several exist-
ing models in the domain of malware classification,
both for binary and 4-class scenarios. The metrics
compared include ACC, PR, RE, and FS, each evalu-
ated for binary and 4-class categorizations. This table
is pivotal in highlighting the enhanced capabilities of
the proposed model in accurately detecting and classi-
fying malware. When employing the Synthetic Minor-
ity Over-sampling Technique (SMOTE) for balancing,
all evaluation metric values consistently reach a perfect
score of 1.00 for both Binary and four malware catego-
ries. The proposed model exhibits an unparalleled level
of performance, achieving an extraordinary 100% in all
metrics for the binary classification and near-perfect
scores of 99.96% for the 4-class classification for the
test data (20%). This exceptional performance starkly
contrasts with other models listed in the table. While
these models show commendable accuracy in binary
classification, they fall short in the more complex
4-class classification, with accuracy ranging from 79.16
to 85.04%, and a similar trend in other metrics.

The proposed model’s ability to maintain high accu-
racy and consistency across both binary and multi-class
scenarios sets it apart from its contemporaries. This
indicates not just the model’s precision in classifying
malware accurately but also its robustness in handling
more complex, multi-class scenarios. Such perfor-
mance is critical in the rapidly evolving landscape of
cybersecurity, where the ability to discern between var-
ious types of attacks accurately is paramount.

Table 9 provides a comprehensive overview of the
evaluation metrics for the model across 16 distinct
attack categories without balancing with SMOTE
technique, including benign and various types of ran-
somware, spyware, and trojans. If the dataset have
balanced, then all the values of the different metrics
generates 1.0000. The model exhibits outstanding per-
formance in detecting and classifying diverse malware

Table 8 Performance metrics: proposed model versus existing ones without balancing

Model, year with reference Accuracy metrics (%)

ACC PR RE FS

Binary 4 class Binary 4 class Binary 4 class Binary 4 class

MalHyStack, 2023 (Roy et al. 2023) 99.85 85.04 99.97 85.04 99.73 85.17 99.85 84.96

RobustCBL, 2023 (Shafin et al. 2023) 99.96 84.56 100.00 85.00 100.00 85.00 100.00 85.00

CatBoost, 2022 (Dang 2022) 99.97 84.86 99.98 79.69 99.98 88.46 99.97 71.49

DT, 2022 (Mezina and Burget 2022) 99.00 79.16 99.00 69.00 100.00 69.00 99.00 69.00

DCNN, 2022 (Mezina and Burget 2022) 99.92 83.53 99.00 76.00 99.00 75.00 99.00 75.00

Proposed 100.00 99.96 100.00 99.96 100.00 99.96 100.00 99.96

Table 9 Evaluation metrics for 16 attack categories

Class ACC PR RE FS

Benign (0) 0.9999 0.9997 1.0000 0.9999

Ransomware_Ako (1) 0.9999 1.0000 0.9980 0.9990

Ransomware_Conti (2) 0.9999 1.0000 0.9981 0.9990

Ransomware_Maze (3) 1.0000 1.0000 1.0000 1.0000

Ransomware_Pysa (4) 1.0000 1.0000 1.0000 1.0000

Ransomware_Shade (5) 1.0000 1.0000 1.0000 1.0000

Spyware_180solutions (6) 1.0000 1.0000 1.0000 1.0000

Spyware_CWS (7) 1.0000 1.0000 1.0000 1.0000

Spyware_Gator (8) 1.0000 1.0000 1.0000 1.0000

Spyware_TIBS (9) 1.0000 1.0000 1.0000 1.0000

Spyware_Transponder (10) 1.0000 1.0000 1.0000 1.0000

Trojan_Emotet (11) 1.0000 1.0000 1.0000 1.0000

Trojan_Reconyc (12) 1.0000 1.0000 1.0000 1.0000

Trojan_Refroso (13) 1.0000 1.0000 1.0000 1.0000

Trojan_Scar (14) 1.0000 1.0000 1.0000 1.0000

Trojan_Zeus (15) 1.0000 1.0000 1.0000 1.0000

Fig. 8 Detailed confusion matrix visualization for 16 malware
sub-classes

Page 19 of 23Hossain and Islam Cybersecurity (2024) 7:16

categories. The high values across all metrics suggest
that the model is highly accurate, precise, and effec-
tive in recognizing distinct attack categories, making it
a robust solution for malware detection across a broad
spectrum of threats.

