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Abstract 

Zero‑knowledge succinct non‑interactive arguments of knowledge (zk‑SNARKs) are cryptographic protocols that offer 
efficient and privacy‑preserving means of verifying NP language relations and have drawn considerable atten‑
tion for their appealing applications, e.g., verifiable computation and anonymous payment protocol. Compared 
with the pre‑quantum case, the practicability of this primitive in the post‑quantum setting is still unsatisfactory, espe‑
cially for the space complexity. To tackle this issue, this work seeks to enhance the efficiency and compactness of lat‑
tice‑based zk‑SNARKs, including proof length and common reference string (CRS) length. In this paper, we develop 
the framework of square span program‑based SNARKs and design new zk‑SNARKs over cyclotomic rings. Compared 
with previous works, our construction is without parallel repetition and achieves shorter proof and CRS lengths 
than previous lattice‑based zk‑SNARK schemes. Particularly, the proof length of our scheme is around 23.3% smaller 
than the recent shortest lattice‑based zk‑SNARKs by Ishai et al. (in: Proceedings of the 2021 ACM SIGSAC conference 
on computer and communications security, pp 212–234, 2021), and the CRS length is 3.6× smaller. Our constructions 
follow the framework of Gennaro et al. (in: Proceedings of the 2018 ACM SIGSAC conference on computer and com‑
munications security, pp 556–573, 2018), and adapt it to the ring setting by slightly modifying the knowledge 
assumptions. We develop concretely small constructions by using module‑switching and key‑switching procedures 
in a novel way.

Keywords Zk‑SNARKs, Post‑quantum, Succinct argument

Introduction
Zero-knowledge (ZK) proofs are cryptographic proto-
cols that enable a prover to persuasively demonstrate the 
validity of a specific statement to a verifier while keeping 
the witness secret. The concept was initially introduced 
by Goldwasser et  al. (1989), and there have been active 
researches in both theory and practice since then.

In numerous scenarios, it is essential for the prover to 
genuinely possess knowledge of a valid witness, thereby 
establishing an argument of knowledge. To enhance effi-
ciency, specific characteristics like non-interactive and 
succinctness are highly desirable. These proofs entail a 
single round of message exchange from the prover’s side, 
enabling the verifier to validate the correctness in a con-
siderably shorter time compared to the prover’s com-
putational effort. These attributes give rise to a class of 
cryptographic constructions, commonly known as suc-
cinct non-interactive arguments of knowledge (ZK)-
SNARKs. It finds wide-ranging applications, including 
verifiable computations (Ben-Sasson et  al. 2013, 2014; 
Parno et  al. 2016) and anonymous payment protocols 
(Sasson et  al. 2014). Despite these compelling features, 
some negative results are associated with these construc-
tions. Gentry and Wichs (2011) demonstrated that no 
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secure succinct non-interactive arguments (SNARGs) 
existed in the standard model. Consequently, all existing 
SNARGs are constructed in the Random Oracle Model 
or rely on non-falsifiable assumptions (Naor 2003). Addi-
tionally, the most efficient SNARKs are designed verifi-
ers, wherein only those who possess the verification keys 
are authorized to validate the proofs, in contrast to the 
public verifiers that permit anyone to verify a proof.

The concept of SNARK has been extensively investi-
gated in the literature (Bitansky et  al. 2011, 2012, 2017; 
Goldwasser et  al. 2011), and subsequent works mainly 
focus on enhancing the efficiency for practical use. The 
early schemes (Gennaro et al. 2013; Danezis et al. 2014) 
in this area were almost based on group or bilinear pair-
ing. Nowadays, driven by the advances in quantum 
computation and quantum computers, post-quantum 
security progressively attracts more attention. Many lat-
tice-based SNARKs have emerged in recent years.

However, the lattice-based constructions have a signifi-
cant inefficiency compared to the group or pairing-based 
ones. Intuitively, the optimal scheme belongs to preproc-
essing SNARK and was proposed by Groth (2016), whose 
proof length is 128B. The state-of-the-art post-quantum 
SNARK was proposed by Ishai et al. (2021), whose proof 
size is 16.4KB, which is 131.2x larger. Furthermore, as 
almost all efficient SNARKs necessitate a trusted setup, 
the length of the common reference string (CRS) also 
merits attention. Therefore, how to promote the effi-
ciency of lattice-based SNARKs is an important and 
meaningful research problem.

These motivate our main question:

Can we improve the efficiency of lattice-based 
SNARKs, especially in the proof length and CRS 
length?

Related works
 The constructions of SNARKs exhibit diverse design 
routes. Two paradigmatic routes are presented: one 
research line adopts a combination of polynomial inter-
active oracle proof (polynomial IOP) and the polynomial 
commitment; another research line is built on the circuit 
directly. The former approach presents a notable advan-
tage in terms of applicability, such as transparent setup 
and public verifier, albeit at the expense of efficiency. On 
the contrary, the latter approach imposes certain limita-
tions, requiring a trusted setup and designed verifier, but 
achieves higher efficiency.

The same applies to lattice-based SNARKs. Recent 
advancements in lattice-based SNARKs can be divided 
into two categories. For the first research line, the 
researcher tried to obtain SNARKs with attractive prop-
erties or functionalities. The most critical components 

are various commitments, i.e., vector commitments (Pei-
kert et al. 2021; Albrecht et al. 2022), and functional com-
mitments (Wee and Wu 2023; Fisch et al. 2023). Albrecht 
et al. (2022) proposed the first lattice-based SNARK con-
struction from vector commitment, in which the verifier 
is public and has logarithmic complexity, and the con-
struction is recursively composable. Cini et  al. (2023) 
proposed the first lattice-based recursive folding proto-
col with a polylogarithmic-time verifier for linear rela-
tions and the first lattice-based succinct argument with 
a linear-time prover for NP problem in the preprocessing 
model.

Before we review the lattice-based constructions fol-
lowing the second approach, we first retrospect the 
group-based ones. This route originated from Groth 
(2010), which constructed a non-interactive argument of 
zero-knowledge (NIZK) based on the circuit satisfiabil-
ity problem. Then, the researchers found it is possible to 
convert the circuit satisfiability problem into more alge-
braic formulations to construct efficient SNARKs. Many 
works introduced different characterizations of the NP 
complexity class: quadratic span programs (QSPs) (Gen-
naro et al. 2013), square span programs (SSPs)  (Danezis 
et al. 2014), and rank-1 constraint systems (R1CS) (Ben-
Sasson et al. 2013) Then many efficient constructions of 
SNARKs based on specific structures came. Detailedly, 
Gennaro et  al. (2013) proposed constructions based on 
QSPs, whose proof consists of 7 group elements and 
the CRS size is linear in the circuit size. In the next year, 
Danezis et al. (2014) introduced SSPs and built SNARKs 
based on SSPs (a simpler form than QSPs), whose proof 
consists of 4 group elements. Meanwhile, a concurrent 
research line (Bitansky et  al. 2013; Boneh et  al. 2017) 
studied a more abstract cryptographic primitive: linear 
probabilistically checkable proof (LPCP). They estab-
lished constructions of LPCP for NP problems and then 
built SNARG (SNARK) based on LPCP. The nature of 
the above designs can be unified in that preprocess-
ing implies holography as claimed in Chiesa and Yogev 
(2020), but the revealing information of probabilistically 
checkable proof differs.

In terms of efficiency, the optimal scheme belongs to 
preprocessing and designated-verifier SNARKs and was 
proposed by Groth (2016), whose proof only consists of 3 
group elements. Its proof length is 128B for the circuit of 
size 220 , which significantly outperforms other schemes. 
This is also the most widely used SNARK scheme in prac-
tice, i.e., ZCash  (Sasson et  al. 2014),Filecoin  (Labs  Labs 
2018), and Coda  (Bonneau et al. 2020).

In the domain of lattice-based SNARKs, Boneh et  al. 
(2017) introduced the first quasi-optimal SNARGs based 
on lattice, employing linear multi-prover interactive 
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proofs. Closely followed by this work, Gennaro et  al. 
(2018) put forward the first lattice-based SNARK scheme, 
which was built on SSPs. Nitulescu (2019) introduced the 
first lattice-based zk-SNARG for arithmetic circuits lev-
eraging square arithmetic programs (SAPs), whose proof 
consists of 2 LWE ciphertexts. Naganuma et  al. (2020) 
proposed faster zk-SNARK constructions for arithme-
tic circuits using quadratic arithmetic programs (QAPs), 
whose proof consists of 3 LWE ciphertexts. Then, Ishai 
et  al. (2021) followed the framework of Bitansky et  al. 
(2013) and Boneh et al. (2017) and proposed a new LPCP-
based SNARK, which is the state-of-the-art parameters 
for lattice-based SNARKs. The most recent lattice-based 
SNARKs from Chung et al. (2023), proposed a new noise 
flooding technique and achieved smaller proof length in 
the amortized sense.

Our results
This research endeavors to tackle the aforementioned 
issue by devising novel, efficient SSP-based zk-SNARKs. 
Notably, we have succeeded in reducing proof and CRS 
lengths by circumventing parallel repetition, while 
retaining a high level of soundness. To provide a more 
comprehensive understanding of our work, we present 
a comparative analysis with prior research in Table 1. (It 
is essential to highlight that the estimation methodology 
employed in Ishai et al. (2021) is suboptimal, necessitat-
ing the adjustment of their parameters using the same 
“ADPS16” method to enable a more precise and reliable 
comparison. The CRS length is empty since they did not 
provide it.)

Technical overview
Next, we present a summary of our technical contribu-
tions below.

Get Rid of Parallel Repetition by Ring Structure. 
Parallel repetition is a standard technique to amplify 
(knowledge) soundness error. In the field ( Zp or even 
Zp2 ), if we do not use parallel repetition and guess a ran-
dom element over the field with probability lower than 
2−128 , it requires the modulus p satisfies that p > 2128(or 
p2 > 2128 ), which is too large. Therefore, previous works 
chose smaller p (such as 32-bits or 19-bits) and use paral-
lel repetition for a desired security level.

