
Xu et al. Cybersecurity (2024) 7:29
https://doi.org/10.1186/s42400-024-00217-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

GAPS: GPU-accelerated processing service
for SM9
Wenhan Xu1,2, Hui Ma1,2 and Rui Zhang1,2*

Abstract

SM9 was established in 2016 as a Chinese official identity-based cryptographic (IBC) standard, and became an ISO
standard in 2021. It is well-known that IBC is suitable for Internet of Things (IoT) applications, since a centralized
processing of client data (e.g. IoT cloud) is often done by gateways. However, due to limited computation resources
inside IoT devices, the performance of SM9 becomes a bottleneck in practical usage. The existing SM9 implementa-
tions are often CPU-based, with relatively low latency and low throughput. Consequently, a pivotal challenge for SM9
in large-scale applications is how to reduce the latency while maximizing throughput for numerous concurrent
inputs. After a systematic analysis of the SM9 algorithms, we apply optimization techniques including precomputa-
tion, resource caching and parallelization to reduce the overhead of SM9. In this work, we introduce the first prac-
tical implementation of SM9 and its underlying SM9_P256 curve on GPU. Our GPU implementation combines
multiple algorithms and low-level optimizations tailored for GPU’s single instruction, multiple threads architecture
in order to achieve high throughput for SM9. Based on these, we propose GAPS, a high-performance Cryptog-
raphy as a Service (CaaS) for SM9. GAPS adopts a heterogeneous computing architecture that flexibly schedules
the inputs across two implementation platforms: a CPU for the low-latency processing of sporadic inputs, and a GPU
for the high-throughput processing of batch inputs. According to our benchmark, GAPS only takes a few milliseconds
to process a single SM9 request in idle mode. Moreover, when operating in its batch processing mode, GAPS can
generate 2,038,071 private keys, 248,239 signatures or 238,001 ciphertexts per second. The results show that GAPS
scales seamlessly across inputs of different sizes, preliminarily demonstrating the efficacy of our solution.

Keywords Identity-based cryptography, SM9, Cryptography as a service, Graphics processing units

Introduction
Identity-based cryptography (IBC) (Shamir 1984) is a
special public-key cryptographic scheme where the pub-
lic key can be an arbitrary string, e.g., email address or
domain name. Such an attractive feature reduces the
overhead of deploying public-key cryptosystems by
eliminating the need for public-key infrastructure (PKI),

and is considered a key technique to realize certificate-
less cryptography (Al-Riyami and Paterson 2003). Since
its first introduction in 1984 (Shamir 1984), IBC has been
widely studied and was standardized by various interna-
tional organizations, e.g., RFC (2007), ISO/IEC (2021),
IEEE (2013).

In the realm of IBC, the SM9 Cryptographic
Schemes (Cheng 2017) are a series of cryptographic algo-
rithms (digital signature, key agreement and encryption)
specified in the Chinese National Cryptography Standard
GM/T 0044-2016 (GM/T 2016a) and ISO’s international
standards (ISO/IEC 2018, 2021). As a set of lightweight
and standardized algorithms, SM9 has been considered a
practical solution for cloud and Internet of Things (IoT)
security.

*Correspondence:
Rui Zhang
r-zhang@iie.ac.cn
1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, No.19 Shucun Road, Haidian
District, Beijing 100085, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00217-9&domain=pdf
http://orcid.org/0000-0002-4221-1311

Page 2 of 18Xu et al. Cybersecurity (2024) 7:29

Motivating scenario
As the demand for SM9-based security solutions con-
tinues to grow, the need for efficient implementation
of SM9 becomes paramount. For example, Xiaomi
(2023) reported that there are 654.5 million consumer
devices connected to its IoT cloud platform. Assuming
these devices connect to the cloud on a per-day basis,
the server needs to handle on average 654.5∗10

6

24∗60∗60 ≈ 7, 575
op/s. If SM9 is employed for secure communication,
the workload would further escalate.

Figure 1 depicts an example of how SM9 can be
applied to protect data and communication secu-
rity in a large-scale IoT network. A key generation
center (KGC) holds the system-wide master keys and
is in charge of issuing SM9 private keys for registered
devices. SM9-KA can be used to set up secure channels
among devices, gateways and the cloud, SM9-IBS can
be used for device authentication, and SM9-IBE can be
used for encrypted messaging in the IoT network. As
the IoT gateway and cloud are connected with many
end devices, they need to handle the following com-
pute-intensive tasks.

1. Batch Key Generation. During the device registra-
tion phase, the device manufacturer provides a list
of device IDs, and the KGC should be able to handle
the batch generation of private keys for the registered
devices. The speed of key generation dominates the
efficiency of this process.

2. Concurrent Key Agreement. For secure communica-
tion, the IoT gateway and the cloud should be able to
handle large numbers of SM9-KA requests from end
devices concurrently. The speed of SM9-KA greatly
affects the efficiency of session establishment and the
maximum number of secure connections that can be
maintained by the gateway (or server).

3. Batch signature processing. The end IoT devices send
signed data packets to the cloud server. In order to
validate the authenticity of data packets, the server
will have to perform batch verification of SM9-IBS
signatures. Also, when the IoT cloud wants to issue
signed commands to end devices, it needs to gen-
erate a batch of signatures. Therefore, the speed of
SM9-IBS signature generation/verification is crucial
to the server’s overall performance.

4. Batch ciphertext processing. Similar to SM9-IBS, the
cloud server should be able to handle batch encryp-
tion/decryption of SM9-IBE ciphertexts for effi-
ciency considerations.

Unfortunately, such high requirement for opera-
tion throughput can be hardly met by today’s SM9
implementations. Many solutions rely on the GmSSL
toolkit (GmSSL 2023), which is the most popular soft-
ware implementation of the Chinese national crypto-
graphic algorithms. However, according to Sun et al.
(2020a), deploying SM9-based solutions with GmSSL
introduces significant computing latencies (over 300 ms),
and would take thousands of CPU cores in order to reach
our target throughput (10k+ op/s). Therefore, a piv-
otal challenge for SM9 applications is how to reduce the
computing latency and improve the throughput for large
number of requests.

Challenges and solutions
Inspired by the real-world deployment of cryptography
using dedicated accelerators, e.g., Hardware Security
Modules (Entrust 2023), we explore high-performance
SM9 Cryptography as a Service (CaaS) for applica-
tions with substantial computational demands. Several
technical challenges arise in our design of the service’s
architecture.

