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Abstract 

SM9 was established in 2016 as a Chinese official identity-based cryptographic (IBC) standard, and became an ISO 
standard in 2021. It is well-known that IBC is suitable for Internet of Things (IoT) applications, since a centralized 
processing of client data (e.g. IoT cloud) is often done by gateways. However, due to limited computation resources 
inside IoT devices, the performance of SM9 becomes a bottleneck in practical usage. The existing SM9 implementa-
tions are often CPU-based, with relatively low latency and low throughput. Consequently, a pivotal challenge for SM9 
in large-scale applications is how to reduce the latency while maximizing throughput for numerous concurrent 
inputs. After a systematic analysis of the SM9 algorithms, we apply optimization techniques including precomputa-
tion, resource caching and parallelization to reduce the overhead of SM9. In this work, we introduce the first prac-
tical implementation of SM9 and its underlying SM9_P256 curve on GPU. Our GPU implementation combines 
multiple algorithms and low-level optimizations tailored for GPU’s single instruction, multiple threads architecture 
in order to achieve high throughput for SM9. Based on these, we propose GAPS, a high-performance Cryptog-
raphy as a Service (CaaS) for SM9. GAPS adopts a heterogeneous computing architecture that flexibly schedules 
the inputs across two implementation platforms: a CPU for the low-latency processing of sporadic inputs, and a GPU 
for the high-throughput processing of batch inputs. According to our benchmark, GAPS only takes a few milliseconds 
to process a single SM9 request in idle mode. Moreover, when operating in its batch processing mode, GAPS can 
generate 2,038,071 private keys, 248,239 signatures or 238,001 ciphertexts per second. The results show that GAPS 
scales seamlessly across inputs of different sizes, preliminarily demonstrating the efficacy of our solution.
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Introduction
Identity-based cryptography (IBC) (Shamir 1984) is a 
special public-key cryptographic scheme where the pub-
lic key can be an arbitrary string, e.g., email address or 
domain name. Such an attractive feature reduces the 
overhead of deploying public-key cryptosystems by 
eliminating the need for public-key infrastructure (PKI), 

and is considered a key technique to realize certificate-
less cryptography  (Al-Riyami and Paterson 2003). Since 
its first introduction in 1984 (Shamir 1984), IBC has been 
widely studied and was standardized by various interna-
tional organizations, e.g., RFC (2007), ISO/IEC (2021), 
IEEE (2013).

In the realm of IBC, the SM9 Cryptographic 
Schemes (Cheng 2017) are a series of cryptographic algo-
rithms (digital signature, key agreement and encryption) 
specified in the Chinese National Cryptography Standard 
GM/T 0044-2016 (GM/T 2016a) and ISO’s international 
standards  (ISO/IEC 2018, 2021). As a set of lightweight 
and standardized algorithms, SM9 has been considered a 
practical solution for cloud and Internet of Things (IoT) 
security.
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Motivating scenario
As the demand for SM9-based security solutions con-
tinues to grow, the need for efficient implementation 
of SM9 becomes paramount. For example, Xiaomi 
(2023) reported that there are 654.5 million consumer 
devices connected to its IoT cloud platform. Assuming 
these devices connect to the cloud on a per-day basis, 
the server needs to handle on average 654.5∗10

6

24∗60∗60 ≈ 7, 575 
op/s. If SM9 is employed for secure communication, 
the workload would further escalate.

Figure  1 depicts an example of how SM9 can be 
applied to protect data and communication secu-
rity in a large-scale IoT network. A key generation 
center (KGC) holds the system-wide master keys and 
is in charge of issuing SM9 private keys for registered 
devices. SM9-KA can be used to set up secure channels 
among devices, gateways and the cloud, SM9-IBS can 
be used for device authentication, and SM9-IBE can be 
used for encrypted messaging in the IoT network. As 
the IoT gateway and cloud are connected with many 
end devices, they need to handle the following com-
pute-intensive tasks. 

1. Batch Key Generation. During the device registra-
tion phase, the device manufacturer provides a list 
of device IDs, and the KGC should be able to handle 
the batch generation of private keys for the registered 
devices. The speed of key generation dominates the 
efficiency of this process.

2. Concurrent Key Agreement. For secure communica-
tion, the IoT gateway and the cloud should be able to 
handle large numbers of SM9-KA requests from end 
devices concurrently. The speed of SM9-KA greatly 
affects the efficiency of session establishment and the 
maximum number of secure connections that can be 
maintained by the gateway (or server).

3. Batch signature processing. The end IoT devices send 
signed data packets to the cloud server. In order to 
validate the authenticity of data packets, the server 
will have to perform batch verification of SM9-IBS 
signatures. Also, when the IoT cloud wants to issue 
signed commands to end devices, it needs to gen-
erate a batch of signatures. Therefore, the speed of 
SM9-IBS signature generation/verification is crucial 
to the server’s overall performance.

4. Batch ciphertext processing. Similar to SM9-IBS, the 
cloud server should be able to handle batch encryp-
tion/decryption of SM9-IBE ciphertexts for effi-
ciency considerations.

Unfortunately, such high requirement for opera-
tion throughput can be hardly met by today’s SM9 
implementations. Many solutions rely on the GmSSL 
toolkit  (GmSSL 2023), which is the most popular soft-
ware implementation of the Chinese national crypto-
graphic algorithms. However, according to Sun et  al. 
(2020a), deploying SM9-based solutions with GmSSL 
introduces significant computing latencies (over 300 ms), 
and would take thousands of CPU cores in order to reach 
our target throughput (10k+ op/s). Therefore, a piv-
otal challenge for SM9 applications is how to reduce the 
computing latency and improve the throughput for large 
number of requests.

Challenges and solutions
Inspired by the real-world deployment of cryptography 
using dedicated accelerators, e.g., Hardware Security 
Modules  (Entrust 2023), we explore high-performance 
SM9 Cryptography as a Service (CaaS) for applica-
tions with substantial computational demands. Several 
technical challenges arise in our design of the service’s 
architecture.

• How to scale seamlessly across inputs of different sizes. 
As a dedicated cryptography service, we expect SM9 
CaaS to respond swiftly to sporadic requests while 
handling batch inputs with high throughput. Tradi-
tional CPU-based implementation using fast pairing 
libraries like the RELIC toolkit (Aranha et al. 2014) can 
satisfy our first expectation as its latency is at the milli-
seconds level. However, CPU fails to meet our second 
expectation as its throughput is limited by the num-
ber of available cores. Meanwhile, a high-throughput 
platform (GPU) is preferred for the efficient process-
ing of batch inputs, but introduces significantly higher 
latency than CPU. Therefore, the challenge lies in the 
design of a task scheduling strategy that optimally lev-
erages the advantages of multiple platforms.

Fig. 1 Application of the SM9 cryptographic schemes in IoT cloud
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• How to optimize the computations in SM9. Another 
challenge is the design of a systematic optimiza-
tion strategy for SM9 algorithms. Although previ-
ous studies explored techniques like precomputa-
tion (Pan et al. 2017), they only focus on optimizing 
a single mathematical operation like point multi-
plication and lack a comprehensive and systematic 
analysis of optimizations in the entire SM9 cipher 
suite.

• How to obtain a high-throughput implementation of 
SM9 on GPU. We rely on GPU for the parallel pro-
cessing of batch inputs. Here the challenge is how to 
maximize the throughput of SM9 and its underlying 
mathematical operations (bilinear pairing and elliptic 
curve). Although much progress has been made on 
their optimizations on CPU (Beuchat et al. 2010; Ara-
nha et  al. 2011), the actual details vary significantly 
on GPU’s Single Instruction, Multiple Threads (SIMT) 
architecture. For example, traditional implementa-
tion of point multiplication uses the double-and-add 
algorithm with the scalar encoded in binary or non-
adjacent form for acceleration, which is less efficient 
on GPU due to its data-dependent divergences that 
reduce the throughput of parallel threads. Addition-
ally, the state-of-the-art implementations  (Aranha 
et  al. 2014; Shigeo 2015) are optimized using low-
level CPU intrinsics like AVX2, which are not avail-
able on GPUs.

Our Contributions. In this paper, we propose GAPS, a 
GPU-Accelerated Processing Service for SM9. Our con-
tributions are four-fold:

• First, we propose a scalable and heterogeneous archi-
tecture for SM9 CaaS. Our architecture combines the 
SM9 implementations on two different platforms: an 
efficient CPU implementation with low computing 
latencies, and a GPU implementation with high batch 
processing throughput. We employ a unique sched-
uling strategy that combines the strengths of both 
platforms for a scalable performance.