To deal with this issue, we adopt a strategy of trans-
forming the field structure into a ring structure. To 
illustrate, if we consider a ring with the modulus p and 
dimension n, the desired target can be accomplished by 
ensuring that pn > 2128 . Albeit combining with other 
limitations in our construction, the final requirement 
turns out to be 2d/p

n
2 < 2−128 . However, solely employ-

ing the ring structure may not suffice in reducing the 
parameter size and may potentially incur additional 
issues. As such, supplementary techniques must be 
employed to tackle these issues, which will be expounded 
upon below.

Reductions from Boolean Circuits over Ring. Both 
SSP-based schemes and LPCP-based schemes use poly-
nomial interpolation to express circuits into SSP/LPCP 
instances. Prior works (to our knowledge) consider poly-
nomial interpolation over fields, and extending it to the 
rings inheres challenges, particularly with regards to 
invertibility in R. Towards this, we leverage a useful result 
(Katsumata and Yamada 2016), which stated that the 
ring elements with a “small” norm are invertible. More 
concretely, in the polynomial interpolation, the denomi-
nators of the interpolation coefficients take the form of 
xi − xj for distinct i, j. In order to ensure that xi − xj has 
an inverse over Rp , we restrict the domain of xi and xj to 
R[0,1] , where the coefficients of polynomials are either 0 
or 1. As a result, we can instantiate polynomial interpola-
tion over the ring of our choice.

Optimizations via Ciphertext Operations. As noted 
above, the SSP-based scheme presented in Gennaro 
et al. (2018) has a large proof length, primarily due to its 
inclusion of five ciphertexts in the proof. In contrast, the 
LPCP-based scheme proposed by Ishai et al. (2021) uti-
lizes different encrypted queries as the CRS, which are 
multiplied by the same coefficients during proof genera-
tion. This allows for the utilization of the packing method 
described in Peikert et  al. (2008) to reduce the proof 
length by sharing randomness. Unfortunately, the SSP-
based scheme involves different coefficients (e.g.,h, v ), 
which precludes the direct application of the aforemen-
tioned method. However, in the ring setting, we can 

Table 1 Comparison of lattice‑based SNARKs

Scheme Circuit size Proof length (KB) CRS length

Gennaro et al. (2018) 215 640 8.63 MB

Nitulescu (2019) 215 270 –

Naganuma et al. (2020) 215 405 –

Chung et al. (2023) 215 319.5 –

Ishai et al. (2021)

   Shorter proof 216 17.54 191MB

220 18.7 5.22GB

   Shorter CRS 216 22.84 104MB

220 23.83 1.9GB

Ours

   Basic 216 121.88 86.25MB

220 130.53 1.41GB

   Optimized 216 14.06 133.99MB

220 14.34 1.48GB
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leverage the ring structure to pack the 5 ciphertexts into 
a single ciphertext. This approach reduces the number of 
ciphertexts for constructing the proof.

The utilization of a packing technique leads to a 
decrease in the number of ciphertexts, although it comes 
at the expense of augmenting the ring dimension. This 
implies that the size of the proof has not undergone any 
reduction. To address this, we employ the key-switching 
technique to attain a shorter proof. As a consequence, 
a slight modification of the knowledge assumption 
becomes necessary. Further deliberations are provided in 
section "Assumptions".

Preliminaries
Basic notations and probability results
Let � , κ represent the computational, and statisti-
cal security parameters respectively. The negligible 
function negl(�) is strictly bounded by 1/�c for large 
� , constant c > 0 . On the contrary, the overwhelming 
probability represents the value to be 1− negl(�).

In our notation, a bold lowercase letter (e.g., x ) signi-
fies a column vector, while a bold uppercase letter (e.g., 
A ) represents a matrix.
Z represents the set of integers, and Zq indicates the 

ring of integers modulo q. R is a polynomial ring, and Rq 
indicates the ring elements in R modulo q. Then we adopt 
the unified notation [a]q to represent a mod q encom-
passing both integer and ring elements, without distinc-
tion. In the case where the modulus q is not a power of 2, 
we employ log q to substitute ⌈log2 q⌉ for simplicity.

We use u $
←− U  to indicate that sample a random ele-

ment u from the set U. For two distributions A,  B, let 
A

s
≈ B , A

c
≈ B represent statistically close, computa-

tionally indistinguishable respectively.
Gaussian Distribution. The n-dimension Gauss-

ian function with parameter σ > 0 is defined as 
ρσ (x) = exp(−π�x�22/σ

2) . Based on this, the dis-
crete Gaussian distribution over Z

n is defined as 
DZn,σ = ρσ (x)/ρσ (Z

n) , where ρσ (Zn) =
∑

x∈Zn ρσ (x).

Lemma 1 (Banaszczyk (1995),  Lemma 2.4) For 
any s, t > 0 and a integer vector a ∈ Z

n , we have 
Pr[|�a,DZn,s�| ≥ ts�a�2] ≤ 2 exp(−π t2/s2).

Schwartz-Zippel Lemma. Schwartz-Zippel lemma is 
commonly employed in the analysis of soundness error.

Lemma 2 F is a finite field and K is a subset of F (e.g., 
K ⊂ F ) with size |K|. Assume that the non-zero polyno-
mial f (Y1, . . . ,Yn) has total degree D. If t1, . . . , tn are cho-
sen from K randomly, then we have

Cyclotomic rings
In this paper, we work on the power of 2 polynomial rings. 
Let n be a power of 2, and the 2n-th cyclotomic polyno-
mial is defined as �2n(x) = xn + 1 . Then we define 2n-th 
cyclotomic ring as R ∼

= Z[x]/(xn + 1) and the 16n-th 
cyclotomic ring as R ∼

= Z[x]/(x8n + 1) . In this paper, we 
view ring elements via coefficient embedding. Namely, for 
any s ∈ R we view s = s0 + s1x + · · · + sn−1x

n−1 for 
si ∈ Z . The ring addition and multiplication are with 
respect to modulo xn + 1 . Under the coefficient embed-
ding, the ℓ∞ and ℓ2 norms for s are defined as: 
�s�∞ = maxi �si�, �s�2 = �s0�2 + · · · + �sn−1�

2 . Simi-
larly, it is extended to the vector. For a = (a1, ..., at) ∈ Rt , 
we define �a�∞ = maxi �ai�∞, �a�2 =

√

�a1�
2
2
+ · · · + �at�

2
2
.

To discuss our choice of moduli, we first recall a special 
result from Katsumata and Yamada (2016).

Lemma 3 (Katsumata and Yamada (2016),  Lemma 3) 
The prime p satisfies p mod 8 = 3 and n is a power of 2. 
Then xn + 1 splits as xn + 1 = g1g2 mod p with two irre-
ducible polynomials in Zp[x] g1 = xn/2 + vxn/4 − 1 and 
g2 = xn/2 − vxn/4 − 1 , where v2 = −2 mod p . Then, all 
a ∈ Rp with �a�2 <

√

p are invertible.

MLWE problems and encoding schemes based on MLWE
Module-Learning with Error (MLWE). Module Learning 
with Error (Module-LWE) is a fusion of Ring-LWE and 
plain-LWE, which was proposed and studied in Brakerski 
et  al. (2014); Langlois and Stehlé (2015). For the power 
of 2 cyclotomic rings, the ring R, and R∨ only differ by 
a scale of n. Thus, we opt to work solely on R. More for-
mally, the decision MLWE distribution and problem 
from Langlois and Stehlé (2015) are defined as follows:

Definition 4 (Module-LWE Distribution) Let ψ over Rq 
be the error distribution. Given a secret vector s ∈ Rk

q , an 
instance in the MLWE distribution As,ψ over Rk

q × Rq is 
( a, b ), where a is chosen from Rk

q uniformly at random, e 
is from ψ , and b = �a, s� + e mod q.

Definition 5 (Module-LWE, Decision Problem) The 
average-case decision MLWERq ,k ,ψ problem is to distin-
guish instances from As,ψ or from uniform distributions 
over Rk

q × Rq.

Pr [f (t1, . . . , tn) = 0] ≤
D

|K |

.
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The decision MLWERq ,k ,ψ problem is infeasible if for all 
ppt adversarys B given any polynomial number of sam-
ples, the probability that B solves MLWERq ,k ,ψ is negligi-
bly close to 1/2.

The Encoding Scheme. The encoding scheme used in 
the SNARK schemes can be symmetric and asymmet-
ric. For convenience, we instantiate it as a symmetric 
MLWE scheme. Furthermore, the simple linear combi-
nation is not sufficient for zero-knowledge of SNARK, 
thus we re-randomize the linear evaluation procedure 
as that in Ishai et al. (2021).

Construction 6 (MLWE Encoding Scheme) For any 
positive integers n, k, Q, an encoding scheme MLWE with 
dimension n, rank k and modulus Q consists three ppt 
algorithms ( K,E,D ) and a randomized linear evaluation 
algorithm Eval . These algorithms are defined below:

• K(1�, k) : Sample A∗
← Rk×k

Q  , s′, e∗ ← �k
σ . Define 

F = (A∗, b∗) = (A∗, (A∗)T s′ + pe∗) , s = (−s′, 1) . Out-
put (s, F).

• Es(m) : Sample a ← Rk
Q , and e ← �σ . Compute and 

output c = (a, �s′, a� + pe +m).
• Eval({ci = (ai , bi),αi}i∈[d], F) : Sample independent 

r, e′ ← �k
σ . Compute and ouput c = (

∑

d

i=1 αiai

+A∗
r + pe′,

∑d
i=1 αibi + r

T
b
∗).

• Ds(c) : Compute and output m′
= [[�c, s�]Q]p.

The encoding scheme satisfies completeness and 
IND-CPA security. For clarity, we defer the properties 
of the encoding scheme in Appendix A.

Zero‑knowledge succinct non‑interactive argument 
of knowledge (zk‑SNARK)
In this subsection, we present the formal definitions of 
zk-SNARKs and their properties.

Definition 7 (zk-SNARK) For a relation L , a zero-
knowledge succinct non-interactive argument of 
knowledge protocol � comprises three ppt algorithms 
(�.Setup,�.Prove,�.Verify) . 

1. (crs, vrs, td) ← �.Setup(1�,u) : Given the security 
parameters and a statement u, the setup algorithm 
generates three components: a common reference 
string denoted as crs , verification secret information 
represented by vrs , and the trapdoor denoted as td.

2. π ← �.Prove(crs,u,ω) : On receiving u, ω , and crs , 
the prove algorithm produces a proof π.