• How to scale seamlessly across inputs of different sizes.
As a dedicated cryptography service, we expect SM9
CaaS to respond swiftly to sporadic requests while
handling batch inputs with high throughput. Tradi-
tional CPU-based implementation using fast pairing
libraries like the RELIC toolkit (Aranha et al. 2014) can
satisfy our first expectation as its latency is at the milli-
seconds level. However, CPU fails to meet our second
expectation as its throughput is limited by the num-
ber of available cores. Meanwhile, a high-throughput
platform (GPU) is preferred for the efficient process-
ing of batch inputs, but introduces significantly higher
latency than CPU. Therefore, the challenge lies in the
design of a task scheduling strategy that optimally lev-
erages the advantages of multiple platforms.

Fig. 1 Application of the SM9 cryptographic schemes in IoT cloud

Page 3 of 18Xu et al. Cybersecurity (2024) 7:29

• How to optimize the computations in SM9. Another
challenge is the design of a systematic optimiza-
tion strategy for SM9 algorithms. Although previ-
ous studies explored techniques like precomputa-
tion (Pan et al. 2017), they only focus on optimizing
a single mathematical operation like point multi-
plication and lack a comprehensive and systematic
analysis of optimizations in the entire SM9 cipher
suite.

• How to obtain a high-throughput implementation of
SM9 on GPU. We rely on GPU for the parallel pro-
cessing of batch inputs. Here the challenge is how to
maximize the throughput of SM9 and its underlying
mathematical operations (bilinear pairing and elliptic
curve). Although much progress has been made on
their optimizations on CPU (Beuchat et al. 2010; Ara-
nha et al. 2011), the actual details vary significantly
on GPU’s Single Instruction, Multiple Threads (SIMT)
architecture. For example, traditional implementa-
tion of point multiplication uses the double-and-add
algorithm with the scalar encoded in binary or non-
adjacent form for acceleration, which is less efficient
on GPU due to its data-dependent divergences that
reduce the throughput of parallel threads. Addition-
ally, the state-of-the-art implementations (Aranha
et al. 2014; Shigeo 2015) are optimized using low-
level CPU intrinsics like AVX2, which are not avail-
able on GPUs.

Our Contributions. In this paper, we propose GAPS, a
GPU-Accelerated Processing Service for SM9. Our con-
tributions are four-fold:

• First, we propose a scalable and heterogeneous archi-
tecture for SM9 CaaS. Our architecture combines the
SM9 implementations on two different platforms: an
efficient CPU implementation with low computing
latencies, and a GPU implementation with high batch
processing throughput. We employ a unique sched-
uling strategy that combines the strengths of both
platforms for a scalable performance.

• Second, by systematically analyzing the workload of
SM9 algorithms, we propose several optimization
techniques that utilize precomputation, resource
caching and parallelization to reduce the running
time of SM9 algorithms.

• Third, we introduce the first practical implementa-
tion of the entire SM9 cipher suites and its under-
lying SM9_P256 curve on the GPU platform. Our
implementation combines multiple algorithm opti-
mizations and low-level optimizations tailored for
GPU’s SIMT architecture, and is capable of evaluat-
ing 158,991 pairings and 2,585,630 point multipli-

cations per second, effectively boosting the perfor-
mance of SM9.

• Finally, we conduct an extensive benchmark of GAPS.
We find that GAPS is capable of generating up to
2,038,071 private keys per second and can handle
77,797–1,137,015 SM9-KA/IBS/IBE requests per
second in batch processing mode. Moreover, when
operating in idle mode, GAPS processes a single SM9
request with less than 4 milliseconds of latency. The
results show that GAPS scales well across sporadic
and batch inputs, making it a practical solution for
SM9 CaaS in large-scale IoT applications.

Related work
Design and implementation of SM9. Since its proposal
in 2016, various efforts have been made to improve the
functionality and efficiency of SM9. Sun et al. (2020a)
proposed a server-aided user revocation mechanism
for SM9, Zhang et al. (2020) proposed a distributed key
generation scheme for SM9-based systems, while Lai
et al. (2022) applied the online/offline methodology to
SM9-IBS. Few works have looked into the high-perfor-
mance implementation of SM9. Sun et al. (2020a) imple-
mented their SM9 revocation scheme in GmSSL and
used OpenMP to scale it to multiple cores, but the overall
throughput is still far from GAPS ’s goal. Jing et al. (2022)
provided an efficient FPGA implementation of SM9 that
takes 0.848 ms to perform on point multiplication. Com-
pared with these works, we focus on designing a high-
performance cryptographic service for the entire SM9
cipher suite that is capable of handling tens of thousands
of operations per second.

Fast implementation of pairing. Due to its complex-
ity, the optimization and implementation of pair-
ing have attracted a line of research efforts. In Beuchat
et al. (2010), the authors introduced the first high-speed
implementation of the BN254 pairing with few million
CPU cycles. Aranha et al. (2011) further reduced the
cost to less than one million cycles on modern CPUs.
Few works have explored the implementation of bilinear
pairing on hardware platforms, as Cheung et al. (2011)
and Pu and Liu (2013) introduced the first FPGA and
GPU implementation of the BN254 pairing respectively,
though their performance is less competitive than that
of today’s CPU implementations. Until recently, Hu et al.
(2023) introduced a high-performance GPU implementa-
tion of the BN254 curve that can compute over 40k pair-
ings per second, yet the algorithms and optimizations
(e.g., point multiplication, exponentiation, miller loop)
used in their work are somewhat outdated. Compared
to these pure GPU-based solutions, GAPS adopts a het-
erogeneous CPU & GPU architecture and applies many

Page 4 of 18Xu et al. Cybersecurity (2024) 7:29

state-of-the-art optimization techniques. We report the
highest throughput for pairings (158,991 op/s) on com-
modity processors.

Cryptography implementation on GPUs. With the rapid
development of GPU’s computing power, cryptographers
have been looking to exploit GPUs to accelerate cryptog-
raphy implementations. This idea was first put forward
by Cook et al. (2005) in 2005, where the authors reported
an optimized AES implementation over graphic cards.
Following that, Szerwinski and Güneysu (2008) further
explored the implementation of asymmetric ciphers
on GPUs. Jang et al. (2011) later designed a GPU-based
cryptography accelerator for SSL, while Wei et al. (2021)
proposed a GPU-based heterogeneous protocol stack for
PAKE. Unlike previous works, we explore the GPU accel-
eration of SM9 for the first time.