• Second, by systematically analyzing the workload of 
SM9 algorithms, we propose several optimization 
techniques that utilize precomputation, resource 
caching and parallelization to reduce the running 
time of SM9 algorithms.

• Third, we introduce the first practical implementa-
tion of the entire SM9 cipher suites and its under-
lying SM9_P256 curve on the GPU platform. Our 
implementation combines multiple algorithm opti-
mizations and low-level optimizations tailored for 
GPU’s SIMT architecture, and is capable of evaluat-
ing 158,991 pairings and 2,585,630 point multipli-

cations per second, effectively boosting the perfor-
mance of SM9.

• Finally, we conduct an extensive benchmark of GAPS. 
We find that GAPS is capable of generating up to 
2,038,071 private keys per second and can handle 
77,797–1,137,015 SM9-KA/IBS/IBE requests per 
second in batch processing mode. Moreover, when 
operating in idle mode, GAPS processes a single SM9 
request with less than 4 milliseconds of latency. The 
results show that GAPS scales well across sporadic 
and batch inputs, making it a practical solution for 
SM9 CaaS in large-scale IoT applications.

Related work
Design and implementation of SM9. Since its proposal 
in 2016, various efforts have been made to improve the 
functionality and efficiency of SM9. Sun et  al. (2020a) 
proposed a server-aided user revocation mechanism 
for SM9, Zhang et al. (2020) proposed a distributed key 
generation scheme for SM9-based systems, while Lai 
et  al. (2022) applied the online/offline methodology to 
SM9-IBS. Few works have looked into the high-perfor-
mance implementation of SM9. Sun et al. (2020a) imple-
mented their SM9 revocation scheme in GmSSL and 
used OpenMP to scale it to multiple cores, but the overall 
throughput is still far from GAPS ’s goal. Jing et al. (2022) 
provided an efficient FPGA implementation of SM9 that 
takes 0.848 ms to perform on point multiplication. Com-
pared with these works, we focus on designing a high-
performance cryptographic service for the entire SM9 
cipher suite that is capable of handling tens of thousands 
of operations per second.

Fast implementation of pairing. Due to its complex-
ity, the optimization and implementation of pair-
ing have attracted a line of research efforts. In Beuchat 
et al. (2010), the authors introduced the first high-speed 
implementation of the BN254 pairing with few million 
CPU cycles. Aranha et  al. (2011) further reduced the 
cost to less than one million cycles on modern CPUs. 
Few works have explored the implementation of bilinear 
pairing on hardware platforms, as Cheung et  al. (2011) 
and Pu and Liu (2013) introduced the first FPGA and 
GPU implementation of the BN254 pairing respectively, 
though their performance is less competitive than that 
of today’s CPU implementations. Until recently, Hu et al. 
(2023) introduced a high-performance GPU implementa-
tion of the BN254 curve that can compute over 40k pair-
ings per second, yet the algorithms and optimizations 
(e.g., point multiplication, exponentiation, miller loop) 
used in their work are somewhat outdated. Compared 
to these pure GPU-based solutions, GAPS adopts a het-
erogeneous CPU & GPU architecture and applies many 
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state-of-the-art optimization techniques. We report the 
highest throughput for pairings (158,991 op/s) on com-
modity processors.

Cryptography implementation on GPUs. With the rapid 
development of GPU’s computing power, cryptographers 
have been looking to exploit GPUs to accelerate cryptog-
raphy implementations. This idea was first put forward 
by Cook et al. (2005) in 2005, where the authors reported 
an optimized AES implementation over graphic cards. 
Following that, Szerwinski and Güneysu (2008) further 
explored the implementation of asymmetric ciphers 
on GPUs. Jang et al. (2011) later designed a GPU-based 
cryptography accelerator for SSL, while Wei et al. (2021) 
proposed a GPU-based heterogeneous protocol stack for 
PAKE. Unlike previous works, we explore the GPU accel-
eration of SM9 for the first time.

Background
Notations
Let ‖ denote the bitwise concatenation operation. An 
algorithm is efficient if it runs in probabilistic polynomial 
time (PPT) in the length of its input. y ← F(x) denotes 
running an algorithm F with input x and output y. The 
following functions are used in SM9. One may refer to 
ISO/IEC 18033-5 (ISO/IEC 2021) for detailed definitions. 

1. KDF2(Hv,m, ℓ) : Given a hash function Hv with v-bit 
output, a bit string m, and a non-negative integer ℓ , 
this key derivation function outputs an ℓ-bit octet 
key string.

2. H2RFi(Hv,m,n) : Given a hash function Hv , a bit 
string m, two non-negative integers n and i, it out-
puts an integer hi ∈ [1, n− 1].

Bilinear pairing
SM9 is defined over an elliptic curve with bilin-
ear pairings. Suppose ∃ a bilinear group generator 
G ← GroupGen(1�) , where a PPT algorithm GroupGen 
takes as input a security parameter � and returns a group 
description G = (p,G1,G2,GT ,P1,P2, e) , where p is a 
prime of �(�) bits, G1,G2,GT are cyclic groups of order 
p, and P1,P2 are generators of G1,G2 , respectively. The 
efficiently-computable map e : G1 ×G2 → GT should 
satisfy the following properties: 

1. Bilinearity: for all (P,Q) ∈ G1 ×G2 and all a, b ∈ Z , 
e([a]P, [b]Q) = e(P,Q)ab.

2. Non-degeneracy: e(P1,P2)  = 1.

The most efficient construction of a pairing relies 
on particular family of curves. Particularly, GM/T 

0044-2016.5  (GM/T 2016b) specifies a 256-bit Bar-
reto-Naehrig (BN) curve  (Barreto and Naehrig 2005) 
for SM9 (denoted SM9_P256). Below we review the 
related concepts.

Definition 1 (BN Curves) The BN curves are a family of 
elliptic curves E : y2 = x3 + b, b �= 0 parameterized by an 
arbitrary integer x ∈ Z . It is defined over a prime field Fp , 
where the prime q, the prime group order p of the pairing 
groups and the trace t are polynomials given as:

Definition 2 (Optimal Ate Pairing over BN Curves) 
Let E[p] be the subgroup of p-torsion points of E and 
E′ : y2 = x3 + b/ξ be the sextic twist of E with ξ not a 
cube nor a square in Fq2 . The Optimal Ate Pairing (Ver-
cauteren 2008) over the BN curves is defined as:

where ℓ = 6x + 2 ; πq(x, y) = (xq , yq) is the Frobenius 
endomorphism; groups G1 , G2 are determined by the 
eigenspaces of πq as G1 = E[p] ∩ Ker(πq − [1]) = E(Fq)[p] 
and G2 as the preimage E′(Fq2)[p] of E[p] ∩ Ker(πq − [q])

⊆ E(Fq12)[p] under the twisting isomorphism ψ : E′ → E ; 
the group GT is the subgroup of p-th roots of unity 
µp ⊂ F

∗
q12

 ; fℓ,Q(P) is a normalized rational function with 
divisor (fℓ,Q) = ℓ(Q)− ([ℓ]Q)− (ℓ− 1)(O) and lQ1,Q2(P) is the 
line equation corresponding to Q1 + Q2 ∈ G2 evaluated at 
P ∈ G1.

Definition 3 (SM9_P256 Curve) The SM9_P256 
curve is a 256-bit prime order curve instantiated in the 
BN curve family parameterized as follows:

Note that the SM9_P256 curve admits an M-type twist, 
i.e., E′ : y2 = x3 + b · ξ.

q(x) = 36x4 + 36x3 + 24x2 + 6x + 1

p(x) = 36x4 + 36x3 + 18x2 + 6x + 1

t(x) = 6x2 + 1

aopt : G2 ×G1 → GT

(Q,P) → (fℓ,Q(P) · l[ℓ]Q,πq(Q)(P)

·l[ℓ]Q+πq(Q),−π2
q (Q)(P))

q12−1
p
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Algorithms in SM9

Definition 4 (SM9-IBS) The SM9-IBS signature 
scheme consists of following four PPT algorithms 
(Setup,KeyGen,Sign,Verify).

Setup(1κ) → (msk,mpk) . On input the security param-
eter κ , the algorithm runs as follows: 

1. Generate bilinear pairing groups G = (p,G1,G2,GT ,

P1,P2, e) ← GroupGen(1�).
2. Pick a random s ∈ Z

∗
p , compute Ppub- s = [s]P2.

