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Abstract 

Named Entity Recognition (NER) in cybersecurity is crucial for mining information during cybersecurity incidents. 
Current methods rely on pre-trained models for rich semantic text embeddings, but the challenge of anisotropy may 
affect subsequent encoding quality. Additionally, existing models may struggle with noise detection. To address these 
issues, we propose JCLB, a novel model that Joins Contrastive Learning and Belief rule base for NER in cybersecurity. 
JCLB utilizes contrastive learning to enhance similarity in the vector space between token sequence representations 
of entities in the same category. A Belief Rule Base (BRB) is developed using regexes to ensure accurate entity identi-
fication, particularly for fixed-format phrases lacking semantics. Moreover, a Distributed Constraint Covariance Matrix 
Adaptation Evolution Strategy (D-CMA-ES) algorithm is introduced for BRB parameter optimization. Experimental 
results demonstrate that JCLB, with the D-CMA-ES algorithm, significantly improves NER accuracy in cybersecurity.
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Introduction
As cybercrimes and cyber-espionage incidents con-
tinue to escalate, cybersecurity has gained increas-
ing significance for individuals, businesses, and 
governments (Ashraf et al. 2023). In the event of a cyber-
security incident, analysts need to swiftly identify enti-
ties from diverse incident logs, sourced from host log 
data, cyber traffic data, security alarm data, and threat 
intelligence data. These entities impact the cybersecu-
rity situation, yet they are not directly observable in the 
actual cyber environment. Instead, they manifest within 
various cybersecurity events. To respond efficiently and 
effectively to cybersecurity incidents, it is essential to 

model and recognize entities across a vast array of cyber-
security data. With the development of Named Entity 
Recognition (NER), neural networks have been applied 
to entity extraction in the cybersecurity field (Gao et al. 
2021). Whether utilizing pre-trained models in the rep-
resentation process or employing encoders in the encod-
ing process, these approaches allow for a comprehensive 
consideration of the contextual influence on each word.

However, there are still challenges within NER for 
cybersecurity data. Firstly, embeddings derived from 
pre-trained language models such as BERT often exhibit 
excessive clustering and uneven distribution in vec-
tor space  (Gao et  al. 2021). This phenomenon can lead 
to semantically similar tokens or token sequences being 
positioned further apart, while semantically unrelated 
tokens or sequences may end up with closely aligned vec-
tors. The suboptimal representation of semantic simi-
larity can skew the model’s ability to accurately identify 
entities, potentially impacting its overall performance by 
favoring certain directional biases. Furthermore, present 
methods exhibit a deficiency when it comes to ensuring 
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the accuracy of entity recognition. There seems to be a 
significant amount of noise in cybersecurity data. For 
instance, an IP address that appears in the text may be 
incorrect either in format or in content. Despite this, 
current models continue to label such instances as IP 
addresses, demonstrating a lack of judgment on their 
validity.

In this paper, we propose JCLB, which Joins Contras-
tive Learning and Belief rule base, designed for NER in 
cybersecurity. Inspired by the successful application of 
contrastive learning in text clustering (Hu et al. 2024), we 
use contrastive learning to fine-tune BERT, with the pur-
pose of closely aligning token sequence representations 
for the same type of entities in vector space, while keep-
ing them distinct from those of other token sequences. 
Specifically, we devise objectives based on span and posi-
tion to enhance the representation similarity of both 
token sequence and tokens at the boundary for entities 
of the same type in the vector space. Additionally, to 
effectively filter noise and discern entity correctness, we 
establish regexes as rules. We learn the confidence of 
each rule to create a Belief Rule Base (BRB), which filters 
entity categories and simultaneously assesses their cor-
rectness. The BRB mitigates potential errors associated 
with relying solely on regexes. Furthermore, while the 
Covariance Matrix Adaptation Evolutionary Strategies 
(CMA-ES) algorithm is a robust optimization algorithm 
for BRB, it may not perform optimally for larger-scale or 
high-dimensional optimization problems  (Hansen 2006; 
Yao et al. 2004). To address these challenges, we propose 
the Distributed CMA-ES (D-CMA-ES) algorithm that 
divides the high-dimensional search space into various 
subspaces with relatively lower dimensions and uses the 
CMA-ES algorithm to search in these subspaces. Finally, 
the solutions in the low-dimensional subspaces are com-
bined to obtain the solution to the original problem.

Our contributions are as follows.

•	 We apply contrastive learning to fine-tune BERT, 
enhancing the similarity of the same type of entities 
in the vector space.

•	 We establish a BRB combining qualitative infor-
mation with its capacity to define various types of 
uncertain information to filter noise and verify entity 
accuracy. Additionally, we develop the D-CMA-
ES algorithm to address the high dimensions in the 
parameter optimization of the BRB.

•	 We conduct extensive experiments on two cyberse-
curity datasets, and the experimental results demon-
strate the superiority of JCLB over existing models.