Background
Notations
Let ‖ denote the bitwise concatenation operation. An
algorithm is efficient if it runs in probabilistic polynomial
time (PPT) in the length of its input. y ← F(x) denotes
running an algorithm F with input x and output y. The
following functions are used in SM9. One may refer to
ISO/IEC 18033-5 (ISO/IEC 2021) for detailed definitions.

1. KDF2(Hv,m, ℓ) : Given a hash function Hv with v-bit
output, a bit string m, and a non-negative integer ℓ ,
this key derivation function outputs an ℓ-bit octet
key string.

2. H2RFi(Hv,m,n) : Given a hash function Hv , a bit
string m, two non-negative integers n and i, it out-
puts an integer hi ∈ [1, n− 1].

Bilinear pairing
SM9 is defined over an elliptic curve with bilin-
ear pairings. Suppose ∃ a bilinear group generator
G ← GroupGen(1�) , where a PPT algorithm GroupGen
takes as input a security parameter � and returns a group
description G = (p,G1,G2,GT ,P1,P2, e) , where p is a
prime of �(�) bits, G1,G2,GT are cyclic groups of order
p, and P1,P2 are generators of G1,G2 , respectively. The
efficiently-computable map e : G1 ×G2 → GT should
satisfy the following properties:

1. Bilinearity: for all (P,Q) ∈ G1 ×G2 and all a, b ∈ Z ,
e([a]P, [b]Q) = e(P,Q)ab.

2. Non-degeneracy: e(P1,P2) = 1.

The most efficient construction of a pairing relies
on particular family of curves. Particularly, GM/T

0044-2016.5 (GM/T 2016b) specifies a 256-bit Bar-
reto-Naehrig (BN) curve (Barreto and Naehrig 2005)
for SM9 (denoted SM9_P256). Below we review the
related concepts.

Definition 1 (BN Curves) The BN curves are a family of
elliptic curves E : y2 = x3 + b, b �= 0 parameterized by an
arbitrary integer x ∈ Z . It is defined over a prime field Fp ,
where the prime q, the prime group order p of the pairing
groups and the trace t are polynomials given as:

Definition 2 (Optimal Ate Pairing over BN Curves)
Let E[p] be the subgroup of p-torsion points of E and
E′ : y2 = x3 + b/ξ be the sextic twist of E with ξ not a
cube nor a square in Fq2 . The Optimal Ate Pairing (Ver-
cauteren 2008) over the BN curves is defined as:

where ℓ = 6x + 2 ; πq(x, y) = (xq , yq) is the Frobenius
endomorphism; groups G1 , G2 are determined by the
eigenspaces of πq as G1 = E[p] ∩ Ker(πq − [1]) = E(Fq)[p]
and G2 as the preimage E′(Fq2)[p] of E[p] ∩ Ker(πq − [q])

⊆ E(Fq12)[p] under the twisting isomorphism ψ : E′ → E ;
the group GT is the subgroup of p-th roots of unity
µp ⊂ F

∗
q12

 ; fℓ,Q(P) is a normalized rational function with
divisor (fℓ,Q) = ℓ(Q)− ([ℓ]Q)− (ℓ− 1)(O) and lQ1,Q2(P) is the
line equation corresponding to Q1 + Q2 ∈ G2 evaluated at
P ∈ G1.

Definition 3 (SM9_P256 Curve) The SM9_P256
curve is a 256-bit prime order curve instantiated in the
BN curve family parameterized as follows:

Note that the SM9_P256 curve admits an M-type twist,
i.e., E′ : y2 = x3 + b · ξ.

q(x) = 36x4 + 36x3 + 24x2 + 6x + 1

p(x) = 36x4 + 36x3 + 18x2 + 6x + 1

t(x) = 6x2 + 1

aopt : G2 ×G1 → GT

(Q,P) → (fℓ,Q(P) · l[ℓ]Q,πq(Q)(P)

·l[ℓ]Q+πq(Q),−π2
q (Q)(P))

q12−1
p

Page 5 of 18Xu et al. Cybersecurity (2024) 7:29

Algorithms in SM9

Definition 4 (SM9-IBS) The SM9-IBS signature
scheme consists of following four PPT algorithms
(Setup,KeyGen,Sign,Verify).

Setup(1κ) → (msk,mpk) . On input the security param-
eter κ , the algorithm runs as follows:

1. Generate bilinear pairing groups G = (p,G1,G2,GT ,

P1,P2, e) ← GroupGen(1�).
2. Pick a random s ∈ Z

∗
p , compute Ppub- s = [s]P2.

3. Compute g = e(P1,Ppub- s).
4. Pick a cryptographic hash function Hv and a one byte

identifier hid. GM/T 0044-2016.5 (GM/T 2016b)
requires SM3 (GM/T 2012) as the hash function and
hid = 1.

5. Output a master secret key msk = s and a master
public key mpk = (G,Ppub- s,Hv , hid).

KeyGen(mpk,msk, IDA) → dsA . On input a pair of
master keys (mpk, msk) and an identity IDA , this algo-
rithm generates a signing key dsA as follows:

1. Compute t1 = H2RF1(Hv , IDA�hid, p)+ s.
2. Compute t2 = s · t−1

1 .
3. Compute a signing key as dsA = [t2]P1.

Sign(mpk, dsA,M) → (h,S) . On input a master public
key mpk, a signing key dsA and a message M, it gener-
ates a signature (h, S) as follows:

1. Pick a random z ∈ Z
∗
p.

2. Compute w = gz.
3. Compute h = H2RF2(Hv ,M�w, p).
4. Compute l = (z − h) mod p.
5. Compute S = [l]dsA.
6. Output a signature (h, S).

Verify(mpk, IDA,M, (h,S)) → {0, 1} . On input a master
public key mpk, a signer’s identity IDA , a message M and
a signature (h, S), this algorithm verifies the signature
as follows:

1. Compute h1 = H2RF1(Hv , IDA�hid, p).
2. Compute P = [h1]P2 + Ppub- s.
3. Compute u = e(S,P).
4. Compute t = gh.
5. Compute w′ = u · t.
6. Compute h2 = H2RF2(Hv ,M�w, p).
7. If h = h2 , return 1. Otherwise, return 0.