3. Compute g = e(P1,Ppub- s).
4. Pick a cryptographic hash function Hv and a one byte 

identifier hid. GM/T 0044-2016.5  (GM/T 2016b) 
requires SM3 (GM/T 2012) as the hash function and 
hid = 1.

5. Output a master secret key msk = s and a master 
public key mpk = (G,Ppub- s,Hv , hid).

KeyGen(mpk,msk, IDA) → dsA . On input a pair of 
master keys (mpk,  msk) and an identity IDA , this algo-
rithm generates a signing key dsA as follows: 

1. Compute t1 = H2RF1(Hv , IDA�hid, p)+ s.
2. Compute t2 = s · t−1

1 .
3. Compute a signing key as dsA = [t2]P1.

Sign(mpk, dsA,M) → (h,S) . On input a master public 
key mpk, a signing key dsA and a message M, it gener-
ates a signature (h, S) as follows: 

1. Pick a random z ∈ Z
∗
p.

2. Compute w = gz.
3. Compute h = H2RF2(Hv ,M�w, p).
4. Compute l = (z − h) mod p.
5. Compute S = [l]dsA.
6. Output a signature (h, S).

Verify(mpk, IDA,M, (h,S)) → {0, 1} . On input a master 
public key mpk, a signer’s identity IDA , a message M and 
a signature (h,  S), this algorithm verifies the signature 
as follows: 

1. Compute h1 = H2RF1(Hv , IDA�hid, p).
2. Compute P = [h1]P2 + Ppub- s.
3. Compute u = e(S,P).
4. Compute t = gh.
5. Compute w′ = u · t.
6. Compute h2 = H2RF2(Hv ,M�w, p).
7. If h = h2 , return 1. Otherwise, return 0.

Definition 5 (SM9-IBE-KEM) The SM9-IBE-KEM 
is an identity-based key encapsulation mechanism 
(KEM) consists of following four PPT algorithms 
(Setup,KeyGen,Encap,Decap).

Setup(1κ) → (msk,mpk) . Similar to Definition  4, it 
outputs msk = s and mpk = (G,Ppub−e,Hv , hid) . Note 
that Ppub−e = [s]P1 ∈ G1 and hid = 3.
KeyGen(mpk,msk, IDA) → deA . Similar to Defini-

tion 4, it outputs a private key deA = [t2]P2 = [s · t−1

1
]P2

= [s · (H2RF1(Hv , IDA�hid, p)+ s)−1]P2.
Encap(mpk, IDA) → (K,C) . On input a master public 

key mpk and a user identity IDA , this algorithm runs as 
follows: 

1. Pick a random z ∈ Z
∗
p.

2. Compute w = gz.
3. Compute h1 = H2RF1(Hv , IDA�hid, p).
4. Compute P = [h1]P1 + Ppub−e.
5. Compute C = [z]P.
6. Derive a data encapsulation (DEM) key K = KDF2

(Hv ,C‖w‖IDA, ℓ).
7. Output (K,  C), where K is the derived key and C is 

the KEM ciphertext.

Decap(mpk, IDA, deA,C) → K . On input a master public 
key mpk, a user identity IDA , the corresponding key deA 
and a KEM ciphertext C, this algorithm runs as follows: 

1. Compute w = e(C , deA) = gz.
2. Recover a data encapsulation (DEM) key 

K = KDF2(Hv ,C�w�IDA, ℓ).
3. Output the derived key K.

Definition 6 (SM9-KA) The SM9-KA is an identity-based 
key agreement and consists of the following four operations 
(Setup,KeyGen, MessageExchange, SessionKeyGeneration) 
and an optional operation Session Key Confirmation.

Setup(1κ) . This algorithm runs the same as in Defini-
tion 5, except that it sets hid = 2.
KeyGen(mpk,msk, IDA) . Same as in Definition 5.
MessageExchange . Entities A and B exchange two (or 

three) rounds of messages:

A → B : &RA = [zA]PB

B → A : &RB = [zB]PA, SB

A → B : &SA
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where zA, zB ∈ Z
∗
p are two randoms by A and B respectively, 

Pi = [H2RF1(Hv , IDi�hid, p)]P1 + Ppub−e for i ∈ {A,B} 
and SA, SB are the optional key confirmation messages.
Session Key Generation . Upon receiving RA,RB , A 

and B can derive their session keys as follows: 

1. Entity A computes three-tuple (g1, g2, g3)

2. Similarly, entity B computes (g ′1, g
′
2, g

′
3)

3. ℓ-bit session key is: 

Session Key Confirmation (optional). Entities A and B 
exchange SA, SB for key confirmation. 

1. Entity B computes key confirmation SB = Hv(0x82�g
′
2

�Hv(g
′
1
�g ′

3
�IDA�IDB�RA�RB)).

2. Entity A computes key confirmation SA = Hv(0x83�g
′
1

�Hv(g
′
2
�g ′

3
�IDA�IDB�RA�RB)).

GPGPU and CUDA
Modern GPUs support general purpose computation 
(GPGPU) in the Single Instruction, Multiple Threads 
(SIMT) fashion, among which, NVIDIA’s Compute Uni-
fied Device Architecture (CUDA) is the most popular with 
dozens of streaming multiprocessors (SMs) each capable 
of executing up to 256 threads in parallel. The threads are 
further grouped into blocks, and a GPU function (called 
kernel) may execute with multiple blocks across multi-
ple SMs, effectively exploiting GPU’s processing power. 
From a hardware perspective, CUDA SMs schedule and 
run thread blocks in a 32-thread unit called warp. A warp 
executes one common instruction per cycle, therefore 
full efficiency is achieved only when all threads of a warp 
agree on their execution paths. As a result, CUDA pro-
grams should reduce the use of data-dependent branches 
for the maximum concurrency.

Design of GAPS
In this section, we first introduce the architecture of 
GAPS, then present our concrete optimization ideas for 
the SM9 algorithms.

System architecture
The architecture of GAPS is presented in Fig.  2. Upon 
receiving some requests from clients, GAPS first preproc-
esses them and pushes the requests into several first in, 
first out (FIFO) task queues. Note that we maintain 9 

g1 = e(RB, deA), g2 = gzA , g3 = g
zB
1

g ′1 = gzB , g ′2 = e(RA, deB), g
′
3 = g ′1

zA

SK = KDF2(Hv , IDA�IDB�RA�RB�g1�g2�g3, ℓ)

individual queues for each of the 9 algorithms in SM9-
KA/IBS/IBE1 (except Setup , which are only executed 
once during the system’s initialization). A dispatcher 
repetitively checks the status of the queues and retrieves 
active tasks from them. Depending on the scale of the 
tasks and the availability of hardware resources, the dis-
patcher thread adopt different strategies for work dis-
patching. Generally speaking, when the size of tasks 
is lightweight for a CPU thread, it directly invokes the 
CPU implementation of SM9 for fast processing. How-
ever, when the size of tasks becomes too heavyweight for 
CPU, it sends the workload to GPU for batch process-
ing instead. By properly balancing the task scheduling 
between CPU and GPU, GAPS can seamlessly scale from 
zero to up to millions of operations per second.

System optimizations. GAPS adopts two optimization 
techniques at the system level.

• Active ID Cache. Many algorithms in SM9 produce 
intermediate values that are dependent on users’ IDs. 
This overhead can be reduced by pooling ID-related 
intermediate values in a Last Recently Used (LRU) 
cache. When a new ID is requested, GAPS computes 
fresh values for it and stores the intermediate results 
in the LRU cache. Subsequently, the next time the 
same ID is requested, GAPS directly loads it from the 
cache to avoid repetitive computations.

• Precomputation Table. For values that rely on fixed 
parameter in the system (e.g., master public key), we 
can precompute a table of intermediate values for 

Fig. 2 The system architecture of GAPS 

1 Note that although the KeyGen algorithms in SM9-IBE & SM9-KA share 
similar structure, they cannot use the same queue since using the same set 
of master keys is insecure.
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it. Specifically, GAPS generates multiple precompu-
tation tables for the fixed parameters in its offline 
time and stores it locally. When evaluating the val-
ues online, GAPS loads the precomputed tables into 
memory to save the computations.

• Parallelization. If an SM9 algorithm computes inde-
pendent intermediate values, we further apply paral-
lelization to reduce its latency.

Heterogeneous implementation platforms. GAPS features 
GPU-based and CPU-based SM9 implementations for 
different types of workloads.