In the rest of the paper, we cover the related work in sec-
tion "Related work" and then present the JCLB in section 

"Methodology". After reporting the experimental study 
in section "Experiments". We finally conclude our work 
in section "Conclusion".

Related work
Traditional methods for NER in cybersecurity
Early NER approaches primarily fall into two catego-
ries: rule-based and statistical machine-learning models. 
Rule-based methods rely on expert-crafted rules, incor-
porating gazetteers and syntactic lexical patterns  (Etzi-
oni et al. 2005; Bridges et al. 2017). Statistical approaches 
leverage machine learning algorithms such as Hidden 
Markov Models  (Morwal et  al. 2012), Support Vector 
Machines  (Mansouri et  al. 2008), Perceptrons  (Jin et  al. 
2020), and Conditional Random Fields (CRFs)  (Joshi 
et al. 2013; Jia et al. 2018). Mulwad et al. (2011) extracted 
specific vulnerabilities and attack knowledge from Wiki-
pedia, generating machine-understandable assertions but 
did not consider temporal factors. Lal (2013) trained a 
model using Stanford NER’s Conditional Random Fields, 
automating and enhancing zero-day attack security, yet 
its performance is limited on cybersecurity data. Weera-
wardhana et al. (2015) proposed a machine learning and 
part-of-speech tagging strategy to extract intelligence 
from online vulnerability databases.

Neural networks for NER in cybersecurity
In recent years, deep neural networks have been consid-
ered potential alternatives to traditional NER methods 
due to the rapid development of deep learning  (Altalhi 
and Gutub 2021; Kashihara et  al. 2022; Zhu et  al. 2021; 
Zhang et  al. 2022). Collobert et  al. (2011) proposed a 
neural network architecture and learning algorithm that 
reduces reliance on prior NLP knowledge, albeit with 
only moderate improvements in feature representation. 
Huang et  al. (2015) integrated BiLSTM and CRF, effec-
tively performing sequence labeling tasks, and establish-
ing the dominance of RNN-based sequence models in 
NER tasks. Kim et  al. (2020) utilized a deep BiLSTM-
CRF network to automatically extract key information 
from CTI reports, enriching feature representation by 
adding bidirectional dense layers. Qin et  al. (2019) first 
extracted character features using CNN, then input 
them into BiLSTM to learn global word representations. 
They combined feature templates to extract feature vec-
tors, obtaining more meaningful representations. Simran 
et  al. (2020) developed a model based on multiple deep 
neural networks, employing a linear stack of Bi-GRU 
and CNN to learn hidden representations, preserv-
ing context information from different time sequences 
to enhance performance. Zhou et  al. (2021) applied 
BERT-BiLSTM-CRF to cybersecurity NER tasks, using 
an improved BERT with full-word masking to represent 
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word embeddings. Gao et al. (2021) designed a data- and 
knowledge-driven NER network, introducing external 
dictionaries collected from cybersecurity-related blogs, 
vulnerability repositories, and Wikipedia. This enhanced 
word representation accurately reflects cybersecurity 
patterns. In addition, Li et al. (2021) introduced an adver-
sarial active learning approach, employing BiLSTM for 
word embedding encoding in cybersecurity NER tasks. 
Another LSTM layer decoded dynamic attentional hid-
den representations, generating pseudo-labels to address 
the issue of limited annotated samples. Sarhan and Spruit 
(2021) constructed an open CyKG model utilizing a neu-
ral Open Information Extraction (OIE) structure based 
on attention mechanisms, extracting network threat data 
from unstructured APT reports without the need for 
predefined information extraction sets. Alam et al. (2022) 

designed an open-source Python library named CyNER, 
using transformer-based models and heuristic methods 
to extract cybersecurity-related entities and Indicators 
of Compromise (IOC). This framework offers good port-
ability and scalability while providing multiple trained 
models.

In this paper, we introduce contrastive learning into 
NER in Cybersecurity to bring the span representations 
for similar entities closer in the embedding space. Addi-
tionally, we utilize BRB to mitigate the impact of noisy 
entities.

Methodology
We begin by offering an overview of JCLB, along with 
an illustration of the framework in Fig. 1. Sentences are 
initially transformed into embedding matrices via BERT 

Fig. 1  The overview of the JCLB
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(Section "Initialize embedding"). In this process, we 
employ contrastive learning to fine-tune BERT (Section 
"Contrastive learning for NER"). Specifically, we obtain 
span representations for entities in each sentence. We 
then generate prototypes of span, the initial token, and 
the final token representations for the same type of entity 
in a mini-batch. Based on that, we introduce three objec-
tives via contrastive learning for NER. Then, we use BiL-
STM to splice the forward and backward hidden vectors, 
allowing for better long-distance bidirectional semantic 
dependency capture (Section "BiLSTM layer"). To enable 
JCLB to selectively focus on more crucial parts in the 
input sequence when there is noise, we also introduce 
the MS (Section "Multi-head self-attention layer"). The 
CRF model is then used to predict the likelihood of each 
token belonging to various labels (Section "CRF layer"). 
Finally, a BRB is implemented to filter out inaccurately 
recognized entities, enhancing the precision of recogniz-
ing cybersecurity entities, particularly those typed with 
fixed-format phrases lacking semantics (Section "BRB 
layer").