Definition 5 (SM9-IBE-KEM) The SM9-IBE-KEM
is an identity-based key encapsulation mechanism
(KEM) consists of following four PPT algorithms
(Setup,KeyGen,Encap,Decap).

Setup(1κ) → (msk,mpk) . Similar to Definition 4, it
outputs msk = s and mpk = (G,Ppub−e,Hv , hid) . Note
that Ppub−e = [s]P1 ∈ G1 and hid = 3.
KeyGen(mpk,msk, IDA) → deA . Similar to Defini-

tion 4, it outputs a private key deA = [t2]P2 = [s · t−1

1
]P2

= [s · (H2RF1(Hv , IDA�hid, p)+ s)−1]P2.
Encap(mpk, IDA) → (K,C) . On input a master public

key mpk and a user identity IDA , this algorithm runs as
follows:

1. Pick a random z ∈ Z
∗
p.

2. Compute w = gz.
3. Compute h1 = H2RF1(Hv , IDA�hid, p).
4. Compute P = [h1]P1 + Ppub−e.
5. Compute C = [z]P.
6. Derive a data encapsulation (DEM) key K = KDF2

(Hv ,C‖w‖IDA, ℓ).
7. Output (K, C), where K is the derived key and C is

the KEM ciphertext.

Decap(mpk, IDA, deA,C) → K . On input a master public
key mpk, a user identity IDA , the corresponding key deA
and a KEM ciphertext C, this algorithm runs as follows:

1. Compute w = e(C , deA) = gz.
2. Recover a data encapsulation (DEM) key

K = KDF2(Hv ,C�w�IDA, ℓ).
3. Output the derived key K.

Definition 6 (SM9-KA) The SM9-KA is an identity-based
key agreement and consists of the following four operations
(Setup,KeyGen, MessageExchange, SessionKeyGeneration)
and an optional operation Session Key Confirmation.

Setup(1κ) . This algorithm runs the same as in Defini-
tion 5, except that it sets hid = 2.
KeyGen(mpk,msk, IDA) . Same as in Definition 5.
MessageExchange . Entities A and B exchange two (or

three) rounds of messages:

A → B : &RA = [zA]PB

B → A : &RB = [zB]PA, SB

A → B : &SA

Page 6 of 18Xu et al. Cybersecurity (2024) 7:29

where zA, zB ∈ Z
∗
p are two randoms by A and B respectively,

Pi = [H2RF1(Hv , IDi�hid, p)]P1 + Ppub−e for i ∈ {A,B}
and SA, SB are the optional key confirmation messages.
Session Key Generation . Upon receiving RA,RB , A

and B can derive their session keys as follows:

1. Entity A computes three-tuple (g1, g2, g3)

2. Similarly, entity B computes (g ′1, g
′
2, g

′
3)

3. ℓ-bit session key is:

Session Key Confirmation (optional). Entities A and B
exchange SA, SB for key confirmation.

1. Entity B computes key confirmation SB = Hv(0x82�g
′
2

�Hv(g
′
1
�g ′

3
�IDA�IDB�RA�RB)).

2. Entity A computes key confirmation SA = Hv(0x83�g
′
1

�Hv(g
′
2
�g ′

3
�IDA�IDB�RA�RB)).

GPGPU and CUDA
Modern GPUs support general purpose computation
(GPGPU) in the Single Instruction, Multiple Threads
(SIMT) fashion, among which, NVIDIA’s Compute Uni-
fied Device Architecture (CUDA) is the most popular with
dozens of streaming multiprocessors (SMs) each capable
of executing up to 256 threads in parallel. The threads are
further grouped into blocks, and a GPU function (called
kernel) may execute with multiple blocks across multi-
ple SMs, effectively exploiting GPU’s processing power.
From a hardware perspective, CUDA SMs schedule and
run thread blocks in a 32-thread unit called warp. A warp
executes one common instruction per cycle, therefore
full efficiency is achieved only when all threads of a warp
agree on their execution paths. As a result, CUDA pro-
grams should reduce the use of data-dependent branches
for the maximum concurrency.

Design of GAPS
In this section, we first introduce the architecture of
GAPS, then present our concrete optimization ideas for
the SM9 algorithms.

System architecture
The architecture of GAPS is presented in Fig. 2. Upon
receiving some requests from clients, GAPS first preproc-
esses them and pushes the requests into several first in,
first out (FIFO) task queues. Note that we maintain 9

g1 = e(RB, deA), g2 = gzA , g3 = g
zB
1

g ′1 = gzB , g ′2 = e(RA, deB), g
′
3 = g ′1

zA

SK = KDF2(Hv , IDA�IDB�RA�RB�g1�g2�g3, ℓ)

individual queues for each of the 9 algorithms in SM9-
KA/IBS/IBE1 (except Setup , which are only executed
once during the system’s initialization). A dispatcher
repetitively checks the status of the queues and retrieves
active tasks from them. Depending on the scale of the
tasks and the availability of hardware resources, the dis-
patcher thread adopt different strategies for work dis-
patching. Generally speaking, when the size of tasks
is lightweight for a CPU thread, it directly invokes the
CPU implementation of SM9 for fast processing. How-
ever, when the size of tasks becomes too heavyweight for
CPU, it sends the workload to GPU for batch process-
ing instead. By properly balancing the task scheduling
between CPU and GPU, GAPS can seamlessly scale from
zero to up to millions of operations per second.

System optimizations. GAPS adopts two optimization
techniques at the system level.

• Active ID Cache. Many algorithms in SM9 produce
intermediate values that are dependent on users’ IDs.
This overhead can be reduced by pooling ID-related
intermediate values in a Last Recently Used (LRU)
cache. When a new ID is requested, GAPS computes
fresh values for it and stores the intermediate results
in the LRU cache. Subsequently, the next time the
same ID is requested, GAPS directly loads it from the
cache to avoid repetitive computations.

• Precomputation Table. For values that rely on fixed
parameter in the system (e.g., master public key), we
can precompute a table of intermediate values for

Fig. 2 The system architecture of GAPS

1 Note that although the KeyGen algorithms in SM9-IBE & SM9-KA share
similar structure, they cannot use the same queue since using the same set
of master keys is insecure.