Figure 8, showcasing the confusion matrix for the 16
sub-attack malware classes, is a detailed representation
of the model’s classification prowess without the bal-
ancing with SMOTE technique. The heatmap, crafted
with clarity and precision, illustrates the distribution
of true and false predictions across various malware
categories. The primary diagonal, brightly highlighted,
indicates a high count of true positives for each class,
exemplifying the model’s accuracy in correctly identi-
fying each specific type of malware. When the dataset
is balanced using the SMOTE technique, the model
achieves a remarkable 100% accuracy across all sub-
attack malware classes.

The classes, ranging from ‘Benign’ to various types of
‘Ransomware’, ‘Spyware’, and ‘Trojan’ subclasses, are dis-
tinctly categorized, with almost negligible false positives
and false negatives. This is evident in the minimal off-
diagonal elements, underscoring the model’s precision in
distinguishing between different malware types, a critical
factor in effective cybersecurity. The meticulous identifi-
cation of ‘Benign’ cases amidst a myriad of malware types
further highlights the model’s nuanced understanding
and detection capabilities. Particularly commendable is
the model’s performance in accurately classifying sophis-
ticated malware variations with high true positive rates
and virtually zero misclassifications. The heatmap’s color
gradations, ranging from deep reds to light oranges, pro-
vide an intuitive and immediate grasp of the model’s clas-
sification accuracy.

Table 10 presents a compelling comparison of the
proposed model’s performance metrics against an exist-
ing model, MalHyStack, across 16 attack categories. The
metrics evaluated include ACC, PR, RE, and FS, which
are crucial indicators of a model’s effectiveness in classi-
fication tasks.

The proposed model shows an exceptional level of
performance, with each metric achieving near-perfect
scores of 99.98%. This is a significant improvement over
the existing models. The stark contrast in these values

underlines the advanced capabilities of the proposed
model in accurately identifying and classifying a diverse
range of malware attacks.

The proposed approach with Gradient-boosting clas-
sifiers, renowned for their ensemble learning capabili-
ties, empowers the proposed model to create a robust
and intricate decision boundary by combining multiple
weak learners. This ensemble approach enhances the
model’s ability to capture complex relationships within
the data, resulting in superior predictive accuracy.
SMOTE is employed in tandem with gradient-boosting
classifiers to address class imbalance. By oversampling
minority classes, the proposed model ensures a more bal-
anced representation of various malware types, thereby
preventing biased learning towards dominant classes.
This strategic handling of imbalanced data enhances the
model’s sensitivity and generalization across different
malware categories. Rigorous feature selection method-
ologies, including statistical tests and information-theo-
retic approaches, are applied during model development.
This meticulous process isolates key malware character-
istics, allowing the model to focus on the most indica-
tive features for accurate classification. The emphasis on
informative features contributes to the model’s preci-
sion and reliability. The proposed model demonstrates
adaptability to both binary and multi-class scenarios,
showcasing its versatility in addressing a wide range of
cybersecurity threats. This adaptability ensures that the
model remains effective in diverse digital environments,
surpassing the performance limitations observed in some
existing models that may specialize in specific scenarios.

The superior performance of the proposed model
than others is a result of its robust ensemble learning,
effective handling of imbalanced data through SMOTE,
meticulous feature selection, adaptability to diverse
scenarios, and commitment to continuous innovation.
These factors collectively contribute to its exceptional
ACC, PR, RE, and FS metrics, positioning the proposed
model as a state-of-the-art solution in the field of mal-
ware detection.