Initialize embedding
JCLB first uses BERT to transform each token contained 
in the sentence into a vector v ∈ R

d that consists of two 
parts: word embedding vw ∈ R

dw and position embed-
ding vp ∈ R

dp , where d, dw , and dp are dimensions of v, vw , 
and vp , respectively. Hence, v is denoted as v = [vw , vp] , 
concatenating word embedding and position embedding. 
Suppose that there are n tokens in a certain sentence, it 
can be transformed into a sentence matrix T ∈ R

d×n.

Contrastive learning for NER
After obtaining the initial token vector, we introduce 
a contrastive learning objective to fine-tune the BERT. 
Contrastive learning is primarily applied in representa-
tion learning to alleviate the various idiosyncrasies of 

BERT. Its main purpose is to bring closer the embed-
dings of similar texts in the vector space while pushing 
apart those of dissimilar texts. As seen in Fig. 2, in NER, 
we aim for BERT’s representations of token sequences 
belonging to the same entity type to be closer in the 
vector space, while being farther away from token 
sequences of other types. Based on this, we derive the 
vector representation for a contiguous sequence of 
tokens in a certain sentence with a start token in posi-
tion i and an end token in position j as

where Linear is a learnable linear layer, ⊕ denotes the 
vector concatenation, l(j − i) ∈ R

d
l  is the (j − i)-th row 

of a learnable span width embedding matrix l ∈ R
n×dl . 

Assuming predefined entity types, within a mini-batch, 
we obtain vector representations for all sequences repre-
senting the k-th entity type ek . The set of the vector rep-
resentations is denoted as {spani}Ki=1 . Then, the prototype 
of the vector representation set is calculated as

Accordingly, the span-based infoNCE (Oord et al. 2019) 
can be defined as

where spani,j denotes the sequence vector representation 
for an entity of type ek , S−k  is the set of negative sequences 
that all exist in the mini-batch.

The span-based objective uniformly penalizes all 
non-entity token sequences. Therefore, to identify the 
boundaries of token sequences representing a spe-
cific entity, we propose a position-based objective. 

(1)spani,j = Linear(vi ⊕ vj ⊕ l(j − i)),

(2)pk =
K
i=1 span

i

K
.

(3)

Lspan = − log
exp(sim(spani,j , pk))

∑

span′∈S−k ∪si,j exp(sim(span′, pk))
,

Fig. 2  The contrastive learning objectives. In the mini-batch, entities such as Stuxnet, WannaCry, Mirai Botnet, and NotPetya are predefined 
“malware” entities. In the vector space, for “malware” entities, we define the prototype of corresponding entity representations as anchors, denoted 
by cross marks. Positive samples are representations of “malware” entities, indicated by green triangles, while negative samples are representations 
of other token sequences, represented by blue circles
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Intuitively, we want the initial (or final) tokens of enti-
ties of the same type to be closer to the embedding 
space. Specifically, we find the prototype of the initial 
(or final) token in the token sequence of entities of the 
same type in a mini-batch as

where n is the number of the tokens in spani . Using pstartk  
and pendk  as anchors, the position-based objectives are 
defined by

Finally, we achieve our overall contrastive objective by 
integrating the three discussed objectives as

where α , � , and γ are all hyper-parameters.

BiLSTM layer
In this section, we use BiLSTM for encoding the sen-
tence matrix. In t-th time step, we first calculate a for-
getting gate to determine what information to discard 
as ft = σ(Wf · [ht−1, vt ] + bf ) . Secondly, we calculate 
the memory gate to select the information to be memo-
rized as it = σ(Wi · [ht−1, vt ] + bi) . The temporary cellu-
lar state is calculated as C̃t = tanh(WC · [ht−1, vt] + bC) . 
Thirdly, we calculate the current cell state to inte-
grate the memory and forgetting gates, along with 
the temporary cell state and the previous cell state as 
Ct = ft ⊙ Ct−1 + it ⊙ C̃t . Finally, we calculate the out-
put gate as ot = σ(Wo · [ht−1, vt ] + bo) , and the hidden 
layer state as ht = ot ⊙ tanh(Ct) . We can get the hidden 
layer state sequence with the same length as the sentence 
{h0, · · · , hn−1}.

Multi‑head self‑attention layer
After the encoding of embeddings is completed 
by BiLSTM, we use the MS layer to further cap-
ture the dependency between tokens in the sequence 
X = {v1, . . . , vn} (Manikandan et al. 2018; Jin et al. 2020; 
Liao et al. 2019) and improve the robustness of JCLB.

(4)pstartk =
∑K

i=1 span
i
0,0

K
,

(5)pendk =
∑K

i=1 span
i
n,n

K
,

(6)Lstart =− log
exp(sim(span0,0, p

start
k ))

∑n
i=1 exp(sim(spani,i, p

start
k ))

,

(7)Lend =− log
exp(sim(spann,n, p

end
k ))

∑n
i=1 exp(sim(spani,i, p

end
k ))

.