Page 7 of 18Xu et al. Cybersecurity (2024) 7:29

it. Specifically, GAPS generates multiple precompu-
tation tables for the fixed parameters in its offline
time and stores it locally. When evaluating the val-
ues online, GAPS loads the precomputed tables into
memory to save the computations.

• Parallelization. If an SM9 algorithm computes inde-
pendent intermediate values, we further apply paral-
lelization to reduce its latency.

Heterogeneous implementation platforms. GAPS features
GPU-based and CPU-based SM9 implementations for
different types of workloads.

• Batch workload. The GPU implementation exploits
its massive threads to process the batch workload
in parallel, i.e., each GPU thread computes a full
instance of the algorithm (data parallelism). The key
of this implementation is to maximize the parallelism
and throughput on the GPU platform. In “Implemen-
tation of GAPS ” section, we show how we combine
mulitple optimized algorithm and implementation
techniques to maximize the GPU implementation’s
throughput.

• Sporadic workload. The CPU implementation
serves as the fallback option for processing sporadic
tasks. Concretely, we first implement the SM9_P256
curve in the RELIC toolkit (Aranha et al. 2014), then
implement the SM9 algorithms by applying the same
system optimizations as our GPU implementation.

Work dispatching strategy. The work scheduling strategy
relies on a threshold paramter η . When the size of tasks
N is not greater than η , the worker thread dispatches it
to CPU implementation. When N exceeds η , the worker
thread sends the data to GPU, waits for GPU’s kernel
execution, then fetches the results back from GPU. In
“Performance of SM9 algorithms” section, we conduct
experimental analysis to find out the optimal scheduling
threshold η.

Concrete optimization ideas
In this section, we analyze the workload of the SM9 algo-
rithms (“Algorithms in SM9” section) and discuss how
the optimizations in “System architecture” section can be
applied.

SM9 Key Generation. The private keys of SM9-IBS/
IBE/KA share the same structure [s

h1+s
]P so their

KeyGen algorithms can adopt the same optimizations.
Specifically, the KeyGen algorithms first evaluate a hash
h1 = H2RF1(Hv , IDA�hid, p) for the input ID via the
H2RF1 function and stores it in the active ID cache,
then computes a value t2 = s

h1+s , which requires 1 addi-
tion, 1 inversion and 1 multiplication in the field Fp .

After that, the algorithm computes a single point mul-
tiplication with P1 ∈ G1 or P2 ∈ G2 . As P1,P2 are part
of the system-wide master public keys that are fixed
before the execution of KeyGen , we can generate two
precomputation tables containing the intermediate
point values (e.g., 2P, 3P, 4P, · · ·) in the offline phase,
then use the precomputed values in the online phase
for acceleration.

SM9-IBS. It has the following computations:

• Signature generation: the Sign algorithm first gen-
erates a random in F∗

p , then computes a fixed-base
exponentiation w = gz in the extension field Fq12
(GT). Subsequently, it evaluates a hash h2 for the
message M and the Fq12 element w via H2RF2 , then
computes 1 subtraction in the field Fp . Finally, it
computes 1 point multiplication with dsA in G1 . If the
user uses a fixed key for signatures, we can further
generate precomputation table for it for acceleration.

• Signature verification: to verify a signature (h, S),
Verify first evaluates the identity hash h1 with
H2RF1 . It then computes P = [h1]P2 + Ppub- s , which
involves 1 fixed-point multiplication and a point
addition operation in G2 . Note that since the value of
P is completely dependent on the user’s identity and
the system’s public key Ppub−s , we can store it in the
active ID cache to save future computations. After
that, the algorithm evaluates a pairing for (S, P), com-
putes a fixed-base exponentiation t = gh in Fq12 and
restores w′ via a multiplication in Fq12 . Finally, it eval-
uates the hash h2 for M, w and compares it with the
h part of the signature. Note that computation of the
4th step (t = gh) can be performed in parallel with
steps 1–3 to further reduce the latency.

SM9-IBE-KEM. Its computations include:

• Key encapsulation: the Encap algorithm first picks a
random in F∗

p , then computes a fixed-base exponenti-
ation w = gz . Next, it evaluates P = [h1]P1 + Ppub−e
which is also an intermediate value that can be stored
in the LRU cache. After that, the algorithm computes
a point multiplication in G1 and uses KDF2 to derive
the section key. Note that the evaluation of gz in step
2 of Encap is independent with steps 3–4 and can be
performed concurrently.

• Key decapsulation: the Decap algorithm evaluates
paring for (C , deA) then uses KDF2 to derive the
encapsulated key.

SM9-KA. For SM9-KA, we focus on the computation of
entity B, as in client/server mode the server only accepts
connections from clients.

Page 8 of 18Xu et al. Cybersecurity (2024) 7:29

• Message exchange: in this phase, the server picks a
random zB ∈ F

∗
p and computes a point multiplication

with PA . Note that PA is an intermediate value that
depends on the client’s IDA , which can be stored in
the LRU cache.

• Session key generation: in this phase, the server first
evaluates a pairing with (RA, deB) , then computes two
exponentiations in Fq12 . Note that the first exponen-
tiation uses a fixed-based g and can be optimized
with precomputation. After that, the server derives a
key with KDF2.

We present the overhead and our optimizations of SM9-
KA/IBS/IBE-KEM in Table 1. Concretely, GAPS main-
tains a 〈h1,P〉 pair for each active ID in the LRU cache.
Note that for the three SM9 schemes we maintain differ-
ent h1 values as their hid-s are different. For precomputa-
tion, GAPS should precompute tables for P1,P2, g , which
are all part of the system’s public keys.

Implementation of GAPS
Element representations
Prime field. We store prime field elements in radix-
R form, i.e., a =

ℓ
i=0 aiR

i . Since CUDA GPUs
are 32-bit machines, we select R = 232 , so we have
ℓ = ⌈log2(q/R)⌉ = 8 and each Fq (also Fp) element in the
SM9_P256 curve takes 8 words of storage. Before the
computations, we convert all prime field elements to the
Montgomery domain (i.e. ã = a · R⌈log2(q/R)⌉ mod q), so
that efficient Montgomery reduction and product algo-
rithms can be applied, then convert the results back to
normal form in the end.