3. 0/1 ← �.Verify(crs, vrs,π) : Taking crs , vrs and π as 
inputs, the verify algorithm yields a bool symbol 1 or 
0 to indicate the acceptance or rejection of the proof.

A zk-SNARK scheme exhibits four fundamental prop-
erties, namely completeness, zero-knowledge, argument 
of knowledge, and succinctness.

Definition 8 (Completeness) For a statement u 
included in the relation, the setup algorithm out-
puts (crs, vrs, td) ← �.Setup(1�,u) , and the prove 
algorithm outputs a proof π ← �.Prove(crs,u,ω) . If 
Pr [�.Verify(crs, vrs,π) = 1] = 1− negl(�) , then � is 
complete.

Definition 9 (Zero-knowledge) For any (u,ω) ∈ L , 
a ppt simulator S exists such that {�.Prove(u,ω, crs)}

≈ {S(u, td)} , where (crs, vrs, td) ← �.Setup(1�,u) and 
≈ can denote perfect, statistically, and computation-
ally indistinguishable. Then this argument system � is 
zero-knowledge.

Definition 10 (Argument of Knowledge) For 
any statement u, and if a ppt adversary can pro-
duce a proof π∗ passing the verification, then a 
probabilistic polynomial-time extractor Ext exists 
and extracts a witness ω satisfying (u,ω) ∈ L with 
polynomial probability. Equivalently, we have 
Pr[(π∗

;ω) ← (A||Ext)(crs,u) ∧�.Vefify(crs, vrs,π∗) = 1]

=poly(�) , where (crs, vrs, td) ← �.Setup(1�,u) . Then 
the non-interactive argument system � satisfies the argu-
ment of knowledge.

Definition 11 (Succinctness) If the argument length of 
an argument system is sublinear in the security param-
eter and the circuit size is included in the relation, we say 
that it is succinct.

Optimization techniques
In this subsection, we present several optimized tech-
niques used in our schemes, including noise smudg-
ing, modulus-switching, key-switching, packing, and 
unpacking.

Noise Smudging. Noise smudging from Gentry (2009) 
is commonly used to obfuscate additive-homomorphic 
evaluated ciphertexts or fresh ciphertexts.

Lemma 12 (Noise Smudging, Gentry (2009)) Let B1,B2 
be positive integers, and k be the statistical security param-
eter. For an arbitrary integer m ∈ [−B1,B1] , we pick n 
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uniformly at random from the interval [−B2,B2] . Then if 
B1/B2 = negl(k) , {m+ n}

s
≈ {n}.

Modulus-switching. The modulus-switching technique 
from Brakerski et al. (2014) can transform a large modu-
lus to a comparatively small modulus without knowing 
the secret key.

Definition 13 (Modulus-switching) For any 
integers k, Q > Q′ > p , and any vector x ∈ Rk , 
x′ ← ModSwit(x,Q,Q′, p) is defined as the closest Rk

-vector to Q
′

Q x satisfying x′ = x mod p.

Lemma 14 (Correctness of modulus switch-
ing) Q,Q′, p are positive integers satisfying 
Q > Q′ > p and Q = Q′

= 1 mod p . R is a ring 
with degree n and κ is the statistical parameter. 
For any c ∈ Rk+1 , let c′ ← ModSwit(c,Q,Q′, p) . 
Then for any s = (−s′, 1) with s′ ← �k

σ satisfying 
�[�c, s�]Q�∞ <

Q
2 −

Q
Q′

p
2 (n+ σ

√

nkκ) , the probability of 
[[�c, s�]Q]p = [[�c

′, s�]Q′ ]p, and �[�c
′, s�]Q′ �∞ <

Q
′

Q
�[�c, s�]Q�∞

+
p
2
(n+ σ

√

nkκ) is at least 1− 2n exp(−πκ/σ 2).

Key-switching. The key-switching technique from Brak-
erski et  al. (2014) facilitates the transformation of an 
encryption under secret key s1 to another encryption of 
the same or related message utilizing a distinct secret key 
s2 with the help of key-switching keys.

Definition 15 (Key-switching) For any vector x ∈ Rk
Q , 

we can decompose x as 
∑logQ−1

j=0 yj2
j , where yj ∈ Rk

2 
and define BD(x)=(y0, . . . , ylogQ−1) . PV(x) is defined as 
(x, 2x, . . . , 2logQ−1x) . The key-switching algorithm is pre-
sented as follows:

• SwitKeyGen(s1, s2) : Sample A′
← R

k1 logQ×(k2−1)
Q  , 

e′ ← �
k1 logQ
σ ′  . Let s′ ∈ Rk2−1 be the residual vector of s2 

except for the last row. Compute a′ = −A′s′ + pe′ . Out-
put switkey = (A′, a′)+ (0,PV(s1)) ∈ R

k1 logQ×k2
Q .

• KeySwit(switkey, c) : Output switkeyT · BD(c).

Lemma 16 (Correctness of key-switching) For any 
s1 ∈ R

k1
Q , s2 ∈ R

k2
Q  with the last coordinate being 1, switkey

← SwitKeyGen(s1, s2) and c2 ← KeySwit(switkey, c1) . 
Then we have �c2, s2� = p�BD(c1), e

′
� + �c1, s1� mod Q.

Packing and Unpacking Algorithms. The packing algo-
rithm operates on the message defined over the ring R by 

treating it as several message slots over R. Conversely, the 
unpacking technique is responsible for successively con-
verting the ciphertext’s other slots into the lowest order 
and extracting the lowest order slot homomorphically. The 
extraction process is essentially a homomorphic computa-
tion of the trace function, which is further addressed by 
carrying out homomorphic automorphism evaluations. 
This idea is derived from Halevi and Shoup (2014, 2020).

• Plaintext encoding: Given c1, . . . , cξ ∈ Rk+1 , then 
Pack(c1, . . . , cξ ) = c1 + c2x

n
+ · · · + cξ−1x

n(ξ−1)  , 
where n is the dimension of R.

• Homomorphic plaintext decoding: Given a key-
switching subalgorithm KeySwit , the ciphertext 
c ∈ Rk+1 and trace homomorphic evaluation  
keys {Bi}i∈Z∗

2ξ ′
 , then compute c1 =

∑

i∈Z
∗

2ξ ′

KeySwit(Bi, τi(c)) , c2 =

∑

i∈Z
∗

2ξ ′
KeySwit(Bi , τi(c · x

−n)), 

. . . , cξ ′ =
∑

i∈Z∗

2ξ ′
KeySwit(Bi, τi(c · x

−(ξ ′−1)n)) to 

obtain individual ciphertexts.

At the end of this section, we present a summary of some 
essential notations in Table 2.

Square span programs over cyclotomic rings
Square span programs ( SSP s) were originally intro-
duced by Danezis et  al. (2014) as a novel and distinct 
characterization of the class NP. While all prior works 
(to our knowledge) considered SSP s over fields, this 
work generalizes the notion/construction to the setting 
of rings (particularly the cyclotomic rings). In this way, 
the underlying mathematical structure of the SSP s can 
match the one of Ring-LWE (Lyubashevsky et  al. 2010), 

Table 2 Overview of parameters and notations

Notations Explanation

R = Z[ζ2n] n‑th cyclotomic ring

R = Z[ζ16n] 8n‑th cyclotomic ring

p prime idea of ring R or R

n ∈ Z dimension of ring R

k ∈ Z rank of encoding scheme

k′ ∈ Z rank of the key‑switching key

σ standard deviation

�σ discrete Gaussian distribution σ over R

�′

σ discrete Gaussian distribution σ over R

Q modulus

Q′ switched modulus

p plaintext modulus

τ Galois automorphism
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yielding much more efficient SNARK constructions (than 
the plain-LWE-based instantiations).

Definition 17 (Square Span Programs over Rings) A 
square span program P over the ring R is represented 
as a polynomial tuple (l0(x), . . . , lm(x), a(x)) in R[x], 
where the degree of each li(x) is no more than the degree 
of a(x). The size of P is m, and the degree d equals the 
degree of a(x). A vector s = (s1, . . . , sℓ) ∈ Rℓ(ℓ < m) 
is accepted by P if and only if there exists another vec-
tor s′ = (sℓ+1, . . . , sm) ∈ Rm−ℓ satisfying a(x) divides 
(l0(x)+

∑m
i=1 sili(x))

2
− 1.

Moreover, if exactly the vectors s ∈ {0, 1}ℓ ⊂ Rℓ satisfying 
g(s) = 1 are accepted, P is said to verify a boolean func-
tion g.

The polynomial ((l0(x)+
∑m

i=1 sili(x))
2
− 1)/a(x) is 

a integer polynomial since a(x) is monic. Below we are 
going to show that SSP s over rings (some particular 
cyclotomic rings) can be used to express general NP veri-
fications. We first describe the following corollary about 
the linearization of logic gates in a boolean circuit in the 
ring setting, similar to Theorem 2 in Danezis et al. (2014).

Corollary 18 R is a cyclotomic ring. Assume that C is 
a circuit having m wires and n fan-in 2 gates. For any 
prime p ≥ 11 , we can compute a matrix–vector pair 
(M, v) ∈ Z

m×d
p × Z

d
p (with d = m+ n ) from C . Then 

to show that C is satisfiable over R, equivalently, find 
a vector s ∈ Rm

p  such that sM + v ∈ {0, 2}d . Moreover, 
sM + v ∈ {0, 2}d , results in s ∈ {0, 1}m.

Based on this corollary, we can express a boolean cir-
cuit C as a ring matrix–vector pair (M, v) . Subsequently, 
we delineate the method for constructing an SSP (over 
ring R) of C from such a pair.

Construction 19 (Square Span Programs over Ring) R is 
a cyclotomic ring, and the prime p is larger than 11. Let 
R[0,±1] denote the subset of R with coefficients within the 
range of [0,±1] . We assume that for every distinct ele-
ments x, y from R[0±1] , the difference x − y is invertible 
modulo pR.

Taking a circuit C with m wires and n fan-in 2 gates as an 
input, denote d = m+ n . Subsequently, we can construct 
a SSP instance as follows:

• Let (M, v) ∈ Z
m×d
p × Z

d
p be the matrix–vector pair as 

Corollary 18.