• Batch workload. The GPU implementation exploits 
its massive threads to process the batch workload 
in parallel, i.e., each GPU thread computes a full 
instance of the algorithm (data parallelism). The key 
of this implementation is to maximize the parallelism 
and throughput on the GPU platform. In “Implemen-
tation of GAPS ” section, we show how we combine 
mulitple optimized algorithm and implementation 
techniques to maximize the GPU implementation’s 
throughput.

• Sporadic workload. The CPU implementation 
serves as the fallback option for processing sporadic 
tasks. Concretely, we first implement the SM9_P256 
curve in the RELIC toolkit (Aranha et al. 2014), then 
implement the SM9 algorithms by applying the same 
system optimizations as our GPU implementation.

Work dispatching strategy. The work scheduling strategy 
relies on a threshold paramter η . When the size of tasks 
N is not greater than η , the worker thread dispatches it 
to CPU implementation. When N exceeds η , the worker 
thread sends the data to GPU, waits for GPU’s kernel 
execution, then fetches the results back from GPU. In 
“Performance of SM9 algorithms” section, we conduct 
experimental analysis to find out the optimal scheduling 
threshold η.

Concrete optimization ideas
In this section, we analyze the workload of the SM9 algo-
rithms (“Algorithms in SM9” section) and discuss how 
the optimizations in “System architecture” section can be 
applied.

SM9 Key Generation. The private keys of SM9-IBS/
IBE/KA share the same structure [ s

h1+s
]P so their 

KeyGen algorithms can adopt the same optimizations. 
Specifically, the KeyGen algorithms first evaluate a hash 
h1 = H2RF1(Hv , IDA�hid, p) for the input ID via the 
H2RF1 function and stores it in the active ID cache, 
then computes a value t2 = s

h1+s , which requires 1 addi-
tion, 1 inversion and 1 multiplication in the field Fp . 

After that, the algorithm computes a single point mul-
tiplication with P1 ∈ G1 or P2 ∈ G2 . As P1,P2 are part 
of the system-wide master public keys that are fixed 
before the execution of KeyGen , we can generate two 
precomputation tables containing the intermediate 
point values (e.g., 2P, 3P, 4P, · · · ) in the offline phase, 
then use the precomputed values in the online phase 
for acceleration.

SM9-IBS. It has the following computations:

• Signature generation: the Sign algorithm first gen-
erates a random in F∗

p , then computes a fixed-base 
exponentiation w = gz in the extension field Fq12 
( GT ). Subsequently, it evaluates a hash h2 for the 
message M and the Fq12 element w via H2RF2 , then 
computes 1 subtraction in the field Fp . Finally, it 
computes 1 point multiplication with dsA in G1 . If the 
user uses a fixed key for signatures, we can further 
generate precomputation table for it for acceleration.

• Signature verification: to verify a signature (h,  S), 
Verify first evaluates the identity hash h1 with 
H2RF1 . It then computes P = [h1]P2 + Ppub- s , which 
involves 1 fixed-point multiplication and a point 
addition operation in G2 . Note that since the value of 
P is completely dependent on the user’s identity and 
the system’s public key Ppub−s , we can store it in the 
active ID cache to save future computations. After 
that, the algorithm evaluates a pairing for (S, P), com-
putes a fixed-base exponentiation t = gh in Fq12 and 
restores w′ via a multiplication in Fq12 . Finally, it eval-
uates the hash h2 for M, w and compares it with the 
h part of the signature. Note that computation of the 
4th step ( t = gh ) can be performed in parallel with 
steps 1–3 to further reduce the latency.

SM9-IBE-KEM. Its computations include:

• Key encapsulation: the Encap algorithm first picks a 
random in F∗

p , then computes a fixed-base exponenti-
ation w = gz . Next, it evaluates P = [h1]P1 + Ppub−e 
which is also an intermediate value that can be stored 
in the LRU cache. After that, the algorithm computes 
a point multiplication in G1 and uses KDF2 to derive 
the section key. Note that the evaluation of gz in step 
2 of Encap is independent with steps 3–4 and can be 
performed concurrently.

• Key decapsulation: the Decap algorithm evaluates 
paring for (C , deA) then uses KDF2 to derive the 
encapsulated key.

SM9-KA. For SM9-KA, we focus on the computation of 
entity B, as in client/server mode the server only accepts 
connections from clients.
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• Message exchange: in this phase, the server picks a 
random zB ∈ F

∗
p and computes a point multiplication 

with PA . Note that PA is an intermediate value that 
depends on the client’s IDA , which can be stored in 
the LRU cache.

• Session key generation: in this phase, the server first 
evaluates a pairing with (RA, deB) , then computes two 
exponentiations in Fq12 . Note that the first exponen-
tiation uses a fixed-based g and can be optimized 
with precomputation. After that, the server derives a 
key with KDF2.

We present the overhead and our optimizations of SM9-
KA/IBS/IBE-KEM in Table  1. Concretely, GAPS main-
tains a 〈h1,P〉 pair for each active ID in the LRU cache. 
Note that for the three SM9 schemes we maintain differ-
ent h1 values as their hid-s are different. For precomputa-
tion, GAPS should precompute tables for P1,P2, g , which 
are all part of the system’s public keys.

Implementation of GAPS
Element representations
Prime field. We store prime field elements in radix-
R form, i.e., a =

ℓ
i=0 aiR

i . Since CUDA GPUs 
are 32-bit machines, we select R = 232 , so we have 
ℓ = ⌈log2(q/R)⌉ = 8 and each Fq (also Fp ) element in the 
SM9_P256 curve takes 8 words of storage. Before the 
computations, we convert all prime field elements to the 
Montgomery domain (i.e. ã = a · R⌈log2(q/R)⌉ mod q ), so 
that efficient Montgomery reduction and product algo-
rithms can be applied, then convert the results back to 
normal form in the end.

Extension Field. The Optimal Ate Paring over BN 
curve produces final result in Fq12 , which is constructed 
through tower extension  (Benger and Scott 2010). 

Specifically, we adopt the Fq → Fq2 → Fq6 → Fq12 tow-
ering scheme, where

With this construction, an element in Fq2 is represented 
as a+ bu , where a, b are two elements in Fq . An element 
in Fq6 is represented as a+ bv + cv2 with a, b, c ∈ Fq2 . An 
element in Fq12 is represented as a+ bw with a, b ∈ Fq6 . 
For the SM9_P256 curve, the cost for storing the 
Fq2 ,Fq6 ,Fq12 elements are 16, 48, 96 words, respectively.

Elliptic Curve. We represent elements in G1,G2 using 
Jacobian coordinates, which support fast formulas for 
elliptic curve operations. Specifically, each point is rep-
resented as a three-tuple (X, Y, Z) with Z  = 0 . After the 
computations, the points can be converted back to pro-
jective coordinates (X ,Y ,Z) → (X/Z2,Y /Z3) for stor-
age. For the SM9_P256 curve, a G1 element is defined 
over E : Y 2 = X3 + 5Z6 , with X ,Y ,Z ∈ Fq , which takes 
24 words of storage. A G2 element is defined over the 
twisted curve E′ : Y 2 = X3 + 5ξ · Z6 , with X ,Y ,Z ∈ Fq2 , 
taking 48 words of storage.

Optimal ate pairing
We apply the following optimizations to the evaluation of 
a pairing (Algorithm 1).

Signed representation of the loop parameter. Observe 
that in the SM9_P256 curve, we have log2(ℓ) = 66 
and hamming weight w = 16 , so the traditional binary 
double-and-add execution of the loop would require 
66 point doublings and 16 point additions. To fur-
ther reduce the complexity, we adopt the signed 

Fq2 = Fq[u]/(u
2 − β), with β = −2,

Fq6 = Fq2 [v]/(v
3 − ξ), with ξ = u,

Fq12 = Fq12 [w]/(w
2 − v).