The comprehensive analysis of various figures and
tables in this research unequivocally justifies the supe-
riority of the proposed model in malware classification.
Its performance, evidenced by near-perfect and perfect
scores in key metrics across multiple tables, demon-
strates its exceptional accuracy, precision, recall, and
F1-scores, both in binary and multi-class scenarios. The
model’s robustness is further highlighted by the consist-
ency of these results, even when challenged with class
imbalance, as shown in the performance improvement
with the SMOTE technique. The confusion matrices,
detailed in the figures, illustrate the model’s unparalleled
ability to differentiate between a wide arrays of malware

Table 10 Comparison of model’s performance metrics for 16
attack categories without balancing

Model ACC PR RE FS

MalHyStack, 2023 (Roy et al. 2023) 66.94 66.94 68.56 66.71

RobustCBL, 2023 (Shafin et al. 2023) 72.60 73.00 73.00 72.00

Proposed 99.98 99.98 99.98 99.98

Page 20 of 23Hossain and Islam Cybersecurity (2024) 7:16

types with minimal misclassifications. Collectively, these
results not only affirm the model’s advanced analyti-
cal capabilities in the complex domain of cybersecurity
but also showcase its potential as a highly effective tool
in detecting and analyzing obfuscated malware, offering
a significant contribution to the field and setting a new
benchmark for future research.

Conclusion
In conclusion, this research presents a groundbreak-
ing approach in the realm of cybersecurity, focusing
on the detection and analysis of obfuscated malware
through an advanced machine learning-based frame-
work. The research’s comprehensive evaluation,
utilizing the Obfuscated-MalMem2022 dataset, dem-
onstrates the model’s exceptional ability to accurately
classify a diverse range of malware types. The applica-
tion of techniques such as SMOTE for addressing class
imbalance further enhances the model’s performance,
achieving near-perfect accuracy in both binary and
multi-class scenarios (both 4 classes and 16 classes).
The model successfully achieves an accuracy exceeding
99% in three distinct scenarios. The detailed analysis,
reflected in the figures and tables, reveals the model’s

proficiency in maintaining high results across various
classifications, setting it apart from existing models.
The proposed model’s robustness is evident in its abil-
ity to handle complex, multi-class classification tasks
with remarkable accuracy, a crucial requirement in
today’s dynamic cybersecurity landscape. This research
not only addresses the critical challenge of detecting
sophisticated, obfuscated malware but also contributes
significantly to the field of cybersecurity by providing a
reliable and efficient tool for practitioners and research-
ers. The model’s adaptability and effectiveness position
it as a benchmark for future developments in cyberse-
curity solutions, highlighting the potential of machine
learning in combating increasingly sophisticated cyber
threats. This research, therefore, stands as a significant
milestone in the ongoing endeavor to enhance digital
security and protect against the evolving landscape of
cyber threats.

Appendix
See Table 11.

Table 11 Feature title and description of the dataset

Feature title Description of feature

callbacks.ncallbacks This quantifies the number of registered callback functions within the system, where an unusually high
count might be indicative of obfuscated malware attempting to intercept or monitor system activities

pslist.avg_handlers This represents the average number of handlers per process, providing insight into system behavior; obfus-
cated malware may manipulate this to disguise its presence or control other processes

psxview.not_in_eprocess_pool_false_avg This captures the average number of processes not listed in the EPROCESS pool, which might be elevated
in the case of obfuscated malware as it attempts to hide from conventional process listings

ldrmodules.not_in_load This quantifies modules that are not in a loaded state, a possible red flag for obfuscated malware that could
be unloading modules to evade detection

psxview.not_in_csrss_handles_false_avg This represents the average count of processes not found in the CSRSS handles, potentially indicating
obfuscated malware as it may attempt to evade being linked to critical system processes

handles.nevent This tracks the number of event handles, which could be manipulated by obfuscated malware for synchro-
nization purposes or to maintain persistence

handles.nmutant The number of mutant handles is captured here, which obfuscated malware might use to signal
between different instances of itself or to lock resources

psxview.not_in_eprocess_pool This provides a count of processes not present in the EPROCESS pool, an attribute that could be exploited
by obfuscated malware to remain undetected

dlllist.avg_dlls_per_proc This feature reflects the average number of DLLs loaded per process, with obfuscated malware possibly
loading unusual DLLs or manipulating this count to hide its presence