(8)Lcl = αLspan + �Lstart + γLend,

The specific calculation of the attention mechanism is 
described as the mapping from a query token Q = XWq 
to a series of key tokens K = XWk and value tokens 
V = XWv in the sentence, where WQ , WK  , and WV  are 
parameter matrices. The weight corresponding to each 
value token is obtained by calculating the similarity 
between the query token and each key token. The simi-
larity between the query token and the key token is cal-
culated by the dot product, and the attention score of the 
scaled dot product is as follows,

To obtain the MS score, we perform the scaled dot prod-
uct attention calculation process for h times, the input is 
mapped to h different subspaces through the parameter 
matrix, the scaled dot product attention score is calcu-
lated in turn, and the final result is spliced as the final 
attention score. The i-th self-attention vector is calcu-
lated as

Finally, the MS score is calculated as

where Wo is a wight matrix.

CRF layer
In this layer, we regard the extraction of entities in cyber-
security as a sequence marking task. We assume the 
sequence as O = {O1,O2, · · · ,On} . After the process-
ing of the MS layer, we get an n×m matrix P, where n 
is the number of input tokens and m is the number of 
label types. The entry is the probability that the label 
i of the token j appears in the sentence. We represent 
y = {y1, y2, · · · , yn} as a marker sequence, so the model 
calculates the corresponding score:

where, Dij is the transition probability from yi to yj . Then, 
we apply softmax to obtain the normalized probability:

After that, we use the maximum logarithm function for 
training:

(9)Attention(Q,K, V) = softmax
QKT

√
d

· V.

(10)

ui = Attention(Qi, Ki, Vi) = softmax

(

QiK
T
i√
d

)

V.

(11)MS = (u1,u2, · · · ,uh) ·Wo,

(12)Score(x, y) =
n

∑

i−1

Pi,yi +
n+1
∑

i−1

Dyi−1yi ,

(13)P(y|x) = exp(score(x, y))
∑

y′ exp(score(x, y
′))

.



Page 6 of 14Hu et al. Cybersecurity            (2024) 7:19 

Finally, in the prediction process, the Viterbi algorithm is 
used to calculate probability:

BRB layer
The difference between the BRB layer and the data-driven 
models mentioned above is that the BRB’s internal struc-
ture can be explained  (Yang et  al. 2006). Additionally, 
compared to the aforementioned data-driven models, 
the BRB model has the ability to comprehensively utilize 
semi-quantitative information and describe all kinds of 
uncertain information (Yang et al. 2004).

Construction of BRB
We construct a BRB that comprises multiple rules. In 
these rules, we consider the CRF output as one of the 
premise attributes and also incorporate the use of power-
ful and easy-to-understand regexes as another necessary 
attribute. This helps to accurately identify cybersecurity 
entities with a fixed format but of no particular semantic 
relevance in cybersecurity incidents. Table  1 showcases 
some of the regexes we develop. Ri,j refers to the j-th 
regex of the i-th entity category. Each rule and the prem-
ise attribute of the rule have a certain weight, and the lat-
ter part of the rule is matched with confidence to express 
the credibility of the conclusion. The BRB model can be 
described in the following form,

where “ ∧ ” denotes that the rule is based on the inter-
section assumption. xi(i = 1, 2, . . . ,M) denotes the i-
th premise attribute of BRB model, and M denotes the 

(14)

log P(yx|x) = score(x, yx)− log





�

y′
exp(score(x, y′))



.

(15)y∗ = argmaxy′score(x, y
′).

(16)

Rk : If (x1 is A
k
1) ∧ (x2 is A

k
2) ∧ · · · ∧ (xM is Ak

M),

Then (D1, β1,k), . . . , (DN, βN,k) ,

With a rule weight θk and attribute weight δ1, δ2, . . . , δM,

number of premise attributes. Rk(k = 1, 2, . . . , L) denotes 
the k-th rule of BRB model, Ak

i (i = 1, 2, . . . ,M) denotes 
the reference value of the i-th premise attribute in the k-
th rule, and Dj(j = 1, 2, . . . ,N ) denotes the j-th category, 
βj,k denotes the confidence of the j-th conclusion in the 
k-th rule, θk denotes the weight of the k-th rule, and δi 
denotes the weight of the i-th premise attribute. The 
structure of the BRB model is shown in Fig. 3. For exam-
ple, the rule If the identification result of the category of 
the entity output by CRF is “Identifier”, and the entity can 
match R1,1 , then the confidence that the entity is “Identi-
fier” is 100% can be expressed as If(Identifier is true)∧
(R1,1 is true), then (Identifier, 100%).

Inference of BRB
After modeling the BRB, the input will activate the corre-
sponding rules, and the inference results will be obtained 
by integrating the activation rules through the Evidential 
Reasoning (ER) algorithm.