• Select distinct r1, . . . , rd in R[0,±1] , arbitrarily.
• Interpolate polynomials l0(x), . . . , lm(x) of degree at 

most d − 1 such that
 (1) l0(ri) = vi − 1 (mod pR) for i ∈ [d] ; (2) 

li(rj) = Mij (mod pR) for i ∈ [m], j ∈ [d].
• Set a(x) = ∏

d

i=1(x − ri) and output ( a(x), l0(x), . . . , lm(x)).

We notice that the third step of the above construc-
tion is well-defined—any degree d − 1 polynomial over 
Rp[x] (say, f(x)) can be uniquely determined given any 
d values in Rp (say, y1, . . . , yd ) evaluated at r1, . . . , rd . 
This is because the j-th Lagrange basis polynomial 
ℓj(x) =

∏d
i=1,i �=j(x − ri)(rj − ri)

−1 is uniquely defined, as 
every (rj − ri)

−1 (the multiplicative inverse over modulo 
pR) uniquely exists.

Theorem  20 The prime p satisfies p ≡ 3 mod 8 , and 
R is a cyclotomic ring with degree (a power of 2) n. Let 
p > 4n , and 3n > d . Then Construction  19 is a square 
span program over the ring Rp.

Proof Initially, we prove that all the steps involved in 
Construction  19 are well-defined under the conditions 
in the theorem statement. Subsequently, we proceed to 
demonstrate that the output of this construction is an 
SSP over Rp.
In order to substantiate the well-definedness of the steps, 
we need to show the following claims: (1) in Step 2, there 
are indeed d distinct elements in R[0,±1] , and (2) in Step 3, 
the multiplicative inverse (in Rp ) of every (ri − rj) exists.

Claim (1) is easy to see, as there are 3d distinct elements 
in R[0,±1] and 3n > d from the theorem statement. Claim 
(2) follows from Lemma 21.

Lemma 21 (Katsumata and Yamada 2016) The prime 
p satisfies p ≡ 3 mod 8 , and R is a cyclotomic ring with 
degree (a power of 2) n. Let p > 4n . For any distinct ele-
ment x and y in R[0,±1] , the difference x − y is invertible 
in Rp.

This concludes the first part of our goal. Below we show 
that the construction outputs an SSP over Rp.

Given the circuit C mentioned above, we can construct 
a matrix–vector pair (M, v) ∈ Z

m×d
p × Z

d
p as Corol-

lary 18. Proving the circuit C is satisfiable equals that find-
ing a vector s ∈ Rm

p  such that sM + v ∈ {0, 2}d . Moreover, 
sM + v ∈ {0, 2}d equals sM + v − 1 ∈ {−1, 1}d , further 
implying (sM + v − 1) ◦ (sM + v − 1) = 1 , where ◦ 
denotes entry-wise product and 1 is the all-1 vector.
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Next, as the construction sets li(rj) = Mij for i > 0 and 
l0(rj) = vj , the following holds.

Thus we obtain the following expression: (sM + v − 1)

◦(sM + v − 1)− 1 =

(

(
∑

m

i=1 sili(r1)+ l0(r1)
)2

− 1, . . . ,

(
∑

m

i=1 sili(rd)+ l0(rd)
)2

− 1

)

.
Given any s ∈ Rm

p  such that (sM + v − 1)◦

(sM + v − 1)− 1 = 0 , the equivalent condition is that for 
every j ∈ [d] , we have 

(
∑m

i=1 sili(rj)+ l0(rj)
)2

− 1 = 0 , 
meaning that {rj}j∈[d] are the roots of the polynomial 
(
∑m

i=1 sili(x)+ l0(x))
2
− 1 . Thus, a(x) =

∏d
i=1(x − ri) 

divides (
∑m

i=1 sili(x)+ l0(x))
2
− 1.

To conclude, we notice that if C is satisfiable, a vector 
s exists such that (sM + v − 1) ◦ (sM + v − 1)− 1 = 0 . 
The above argument further implies that a(x) divides the 
polynomial (

∑m
i=1 sili(x)+ l0(x))

2
− 1 . Conversely, if a 

vector s exists to make a(x) divides the polynomial, then 
{rj}j∈[d] must be the roots of the polynomial, implying 
(sM + v − 1) ◦ (sM + v − 1)− 1 = 0 . This again proves 
that C is satisfiable.

Putting things together shows that Construction 19 is a 
square span program over the ring Rp .  �

Assumptions
The security of previous SNARK schemes relied on two 
long-standing assumptions: power knowledge of expo-
nent (PKE) assumptions and power Diffie-Hellman 
(PDH) assumptions.

sM + v − 1 = (s1, . . . , sm) ·







l1(r1) · · · l1(rd)

.

.

.
. . .

.

.

.

lm(r1) · · · lm(rd)







+ (l0(r1), . . . , l0(rd))

=

�

m
�

i=1

sili(r1)+ l0(r1), . . . ,

m
�

i=1

sili(rd)+ l0(rd)

�

.

The PKE assumption, introduced by Gennaro et  al. 
(2013), is a kind of knowledge assumption, which extends 
the knowledge of exponent assumption (KEA). The 
original PKE assumption used a discrete logarithm-hard 
group-based encoding scheme. Later, Gennaro et  al. 
(2018) changed the encoding scheme to LWE-based 
schemes.

The PDH assumption was proposed by Boneh et  al. 
(2005) and Groth (2010), whose hardness is built on dis-
crete logarithm problems due to the encoding scheme. 
After altering the encoding scheme directly, Gennaro 
et al. (2018) obtained new instantiations, whose hardness 
relies on the LWE problem.

To build our SNARK schemes, it is necessary to 
broaden the PDH and PKE assumptions in the ring set-
ting. These two assumptions are formally defined in Sub-
section 4.1. Moreover, we observe a specific scenario in 
which these assumptions are developed with some use-
ful auxiliary information. The auxiliary information ena-
bles us to do ciphertext operations to promote efficiency 
without harming the hardness of assumptions, which is 
explained in Subsection 4.2.

Assumptions in the ring setting
The q-PKE assumption and q-PDH assumption in the 
ring setting follow the nature of those in Gennaro et al. 
(2013, 2018), except the encoding scheme is instantiated 
as Module-LWE . The slight modification originates from 
the structure difference, i.e., group, integer rings, and 
polynomial rings.

Definition 22 (q-PKE Assumption Over Ring) R 
is a cyclotomic ring with degree n and prime modu-
lus p. ( K,E,D,Eval ) is an encoding scheme. The q-PKE 
assumption over R states that for any ppt adversary A 
and some auxiliary information aux ∈ {0, 1}poly(�) , which 
is independent of α , there exists a ppt extractor Ext such 
that

Pr







sk ← K(1), s,α ← Rp,
µ = (Esk(1),Esk(s), . . . ,Esk(s

q),Esk(α),Esk(αs), . . . ,Esk(αs
q)),

(c, ĉ; a0, . . . , aq) ← (A||Ext)(pk ,µ, aux) :

Dsk(ĉ) = αDsk(c) ∧ Dsk(c) =
�q

i=0 ais
i






≥ 1− negl(�).
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For the q-PDH assumption in the ring setting, we 
observe that its form depends on the structure of the 
ring. Namely, in our choice of ring, Rp is isomorphic to a 
product of two subfields with norm pn/2 . A non-zero ele-
ment a ∈ Rp means there exists at least one subfield such 
that a is invertible in the subfield.

Definition 23 (q-PDH Assumption Over Ring) The 
prime p satisfies p ≡ 3 mod 8 , and R is a cyclotomic ring 
with degree (a power of 2) n. ( K,E,D,Eval ) is an encod-
ing scheme. The q-PDH assumption over R is that for any 
ppt adversary A,

Pr





sk ← K(1), s ← Rp,
ĉ ← A(Esk(1),Esk(s), . . . ,Esk(s

q),Esk(s
q+2), . . . ,Esk(s

2q)) :

Dsk(ĉ) mod p1 ≡ sq+1 or Dsk(ĉ) mod p2 ≡ sq+1



 ≤ negl(�).

Assumptions with special auxiliary information
In comparison to the PDH/PKE assumption stated above, 
we consider a special case where appending some useful 
auxiliary information. The auxiliary information needs to 
satisfy the basic principle: admit linear operations only.

Following this idea, we turn a new perspective on the 
key-switching procedure. As we all know, an integral key-
switching algorithm includes two steps: key-switching key 
generation and the product of bit-decomposed ciphertext 
and key-switching key. Apparently, the whole key-switch-
ing algorithm is non-linear. Nevertheless, with access to 
the key-switching key, the product can be construed as a 
linear combination comprising the key-switching key and 
the decomposition of the ciphertext. Also, no adaptive 
key-switching keys can be incorporated into the auxiliary 
information, as the ciphertexts can be evaluated homo-
morphically by means of modulus-switching and key-
switching, as demonstrated in Brakerski et al. (2014).

An important observation is that we can separate the 
linear and non-linear parts of the key-switching proce-
dure. The separation is putting some predetermined key-
switching keys into the auxiliary information. This means 

that if the adversary wants to utilize the key-switching 
keys, the remaining part he can do is linear. Then it does 
not violate the knowledge assumption (PKE assumption).

Next, we give a formal description of the strengthening 
q-PKE assumption, which embeds proper key-switching 
keys into the q-PKE assumption:

Definition 24 (The Strengthening q-PKE Assump-
tion) ( K,E,D,Eval ) is an encoding scheme and 
KeySwitch = (SwitKeyGen,KeySwit) is a key-switching 
algorithm. The strengthening q-PKE assumption states 
that for any automorphism or identity mapping f, any 
ppt adversary A , any auxiliary information aux and key 

switching keys switkey , which are independent of α , 
there exists a ppt extractor, denoted as Ext , such that

Pr







(sk,F), (sk′,F′) ← K(1), s,α ← Rp, switkey ← SwitKeyGen(sk, f(sk′)),
µ = (Esk(1),Esk(s), . . . ,Esk(s

q),Esk(α),Esk(αs), . . . ,Esk(αs
q)),

(c, ĉ; a0, . . . , aq) ← (A||Ext)(µ,aux, switkey, f ) :

Dsk(ĉ) = αDsk(c) ∧ Dsk(c) =
�q

i=0 ais
i or Dsk′(ĉ) = αDsk′(c) ∧ Dsk′(c) =

�q
i=0 ais

i






≥ 1− negl(�).