psxview.not_in_deskthrd_false_avg This captures the average number of processes not found in the desktop thread, a potential indicator
of obfuscated malware as it might detach its processes from the desktop to remain unseen

handles.nthread This quantifies the number of thread handles, which obfuscated malware may increase for parallel execu-
tion or to manipulate other processes

callbacks.nanonymous The count of anonymous callbacks is tracked here, with obfuscated malware potentially registering such
callbacks to evade attribution

modules.nmodules This represents the total number of loaded modules, a count that might be inflated by obfuscated malware
as it loads additional modules for malicious activities

Page 21 of 23Hossain and Islam Cybersecurity (2024) 7:16

Table 11 (continued)

Feature title Description of feature

ldrmodules.not_in_mem_avg The average number of modules not in memory is captured, potentially indicative of obfuscated malware
that unloads modules to evade memory-based detection

handles.nsemaphore This quantifies the number of semaphore handles, which obfuscated malware might manipulate for coordi-
nation or to control access to resources

svcscan.fs_drivers This reflects the count of file system drivers, a feature that obfuscated malware might target to install mali-
cious drivers or intercept file operations

svcscan.shared_process_services The number of services running in shared processes is captured here, with obfuscated malware possibly
injecting itself into such services for stealth

ldrmodules.not_in_init_avg This feature represents the average number of modules not initialized, a potential sign of obfuscated mal-
ware as it may attempt to disrupt normal module initialization

svcscan.process_services The count of services running in separate processes is tracked, a feature obfuscated malware might exploit
to run its malicious services independently

handles.nsection This quantifies the number of section handles, which could be manipulated by obfuscated malware
for memory mapping or to hide its code in specific sections

pslist.nprocs64bit The number of 64-bit processes running on the system is represented, a count that obfuscated malware
may influence as it selects processes to inject into or impersonate

pslist.nppid This tracks the number of processes based on parent process IDs, which obfuscated malware might
manipulate to break the parent–child process relationship and hide its origin

handles.avg_handles_per_proc This represents the average number of handles per process, a figure that might be inflated by obfuscated
malware as it opens numerous handles for malicious activities

dlllist.ndlls The total number of loaded DLLs is quantified here, with obfuscated malware potentially loading additional
DLLs to execute its payload or perform evasion

svcscan.nactive This feature captures the number of active services, which obfuscated malware might increase by register-
ing its own services or hijacking existing ones

handles.nport The count of port handles is tracked, a feature that obfuscated malware might exploit to establish network
communications or intercept network-related activities

malfind.uniqueInjections This represents the number of unique memory injections detected, a crucial indicator of obfuscated mal-
ware as it frequently employs memory injection for stealth and persistence

psxview.not_in_pslist The count of processes not present in the process list is provided, a potential sign of obfuscated malware
attempting to hide its processes from standard listings

psxview.not_in_pspcid_list This quantifies processes not found in the PSPCID list, which could be indicative of obfuscated malware
employing advanced techniques to remain undetected

psxview.not_in_pspcid_list_false_avg The average count of processes not in the PSPCID list is captured, potentially highlighting obfuscated
malware’s efforts to evade detection at the kernel level

pslist.nproc This represents the total number of processes running, a figure that obfuscated malware might influence
as it spawns additional processes for its operations

handles.ndesktop The number of desktop handles is tracked, with obfuscated malware potentially manipulating this feature
to run processes in isolated desktops for evasion

malfind.commitCharge This quantifies the commit charge of detected memory injections, a crucial feature to analyze as obfuscated
malware often manipulates memory for code execution and stealth

psxview.not_in_session The count of processes not present in any session is provided, possibly indicative of obfuscated malware
attempting to isolate its processes from user sessions

handles.ndirectory This tracks the number of directory handles, which obfuscated malware might manipulate to interact
with or monitor filesystem directories

psxview.not_in_csrss_handles The number of processes not found in CSRSS handles is quantified, a potential red flag for obfuscated
malware as it may sever links to critical system processes