Table 1 Overhead of the SM9 algorithms and the application of the optimizations in “System architecture” section

† Hi = H2RFi , K2 = KDF2 , PM=Point Multiplication, Exp=Exponentiation, BP=Bilinear Pairing, Inv=Inversion

Scheme Algo. Total cost Optimizations

Cache (I)  Precomp. (II) Parallel. (III)

SM9-IBS KeyGen 1H1 + 1PMfix
G1

+ 1AddFq + 1InvFq + 1MulFq × P1 ×

Sign 1H2 + 1Expfix
GT

+ 1PMG1
+ 1AddFq × g ×

Verify 1H1 + 1H2 + 1BP + 1PMfix
G2

+ 1AddG2
+ 1Expfix

GT
+ 1PMGT

h1, P g, P2 h1→P→u � t

SM9-IBE (KEM) KeyGen 1H1 + 1PMfix
G2

+ 1AddFq + 1InvFq + 1MulFq × P2 ×

Encap 1H1 + 1K2 + 1PMfix
G1

+ 1PMG1
+ 1AddG1

+ 1Expfix
GT

h1, P g, P1 h1→P→C � w

Decap 1K2 + 1BP × × ×

SM9-KA KeyGen 1H1 + 1PMfix
G2

+ 1AddFq + 1InvFq + 1MulFq × P2 ×

MsgExch 1H1 + 1PMG1
+ 1AddG1

h1, P P1 ×

SessKeyGen 1K2 + 1BP + 1Expfix
GT

+ 1ExpGT
× g ×
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binary representation of ℓ , i.e., ℓ =
∑log2(ℓ)

i=0 ki2
i where 

ki ∈ {−1, 0, 1} with hamming weight w = 11 , saving 5 
point additions. Additionally, we unroll the first itera-
tion of the loop to avoid trivial computations (steps 
1–5).

Algorithm 1 Revised algorithm for Optimal Ate Pairing on SM9_P256 
curve.

Evaluating the line functions and points. As the curve 
equation of SM9_P256 is y2 = x3 + 5 , we adopt homo-
geneous projective coordinates  (Costello et al. 2010) for 
the best performance. For the SM9_P256 curve, the 
homogeneous curve equation becomes Y 2Z = x3 + 5Z3 . 
As the SM9_P256 curve admits an M-type sextic twist, 
the line functions are evaluated at the twisting point 
ψ(P) = (xPw

2, ypw
3) . Particularly, the formula for point 

doubling, addition and line computations for the SM9_
P256 curve can be derived as follows. 

1. Point Doubling and line evaluation: for 
T = (X1,Y1,Z1) ∈ E′(Fq2) , one can compute the 
point doubling 2T = (X3,Y3,Z3) with the following 
formula: 

X3 =
X1Y1

2
(Y 2

1 − 9b′Z2
1),

Y3 = (
1

2
(Y 2

1 + 9b′Z2
1))

2 − 27b′2Z4
1 ,

Z3 = 2Y 3
1 Z1,

 where b′ = 5ξ . The line function lT ,T evaluated at 
the twisting point ψ(P) can be computed with the 
following formula: 

 The above steps cost 3 multiplications, 2 squarings 
and a few additions in Fq2 . Observe that by precom-
puting ȳP = −yP , x

′
P = 3xP , we can further save 3 Fq2 

additions.
2. Point Addition and line evaluation: for T = (X1,Y1,Z1) 

and Q = (x2, y2) ∈ E′(Fq2) , one can compute the 
mixed point addition T + Q = (X3,Y3,Z3) with the 
following formula: 

 where θ = Y1 − y2Z1 and � = X1 − x2Z1 . The line 
function lT ,Q evaluated at the twisting point ψ(P) can 
be computed with 

 The complete formula can be evaluated with 11 mul-
tiplications, 2 squarings and a few additions in Fq2 . 
By precomputing x̄P = −xP , ȳP = −yP , 2 Fq2 addi-
tions can be saved.

Sparse Multiplications. The results of the line func-
tions are sparse elements in Fq12 . Actually, by rewriting 
l = l11w

3
+ l01w

2
+ l00 = (l00 + l01v + 0v2)+ (0+ l11v + 0v2)w  , 

one can see that half of its Fq2 elements are zeros. 
Therefore, we can apply the revised algorithms in Algo-
rithm 2 for the multiplication between a dense element 
and a sparse element (saving 5 Fq2 multiplications), and 
the multiplication between two sparse elements (saving 
11 Fq2 multiplications).

Computing the Final Exponentiation. The power 
q12−1

p  can be further decomposed into two parts: an 
easy part f (q

6−1)(q2+1) that can be computed with 
cheap multiplications, conjugations and applications of 
the Frobenius map πq , and a hard part f (q4−q2+1)/p that 
is computed with the addition chain method in Scott 
et al. (2009).

lT ,T (P) = yPw
3 − �xPw

2 + (�x3 − x1)

= −2Y1Z1yp · w
3 + 3X2

1xp · w
2 + (3b′Z2

1 − Y 2
1 )

= −2Y1Z1yp · vw + 3X2
1xp · v + (3b′Z2

1 − Y 2
1 )

X3 = �(�3 + Z1θ
2 − 2X1�

2),

Y3 = θ(3X1�
2 − �

3 − Z1θ
2)− Y1�

3,

Z3 = Z1�
3,

lT ,Q(P) = −�yp · w
3 − θxp · w

2 + (θX2 − �Y2)

= −�yp · vw − θxp · v + (θX2 − �Y2)
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Algorithm 2 Multiplications between Dense, Sparse elements in Fq12.

Scalar multiplication and exponentiation
Another major workload in SM9 is the scalar multiplica-
tion in the two source groups G1,G2 , and the exponentia-
tion in the target group GT .

The case of unknown scalars
Endomorphism and scalar decompositions. We 
exploit efficient endomorphisms for accelera-
tion. Specifically, since in pairing-friendly curves 
we have E(Fq) : y

2 = x3 + b and p ≡ 1 (mod 3) , 
we can use the GLV endomorphism  (Gallant et  al. 
2001) φ : (x, y) �→ (ξx, y) in G1 where ξ3 = 1 and 
ξ ∈ Fq\{1} . Such endomorphism corresponds to 
scalar multiplication by a small factor �φ that sat-
isfies �

2
φ + �φ + 1 ≡ 0 (mod p) . As a result, by 

applying the GLV endomorphism we can decom-
pose a scalar k ∈ Fp into two mini-scalars k1, k2 
such that [k1]P + [k2]φ(P) = [k]P and |ki| ≈ |p|/2 . 
Similar methods can be applied to the scalar mul-
tiplication in G2 , by applying the GLS endomor-
phism  (Galbraith et  al. 2009) ψ = � ◦ πq ◦�

−1 , 
which gives a 4-dimensional decomposition 
[k]Q = [k1]Q + [k2]ψ(Q)+ [k2]ψ(Q)2 + [k2]ψ(Q)3 with 
|ki| ≈ |p|/4 , turning the single scalar multiplication 
[k]Q into a multi-scalar multiplication problem that 
only has 1/4 the size of |k|.

Multi-scalar Multiplications. To compute 
∑n

i=1[ki]P , 
a widely used method is to use the Straus-Shamir 
trick  (Ciet et  al. 2003) for simultaneous multi-scalar 
multiplication. However, according to our experiment, 
such method has extremely low throughput on GPU. 
This is because the standard binary-and-add algorithm 
for scalar multiplication introduces data-dependent 
branches, which significantly reduces the concurrency 
of GPU’s SIMT threads. To overcome this problem, 
we adopt the Sign-Aligned Column (SAC) representa-
tion  (Faz-Hernández et  al. 2014) using Algorithm  3. 
It recodes a set of binary scalars (a1, · · · , an) into SAC 
forms (b1, · · · , bn) , where bi ∈ {−1,−, 1}µ+1 are signed 
bit sequences of length µ+ 1 that satisfies

The first condition (1) guarantees the correctness of the 
encoding, while conditions (2–3) ensures that the bits 
of scalars b2, . . . , bn are aligned with b1 . Therefore, in 
Algorithm 4, each iteration of the loop only computes an 
addition with a point in the precomputation table, which 

(1) ai =

µ∑

j=0

bi[j]2
j , for i ∈ [1, n],

(2) b1[j] ∈ {−1, 1}, for j ∈ [0,µ],

(3) bi[j] ∈ {0, b1[j]}, for j ∈ [0,µ], i ∈ [2, n].
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removes the data-dependent divergences and ensures full 
concurrency of GPU’s warp execution.

Algorithm 3 Sign-Aligned Column (SAC) recoding of n-dimension 
scalars.

Algorithm 4 Unknown Point Multiplication using degreen-n 
endomorphism ψ and SAC scalar encoding.

Note that Algorithm 4 can be further accelerated with slid-
ing-window method in steps 6–11. Specifically, for a win-
dow width w, we use it to partition the recoded scalars and 
precompute T [u] = u′P0 = u0ψ(P)+ · · · + un−2ψ(P)n−1 
for all u ∈ [0, 2wn−1] and u′ ∈ {1, 3, · · · , 2w − 1} . The loop 
in steps 8–11 can be then performed by scanning w-bit of 
di . In our experiment, we find that w = 2 provides the best 
performance for GLV in G1 , while w = 3 performs the best 
for GLS in G2.