Firstly, if the input of the m-th premise attribute is 
xm(m = 1, . . . ,M) , its matching degree with the reference 
is calculated as follows,

Table 1  Regexes for entities in CSS

Fig. 3  Structure of the BRB
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where εm represents the certainty of the input. For exam-
ple, ( xm , εm = 90% ) represents that the certainty of xm is 
90%. ϕ(xm,Ak

m,j)(j ∈ (1, 2, . . . , Jm)) denotes the matching 
degree between input information xm and reference value 
Ak
m(A

k
m ∈ Ak

m,1,A
k
m,2, . . . ,A

k
m,Jm

) , where Jm represents the 
number of reference values of the m-th premise attribute. 
Since the input of our BRB model is qualitative infor-
mation and a is in the form of semantic fuzzy value, the 
matching degree can be obtained directly. If entities in 
cybersecurity have 10 reference values (10 types), it must 
be one of them for any input.

Afterward, we calculate the activation weight of the rule. 
wk is the activation weight, that is, the activation degree of 
the input information to the rule. The calculation process 
of activation weight is as follows,

where, αk
m is the matching degree of the input informa-

tion relative to the reference value, θk is the initial rule 
weight, and δm is the initial attribute weight. If wk=0, the 
rule is not activated.

Finally, after converting the input information into the 
matching degree with the reference value and obtaining the 
activation degree of the corresponding rules, the ER algo-
rithm is used to integrate the activation rules.

Algorithm 1  D-CMA-ES algorithm.

(17)amk =
ϕ(xm,A

k
m,j)εm

∑Jm
j=1 ϕ(xm,A

k
m,j)

,

(18)

wk = θk
∏M

m=1(α
k
m)

δ̄m

∑

k̃=1
(θ

k̃

∏M
m=1(α

k̃
m)

δ̄m)
, δ̄m = δm

max
m=1,...,M

δm
,

Parameter optimization
According to the calculation process in the previous sec-
tion, an objective function for optimizing BRB model 
parameters can be established, which is expressed as 
follows:

where ω = [θ1, . . . , θK ,β1,1, . . . ,βN ,K ,A1,1, . . . ,AM,K ]T 
represents the parameter vector of the BRB, { θ1,. . .,θK  } 
represent the weights of the K rules, { β1,1, . . . ,βN ,K  } 
represent the confidences of the output conclusion, and 
{ A1,1, . . . ,AM,K  } represent the reference values of the 
premise attributes. Let Eu represent the error of classi-
fication results, if there is ĵ = j , then Eu = 0 , otherwise 
Eu = 1 . Then f(ω) can be described as

To address the challenge of optimization with con-
straints and high dimensions, we propose the D-CMA-
ES algorithm. This algorithm initially divides the 
high-dimensional search space into several subspaces 
having relatively lower dimensions and then applies the 

(19)

min f (ω)

s.t. 0 ≤ θk ≤ 1, k = 1, . . . ,K

0 ≤ βj,k ≤ 1, j = 1, . . . ,N , k = 1, . . . ,K

N
∑

j=1

βj,k = 1

Ak
i ∈ [0, 1], i = 1, . . . ,M, k = 1, . . . ,K ,

(20)f (ω) = 1

m′

m′
∑

u=1

E2
u.
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CMA-ES algorithm for searching in these low-dimen-
sional subspaces. Subsequently, the solutions from each 
search are integrated to obtain the solution to the origi-
nal problem. For example, if the dimension of the original 
space is 4, the algorithm divides the space into two sub-
spaces, with each subspace having a dimension of 2. Each 
constraint is transformed into a specific unconstrained 
objective function that is independently optimized in 
each iteration to ensure that the solution always satis-
fies constraints. The D-CMA-ES algorithm is shown as 
Algorithm 1.

Experiments
Experiment settings
In this section, we describe the datasets, baseline mod-
els, implementation details, and evaluation metrics of 
experiments.

Datasets
JCLB is evaluated on two datasets as follows.

•	 Bridges et al. (2014): This dataset, encompassing data 
from various cybersecurity platforms like Microsoft 
Security Bulletins, Metasploit, and the National Vul-
nerability Database, features multiple entities includ-
ing Applications, Vendors, Operating Systems, and 
Relevant Terms.

•	 OpenCS: We collect and summarize a large num-
ber of open-source unstructured cybersecurity data. 
The data sources include Threat Intelligence of cli-
ent vault, Amazon’s network security blog, CVE 
vulnerability description entries, and APT reports 
disclosed in recent years. We select 13218 sentences 
from the collected cybersecurity data, with a total 
of 248832 words. Based on this, according to the 

entity categories defined in the UCO ontology, the 
word frequency statistics, and analysis results of the 
filtered cybersecurity data, ten entity categories are 
ultimately defined to label entities in the cybersecu-
rity data, including Organization (ORG), software 
(SOF), malware (MAL), vulnerability (VUL), identi-
fier (IDE), tool (TOO), protocol (PRO), system (SYS), 
equipment (EQU) and attack methods (MET). The 
quantity statistics of different categories of elements 
in the data set we constructed are shown in Table 2.