psxview.not_in_pslist_false_avg This captures the average count of processes not found in the process list, potentially highlighting obfus-
cated malware’s attempts to remain hidden from conventional process enumeration

psxview.not_in_deskthrd The count of processes not found in the desktop thread is provided, a feature that obfuscated malware
might manipulate to detach its processes from user interfaces

malfind.protection This quantifies the protection attributes of detected memory injections, a crucial feature to analyze
as obfuscated malware might manipulate protection settings to execute malicious code while avoiding
detection

pslist.avg_threads The average number of threads per process is captured, a feature that might be elevated by obfuscated
malware as it creates additional threads for parallel execution or to manipulate other processes

Page 22 of 23Hossain and Islam Cybersecurity (2024) 7:16

Authors’ contributions
All the authors read and approved the final manuscript.

Funding
No funding was received by the authors for conducting this research.

Availability of data and materials
The datasets used in this research are publicly available and properly cited in
our dataset section for transparency and ease of replication.

Declarations

Competing interest
The authors of this paper affirm that there are no competing interest related
to this research.

Received: 18 November 2023 Accepted: 12 January 2024

References
Abu Al-Haija Q, Odeh A, Qattous H (2022) PDF malware detection based on

optimizable decision trees. Electronics 11(19):3142. https:// doi. org/ 10.
3390/ elect ronic s1119 3142

Akhtar MS, Feng T (2022) Malware analysis and detection using machine learn-
ing algorithms. Symmetry 14(11):2304. https:// doi. org/ 10. 3390/ sym14
112304

Al-Qudah M, Ashi Z, Alnabhan M, Abu Al-Haija Q (2023) Effective one-class
classifier model for memory dump malware detection. J Sens Actuator
Netw 12(1):5. https:// doi. org/ 10. 3390/ jsan1 20100 05

Asghar HJ, Zhao BZH, Ikram M, Nguyen G, Kaafar D, Lamont S, Coscia D (2023)
Use of cryptography in malware obfuscation (arXiv: 2212. 04008; Issue
arXiv: 2212. 04008). http:// arxiv. org/ abs/ 2212. 04008

Beaman C, Barkworth A, Akande TD, Hakak S, Khan MK (2021) Ransomware:
recent advances, analysis, challenges and future research directions.
Comput Secur 111:102490. https:// doi. org/ 10. 1016/j. cose. 2021. 102490

Bozkir AS, Tahillioglu E, Aydos M, Kara I (2021) Catch them alive: a malware
detection approach through memory forensics, manifold learning and
computer vision. Comput Secur 103:102166. https:// doi. org/ 10. 1016/j.
cose. 2020. 102166

Brezinski K, Ferens K (2023) Metamorphic malware and obfuscation: a survey
of techniques, variants, and generation kits. Secur Commun Netw
2023:1–41. https:// doi. org/ 10. 1155/ 2023/ 82277 51

Carrier T, Victor P, Tekeoglu A, Lashkari A (2022) Detecting obfuscated
malware using memory feature engineering. In: Proceedings of the 8th
international conference on information systems security and privacy, pp
177–188. https:// doi. org/ 10. 5220/ 00109 08200 003120

Chen Z, Ren X (2023) An efficient boosting-based windows malware family
classification system using multi-features fusion. Appl Sci 13(6):4060.
https:// doi. org/ 10. 3390/ app13 064060

Dang Q-V (2022) Enhancing obfuscated malware detection with machine
learning techniques. In: Dang TK, Küng J, Chung TM (eds) Future data and
security engineering. Big data, security and privacy, smart city and indus-
try 4.0 applications, vol 1688. Springer, Singapore, pp 731–738. https://
doi. org/ 10. 1007/ 978- 981- 19- 8069-5_ 54