Lemma 25 If the encoding scheme ( K,E,D ) satisfies the 
strengthening q-PKE assumption, then it satisfies the q-
PKE assumption over ring.

Proof The proof is direct. If there is a ppt adversary can 
break the q-PKE assumption over ring, then it outputs a 
valid pair (c1, c2) such that Dsk(c2) = αDsk(c1) with pol-
ynomial probability. This pair is also a valid pair for the 
strengthening q-PKE assumption.  �

Similarly, we give the formal definition of the strength-
ening q-PDH assumption.

Definition 26 (The Strengthening q-PDH Assump-
tion) ( K,E,D,Eval ) is an encoding scheme and 
KeySwitch = (SwitKeyGen,KeySwit) is a key-switching 
algorithm. The strengthening q-PDH assumption states 
that for any automorphism or identity mapping f, any 
ppt adversary A , any auxiliary information aux and key 
switching keys switkey,
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Lemma 27 If the encoding scheme ( K,E,D ) satisfies the 
strengthening q-PDH assumption, then it satisfies the q-
PDH assumption over ring.

Proof The proof is similar. If there is a ppt adver-
sary can break the q-PDH assumption over 
ring, then it outputs an encoding ĉ such that 
Dsk(ĉ) mod p1 ≡ sq+1 or Dsk(ĉ) mod p2 ≡ sq+1 with pol-
ynomial probability. This encoding is also a valid encod-
ing for the strengthening q-PDH assumption.  �

The Lemmas  25 and  27 show that our new assump-
tions are stronger than previous ones, which is why 
it’s so named. Next, we give the feasibility of our new 
assumptions.

Feasibility of New Assumptions. Our modified PKE 
assumption, which enhances PKE assumption, is rooted in 
prior knowledge assumptions but refined by the specific 
ring structure. Furthermore, a set of predetermined key-
switching keys is appended to the auxiliary information. The 
feasibility of this strategy is premised on the key-switching 
procedure, which can be separated into a non-linear com-
ponent (Key Generation) and a linear component. Since the 
key-switching keys are fixed, the adversary is limited to lin-
ear evaluations, which does not violate the PKE assumption.

The q-PDH assumption is also amenable to combina-
tion with key-switching keys, without compromising the 
security of the message sk since the encoding scheme 
is IND-CPA secure. Consequently, including extra key-
switching keys does not impact the difficulty of the q-
PDH assumption.

Parameters. The PKE assumption still holds over a 
small field (or a ring with a small ideal norm). This is 
due to the spareness of a valid pair of MLWE encodings, 
which requires a relation of α between two messages.

Yet, the PDH assumption does not maintain its hard-
ness when considered over a polynomial-sized field F . 
The direct consequence is that we can accurately deduce 
the value of s with a probability of 1/poly(�) and subse-
quently compute Esk(s

q+1) . Moreover, Ishai et al. (2021) 
proposed a more efficient attack. The adversary can 
select random and independent x1, . . . , x2q ∈ F  , and 
compute f (x) =

∏2q
i=1(x − xi) , where all xi are roots of 

f(x). Then if s collides with any xi , the adversary can com-
pute Esk(s

q+1) since the coefficient of xq+1 in f(x) is not 
zero with non-negligible probability. Consequently, we 
require 2q/|F| < 2−� to reach �-bits security level.

Pr





(sk,F), (sk′,F′) ← K(1), s ← Rp, switkey ← SwitKeyGen(sk, sk′),
ĉ ← A(Esk(1),Esk(s), . . . ,Esk(s

q),Esk(s
q+2), . . . ,Esk(s

2q),aux, switkey, f ) :
Dsk(ĉ) mod pi ≡ sq+1 for i = 1 or 2 or Dsk′(ĉ) mod pi ≡ sq+1 for i = 1 or 2



 ≤ negl(�).

Zero‑knowledge succinct non‑interactive 
argument of knowledge schemes
In this section, we present two constructions of zk-
SNARKs—one basic construction and then an optimized 
variant. The basic construction generalizes the frame-
work of SSP-based SNARK (Gennaro et al. 2018) to the 
ring setting and then applies the technique of modulus 
switching to reduce the proof length. From the basic 
scheme, we then design the optimized construction, 
based on the strengthening assumptions (Definitions 24 
and 26) and additional techniques including key-switch-
ing and packing, to optimize the parameters.

Below we first present the basic scheme.

The basic scheme

Construction 28 (Basic zk-SANRK) For any NP relation 
L = {(u,ω) : C(u,ω) = 1} related to a boolean circuit 
C, the protocol �1 is composed of three ppt algorithms 
(�1.Setup,�1.Prove,�1.Verify) , and uses an encoding 
scheme (K,E,D,Eval) (e.g., the Construction  6) and a 
SSP generation algorithm (e.g., the Construction 19) as 
building blocks. It works as follows:

• �1.Setup(�) → (crs, vrs, td) : 

1. Run (s,F) $
←−K(1, k) and sample β , r,α $

←−Rp . Set 
vrs = td = (s,α,β , r).

2. Run ssp = (a(x), v0(x), . . . , vm(x)) ← SSP(C) , 
and compute ρ = (Es(1), . . . ,Es(r

d),Es(α),

. . . ,Es(αr
d),Es(βa(r)), {Es(βvi(r))}

m

i=ℓu+1
) . Set 

crs = (ssp, ρ,F).
3. Return (crs, vrs, td).

• �1.Prove(crs,u,ω) → π : 

1. Parse u = (u1, . . . ,uℓu ) ∈ {0, 1}ℓu , ω = (ωℓu+1, . . . ,ωm) , 

and sample γ $
←−Rp . Then compute v(x) = v0(x)

+
∑ℓu

i=1
uivi(x)+

∑

m

i=ℓu+1 ωivi(x)+ γ a(x) , 
v∗(x) =

∑m
i=ℓu+1 ωivi(x)+ γ a(x) and 

h(x) = (v2(x)− 1)/a(x).
2. Run Eval to compute

• H = Eval({Es(r
i), hi}

d
i=0,F)=Es(h(r)),
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• Ĥ = Eval({Es(αr
i), hi}

d
i=0,F)=Es(αh(r)),

• V̂ = Eval({Es(αr
i), vi}

d
i=0,F)=Es(αv(r)),

• V̂ ∗
= Eval({Es(βvi(r)),ωi}

m

i=ℓu+1
||{Es(βa(r)), γ },F)

=Es(βv
∗(r)),

• V ∗
= Eval({Es(r

i), v∗i }
d
i=0,F) = Es(v

∗(r)).

3. Sample {esm,i}i∈{1,...,5}
$
←−[−Bsm,Bsm] , and com-

pute (H ′, Ĥ ′, V̂ ′, V̂ ∗
′

, V ∗′)=(H , Ĥ , V̂ , V̂ ∗,V ∗) 
+ (pesm,1, pesm,2, pesm,3, pesm,4, pesm,5).

4. Run ModSwit to compute

• H ′′
← ModSwit(H ′,Q,Q′, p),

• Ĥ ′′
← ModSwit(Ĥ ′,Q,Q′, p),

• V̂ ′′
← ModSwit(V̂ ′,Q,Q′, p),

• V̂ ∗
′′

← ModSwit(V̂ ∗
′

,Q,Q′, p),
• V ∗′′

← ModSwit(V ∗′,Q,Q′, p).

5. Return π = (H ′′, Ĥ ′′, V̂ ′′, V̂ ∗
′′

,V ∗′′) ∈ R
(k+1)×5
Q′ .

• �1.Vefify(vrs,u, π̃) → 0/1 : 

1. Parse u = (u1, . . . ,uℓu ) ∈ {0, 1}ℓu , π̃ = (H̃ ,
˜
Ĥ ,

˜
V̂ ,

˜
ˆV
∗, Ṽ ∗) 

and compute v∗r = Ds(Ṽ ∗) , b∗r = Ds(
˜
ˆV ∗) , 

hr = Ds(H̃) , ˆhr = Ds(
˜
Ĥ) , v̂r = Ds(

˜
V̂ ) , ar = a(r) 

and vr = v0(r)+
∑ℓu

i=1 uivi(r)+ v∗r .
2. Check if the following equations hold:

• αhr = ˆhr,
• αvr = v̂r,
• v2r − 1 = hr · ar,

• b∗r = βv∗r .

  If all of the equations are satisfied, then pro-
ceed to the subsequent step; otherwise, termi-
nate the process and output “0”.

Theorem 29 The prime p satisifies p ≡ 3 mod 8 and the 
cyclotomic ring R is Z[ζ2n] ∼= Z[X]/(Xn

+ 1) with degree n. 
Assume the hardness of MLWE assumption, strengthening q-
PDH assumption and strengthening q-PKE assumption, as 
well as IND-CPA security of the encoding scheme. Then for 
any modulus Q > 2κ+4σnp2(d + pn)

(

p
√

2dnκ + 2σnκk
)

 , 

Q = 1 mod p , and the switched modulus Q
′ > 4np2

(

σ
√

nkκ + n

)

 , Q′
= 1 mod p , the Construction 28 is a zero-

knowledge succinct non-interactive adaptive argument of 
knowledge (zk-SNARK) for any square span program rela-
tion (u,ω) ∈ L.

The proof shares some similarities with the proof of our 
later optimized proof. For brevity, we defer the proof in 
Appendix B.

The optimized scheme
The optimized scheme further improves the efficiency of 
the basic construction using more algebraic techniques—
at a high level, we can pack multiple Module-LWE 
encodings in a lower dimension ring to one Module-
LWE encoding in a higher dimension ring, via packing 
technique. As encodings from a higher dimension ring 
have a better rate, i.e., output/input length ratio, then 
the key-switching technique can further compress the 
length of the proof (by a factor of 8x from our concrete 
instantiations). However, as the key-switching procedure 
requires an additional key-switching key, our proof of 
security would rely on a stronger assumption (Assump-
tions  26,  24). Below we present the description of the 
optimized scheme.