Applying to the exponentiation in GT  . The GLS-
based scalar decomposition and multi-scalar multi-
plication method can be easily applied to accelerate 
the exponentiation gk in the extension field GT  , where 
the Frobenius map πq serves as the endomorphism for 

acceleration. Particularly, in Algorithm  4, the point 
additions should be replaced with finite field multipli-
cations, and the point doubling [2]Q should be replaced 
by a squaring, i.e., g2 . Other steps of the algorithm can 
be straightforwardly applied to the context of GT .

The case of known scalars
When the point P is known in advance, we can adopt 
a large precomputation table for acceleration. Spe-
cifically, for a w-width window, we can rewrite 
[k]P =

∑l−1
i=0 ki2

w×i · P where l = ⌈log2(p)/w⌉ . With this 
representation, we then compute and store the points 
ki2

w×i · P for each ki ∈ {1, · · · , 2w − 1} , and i ∈ [0, l − 1] . 
When evaluating [k]P in the online phase, the intermedi-
ate point values Pi = ki2

w×i · P can be obtained from the 
look-up table, and the scalar multiplication is reduced to 
l successive additions, i.e., [k]P =

∑l−1
i=0 Pi , significantly 

accelerating the process.
For the SM9_P256 curve, we select w = 8 , so 

l = ⌈log2(p)/w⌉ = 32 . Each G1 point contains two Fq ele-
ments, taking 64 B storage. Therefore, the storage cost for 
precomputation in G1 is 64 B× 32× (28 − 1) ≈ 0.498 MB . 
Similarly, the elements in G2,GT takes 128 B, 384 B storage, 
and the costs for storing their precomputation tables are 
0.996 MB and 2.988 MB, respectively. Note that our method 
is similar to Pan et al. (2017), but differs in the choice of the 
window size w. We revised the choice of w such that the 
precomputation table can be effectively loaded into GPU’s 
L2 Cache for faster read access, while the choice of w in Pan 
et al. (2017) yields a large precopmutation table that takes 
hundreds of megabytes and can cause significant global 
memory accessing delays.

Low‑level implementation
Optimizations. Below we outline several optimizations 
applied at the hardware and the software level to reduce 
the latency and improve the throughput of pairing opera-
tions. With GPU’s SIMT architecture, full throughput is 
achieved when all threads in an execution unit (warp) 
agrees on the same execution path. Therefore, the key is 
to reduce the data-dependent divergence across threads 
for maximum parallelization.

• PTX ISA. We implement arithmetic operations in 
the prime field using the extended-precision integer 
arithmetic instructions provided in CUDA’s PTX-
ISA (NVIDIA 2023). Specifically, we use instructions 
like addc, subc, madc to implement multi-pre-
cision integer operations in the prime field, and uti-
lize the carry/borrow flags as masks for performing 
divergence-free modular operations.
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• Loop Unrolling. A powerful optimization strategy 
on GPU is loop unrolling, which reduces condi-
tional branching and improves instruction’s through-
put. It can be achieved by prepending a #pragma 
unroll macro before a loop, which is automatically 
expanded during compilation. Note that the unroll-
ing of a loop must be carefully conducted, otherwise 
it may incur high register pressure that slows down 
the access to thread local variables. Therefore, we 
investigated the resource usage of each algorithm and 
chose to unroll operations in Fq , the Miller Loop and 
the power of x in Fq12.

• Function Inlining. Function invocation on GPU 
brings expensive overhead due to stack variable pass-
ing and code jumping, etc. Using the __forcein-
line__ macro, we force the compiler to inline 
operations in Fp and other utility functions (e.g., data 
copy, assignment, comparison), thereby removing 
the penalties due to function invocations in low-level 
operations.

In  “Performance of SM9_P256 curve” section, we pre-
sent a comprehensive analysis of how these optimiza-
tions have helped in reducing the latency of our GPU 
implementation.

Random Number Generation. We adopt the techniques 
used in Dai et al. (2016), Sun et al. (2020b). Specifically, 
we first load an initial seed from the host CPU (e.g., using 
/dev/random), then load the seed to GPU and imple-
ment the Chacha20 DRNG (Mueller 2017) to derive ran-
dom numbers. The global (distinct) thread ID is used as 
the counter of Chacha20 DRNG to enable the generation 
of randoms in parallel (Table 2).

Performance evaluation
In this section, we first evaluate GAPS ’s performance 
for SM9. We then evaluate the performance of the SM9_
P256 curve operations on GPU.

System configuration
We conduct the experiments on an Ubuntu 22.04 server, 
equipped with a 16-core Intel Xeon CPU running at 2.5 
GHz, 64 GB RAM and an RTX 3080 GPU (see Table 3). 
Our GPU code is implemented with CUDA C++ and is 
compiled using CUDA Toolkit 11.8 with flags -Xptxas 
-allow-expensive-optimizations=true, 
-O3. The CPU code is implemented using the RELIC 
toolkit. In particular, we first configure it with 
-DARITH=gmp -DFP_PRIME=256 -DWSIZE=64 to 
use its GMP implementation of the 256-bit prime field 
operations and set the word size to 64 bits, then com-
pile it using clang-14 with -O3 -funroll-loops 
-fomit-frame-pointer -finline-small-
functions -march=native -mtune=native for 
full optimizations.

Setup. We issue SM9 algorithm tasks to GAPS for eval-
uation. Specifically, during each run of the experiment, 
we send (batch) requests of size N ∈ [20, 21, 22, . . . , 220] 
to GAPS, then measure the processing latency (includ-
ing the time for resource allocation, memory transfer and 
algorithm execution) of the requests in GAPS. For each 
request size N, we repeat the experiment for 10 times to 
obtain stable results.

Correctness. All SM9 implementations in GAPS have 
been checked against the test vectors in the SM9 stand-
ard GM/T (2016b). Additionally, during each run of the 
experiment, we check the correctness of GAPS ’s results. 

Table 2 The peak performance of GAPS ’s GPU & CPU implementation of SM9

† For SM9-KA, MsgExch refers to an entity’s computation in Message Exchange , SKeyGen refers to an entity’s computation in 
Session Key Generation+ Confirmation
‡ The average peak throughput of the repeated experiments and the results’ relative standard deviation

Scheme Algo. GAPS‑GPU GAPS‑CPU (1‑core)

T
‡ (op/s) L (ms) N (op) T

‡ (op/s) L (ms) N (op)

SM9-IBS KeyGen 2,038,070.59 ± 3.13% 8.04 16,384 4,508 ± 4.57% 0.22 1

Sign 248,239.58 ± 0.48% 131.5 32,768 997 ± 1.81% 1.00 1

Verify 88,024.53 ± 0.99% 372.3 32,768 326 ± 0.65% 3.06 1

SM9-IBE KeyGen 550,718.24 ± 1.46% 29.75 16,384 2,062 ± 2.94% 0.48 1

Encap 238,000.53 ± 2.63% 137.68 32,768 853 ± 1.46% 1.17 1

Decap 148,260.89 ± 0.11% 110.51 16,384 569 ± 0.44% 1.76 1

SM9-KA KeyGen 550,348.25 ± 0.93% 29.77 16,384 2,040 ± 2.51% 0.49 1

MsgExch† 1,137,014.70 ± 1.13% 28.82 32,768 2,778 ± 1.77% 0.36 1

SKeyGen† 77,996.80 ± 0.94% 420.12 32,768 259 ± 0.51% 3.86 1
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Concretely: ① For SM9-IBS, we require that Verify 
outputs 1 for all valid signatures. ② For SM9-IBE, we 
require that the keys derived from Encap and Decap are 
identical. ③ For SM9-KA, we require the produced ses-
sion keys are identical. These checks guarantee the cor-
rectness of GAPS.

Metrics. Two performance metrics are considered: 
throughput and latency. Latency is the processing time 
(including the time for resource allocation and memory 
transfer) of a batch of requests, which is denoted with 
the symbol L. Throughput is the number of requests pro-
cessed within a time unit and is denoted with the symbol 
T. Given batch size N and its latency L, the throughput is 
calculated with T = N/L.