In the labeling task, BIO mode is adopted, in which “B” 
(Begin) identifies the starting position of entities, “I” 
(Inside) identifies the token inside entities, and “O” (Out-
side) identifying the token is not in any entities. After 
data labeling, we divided the cybersecurity data into a 
70% training set, a 10% validation set and a 20% test set 
for scientifically and reasonably evaluating our method 
proposed.

Implementation details
As the framework includes the necessary hyper-parame-
ters required for model training, this section outlines the 
main hyper-parameters employed. To embed tokens, the 
dimension is set to 768. For sequence coding, the hidden 
layer of both the forward and reverse LSTM is comprised 
of 300 neurons, and the dropout strategy is utilized in the 
BiLSTM feature coding layer to prevent over-fitting. The 
MS module consists of a size of K and V at 64 and the 
number of heads at 3. During model training, the epoch 
is set to 100 with a batch size of 128. Further, the updated 
model parameters are trained through random gradient 
descent, with the initial learning rate being 0.001. Table 3 
exhibits the specific values for these hyper-parameters. 
The hyper-parameters α , γ , and � are determined through 
a grid search, where the step size is 0.1, and the range is 
[0.1,2].

Table 2  Size of each type of entities

Category Train Val Test

Organization 864 238 276

Software 3682 412 1028

Malware 955 394 187

Vulnerability 1092 298 399

Identifier 6990 756 2113

Tool 2638 218 635

Protocol 517 159 114

System 1637 48 497

Equipment 1019 259 319

Attack method 2563 152 704

Table 3  Hyper-parameters in the JCLB

Parameters Value

Initial learning rate 0.5

Embedded layer dimension 768

LSTM dimension 300

Epoch 100

Batch size 128

Dropout rate 0.5

Learning rate 0.001

Initial rule weight 1

Initial premise weight 0.5

Initial confidence 0.1
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Baseline models
We compare JCLB with six baseline models as follows.

•	 Abdullah et  al. (2018) introduce a CRF model, a 
statistical-based conditional probability distribution 
widely used for sequence labeling.

•	 Jie and Lu (2019) encode dependency trees using a 
dependency-guided LSTM-CRF architecture. Subse-
quently, the resulting word representation is input to 
the BiLSTM layer.

•	 Zhou et  al. (2021) employ a BiLSTM-CRF architec-
ture for the cybersecurity NER task. The BiLSTM layer 
extracts contextual features from input embeddings, 
and the subsequent CRF layer decodes sequences to 
predict labels.

•	 Gao et  al. (2021) introduce a data and knowledge-
driven NER model for cybersecurity. The input layer 
incorporates an external dictionary as an auxiliary 
knowledge database to enhance word representation.

•	 Wu et  al. (2022) utilize BiLSTM, CNN, and CRF for 
NER. Specifically, they employ a linear stack of LSTM 
and CNN in the deep neural network layer for a more 
efficient global and local feature representation.

•	 Wang and Liu (2023) develop a graph RNN, GARU, 
integrating diverse features extracted from GNNs and 
RNNs. Additionally, they introduce an entity boundary 
detection module for predicting entity heads and tails.

Metrics
To evaluate the performance of the model, the common eval-
uation values in the information extraction tasks are used, 
Precision (P), Recall (R), and F1. P represents the percentage 
of correct samples identified by the model in all identified 
samples, and R represents the percentage of correct samples 
identified by the model in all identified samples. The F1 value 
is the harmonic average of accuracy and recall, which is used 
to evaluate the comprehensive performance of the model. 
Each evaluation index is formally expressed as follows:

where TP (True Positive) is the number of positive sam-
ples with a correct prediction, FP (False Positive) is the 
number of positive samples with a wrong prediction, and 
FN (False Negative) is the number of negative samples 
with a wrong prediction.

Main results
Table  4 presents the performance of various models on 
the Bridges et  al.’s collected dataset and our collected 
dataset OpenCS. We report P, R, and F1. Our JCLB 
achieves state-of-the-art performance on the two data-
sets. JCLB outperforms all previous NER models in 
Cybersecurity, with F1 scores of 94.73% and 91.13% on 
the respective datasets. Notably, compared to the prior 
best model (Wang and Liu 2023), our approach demon-
strates an improvement in F1 on the OpenCS dataset, 
with an absolute increase of +0.54%. It’s worth noting 
that the previous models are built on different encoders 
such as LSTM, BERT, and PERT. In summary, our pro-
posed JCLB, involving contrastive learning for fine-tun-
ing BERT and utilizing BRB for noise filtering, represents 
a substantial advancement over previous models.