Construction 30 (Optimized zk-SNARK) For any NP 
relation L = {(u,ω) : C(u,ω) = 1} related to a boolean 
circuit C, the optimized protocol �2 is composed of 
three ppt algorithms (�2.Setup,�2.Prove,�2.Verify) , 
and uses an encoding scheme (K,E,D,Eval) (e.g., the 
Construction  6), a SSP generation algorithm (e.g., 
the Construction  19) and a key switching algorithm 
(SwitKeyGen,KeySwit) as building blocks. It is defined 
as follows:

• �2.Setup(�) → (crs, vrs, td) : 

1. Run (s1,F) ← K(1, k), (s2,F2), (s3,F3) ←

K(1, k′) independently.   

 Sample α,β , r $
←−Rp . Set vrs = td = (s1, s2,α,β , r).

2. Run ssp = (a(x), v0(x), . . . , vm(x)) ← SSP(C) . 
RunB ← SwitKeyGen (s1, s2),

 B
′
← SwitKeyGen(s1, s3),

Bi ← SwitKeyGen(τi(s2), s3),

 for i ∈ Z
∗

16, where τi are pre-determined

automorphisms overR.  Then run E to obtain 

ρ = (Es1(1),Es1(r), . . . ,Es1(r
d),Es1(α),Es1(αr),

. . . ,Es1(αr
d),



Page 12 of 19Lin et al. Cybersecurity            (2024) 7:33 

 Es1(βa(r)), {Es1(βvi(r))}
m
i=ℓu+1) . 

Set crs = (ssp, ρ,F,B,B′, {Bi}i∈Z∗

16
).

3. Return (crs, vrs, td).

• �2.Prove(crs,u,ω) → π ′ : 

1. Parse u = (u1, . . . ,uℓu ) ∈ {0, 1}ℓu , ω = (ωℓu+1, . . . ,ωm) , 

and sample γ $
←−Rp . Then compute v(x) = v0(x)

+
∑ℓu

i=1
uivi(x)+

∑

m

i=ℓu+1 ωivi(x)+ γ a(x) , 
v∗(x) =

∑m
i=ℓu+1 ωivi(x)+ γ a(x) and 

h(x) = (v2(x)− 1)/a(x).
2. Run Eval to compute

• H = Eval({Es(r
i), hi}

d
i=0,F)=Es(h(r)),

• Ĥ = Eval({Es(αr
i), hi}

d
i=0,F)=Es(αh(r)),

• V̂ = Eval({Es(αr
i), vi}

d
i=0,F)=Es(αv(r)),

• V̂ ∗
= Eval({Es(βvi(r)),ωi}

m

i=ℓu+1
||{Es(βa(r)), γ },F)

=Es(βv
∗(r)),

V ∗
= Eval({Es(r

i), v∗i }
d
i=0,F) = Es(v

∗(r)).

3. Sample {esm,i}i∈{1,...,5}
$
←−[−Bsm,Bsm] , and com-

pute (H ′, Ĥ ′, V̂ ′, V̂ ∗
′

, V ∗′)=(H , Ĥ , V̂ , V̂ ∗,V ∗) 
+ (pesm,1, pesm,2, pesm,3, pesm,4, pesm,5).

4. Run ModSwit to compute

• H ′′
← ModSwit(H ′,Q,Q′, p),

• Ĥ ′′
← ModSwit(Ĥ ′,Q,Q′, p),

• V̂ ′′
← ModSwit(V̂ ′,Q,Q′, p),

• V̂ ∗
′′

← ModSwit(V̂ ∗
′

,Q,Q′, p),
• V ∗′′

← ModSwit(V ∗′,Q,Q′, p).

5. Let π = Pack(V̂ ∗
′′

,H ′′, Ĥ ′′,V ∗′′, V̂ ′′) ∈ R
k+1
Q′ .

6. RunKeySwittocomputeandreturn π ′
= KeySwit(B,π).

• �2.Vefify(vrs,u, π̃) → 0/1 : 

1. Parse u = (u1, . . . ,uℓu) ∈ {0, 1}ℓu and 

π̃ = (H̃ ,
˜
Ĥ ,

˜
V̂ ,

˜
ˆV
∗, Ṽ ∗).

2. Computem′
= Ds2(π̃) ∈ R, andparse

m
′
as (b∗r , hr ,

ˆhr , v
∗

r , v̂r , 0, 0, 0).

 Then compute ar = a(r) and vr = v0(r)+
∑ℓu

i=1

uivi(r)+ v
∗

r .
3. Check if the following equations hold:

• αhr = ˆhr,
• αvr = v̂r,
• v2r − 1 = hr · ar,

• βv∗r = b∗r .

  If all of the equations are satisfied, then proceed 
to the subsequent step; otherwise, terminate the 
process and output “0”.

To show the above Construction 30 is a zk-SNARK, we 
first prove three separated properties, including com-
pleteness, the argument of knowledge, and honest-veri-
fier zero-knowledge respectively, which corresponds to 
Theorem 31, 32, and 33. Then we put them together and 
further prove the succinctness property to show the Con-
struction 30 is a zk-SNARK.

Completeness

Theorem 31 The prime p satisfies p ≡ 3 mod 8 , and R, 
R are cyclotomic rings with degree n, 8n. For any modu-
lus Q satisfying Q = 1 mod p , Q > 2κ+3 · 9σnp2(d + pn)
(

p
√

2dnκ + 2σnκk
)

 , and switched modulus Q′  

satisfying Q′=1 mod p , Q′ > 2np2
[

9(σ
√

nkκ + n)+ 18σ ′

√

(k + 1)8nκ logQ′
+ 16σ ′′

√

(k ′ + 1)8nκ logQ′

]

 ,  t h e 
Construction  30 satisfies completeness with probability 
at least (1− 8n exp(−πκ/σ 2)) · (1− 16n exp(−πκ/σ ′2)).

Proof We demonstrate that the infinite norm of the 
ultimate noise in π ′ remains below half of the switched 
modulus when the prover is in accordance with the pro-
tocol. Our analysis will elucidate the evolution of noise 
throughout each step.
In the setup stage, {Es1(βvi(r))}

m
i=ℓu+1 and Es1(βa(r)) 

are computed by additive homomorphic evaluations and 
we have Bcrs = σp2

√

2dnκ + 2pσ 2nκk with probability 
1− 6n exp(−πκ/σ 2) . In the proving stage, we first compute 
5 evaluations, and the largest noise growth lies in V̂ ∗ , which 
is BV̂ ∗ = Bcrs(m− ℓu + pn) = (σp2

√

2dnκ + 2pσ 2nκk)

(m− ℓu + pn) with probability 1− 6n exp(−πκ/σ 2) . 
Noise smudging makes the error bound increase 
to (2κ + 1)BV̂ ∗ . Then the infinity norm is less than 
(2κ + 1)(σp2

√

2dnκ + 2pσ 2nκk)(m− ℓu + pn) with 
probability 1− 6n exp(−πκ/σ 2) . After modulus-switch-
ing, the bound B

V̂ ∗
′ is less than γQ′

+
p
2 (σ

√

κnk + n) 
with probability 1− 2n exp(−πκ/σ 2) together with 
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(2κ + 1)(σp2
√

2dnκ + 2pσ 2nκk)(m− ℓu + pn)+ 2dnp2

(m− ℓu + pn) < γQ . The packing procedure does not 
introduce extra noise. Applying key-switching intro-
duces additional noise, p�BD(π), e′� , and it’s infinity 
norm is no more than pσ ′

√

(k + 1)8nκ logQ′ with prob-
ability 1− 16n exp(−πκ/σ ′2) . Since the noise in key-
switching key e′ is independent of noise in crs , thus the 
whole error’s infinity norm in the proof is no more than 
eπ ′ = γQ′

+
p
2 (σ

√

κnk + n)+ pσ ′

√

(k + 1)8nκ logQ′ 
with probability (1− 8n exp(−πκ/σ 2)) · (1− 16n exp(−πκ/σ ′2)).

Therefore, the proof can be decrypted correctly as long as 
γQ′

+
p
2 (σ

√

κnk + n)+ pσ ′

√

(k + 1)8nκ logQ′ <
Q′

2  .  �

Computational Honest‑verifier Zero‑knowledge

Theorem  32 Assume the hardness of MLWE assump-
tion, strengthening q-PDH assumption and strengthening 
q-PKE assumption. Suppose that the encoding scheme is 
IND-CPA secure. Then for any Q,Q′ are defined as Theo-
rem 31, the Construction 30 satisfies computational hon-
est-verifier zero knowledge.

Proof To establish computational honest-verifier zero-
knowledge property, we can construct a ppt simulator 
Sim = (S1,S2) such that the distribution of its output is 
computationally indistinguishable from the distribution 
of an honest execution. We divide the whole protocol 
into three stages. The first stage is the setup phase, the 
second stage is the first three steps of the prover, and the 
third stage is the remaining three steps of the prover.
The construction of Sim is presented in Fig. 1. From the 
construction, it differs from the real case in two aspects: 

one is that a(r) is always invertible in the simulate case; 
another is that the simulator encodes messages directly 
by trapdoor instead of applying additive homomorphic 
evaluation on crs.

In the first stage, the statistical distance of S1 and the 
real setup algorithm is at most 2/p

n
2 as the probability 

that a random chosen a(r) mod pi equals 0 is 
2·pn/2−1

pn ≈ 2/p
n
2 . This means that the output distribution 

of S1(u) is statistically close to the output distribution 
produced by the real setup algorithm.

In the second stage, the simulator and real prover 
take the output of the first stage as inputs and generate 
(H ′′, Ĥ ′′, V̂ ′′, V̂ ∗

′′

,V ∗′′) . In the real protocol, the prover 
uses re-randomized evaluation (Construction  6) and 
each encoding consists of two parts e.g., ( a, b ). From 
the Construction 6, we have a as a pseudo-random ring 
vector over Rk ′ , assuming the hardness of the MLWE 
assumption. After noise smudging, the distribution of b 
is statistically indistinguishable from the noise distribu-
tion by Lemma 12.

In the simulation case, the prover encodes directly 
using the MLWE encoding scheme. Each encoding con-
sists of two parts e.g., ( a′, b′ ). In the MLWE encoding 
scheme, a′ is truly random. Thus we have the distribution 
of a and the distribution of a′ are computationally indis-
tinguishable. After noise smudging, the distribution of b′ 
is statistically indistinguishable from the noise distribu-
tion by Lemma 12. Then the distribution of b and b′ are 
the same.