Feature title Description of feature

ldrmodules.not_in_init This provides a count of modules not in the initialized state, possibly indicative of obfuscated malware
attempting to disrupt normal initialization routines

ldrmodules.not_in_mem The number of modules not present in memory is quantified, a potential sign of obfuscated malware
unloading modules post-execution to evade detection

psxview.not_in_session_false_avg This feature captures the average count of processes not found in any session, potentially highlighting
obfuscated malware’s efforts to isolate its activities from user sessions

malfind.ninjections The total number of memory injections detected is provided, a critical indicator for obfuscated malware
detection as such techniques are frequently used for code execution and evasion

svcscan.interactive_process_services This quantifies the number of services running in interactive processes, which obfuscated malware might
target to run its services with elevated privileges

psxview.not_in_ethread_pool The count of processes not present in the ETHREAD pool is tracked, a potential red flag for obfuscated
malware employing advanced evasion techniques at the kernel level

ldrmodules.not_in_load_avg This represents the average number of modules not in a loaded state, possibly indicative of obfuscated
malware’s attempts to manipulate module loading for evasion

handles.nfile The number of file handles is quantified, with obfuscated malware potentially manipulating this count
to interact with or hide files

handles.ntimer This feature tracks the number of timer handles, which obfuscated malware might use for scheduling activi-
ties or to maintain persistence

callbacks.ngeneric The count of generic callbacks is provided, a feature that obfuscated malware might exploit to monitor
or intercept system activities without being tied to specific events

handles.nkey This quantifies the number of registry key handles, a count that might be elevated by obfuscated malware
as it interacts with the registry for configuration, persistence, or to store payload

svcscan.kernel_drivers The number of kernel drivers is captured, with obfuscated malware potentially targeting this area to install
malicious drivers or to manipulate driver loading for evasion

psxview.not_in_ethread_pool_false_avg This captures the average number of processes not found in the ETHREAD pool, potentially highlighting
obfuscated malware’s efforts to remain undetected at the kernel level

handles.nhandles The total number of handles opened is quantified here, a feature that might be inflated by obfuscated
malware as it opens numerous handles for its malicious activities

svcscan.nservices This represents the total number of services running, a figure that obfuscated malware might influence
by adding its own services or hijacking existing ones

Table 11 (continued)

https://doi.org/10.3390/electronics11193142
https://doi.org/10.3390/electronics11193142
https://doi.org/10.3390/sym14112304
https://doi.org/10.3390/sym14112304
https://doi.org/10.3390/jsan12010005
http://arxiv.org/abs/2212.04008
http://arxiv.org/abs/2212.04008
http://arxiv.org/abs/2212.04008
https://doi.org/10.1016/j.cose.2021.102490
https://doi.org/10.1016/j.cose.2020.102166
https://doi.org/10.1016/j.cose.2020.102166
https://doi.org/10.1155/2023/8227751
https://doi.org/10.5220/0010908200003120
https://doi.org/10.3390/app13064060
https://doi.org/10.1007/978-981-19-8069-5_54
https://doi.org/10.1007/978-981-19-8069-5_54

Page 23 of 23Hossain and Islam Cybersecurity (2024) 7:16

Dang Q-V (2024) Detecting obfuscated malware using graph neural networks.
In: Shrivastava V, Bansal JC, Panigrahi BK (eds) Power engineering and
intelligent systems, vol 1097. Springer, Singapore, pp 15–25. https:// doi.
org/ 10. 1007/ 978- 981- 99- 7216-6_2

Dugyala R, Reddy NH, Maheswari VU, Mohammad GB, Alenezi F, Polat K (2022)
Analysis of malware detection and signature generation using a novel
hybrid approach. Math Probl Eng 2022:1–13. https:// doi. org/ 10. 1155/
2022/ 58524 12

Federici M, Ruhe D, Forré P (2023) On the effectiveness of hybrid mutual infor-
mation estimation. arXiv: 2306. 00608; http:// arxiv. org/ abs/ 2306. 00608

Finder I, Sheetrit E, Nissim N (2022) A time-interval-based active learning
framework for enhanced PE malware acquisition and detection. Comput
Secur 121:102838. https:// doi. org/ 10. 1016/j. cose. 2022. 102838

Gorment NZ, Selamat A, Krejcar O (2023) Obfuscated malware detection:
impacts on detection methods. In: Nguyen NT, Boonsang S, Fujita H,
Hnatkowska B, Hong T-P, Pasupa K, Selamat A (eds) Recent challenges in
intelligent information and database systems, vol 1863. Springer, Cham,
pp 55–66. https:// doi. org/ 10. 1007/ 978-3- 031- 42430-4_5