Ablation study
In this section, we degenerate our JCLB into sev-
eral models for ablation study using the two data-
sets. The models are CRF (C), BiLSTM-CRF (BIC), 
BERT-CRF (BEC), BiLSTM-MS-CRF (BIMC), BERT-
MS-CRF (BEMC), BiLSTM-BiLSTM-CRF (BBC), 

(21)P = TP

TP + FP
,

(22)R = TP

TP + FN
,

(23)F1 =2× P × R

P + R
,

Table 4  Comparison of different models on two datasets

F1 scores in bold indicate the best results

Model Bridges et al. OpenCS

P (%) R (%) F1 (%) P (%) R (%) F1 
(%)

Abdullah et al. (2018) 88.92 82.27 85.47 79.35 71.59 75.27

Jie and Lu (2019) 93.50 93.00 93.25 88.43 87.62 88.02

Zhou et al. (2021) 91.94 90.79 91.36 85.64 84.19 84.90

Gao et al. (2021) 94.14 93.69 93.92 89.62 88.36 88.99

Wu et al. (2022) 91.88 93.18 92.53 80.71 78.92 79.80

Wang and Liu (2023) 94.80 94.32 94.56 91.06 90.13 90.59

JCLB (Ours) 95.16 94.30 94.73 91.59 90.68 91.13
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and BERT-BiLSTM-MS-CRF-BRB (BBMCB). C takes 
into account the content information of data and the 
change information between data labels when mod-
eling. Its related models have achieved good results 
in many natural language processing tasks. The bi-
directional structure in BIC can be determined accord-
ing to the context at the same time (Wu et al. 2019). In 
BEC, the words of each word position can be encoded 
directly regardless of direction and distance. BERT 
in BBC can embed tokens through its rich semantic 
knowledge  (Cai et  al. 2020). We compare the effect 
of MS and BRB on the performance of the model. 
We keep the hyper-parameters unchanged during the 
training of each model.

The experimental results are in Table  5. Figure  4 
illustrates the F1 for ten different entities on the 
OpenCS dataset. We can observe that JCLB surpasses 

other models and achieves the highest F1 on the two 
datasets. Additionally, BIC performs significantly bet-
ter than C, with an F1 improvement of 3.44%. This 
is because BIC addresses the issue of long-distance 
dependence on long-sequence modeling. In contrast, 
compared to using BiLSTM as a feature extractor, add-
ing the BERT model yields a better F1. Furthermore, 

Table 5  Ablation study on two datasets

F1 scores in bold indicate the best results

Framework Bridges et al. OpenCS

P (%) R (%) F1 (%) P (%) R (%) F1 
(%)

JCLB 95.16 94.30 94.73 91.59 90.68 91.13
C 87.53 81.69 84.51 79.11 71.07 74.88

BIC 88.63 84.34 86.43 83.80 73.51 78.32

BEC 89.20 85.12 87.11 86.99 75.40 80.78

BIMC 90.52 87.25 88.85 84.27 73.51 78.52

BEMC 92.15 88.63 90.36 88.93 75.40 81.61

BBC 89.62 85.82 87.68 87.95 78.14 83.63

BBMCB 93.62 92.86 93.24 90.07 89.26 89.66

Fig. 4  Performance of recognition for ten categories of cybersecurity entities achieved by various models

Table 6  Ablation study on contrastive learning

F1 score in bold indicates the best result

Framework P (%) R (%) F1 
(%)

JCLB 91.59 90.68 91.13
w/o span-based objective 90.35 90.68 90.51

w/o position-based objectives 91.02 90.71 90.86
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when compared with BIC and BEC, BIMC and BEMC 
show improvements of 0.20% and 0.83% in F1, respec-
tively. Since the MS layer is employed to capture the 
dependency weight of feature coding between any two 
tokens.

Analysis on contrastive learning
We present a comparative analysis of variants of our con-
trastive learning method, detailing their test performance 
on the OpenCS dataset in Table  6. We observe an F1 
decline across all these variants. We speculate that when 
contrastive learning focuses solely on the initial and 
final tokens of an entity, neglecting its span-based token 
sequence, it might result in the loss of semantic informa-
tion contained within the intermediate tokens. In certain 
scenarios, these middle tokens could provide key insights 
into how the entity interacts with the context. Ignoring 
these tokens could diminish the model’s understanding 
of the entity’s meaning. Conversely, when contrastive 
learning focuses solely on span-based token sequences of 
entities, ignoring the initial and final tokens, the model 
overlooks the semantic information of entity boundaries 
carried by these tokens, leading to an inadequate under-
standing of the entity’s integrity.

In Fig.  5, we visualize the average similarity of token 
sequence representations for in-batch positives and neg-
atives sampled in span-based and position-based con-
trastive learning. For position-based contrastive learning, 
we show the mean similarity between the initial and 
final tokens. We observe that, as training progresses, the 
similarity for in-batch negatives rapidly decreases, indi-
cating that in-batch negatives provide limited gradient 
signals. In contrast, the similarity for in-batch positives 
remains high and is distinctly separated from the nega-
tives, suggesting that our method effectively enhances the 

similarity of token sequence representations for the same 
type of entities in the vector space.