Extension Field. The Optimal Ate Paring over BN
curve produces final result in Fq12 , which is constructed
through tower extension (Benger and Scott 2010).

Specifically, we adopt the Fq → Fq2 → Fq6 → Fq12 tow-
ering scheme, where

With this construction, an element in Fq2 is represented
as a+ bu , where a, b are two elements in Fq . An element
in Fq6 is represented as a+ bv + cv2 with a, b, c ∈ Fq2 . An
element in Fq12 is represented as a+ bw with a, b ∈ Fq6 .
For the SM9_P256 curve, the cost for storing the
Fq2 ,Fq6 ,Fq12 elements are 16, 48, 96 words, respectively.

Elliptic Curve. We represent elements in G1,G2 using
Jacobian coordinates, which support fast formulas for
elliptic curve operations. Specifically, each point is rep-
resented as a three-tuple (X, Y, Z) with Z = 0 . After the
computations, the points can be converted back to pro-
jective coordinates (X ,Y ,Z) → (X/Z2,Y /Z3) for stor-
age. For the SM9_P256 curve, a G1 element is defined
over E : Y 2 = X3 + 5Z6 , with X ,Y ,Z ∈ Fq , which takes
24 words of storage. A G2 element is defined over the
twisted curve E′ : Y 2 = X3 + 5ξ · Z6 , with X ,Y ,Z ∈ Fq2 ,
taking 48 words of storage.

Optimal ate pairing
We apply the following optimizations to the evaluation of
a pairing (Algorithm 1).

Signed representation of the loop parameter. Observe
that in the SM9_P256 curve, we have log2(ℓ) = 66
and hamming weight w = 16 , so the traditional binary
double-and-add execution of the loop would require
66 point doublings and 16 point additions. To fur-
ther reduce the complexity, we adopt the signed

Fq2 = Fq[u]/(u
2 − β), with β = −2,

Fq6 = Fq2 [v]/(v
3 − ξ), with ξ = u,

Fq12 = Fq12 [w]/(w
2 − v).

Table 1 Overhead of the SM9 algorithms and the application of the optimizations in “System architecture” section

† Hi = H2RFi , K2 = KDF2 , PM=Point Multiplication, Exp=Exponentiation, BP=Bilinear Pairing, Inv=Inversion

Scheme Algo. Total cost Optimizations

Cache (I) Precomp. (II) Parallel. (III)

SM9-IBS KeyGen 1H1 + 1PMfix
G1

+ 1AddFq + 1InvFq + 1MulFq × P1 ×

Sign 1H2 + 1Expfix
GT

+ 1PMG1
+ 1AddFq × g ×

Verify 1H1 + 1H2 + 1BP + 1PMfix
G2

+ 1AddG2
+ 1Expfix

GT
+ 1PMGT

h1, P g, P2 h1→P→u � t

SM9-IBE (KEM) KeyGen 1H1 + 1PMfix
G2

+ 1AddFq + 1InvFq + 1MulFq × P2 ×

Encap 1H1 + 1K2 + 1PMfix
G1

+ 1PMG1
+ 1AddG1

+ 1Expfix
GT

h1, P g, P1 h1→P→C � w

Decap 1K2 + 1BP × × ×

SM9-KA KeyGen 1H1 + 1PMfix
G2

+ 1AddFq + 1InvFq + 1MulFq × P2 ×

MsgExch 1H1 + 1PMG1
+ 1AddG1

h1, P P1 ×

SessKeyGen 1K2 + 1BP + 1Expfix
GT

+ 1ExpGT
× g ×

Page 9 of 18Xu et al. Cybersecurity (2024) 7:29

binary representation of ℓ , i.e., ℓ =
∑log2(ℓ)

i=0 ki2
i where

ki ∈ {−1, 0, 1} with hamming weight w = 11 , saving 5
point additions. Additionally, we unroll the first itera-
tion of the loop to avoid trivial computations (steps
1–5).

Algorithm 1 Revised algorithm for Optimal Ate Pairing on SM9_P256
curve.

Evaluating the line functions and points. As the curve
equation of SM9_P256 is y2 = x3 + 5 , we adopt homo-
geneous projective coordinates (Costello et al. 2010) for
the best performance. For the SM9_P256 curve, the
homogeneous curve equation becomes Y 2Z = x3 + 5Z3 .
As the SM9_P256 curve admits an M-type sextic twist,
the line functions are evaluated at the twisting point
ψ(P) = (xPw

2, ypw
3) . Particularly, the formula for point

doubling, addition and line computations for the SM9_
P256 curve can be derived as follows.

1. Point Doubling and line evaluation: for
T = (X1,Y1,Z1) ∈ E′(Fq2) , one can compute the
point doubling 2T = (X3,Y3,Z3) with the following
formula:

X3 =
X1Y1

2
(Y 2

1 − 9b′Z2
1),

Y3 = (
1

2
(Y 2

1 + 9b′Z2
1))

2 − 27b′2Z4
1 ,

Z3 = 2Y 3
1 Z1,

 where b′ = 5ξ . The line function lT ,T evaluated at
the twisting point ψ(P) can be computed with the
following formula:

 The above steps cost 3 multiplications, 2 squarings
and a few additions in Fq2 . Observe that by precom-
puting ȳP = −yP , x

′
P = 3xP , we can further save 3 Fq2

additions.
2. Point Addition and line evaluation: for T = (X1,Y1,Z1)

and Q = (x2, y2) ∈ E′(Fq2) , one can compute the
mixed point addition T + Q = (X3,Y3,Z3) with the
following formula:

 where θ = Y1 − y2Z1 and � = X1 − x2Z1 . The line
function lT ,Q evaluated at the twisting point ψ(P) can
be computed with

 The complete formula can be evaluated with 11 mul-
tiplications, 2 squarings and a few additions in Fq2 .
By precomputing x̄P = −xP , ȳP = −yP , 2 Fq2 addi-
tions can be saved.

Sparse Multiplications. The results of the line func-
tions are sparse elements in Fq12 . Actually, by rewriting
l = l11w

3
+ l01w

2
+ l00 = (l00 + l01v + 0v2)+ (0+ l11v + 0v2)w ,

one can see that half of its Fq2 elements are zeros.
Therefore, we can apply the revised algorithms in Algo-
rithm 2 for the multiplication between a dense element
and a sparse element (saving 5 Fq2 multiplications), and
the multiplication between two sparse elements (saving
11 Fq2 multiplications).