Up to now, we have proven that two executions are 
computationally indistinguishable after the first two 
stages. In the third stage, the simulator and the real 
prover perform the same modulus switching, pack algo-
rithm, and key-switching, which implies the two distribu-
tions are indistinguishable.

Fig. 1 The construction of simulator Sim(u)
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Putting things together, we have that the Construc-
tion  30 satisfies computational honest-verifier zero-
knowledge.  � 

Computational Argument of Knowledge

Theorem  33 Assume the hardness of MLWE assump-
tion, strengthening q-PDH assumption, and strength-
ening q-PKE assumption. Suppose that the encoding 
scheme is IND-CPA secure. Then for any Q,Q′ defined 
as Theorem  31, the Construction  30 satisfies compu-
tational argument of knowledge with knowledge error 
2(q −m+ ℓu)/p

n
2.

Proof We show this via a reduction—assuming the 
existence of a ppt adversary produces a valid proof π ′ , we 
can break the hardness of strengthening q-PDH assump-
tion. More concretely, assuming the existence of a ppt 
adversary, denoted as Aπ ′ , who can forge a proof for a 
false statement that passes the verification, it follows that, 
at least one of the subsequent two events will ensue.

• E1 : v2(r)− 1 = a(r)h(r) and v2(x)− 1 �= a(x)h(x).
• E2 : v∗(x) can not be represented as a linear combi-

nation of a(x), vℓu+1(x) , . . .,vm(x) , but the message 
encoded in the V̂ ∗

′′ equals βv∗(r).

We can demonstrate that the occurrence of either event E1 or 
E2 results in breaking the strengthening of q-PDH assump-
tion. The construction of the adversary APDH closely resem-
bles that presented in Gennaro et  al. (2018). Nevertheless, 
contrary to the proof presented in Gennaro et al. (2018), our 
construction is built over the ring. Accordingly, we empha-
size the approach to deal with the inverse of a ring element.
A valid proof encompasses a single encoding belong-
ing to Rk ′+1

Q′  . By executing the unpack algorithm, we 
obtain 5 encodings. The d-PKE assumption enables the 
existence of a ppt extractor ExtPKE to extract h(x) from 
(H ′′, Ĥ ′′) , and v(x) from (V ′′, V̂ ′′) , where V ′′ is com-
puted as by homomorphic evaluation and V ∗′′ . Set 
z(x) = v2(x)− 1− a(x)h(x) . The event E1 implies that 
z(x) is not zero polynomial and z(s) = 0 . We assume the 
highest degree of non-zero coefficient is k(k ≤ 2d) and 
parse z(x) as 

∑k
i=0 zix

i . Since zk  = 0 , there exists at least 
one ideal such that zk mod pi  = 0 (here zk is treated as a 
ring element). We suppose that zk mod p1  = 0 , and then 
zk has its inverse z−1

k  in Rp/p1 without loss of generality.

Next, we show how to compute Es1(r
q+1) . We 

have z(r) mod p1 = 0 since z(r) = 0 mod p . Let 

z̃(x) = ((xk − z−1
k · z(x))mod p)mod p1 with degree at 

most k − 1 . Clearly, rk − z̃(r) equals zero over R/p1 , so 
does rq+1

− rq+1−k z̃(r) . This means that if we can derive 
Es1(r

q+1−k z̃(r)) , we also obtain Es1(r
q+1) . As the degree 

of xq+1−k z̃(x) is at most q, we compute Es1(r
q+1−k z̃(r)) by 

homomorphic evaluation Eval({Es1(r
q+1−k+i), z̃i}

k−1
i=0 ,F) . 

Furthermore, we require q ≥ 2d − 1 to make sure 
q + 1− k to be positive for k is less than 2d. This breaks 
the hardness of strengthening of q-PDH assumption for 
q ≥ 2d − 1.

Similarly, if the event E2 happens, we can also construct 
an adversary for q-PDH assumption. Specifically, we first 
generate the crs as the event E1 happens except the way 
of computing {Es1(βvi(r))}

m
i=ℓu+1 and Es1(βa(r)) . Similar 

to the idea of Gennaro et al. (2018), we interpret β as f(r), 
where f (x) ∈ F  , and F  is defined as the function class: 
{f (x) : the coefficient of xq+1 in f (x)vi(x) and f (x)a(x) are

zero, ∀i ∈ [ℓu + 1,m]}. In this condition, we gener-
ate crs without knowing Es1(r

q+1) . Meanwhile, the 
m− ℓu + 1 constraints in F  make the degree freedom of 
f(x) drop to q − (m− ℓu) . We sample f (x) $

←− F  . Then 
Es1

(βvi(r))) = Es1
(f (r)vi(r)) = Eval({Es1

(rj), cij}
2q
j=0,j �=q+1

,F) 
for i ∈ [ℓu + 1,m] and Es1(βa(r)) = Es1(f (r)a(r))

= Eval({Es1(r
j), c′

j
}
2q

j=0,j �=q+1
,F) , assuming that f (x)vi(x)

=
∑2q

j=0
cijx

j and f (x)a(x) =
∑2q

j=0 c
′

jx
j . Similar to the 

case of event E1 , we get the proof π ′ . By running unpack-
ing algorithm on π ′ , we obtain the separated cipher-
texts (V̂ ∗

′′

,H ′′, Ĥ ′′,V ∗′′, V̂ ′′) . Next, we prove the coeffi-
cient of xq+1 in f (x)v∗(x) is invertible (which is treated 
as a ring element) with overwhelming probability. More 
specifically, let f (x) =

∑q
i=0 fix

i , v∗(x) =
∑d

i=0 v
∗

i x
i , 

then f (x)v∗(x) =
∑2d

i=0 cix
i for q = d . The coefficient 

of xq+1 in f (x)v∗(x) is cq+1 =
∑q

i=1 fiv
∗

q+1−i . We con-
sider the case that cq+1 is not invertible, which means 
that 

∑q
i=1 fiv

∗

q+1−i = 0 (mod pi) for any i ∈ {1, 2} . The 
probability of the case where cq+1 is not invertible is at 
most 2(q −m+ ℓu)/p

n/2 by Schwartz-Zippel lemma. 
Since the Schwartz-Zippel lemma holds in the field, 
all elements here are considered as elements in R/pi . 
Therefore, the coefficient of xq+1 is invertible in Rp 
with probability 1− 2(q −m+ ℓu)/p

n/2 . Recall that 
V ∗

= Es3(βv
∗(r)) = Es3(f (r)v

∗(r)) = Es3(
∑2q

i=0 cir
i)  . 

Then we can obtain Es2(r
q+1) by V ∗′′ subtracts other 

terms (via homomorphic evaluation and key switch-
ing) and multiples c−1

q+1 . Concretely, we can com-
pute Es3(r

q+1 mod p1) = c−1
q+1(V

∗′′
− c′) , where c′ is 
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Eval({Es1(r
i), ci}

2q
i=0,i �=q+1,F)) after modulus-switching 

and key-switching. That breaks the strengthening of q-
PDH assumption for q = d.

So far, we have established the computational soundness 
of the proposed Construction  30 with soundness error 
2(q −m+ ℓu)/p

n
2 . Furthermore, the construction also 

satisfies the argument of knowledge property, i.e., the 
existence of a ppt extractor to recover the witness when 
the adversary outputs convincing proof. As the event E2 
happens with negligible probability, the recovered v∗(x) is 
a linear combination of {a(x), vℓu+1(x), . . . , vm(x)} . Then 
there are m− ℓu + 1 unknowns and d + 1 constraints. 
The witness ω = (ωℓu+1, . . . ,ωm) can be recovered easily 
by Gaussian elimination since d = m+ n > m− ℓu .  �

Corollary 34 Assume the hardness of MLWE assump-
tion, strengthening q-PDH assumption, and strengthening 
q-PKE assumption. Assume the encoding scheme is IND-
CPA secure. Then for any R,R, p,Q,Q′ are defined as The-
orem 31, the Construction 30 is a zk-SNARK for any NP 
relation (u,ω) ∈ L.

Proof To show the Construction 30 is a zk-SNARK, we 
show four properties, including completeness, the argu-
ment of knowledge, honest-verifier zero-knowledge, and 
succinctness, are satisfied.
Firstly, the succinctness property is evident since the 
proof consists of a single MLWE encoding, which implies 
a constant-sized proof and achieves succinctness. From 
the Theorem  31, we have the Construction  30 satis-
fies completeness. From the Theorem  32, we have the 
Construction  30 satisfies computational honest-verifier 
zero-knowledge. From the Theorem  33, we have the 
Construction 30 satisfies the computational argument of 
knowledge.

Put all the pieces together, we prove that the Construc-
tion 30 is a zk-SNARK.  �

Concrete parameters
In this section, we exhibit explicit and quantifiable 
parameters for our basic and optimized schemes.

Parameter selection
Firstly, we summarize the preceding restrictions on 
parameters and then propose several parameter sets.

• Message Modulus p: The choice of p is jointly influ-
enced by the PDH assumption and SSP instance 
generation. We have opted for a specific scenario 
where pR is divided into two ideals, and in this 
case, the prime p satisfies p ≡ 3 mod 8 . To guar-
antee the robustness of the d-PDH assumption 
over the subfield R/p (where p is an ideal of pR) and 
ensure the accuracy of SSP instance generation over 
ring Rp , we impose the following requirements: 
log p > 2(�+ log 2d)/n and p > 4n . After several 
attempts, we have determined that n = 64, p = 283 , 
as well as n = 32, p = 643 (for d = 220 ), or alterna-
tively n = 32, p = 547 (for d = 216).

• Dimension n of R: The ring dimension n is set to be a 
power of 2 and it can be small, such as 64, as long as 
we set a larger rank k to maintain sufficient nk in the 
MLWE estimation. Analyze with p, and we set n = 64 
or n = 32.

• Standard deviation σ and σ ′ : In this paper, we set 
all standard deviations σ = σ ′

= 64 without other 
annotations.

• Modulus Q, Q′ : The modulus Q and Q′ are positive 
integers that satisfy completeness of construction as 
Theorem 31.