Analysis on BRB
We evaluate the impact of using BRB on the OpenCS 
dataset. The experimental results are shown in Table  7, 
where “✓” indicates that the BRB is combined and “×” 
indicates that the BRB is not used. Integrating BRB 
enhances BBMCB with an 89.66% F1, contrasting with 
85.33% when BRB is absent. In BEMC, BRB integration 
results in an 85.20% F1, while its removal leads to a 3.59% 
F1 decrease. Similarly, JCLB achieves a 91.13% F1 with 
BRB, but a 2.19% F1 decrease occurs without BRB. These 
experiments reveal BRB’s notable recognition capability, 
particularly for entities with fixed formats.

We employ several constrained optimization algo-
rithms, Sequential Quadratic Programming (SQP) and 
Differential Evolution (DE), to optimize BRB in JCLB. 
SQP is a traditional yet effective optimization algorithm 
addressing constraint problems through sequential quad-
ratic programming subproblems. DE is an intelligent evo-
lutionary algorithm solving constraint problems through 

Fig. 5  a Variation for similarity of in-batch positive and negative pairs in span-based contrastive learning. b Variation for similarity of in-batch 
positive and negative pairs in position-based contrastive learning

Table 7  Ablation study on BRB

F1 scores in bold indicate better results obtained w/ or w/o BRB

Framework BRB P (%) R (%) F1 
(%)

BBMCB ✓ 90.07 89.26 89.66
BBMCB × 87.92 82.89 85.33

BEMC ✓ 89.65 84.76 87.20
BEMC × 88.93 75.40 81.61

JCLB ✓ 91.59 90.68 91.13
JCLB × 89.21 88.68 88.94



Page 12 of 14Hu et al. Cybersecurity            (2024) 7:19 

specialized operations. Figure  6 displays the results of 
these optimization algorithms, revealing that the model 
attains optimal recognition performance for each cat-
egory when utilizing D-CMA-ES.

Case study
As seen in Table 8, we take the proposed JCLB and BBC 
models as examples to analyze the recognition results of 
entities in CSS, which are typed using abbreviations, pro-
prietary nouns, or fixed format phrases without seman-
tics. In the second line, we list some abbreviations like 
“POODLE” and “BGP”. “POODLE” is the abbreviation 
of “Padding Oracle On Downgraded Legacy Encryp-
tion” and “BGP” is the abbreviation of “Border Gateway 
Protocol”. The highlighted characters in Table 4 indicate 
that “BGP” is correctly recognized as entities, but BBC 
does not correctly identify “POODLE”. This is because 
the BBMCB model uses an MS module, which encodes 
the input words and pays attention to other words in the 
context at the same time so that the label will not have 
the problem of difference. In the third line, “Eternal Blue” 

is a network attack tool that the BBC did not correctly 
identify. Given noise cybersecurity entities in the text, as 
seen in the fourth line, the BBC did not correctly identify 
the IP address “1.1.1.1”, but it identified the malformed 
“255.255.255.256” as a subnet mask. The BBC can not 
identify the noise in the text.

Conclusion
In this paper, we propose JCLB, a novel model for NER 
in cybersecurity. JCLB employs contrastive learning to 
establish objectives based on span and position, thereby 
fine-tuning BERT. This method enhances the similarity of 
token sequence representations for the same type of enti-
ties in vector space, reducing the impact of anisotropy 
on encoding quality. We also demonstrate the feasibil-
ity of applying BRB to filter noise and the advantages of 
improving the recognition of fixed format entities. When 
optimizing BRB parameters, compared with the CMA-
ES algorithm, we propose the D-CMA-ES algorithm, 
which adaptively divides samples into multiple subspaces 
for sampling, effectively avoiding the negative impact of 

Fig. 6  The performance of JCLB with different optimization algorithms for BRB

Table 8  Case study on  recognition of three types of entities

The underlined texts denote recognized entities by two models

Model BBC JCLB (Ours)

Abbreviation Using the POODLE vulnerability can weaken the strength 
of encryption protocols... BGP hijacks NAC to bypass VLAN jump 
attacks, DHCP starvation attacks, and rogue DHCP servers...

Using the POODLE vulnerability can weaken the strength 
of encryption protocols... BGP hijacks NAC to bypass VLAN jump 
attacks, DHCP starvation attacks, and rogue DHCP servers...

Proper noun The MSF file system can view the details of 12 related Eternal 
Blue through Kali, and the MS17-010 utilized module also details 
the vulnerability in the system of XP...

The MSF file system can view the details of 12 related Eternal 
Blue through Kali, and the MS17-010 utilized module also details 
the vulnerability in the system of XP...

Fixed-format First to find the corresponding network adapter, the address 
to 1.1.1.1, mask 255.255.255.256, gateway blank...

First to find the corresponding network adapter, the address 
to 1.1.1.1, mask 255.255.255.256, gateway blank...
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high-dimensional samples on training results. Experi-
mental evaluations on two cybersecurity datasets affirm 
the efficacy of JCLB for NER in cybersecurity.
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