Computing the Final Exponentiation. The power
q12−1

p can be further decomposed into two parts: an
easy part f (q

6−1)(q2+1) that can be computed with
cheap multiplications, conjugations and applications of
the Frobenius map πq , and a hard part f (q4−q2+1)/p that
is computed with the addition chain method in Scott
et al. (2009).

lT ,T (P) = yPw
3 − �xPw

2 + (�x3 − x1)

= −2Y1Z1yp · w
3 + 3X2

1xp · w
2 + (3b′Z2

1 − Y 2
1)

= −2Y1Z1yp · vw + 3X2
1xp · v + (3b′Z2

1 − Y 2
1)

X3 = �(�3 + Z1θ
2 − 2X1�

2),

Y3 = θ(3X1�
2 − �

3 − Z1θ
2)− Y1�

3,

Z3 = Z1�
3,

lT ,Q(P) = −�yp · w
3 − θxp · w

2 + (θX2 − �Y2)

= −�yp · vw − θxp · v + (θX2 − �Y2)

Page 10 of 18Xu et al. Cybersecurity (2024) 7:29

Algorithm 2 Multiplications between Dense, Sparse elements in Fq12.

Scalar multiplication and exponentiation
Another major workload in SM9 is the scalar multiplica-
tion in the two source groups G1,G2 , and the exponentia-
tion in the target group GT .

The case of unknown scalars
Endomorphism and scalar decompositions. We
exploit efficient endomorphisms for accelera-
tion. Specifically, since in pairing-friendly curves
we have E(Fq) : y

2 = x3 + b and p ≡ 1 (mod 3) ,
we can use the GLV endomorphism (Gallant et al.
2001) φ : (x, y) �→ (ξx, y) in G1 where ξ3 = 1 and
ξ ∈ Fq\{1} . Such endomorphism corresponds to
scalar multiplication by a small factor �φ that sat-
isfies �

2
φ + �φ + 1 ≡ 0 (mod p) . As a result, by

applying the GLV endomorphism we can decom-
pose a scalar k ∈ Fp into two mini-scalars k1, k2
such that [k1]P + [k2]φ(P) = [k]P and |ki| ≈ |p|/2 .
Similar methods can be applied to the scalar mul-
tiplication in G2 , by applying the GLS endomor-
phism (Galbraith et al. 2009) ψ = � ◦ πq ◦�

−1 ,
which gives a 4-dimensional decomposition
[k]Q = [k1]Q + [k2]ψ(Q)+ [k2]ψ(Q)2 + [k2]ψ(Q)3 with
|ki| ≈ |p|/4 , turning the single scalar multiplication
[k]Q into a multi-scalar multiplication problem that
only has 1/4 the size of |k|.

Multi-scalar Multiplications. To compute
∑n

i=1[ki]P ,
a widely used method is to use the Straus-Shamir
trick (Ciet et al. 2003) for simultaneous multi-scalar
multiplication. However, according to our experiment,
such method has extremely low throughput on GPU.
This is because the standard binary-and-add algorithm
for scalar multiplication introduces data-dependent
branches, which significantly reduces the concurrency
of GPU’s SIMT threads. To overcome this problem,
we adopt the Sign-Aligned Column (SAC) representa-
tion (Faz-Hernández et al. 2014) using Algorithm 3.
It recodes a set of binary scalars (a1, · · · , an) into SAC
forms (b1, · · · , bn) , where bi ∈ {−1,−, 1}µ+1 are signed
bit sequences of length µ+ 1 that satisfies

The first condition (1) guarantees the correctness of the
encoding, while conditions (2–3) ensures that the bits
of scalars b2, . . . , bn are aligned with b1 . Therefore, in
Algorithm 4, each iteration of the loop only computes an
addition with a point in the precomputation table, which

(1) ai =

µ∑

j=0

bi[j]2
j , for i ∈ [1, n],

(2) b1[j] ∈ {−1, 1}, for j ∈ [0,µ],

(3) bi[j] ∈ {0, b1[j]}, for j ∈ [0,µ], i ∈ [2, n].

Page 11 of 18Xu et al. Cybersecurity (2024) 7:29

removes the data-dependent divergences and ensures full
concurrency of GPU’s warp execution.

Algorithm 3 Sign-Aligned Column (SAC) recoding of n-dimension
scalars.

Algorithm 4 Unknown Point Multiplication using degreen-n
endomorphism ψ and SAC scalar encoding.

Note that Algorithm 4 can be further accelerated with slid-
ing-window method in steps 6–11. Specifically, for a win-
dow width w, we use it to partition the recoded scalars and
precompute T [u] = u′P0 = u0ψ(P)+ · · · + un−2ψ(P)n−1
for all u ∈ [0, 2wn−1] and u′ ∈ {1, 3, · · · , 2w − 1} . The loop
in steps 8–11 can be then performed by scanning w-bit of
di . In our experiment, we find that w = 2 provides the best
performance for GLV in G1 , while w = 3 performs the best
for GLS in G2.

Applying to the exponentiation in GT . The GLS-
based scalar decomposition and multi-scalar multi-
plication method can be easily applied to accelerate
the exponentiation gk in the extension field GT , where
the Frobenius map πq serves as the endomorphism for

acceleration. Particularly, in Algorithm 4, the point
additions should be replaced with finite field multipli-
cations, and the point doubling [2]Q should be replaced
by a squaring, i.e., g2 . Other steps of the algorithm can
be straightforwardly applied to the context of GT .