Table 3 Parameter setting for � ≈ 128 , κ = 40

Scheme d p n n′ k k′ log Q log Q′ Security
(Classical)

Security
(Quantum)

Basic
Scheme

216 547 32 ‑ 155 ‑ 115 40 128.5 149.3

216 283 64 – 77 – 114 40 129.1 149.8

220 643 32 – 162 – 120 41 128.2 149.1

220 283 64 – 80 – 118 40 129.4 150.1

Optimized
Scheme

216 547 32 256 158 8 117 50 128.8 149.6

216 283 64 512 78 4 116 50 128.2 149

220 643 32 256 165 8 122 51 128.5 149.4

220 283 64 512 81 4 120 50 128.2 149.1
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• Rank k , k ′ : The quantities k and k ′ are measured by 
the LWE security estimator (Albrecht et al. 2015) for 
a desired security level given predetermined values 
n,α, σ , σ ′ . In terms of classical security, we adopt 
“ADPS16” (Alkim et  al. 2016) method, which yields 
the least security level relative to other approaches 
with equivalent parameters. In the case of quantum 
security, two methodologies, namely “LasMosPol14” 
(Laarhoven et  al. 2015) and “qsieve”, yield identical 
results.

• Circuit size d: We take circuit size ranging from 210 
to 220 , which is sufficient in the majority of applica-
tions.

Following the aforementioned parameter suggestions, we 
present detailed parameters for partial circuits ( d = 216 
and d = 220 as before) in Table 3.

Proof and CRS length
The proof of the basic scheme consists of 5 encodings 
in RQ′ and that in the optimized scheme is 1 encod-
ing in RQ′ . Then the proof size of the basic scheme 
and optimized scheme are 5n(k + 1) logQ′ bits, and 
n′(k ′ + 1) logQ′ bits respectively. For the basic scheme, 
CRS consists of 2(d + 1)+m− ℓu + 3 encodings in 
Rk+1
Q  , which are less than 3(d + 1)(k + 1)n logQ bits. 

Furthermore, we can utilize a seed and a pseudorandom 
generator to substitute true randomness in the encod-
ings, then the length of CRS shrinks to 3(d + 1)n logQ 
bits. Since the optimized scheme utilizes the key-switch-
ing technique, the CRS length in the optimized scheme 
increases by key-switching keys. To be specific, the opti-
mized scheme employs 2 key-switchings from Rk+1

Q′  to 
R

k ′+1
Q′  and 8 key-switchings from Rk ′+1

Q′  to Rk ′+1
Q′  , which 

are 8n(k ′ + 1)(2(k + 1)+ 8(k ′ + 1)) log2Q′ bits.
Plug the estimated values into the formulae, we obtain 

the concrete proof and CRS lengths in Table 4 and depict 
the tendency for circuit size ranging from 210 to 220 in 
Figs. 2 and 3.

Comparison Between the Basic and the Optimized 
Schemes. As shown in Figs. 2 and 3, our results indicate 
a slight increase in the proof length alongside a nearly 
linear increase in the CRS length. (It is important to 

Table 4 Proof and CRS lengths of schemes for � ≈ 128, κ = 40

∗ For CRS length, we merely count encodings, and other parts, including the 
seed for PRF are neglected

Scheme d n Proof Length CRS Length
(Compressed)

Basic Scheme 216 32 121.88KB 86.25MB

216 64 121.88KB 171MB

220 32 130.53KB 1.41GB

220 64 126.56KB 2.77GB

Optimized Scheme 216 32 14.06KB 133.99MB

216 64 15.63KB 246.94MB

220 32 14.34KB 1.48GB

220 64 15.63KB 2.88GB

Fig. 2 Proof length varying from circuit size
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note that our horizontal axis is logarithmic in scale with 
respect to circuit size, which is why the growth follows 
an exponential pattern.) This is due to the slight effect 
of circuit size on switched modulus, which translates to 
a small impact on proof length. Conversely, the increase 
in circuit size has a significant impact on the CRS length, 
which displays an almost linear correlation.

Our optimized scheme offers a marked improve-
ment over the basic scheme, with the proof length being 
roughly 5x shorter. This attributes to its single encoding, 
as opposed to the basic scheme’s five encodings. As for 
the CRS length, the difference between the two schemes 
is minimal, primarily arising from the size of key-switch-
ing keys, which constitutes only 1% of the total CRS size 
at d = 220.

Conclusion
In this paper, we develop the framework of square span 
program-based SNARKs and design new zk-SNARKs 
over cyclotomic rings. To fit in the ring setting, we first 
extend square span programs over rings and then pro-
pose two new assumptions. Based on these fundamental 
components, we construct SANRKs by applying module-
switching and key-switching procedures in a novel way.

Our scheme avoids parallel repetition leveraging the ring 
structure. Thus, we obtain concretely small constructions 
for SNARKs with the designated verifier in the preprocess-
ing model, which has a proof of length 14.06KB and a CRS 
of length 133.99MB for the circuit of size 216 . For larger cir-
cuits, i.e., the size of 220 , the proof length and CRS length 
of our scheme are 14.34KB and 1.48GB respectively. These 
are 23.3% smaller and the CRS length is 3.6x smaller com-
pared to those in Ishai et al. (2021).

Appendix A: Propertites of encoding scheme
Lemma A.1 (Correctness) The encoding scheme ( K,E, 
D,Eval ) is defined in the Construction  6. Then for any d 
independent encodings Esk(m1), . . . ,Esk(md) and any 
αi ∈ Rp , the infinity norm of error in Eval(Esk(mi),αi, F) 
is no more than σp2

√

dnκ + 2pσ 2nκk with probability 
1− 6n exp(−πκ/σ 2).

Proof As the decoding algorithm depicts, we have 
∑d

i=1 αibi + r
T
b
∗
− �

∑d
i=1 αiai + A∗

r + pe′, s′� =
∑d

i=1

αi · pei + r
T
· pe

∗
− p�e

′, s′� . Assume that ei is the error 
in Esk(mi) and eik is the k-th bit representation of ei for 
i ∈ [d], k ∈ [n] . aik is defined in similar manner. Since the 
eik are independent, every entry of noise in 

∑d
i=1 αiei is 

a linear combination of eik . Take the constant term as 
an example, it equals 

∑d
i=1

∑n−1
k=0 αikpei,n−k , which is 

bounded by pσ
√

κ�α�2 ≤ pσ
√

κ
√

dnp = σp2
√

dnκ  with 
probability at least 1− 2 exp(−πκ/σ 2) by Lemma 1. An 
element sampled from �σ is bounded by σ

√

κ  with prob-
ability at least 1− 2 exp(−πκ/σ 2) , and two independent 
elements multiplied is no more than σ 2κ with probability 
1− 4 exp(−πκ/σ 2) , thus the infinity norm of rTe∗ is no 
more than σ 2κk with probability 1− 4n exp(−πκ/σ 2) . 
The bound of �e′, s′� is estimated as well. According to the 
union bound, the infinity norm of Eval(Esk(mi), ai) is no 
more than σp(p

√

dnκ + 2σnκk) with probability at least 
1− 6n exp(−πκ/σ 2) .  �

Lemma A.2 (Security) Let n, k ,Q, σ be as defined in 
Construction 6. Then the Construction 6 is CPA-security 
under the hardness of MLWE assumption.

Fig. 3 CRS length varying from circuit size
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Appendix B: Proofs of the basic scheme

Proof To prove the Construction  28 is a zk-SNARK, 
we need to prove its four properties: completeness, com-
putational soundness, argument of knowledge, and suc-
cinctness. Firstly, the succinctness property is satisfied as 
the proof is constant, i.e., 5 encodings. Next, we show the 
remaining three properties.
Completeness. If all infinite norms of the accumulated 
noise in the encodings contained in the proof π are 
smaller than half of the switched modulus, the descrip-
tions can be performed by the verifier correctly. Then the 
completeness property is satisfied. Next, we analyze the 
noise generated in each step.

In the setup stage, {Es(βvi(r))}
m
i=ℓu+1 and Es(βa(r)) are 

computed by additive homomorphic evaluations and we 
have Bcrs = σp2

√

2dnκ + 2pσ 2nκk with probability 
1− 6n exp(−πκ/σ 2) . In the proving stage, we first compute 
5 evaluations, and the largest noise growth lies in V̂ ∗ , which 
is BV̂ ∗ = Bcrs(m− ℓu + pn) = (σp2

√

2dnκ + 2pσ 2nκk)

(m− ℓu + pn) with probability 1− 6n exp(−πκ/σ 2) . 
Noise smudging makes the error bound increase 
to (2κ + 1)BV̂ ∗ . Then the infinity norm is less  
than (2κ + 1)(σp2

√

2dnκ + 2pσ 2nκk)(m− ℓu + pn) with 
probability 1− 6n exp(−πκ/σ 2) . After modulus-switch-
ing, the bound B

V̂ ∗
′ is less than γQ′

+
p
2 (σ

√

κnk + n) 
with probability 1− 2n exp(−πκ/σ 2) together with 
(2κ + 1)(σp2

√

2dnκ + 2pσ 2nκk)(m− ℓu + pn)+ 2dnp2

(m− ℓu + pn) < γQ.

Let σ = αQ , and the parameter α represents the error 
rate. In addition, we take γ = 1/8np . By approximate scal-

ing, we have Q > 2κ+4σnp2(d + pn)
(

p
√

2dnκ + 2σnκk
)

 , 

and Q′ > 4np2
(

σ
√

nkκ + n
)

.

Computational Honest-Verifier Zero-knowledge. The anal-
ysis can be regarded as a simplified version of the proof of 
Theorem 32. To avoid repetitions, we stress the difference 
instead of repeating the whole process.

In the first stage, the setup algorithm just consists of 
encodings of 1, r, . . . , rd ,α, . . . ,αrd ,βa(r),βvm(r), . . . ,

βvℓu+1(r) . The simulator for this stage removes other 
keys as well and checks a(r) whether is invertible, imply-
ing statistically indistinguishability with statistical dif-
ference 2/pn/2 . In the second stage, the proof is exactly 
the same, and two distributions are computationally 

indistinguishable. In the third stage, the prover only con-
siders the modulus-switching process. Then two distribu-
tions are computationally indistinguishable.

Computational Argument of Knowledge The proof is also 
included in the proof for Theorem 33. The key difference 
is without the unpacking algorithm and all secret keys are 
s . The details are omitted.  �
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