Performance of SM9 algorithms
Throughput
Table 2 gives the peak throughput ( Tmax ) of GAPS imple-
mentations. For SM9-IBS, GAPS ’s GPU implementa-
tion is capable of generating 2,038,070 signing keys, 

producing 248,239 message signatures or verifying 
88,024 signatures per second. For SM9-IBE-KEM, GAPS 
can generate 550,718 user keys, produce 238,001 KEM 
ciphertexts or decapsulate 159,160 ciphertexts per sec-
ond. For SM9-KA, GAPS can generate 550,348 user keys, 
generate 1,137,014 exchange messages and 77,996 session 
keys per second. The difference between the through-
put of SM9 algorithms can be verified by our overhead 
analysis in Table 1. For example, the primary overhead of 
SM9-IBS’s key generation algorithm is the point multipli-
cation in G1 , which is approximately 4 times faster than a 
point multiplication in G2 that is the primary overhead of 
SM9-IBE/KA’s key generation. Also, as the Decap algo-
rithm of SM9-IBS-KEM only requires 1 pairing and 1 
KDF2 operation, therefore its performance is significantly 
better than SM9-IBS’s Verify , which requires 1 pairing, 1 
point multiplication in G2 and 1 exponentiation in GT .

Through analyzing Fig. 3, we can learn how the size of 
the batch input N affects GAPS ’s throughput on the GPU 
platform. Take SM9-IBS.KeyGen as an example, its 

Table 3 Hardware specifications

1 Price obtained in USD from Amazon on Mar. 4, 2023
2 Price obtained in USD from Ebay on Mar. 4, 2023

Spec. GPU NVIDIA RTX 3080

Core configuration 68 SMs, 8704 cores

Core frequency 1440 MHz - 1710 MHz

L2 Cache 5 MB

Global memory 12 GB (760 GB/s)

Compute capability 8.6

Monetary cost $1,099.991

Spec. GPU Intel Xeon Platinum 8269CY

Core configuration 16 cores / 32 threads

Core frequency 2.50 GHz

Cache size 35.75 MB

Monetary cost $1,086.002

Fig. 3 The performance of GAPS ’s GPU implementation of SM9 as the input size N grows

https://a.co/d/iGfTBF8
https://tinyurl.com/4rkmuhae


Page 14 of 18Xu et al. Cybersecurity            (2024) 7:29 

throughput first grows linearly with N, then reaches the 
peak throughput when the number of batch inputs 
N = 16, 384 . At this point, the requests are processed 
with latency L = 8.04 ms , so the batch’s throughput can 
be obtained through T = N/L = 2, 038, 070 op/s . The 
first time an implementation reaches its peak throughput 
also indicates the full utilization of GPU’s resources. 
After that point, increasing the batch size N no longer 
raises GPU’s throughput, but will make it fluctuate in a 
certain range. To understand this, suppose we increase 
the batch size to N + 1 , which will introduce an addi-
tional round of processing as only N requests can be 
simultaneously processed, taking proportional time 
α · Lk , α ∈ (0, 1) . Therefore, the throughput will fluctuate 
in the range [ Nk+1

(1+α)·Lk
,
Nk
Lk
] as N keeps growing. Similar 

trend can be observed for other SM9 algorithms as 
shown in Fig. 3.

Additionally, we benchmarked the throughput of GAPS 
’s CPU implementation on a single core. As shown in 
Table  2, it only takes GAPS-CPU 0.22/1.00/3.06 ms to 
process one SM9-IBS key generation, signature gen-
eration and verification request, 0.48/1.17/1.76 ms to 
process one SM9-IBE-KEM key generation, key encap-
sulation and decapsulate request, or 0.49/0.36/3.86 ms to 
process one SM9-KA key generation, message exchange 
and session key generation request. The results show 
that GAPS-CPU can efficiently handle small number of 
requests in its idle mode.

Execution Time Analysis. To find out which operation 
is the most expensive, we further conduct a breakdown 
analysis of GAPS-GPU’s execution time. We split an exe-
cution into three stages: resource allocation, memory 
transfer and kernel execution, as illustrated in Fig. 4. Spe-
cifically, resource allocation spans a duration of 0.17∼
1.34 ms across varying input sizes, while memory trans-
fer between CPU & GPU ranges from 0.55∼7.85 ms. 
Nevertheless, these two stages collectively account for 
only 0.53%∼29.40% of the total execution time. Kernel 
execution on GPU, which takes around 70.60∼99.46% of 
the time, is still the most expensive stage in GAPS-GPU.

Finding the optimal scheduling threshold
According to “System architecture” section, GAPS relies 
on a threshold value η for its task scheduling. To deter-
mine the optimal threshold η , we measure the latency of 
GAPS ’s CPU and GPU implementation for processing 
small amount of requests (i.e., N ∈ [1, 10, 20, · · · , 100] ). 
As shown in Fig.  5 the latency of GAPS-CPU grows 
linearly, while the latency of GAPS-GPU stays almost 
constant due to parallelization on the GPU platform. 
Therefore, we select the first batch size Nt = 20 that sat-
isfies LCPU > LGPU as the threshold. Starting from this 
point, processing N ≥ Nt requests with GPU becomes 
more efficient than CPU.

Performance of SM9_P256 curve
In this section, we evaluate the performance of GAPS ’s 
GPU implementation of the SM9_P256 curve. Our goal 
is to verify the effectiveness of our optimization tech-
niques in “Implementation of GAPS ” section.

Throughput of curve operations. We benchmark 
the performance of SM9_P256 curve operations on 

Fig. 4 Execution time breakdown of GAPS ’s GPU implementation of SM9

Fig. 5 The latency of GAPS ’s GPU and CPU implementations 
for small request sizes
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GPU by issuing inputs of size N ∈ [20, 21, · · · , 216] . As 
shown in Table  4, GAPS can compute 15.9k pairings, 
2.6M/26.9M unknown/fixed point multiplications in G1 , 
633.4k/5.2M unknown/fixed point multiplications in G2 , 
and 313.8k/936.2k unknown/fixed scalar exponentiations 

in GT . The results indicate that GAPS ’s GPU imple-
mentation of the SM9_P256 curve not only improves 
the performance of the SM9 cryptography schemes, 
but also shows huge potential in its application to many 
pairing-based protocols (e.g., attribute-based encryp-
tion) afflicted by bottlenecks in elliptic curve and pairing 
operations.

Latency of curve operations. In  Table  5, we provide 
the latencies of running the curve operations with a 
single warp ( 32× 1 threads), which is the minimal 
unit for thread scheduling on CUDA GPUs. As the 
table shows, GAPS can evaluate an optimal ate pair-
ing on the SM9_P256 curve in 15.60 ms. By studying 
its individual algorithms, we find that our optimiza-
tion methods in “Optimal ate pairing” section provides 
1.09×, 1.16× speedups for the Miller Loop and the 
Final Exponentiation. For the scalar multiplications 
in G1,G2 , the GLV/GLS-based decomposition meth-
ods in “The case of unknown scalars” section provide 
1.95×, 3.42× speedups over the basic binary-and-add 
algorithm. We also implemented the windowed-NAF 
(wNAF) algorithm on GPU, and found that its latency 
becomes 0.61×, 0.60× worse than the basic imple-
mentation, as wNAF introduces more data-dependent 
divergences. Finally, for the scalar exponentiation in 
GT  , we first evaluated the basic square-and-multiply 
method with Granger-Scott’s fast squaring formula 
(Granger and Scott 2010), and found that it is 1.21× 
faster than the basic method. Nevertheless, our GLS-
based method is even faster, as it provides 3.83× 
speedup over basic method. Overall, the optimiza-
tion techniques in “Optimal ate pairing” and “Scalar 
multiplication and exponentiation” sections have suc-
cessfully reduced the latency of these operations to 
milliseconds level on GPU.