Haidros Rahima Manzil H, Manohar Naik S (2023) Detection approaches
for android malware: taxonomy and review analysis. Expert Syst Appl.
https:// doi. org/ 10. 1016/j. eswa. 2023. 122255

Hossain MA (2023) Enhanced ensemble-based distributed denial-of-service
(DDoS) attack detection with novel feature selection: a robust cybersecu-
rity approach. Artif Intell Evol 4(2):165–186. https:// doi. org/ 10. 37256/ aie.
42202 33337

Hossain MA, Islam MS (2023a) Ensuring network security with a robust intru-
sion detection system using ensemble-based machine learning. Array.
https:// doi. org/ 10. 1016/j. array. 2023. 100306

Hossain MA, Islam MS (2023b) A novel hybrid feature selection and ensemble-
based machine learning approach for botnet detection. Sci Rep
13(1):21207. https:// doi. org/ 10. 1038/ s41598- 023- 48230-1

Hossain Faruk MJ, Shahriar H, Valero M, Barsha FL, Sobhan S, Khan MA, Whit-
man M, Cuzzocrea A, Lo D, Rahman A, Wu F (2021) Malware detection
and prevention using artificial intelligence techniques. IEEE Int Conf Big
Data (big Data) 2021:5369–5377. https:// doi. org/ 10. 1109/ BigDa ta525 89.
2021. 96714 34

Lashkari AH, Li B, Carrier TL, Kaur G (2021) VolMemLyzer: volatile memory
analyzer for malware classification using feature engineering. In: 2021
reconciling data analytics, automation, privacy, and security: a big data
challenge (RDAAPS), pp 1–8. https:// doi. org/ 10. 1109/ RDAAP S48126. 2021.
94520 28

Lee K, Lee J, Yim K (2023) Classification and analysis of malicious code detec-
tion techniques based on the APT attack. Appl Sci 13(5):2894. https:// doi.
org/ 10. 3390/ app13 052894

Mamdouh Farghaly H, Abd El-Hafeez T (2023) A high-quality feature selec-
tion method based on frequent and correlated items for text clas-
sification. Soft Comput 27(16):11259–11274. https:// doi. org/ 10. 1007/
s00500- 023- 08587-x

Manzil HHR, Manohar Naik S (2023) Android malware category detection
using a novel feature vector-based machine learning model. Cybersecu-
rity 6(1):6. https:// doi. org/ 10. 1186/ s42400- 023- 00139-y

Maulidevi NU, Surendro K (2022) SMOTE-LOF for noise identification in imbal-
anced data classification. J King Saud Univ Comput Inf Sci 34(6):3413–
3423. https:// doi. org/ 10. 1016/j. jksuci. 2021. 01. 014

Mezina A, Burget R (2022). Obfuscated malware detection using dilated con-
volutional network. In: 2022 14th international congress on ultra modern
telecommunications and control systems and workshops (ICUMT), pp
110–115. https:// doi. org/ 10. 1109/ ICUMT 57764. 2022. 99434 43

Mukhtar BI, Elsayed MS, Jurcut AD, Azer MA (2023) IoT vulnerabilities and
attacks: SILEX malware case study. Symmetry 15(11):1978. https:// doi. org/
10. 3390/ sym15 111978

Naeem MR, Khan M, Abdullah AM, Noor F, Khan MI, Khan MA, Ullah I, Room
S (2022) A malware detection scheme via smart memory forensics for
windows devices. Mob Inf Syst 2022:1–16. https:// doi. org/ 10. 1155/ 2022/
91565 14

Ngo G, Beard R, Chandra R (2022) Evolutionary bagging for ensemble learning.
Neurocomputing 510:1–14. https:// doi. org/ 10. 1016/j. neucom. 2022. 08.
055