Effectiveness of the optimization methods. To figure 
out the effectiveness of our optimization techniques 
in  “Low-level implementation” section, we conduct 
ablation studies on the SM9_P256 curve. Specifically, 
we first reduce to a baseline implementation with-
out any optimizations in  “Low-level implementation” 

Table 4 The peak performance of the SM9_P256 curve 
operations on GPU

† The average peak throughput obtained from repeated experiments and the 
results’ relative standard deviation

Operation Peak throughput

T
† (op/s) L (ms) N (op)

Pairing 158,991.15 ± 0.14% 103.05 16,384

G1 PM 2,585,630.99 ± 0.50% 25.35 65,536

G1 fixed PM 26,870,530.82 ± 1.15% 0.61 16,384

G2 PM 633,402.68 ± 0.26% 25.87 16,384

G2 fixed PM 5,189,675.14 ± 0.46% 3.16 16,384

GT  Exp. 313,821.32 ± 0.16% 52.40 65,536

GT  fixed Exp. 936,094.84 ± 0.61% 70.01 65,536

Table 5 Comparison of different algorithms for SM9_P256 
curve operations on GPU

Type Operation Latency Speedup

e Miller Loop (basic) 9.15 ms –

Miller Loop (Sec 4.2) 8.37 ms 1.09×

Final Exp. (basic) 6.37 ms –

Final Exp. (Sec 4.2) 5.45 ms 1.16×

Pairing 15.60 ms –

G1 Scalar Mul. (basic) 5.33 ms –

Scalar Mul. (wNAF) 8.72 ms 0.61×

Scalar Mul. (Sec 4.3) 2.73 ms 1.95×

G2 Scalar Mul. (basic) 12.12 ms –

Scalar Mul. (wNAF) 20.36 ms 0.60×

Scalar Mul. (Sec 4.3) 3.54 ms 3.42×

GT Scalar Exp. (basic) 36.78 ms –

Scalar Exp. (fast-sqr) 30.29 ms 1.21×

Scalar Exp. (Sec 4.3) 9.60 ms 3.83×

Table 6 The latencies (microseconds) for performing low-level operations on SM9_P256 curve on GPU

Optimization Fq Fq2 Fq6 Fq12 ( GT) G1 G2

Add. Mul. Sqr. Mul. Sqr. Mul. Sqr. Mul. Sqr. Add. Dbl. Add. Dbl.

Original 3.26 94.46 39.97 254.30 148.80 1,399.34 921.63 3,929.60 3,113.22 1,003.32 367.19 3,315.69 1,334.51

+ PTX-ISA 2.1× 2.6× 2.3× 2.2× 2.0× 2.1× 2.1× 1.9× 2.0× 2.3× 2.3× 2.2× 2.3×

+ Unrolled loop 9.9× 8.4× 4.9× 7.0× 5.5× 5.3× 4.7× 5.1× 5.3× 6.8× 4.9× 6.3× 5.3×

+ Inline function 1.9× 2.1× 1.8× 2.2× 1.9× 2.4× 2.0× 2.2× 2.0× 2.1× 2.1× 2.1× 2.1×

Overall 39.5× 45.9× 20.3× 33.9× 20.9× 26.7× 19.7× 21.3× 21.2× 32.8× 23.7× 29.1× 25.6×

Result 0.08 2.08 1.99 4.67 4.11 53.25 42.83 178.04 142.60 30.60 15.23 77.25 40.90
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section, then consecutively apply the optimizations 
to observe their effectiveness. According to  Table  6, 
using PTX-ISA introduces 1.9×–2.6× speedups over 
the baseline, while loop unrolling contributes most to 
the speedups. The final optimized result shows 19.7×–
45.9× speeupds over the baseline, performing low-level 
operations at the microseconds level.

Comparison with related work
We compare with three types of related works (Table 7). 
The first type of works optimizes the performance of 
bilinear pairing on particular platforms. Among them, 
Xie et  al. (2022) reported the highest pairing through-
put (10,000 op/s) for the SM9_P256 curve, while Aranha 
et  al. (2011) reported the fastest CPU implementation 
(1,923 op/s) of the BN254 pairing. Compared with these 
works, GAPS-GPU’s implementation can compute 
158,991 pairings per second, which is at least 15.9× faster 
than previous works.

The second type of works implements other elliptic 
curve or pairing based algorithms on GPU. Pan et  al. 
(2017) introduced a GPU-accelerated signature server 
and reported over millions of operations per second for 
ECDSA. Although their results are superior, it’s impor-
tant to know that ECDSA is based on non-pairing curves 
and thereby their work cannot be applied to SM9. Hu 
et  al. (2023) proposed a GPU-based implementation of 
the identity-based signature scheme specified in IEEE 
(2013) that can generate 322,773 signatures or verify 
40,643 signatures per second. Compared to them, GAPS 

focuses on the implementation of the entire SM9 cipher 
suites. It reports the highest throughput (158,991 op/s) 
for 256-bit pairings and can verify 88,025 SM9 signatures 
per second, outperforming existing implementations by 
2.0×–3.6×.

The third type of works implements the entire SM9 
cipher suites. GmSSL (2023) is the most popular open-
source implementation. We compile GmSSL and run it 
locally in our environment. The results in  Table  7 show 
that GmSSL can only process 19–65 key generation 
requests and a few signature generation & encryption 
requests per second. Another known implementation of 
SM9 is the commercial hardware security module (HSM) 
by OLYM (2022). According to its document, SJJ1631-
HSM can handle 90,000 key generation requests, 27,000 
signature generation requests and 30,000 encryption 
requests per second. Nevertheless, GAPS ’s throughput is 
even higher, as GAPS-GPU outperforms them by at least 
6.1×, showing the efficacy of GAPS ’s design.

Discussion and future work
Security of GAPS . As a dedicated cryptography service, 
GAPS offers higher security and robustness guarantees. 
First, GAPS operates independently of the server’s com-
putational resources, ensuring the resilience of the sys-
tem against potential Denial-of-Service (DoS) attacks. 
This also facilitates the service’s scalable deployment, as 
more computing resources can be dynamically allocated 
to adapt to the system’s workload. Moreover, the iso-
lated nature of CaaS offers an additional layer of defense 

Table 7 Performance comparison with related work

Scheme Platform Algorithm(s) Curve throughput (op/s)

 Wang et al. (2019) Xilinx FPGA Virtex-7 Pairing SM9_P256 291

 Xie et al. (2022) ASIC 90 nm Pairing SM9_P256 10,000

 Hu et al. (2022) Intel Core i7-6500U Pairing SM9_P256 295

 Aranha et al. (2011) AMD Phenom II X4 940 Pairing BN254 1,923

 Cheung et al. (2011) Xilinx FPGA Virtex-6 Pairing BN254 1,745

 Pu and Liu (2013) GTX 680 Pairing BN254 3351

 Pan et al. (2017) GTX 780 Ti ECDSA-{Sign,Verify} NIST_P256 8,710,000 / 929,000

 Hu et al. (2023) GTX 3060 Pairing BN254 43,856

IBS-{Sign,Verify} 322,773 / 40,643

 GmSSL (2023) Intel Xeon Platinum 8269CY Pairing SM9_P256 8

SM9-IBS 65 / 5 / 3

SM9-IBE 20 / 4 / 4

SM9-KA 19 / 29 / 2

 OLYM (2022) SJJ1631-HSM SM9-{KeyGen,Encap,Sign} SM9_P256 90,000 / 27,000 / 30,000

GAPS (ours) RTX 3080 Pairing SM9_P256 158,991

SM9-IBS 2,038,071 / 248,240 / 88,025

SM9-IBE 550,718 / 238,002 / 148,262

SM9-KA 550,348 / 1,137,015 / 77,997
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against external threats, as the publicly exposed server 
no longer holds sensitive materials like private keys. This 
mitigates the security risks of many server-side vulner-
abilities (e.g., OpenSSL Heartbleed Synopsys, Inc (2016)) 
and side-channel attacks like Spectre (Kocher et al. 2019) 
and Meltdown (Lipp et al. 2018). Finally, due to the appli-
cation of the sign-aligned column recoding (“The case of 
unknown scalars” section), the multiplication and expo-
nentiation with secret scalars are constant-time, pro-
tecting the implementations from side-channel timing 
attacks. In summary, GAPS is a secure and robust solu-
tion for SM9 in many large-scale applications.

Future extension of GAPS. Currently, GAPS only imple-
ments the SM9_P256 and the identity-based crypto-
graphic schemes in SM9. It can be seamlessly extended 
to support other pairing-friendly curves in the BN fam-
ily (Definition  1), or slightly modified to support other 
pairing curve families (e.g., Barreto et  al. 2002). In the 
future, GAPS can be migrated to accelerate other pairing-
based cryptography protocols such as attribute-based 
encryption (Sahai and Waters 2005), searchable encryp-
tion  (Boneh et  al. 2004) and zero knowledge proof sys-
tems (Groth 2016).

Conclusion
In this paper, we propose GAPS, a high-performance 
Cryptography as a Service for SM9. Combined with 
multiple optimization techniques, GAPS harnesses a 
heterogeneous computing architecture that dynami-
cally balances the workload between a low-latency CPU 
implementation and a high-throughput GPU implemen-
tation, scaling seamlessly across sporadic inputs and 
batch inputs. Our evaluation shows that GAPS achieves 
a scalable performance, making it a practical solution for 
SM9 in large-scale applications.
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