Roy KS, Ahmed T, Udas PB, Karim MdE, Majumdar S (2023) MalHyStack: a
hybrid stacked ensemble learning framework with feature engineering

schemes for obfuscated malware analysis. Intell Syst Appl 20:200283.
https:// doi. org/ 10. 1016/j. iswa. 2023. 200283

Rudd EM, Krisiloff D, Coull S, Olszewski D, Raff E, Holt J (2023) Efficient malware
analysis using metric embeddings. Digit Threats Res Pract. https:// doi.
org/ 10. 1145/ 36156 69

Sawadogo Z, Dembele J-M, Tahar A, Mendy G, Ouya S (2023) DeepMalOb:
deep detection of obfuscated android malware. In: NgatchedNkouatchah
TM, Woungang I, Tapamo J-R, Viriri S (eds) Pan-african artificial intelligence
and smart systems, vol 459. Springer, Cham, pp 307–318. https:// doi. org/
10. 1007/ 978-3- 031- 25271-6_ 19

Shafin SS, Karmakar G, Mareels I (2023) Obfuscated memory malware detec-
tion in resource-constrained IoT devices for smart city applications.
Sensors 23(11):5348. https:// doi. org/ 10. 3390/ s2311 5348

Vashishtha LK, Chatterjee K, Rout SS (2023) An ensemble approach for
advance malware memory analysis using image classification techniques.
J Inf Secur Appl 77:103561. https:// doi. org/ 10. 1016/j. jisa. 2023. 103561

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/978-981-99-7216-6_2
https://doi.org/10.1007/978-981-99-7216-6_2
https://doi.org/10.1155/2022/5852412
https://doi.org/10.1155/2022/5852412
http://arxiv.org/abs/2306.00608
http://arxiv.org/abs/2306.00608
https://doi.org/10.1016/j.cose.2022.102838
https://doi.org/10.1007/978-3-031-42430-4_5
https://doi.org/10.1016/j.eswa.2023.122255
https://doi.org/10.37256/aie.4220233337
https://doi.org/10.37256/aie.4220233337
https://doi.org/10.1016/j.array.2023.100306
https://doi.org/10.1038/s41598-023-48230-1
https://doi.org/10.1109/BigData52589.2021.9671434
https://doi.org/10.1109/BigData52589.2021.9671434
https://doi.org/10.1109/RDAAPS48126.2021.9452028
https://doi.org/10.1109/RDAAPS48126.2021.9452028
https://doi.org/10.3390/app13052894
https://doi.org/10.3390/app13052894
https://doi.org/10.1007/s00500-023-08587-x
https://doi.org/10.1007/s00500-023-08587-x
https://doi.org/10.1186/s42400-023-00139-y
https://doi.org/10.1016/j.jksuci.2021.01.014
https://doi.org/10.1109/ICUMT57764.2022.9943443
https://doi.org/10.3390/sym15111978
https://doi.org/10.3390/sym15111978
https://doi.org/10.1155/2022/9156514
https://doi.org/10.1155/2022/9156514
https://doi.org/10.1016/j.neucom.2022.08.055
https://doi.org/10.1016/j.neucom.2022.08.055
https://doi.org/10.1016/j.iswa.2023.200283
https://doi.org/10.1145/3615669
https://doi.org/10.1145/3615669
https://doi.org/10.1007/978-3-031-25271-6_19
https://doi.org/10.1007/978-3-031-25271-6_19
https://doi.org/10.3390/s23115348
https://doi.org/10.1016/j.jisa.2023.103561

	Enhanced detection of obfuscated malware in memory dumps: a machine learning approach for advanced cybersecurity
	Abstract
	Introduction
	Literature review
	Background of obfuscated malware in memory dumps
	Review on detection approaches of obfuscated malware in memory dumps

	Proposed methodology
	Dataset acquisition and preprocessing
	Data categorization and encoding
	Handling class imbalance with SMOTE
	Feature selection and scaling
	Model training process with gradient boosting classifier
	Model training process with BG ensemble
	Model training process with VT ensemble
	Training and classification process of the model with ADB ensemble
	Random forest ensemble approach for the malware classification

	Results and analysis
	Conclusion
	Appendix
	References