The case of known scalars
When the point P is known in advance, we can adopt
a large precomputation table for acceleration. Spe-
cifically, for a w-width window, we can rewrite
[k]P =

∑l−1
i=0 ki2

w×i · P where l = ⌈log2(p)/w⌉ . With this
representation, we then compute and store the points
ki2

w×i · P for each ki ∈ {1, · · · , 2w − 1} , and i ∈ [0, l − 1] .
When evaluating [k]P in the online phase, the intermedi-
ate point values Pi = ki2

w×i · P can be obtained from the
look-up table, and the scalar multiplication is reduced to
l successive additions, i.e., [k]P =

∑l−1
i=0 Pi , significantly

accelerating the process.
For the SM9_P256 curve, we select w = 8 , so

l = ⌈log2(p)/w⌉ = 32 . Each G1 point contains two Fq ele-
ments, taking 64 B storage. Therefore, the storage cost for
precomputation in G1 is 64 B× 32× (28 − 1) ≈ 0.498 MB .
Similarly, the elements in G2,GT takes 128 B, 384 B storage,
and the costs for storing their precomputation tables are
0.996 MB and 2.988 MB, respectively. Note that our method
is similar to Pan et al. (2017), but differs in the choice of the
window size w. We revised the choice of w such that the
precomputation table can be effectively loaded into GPU’s
L2 Cache for faster read access, while the choice of w in Pan
et al. (2017) yields a large precopmutation table that takes
hundreds of megabytes and can cause significant global
memory accessing delays.

Low‑level implementation
Optimizations. Below we outline several optimizations
applied at the hardware and the software level to reduce
the latency and improve the throughput of pairing opera-
tions. With GPU’s SIMT architecture, full throughput is
achieved when all threads in an execution unit (warp)
agrees on the same execution path. Therefore, the key is
to reduce the data-dependent divergence across threads
for maximum parallelization.

• PTX ISA. We implement arithmetic operations in
the prime field using the extended-precision integer
arithmetic instructions provided in CUDA’s PTX-
ISA (NVIDIA 2023). Specifically, we use instructions
like addc, subc, madc to implement multi-pre-
cision integer operations in the prime field, and uti-
lize the carry/borrow flags as masks for performing
divergence-free modular operations.

Page 12 of 18Xu et al. Cybersecurity (2024) 7:29

• Loop Unrolling. A powerful optimization strategy
on GPU is loop unrolling, which reduces condi-
tional branching and improves instruction’s through-
put. It can be achieved by prepending a #pragma
unroll macro before a loop, which is automatically
expanded during compilation. Note that the unroll-
ing of a loop must be carefully conducted, otherwise
it may incur high register pressure that slows down
the access to thread local variables. Therefore, we
investigated the resource usage of each algorithm and
chose to unroll operations in Fq , the Miller Loop and
the power of x in Fq12.

• Function Inlining. Function invocation on GPU
brings expensive overhead due to stack variable pass-
ing and code jumping, etc. Using the __forcein-
line__ macro, we force the compiler to inline
operations in Fp and other utility functions (e.g., data
copy, assignment, comparison), thereby removing
the penalties due to function invocations in low-level
operations.

In “Performance of SM9_P256 curve” section, we pre-
sent a comprehensive analysis of how these optimiza-
tions have helped in reducing the latency of our GPU
implementation.

Random Number Generation. We adopt the techniques
used in Dai et al. (2016), Sun et al. (2020b). Specifically,
we first load an initial seed from the host CPU (e.g., using
/dev/random), then load the seed to GPU and imple-
ment the Chacha20 DRNG (Mueller 2017) to derive ran-
dom numbers. The global (distinct) thread ID is used as
the counter of Chacha20 DRNG to enable the generation
of randoms in parallel (Table 2).

Performance evaluation
In this section, we first evaluate GAPS ’s performance
for SM9. We then evaluate the performance of the SM9_
P256 curve operations on GPU.

System configuration
We conduct the experiments on an Ubuntu 22.04 server,
equipped with a 16-core Intel Xeon CPU running at 2.5
GHz, 64 GB RAM and an RTX 3080 GPU (see Table 3).
Our GPU code is implemented with CUDA C++ and is
compiled using CUDA Toolkit 11.8 with flags -Xptxas
-allow-expensive-optimizations=true,
-O3. The CPU code is implemented using the RELIC
toolkit. In particular, we first configure it with
-DARITH=gmp -DFP_PRIME=256 -DWSIZE=64 to
use its GMP implementation of the 256-bit prime field
operations and set the word size to 64 bits, then com-
pile it using clang-14 with -O3 -funroll-loops
-fomit-frame-pointer -finline-small-
functions -march=native -mtune=native for
full optimizations.

Setup. We issue SM9 algorithm tasks to GAPS for eval-
uation. Specifically, during each run of the experiment,
we send (batch) requests of size N ∈ [20, 21, 22, . . . , 220]
to GAPS, then measure the processing latency (includ-
ing the time for resource allocation, memory transfer and
algorithm execution) of the requests in GAPS. For each
request size N, we repeat the experiment for 10 times to
obtain stable results.

Correctness. All SM9 implementations in GAPS have
been checked against the test vectors in the SM9 stand-
ard GM/T (2016b). Additionally, during each run of the
experiment, we check the correctness of GAPS ’s results.

Table 2 The peak performance of GAPS ’s GPU & CPU implementation of SM9

† For SM9-KA, MsgExch refers to an entity’s computation in Message Exchange , SKeyGen refers to an entity’s computation in
Session Key Generation+ Confirmation
‡ The average peak throughput of the repeated experiments and the results’ relative standard deviation

Scheme Algo. GAPS‑GPU GAPS‑CPU (1‑core)

T
‡ (op/s) L (ms) N (op) T

‡ (op/s) L (ms) N (op)

SM9-IBS KeyGen 2,038,070.59 ± 3.13% 8.04 16,384 4,508 ± 4.57% 0.22 1

Sign 248,239.58 ± 0.48% 131.5 32,768 997 ± 1.81% 1.00 1

Verify 88,024.53 ± 0.99% 372.3 32,768 326 ± 0.65% 3.06 1

SM9-IBE KeyGen 550,718.24 ± 1.46% 29.75 16,384 2,062 ± 2.94% 0.48 1

Encap 238,000.53 ± 2.63% 137.68 32,768 853 ± 1.46% 1.17 1

Decap 148,260.89 ± 0.11% 110.51 16,384 569 ± 0.44% 1.76 1

SM9-KA KeyGen 550,348.25 ± 0.93% 29.77 16,384 2,040 ± 2.51% 0.49 1

MsgExch† 1,137,014.70 ± 1.13% 28.82 32,768 2,778 ± 1.77% 0.36 1

SKeyGen† 77,996.80 ± 0.94% 420.12 32,768 259 ± 0.51% 3.86 1

Page 13 of 18Xu et al. Cybersecurity (2024) 7:29

Concretely: ① For SM9-IBS, we require that Verify
outputs 1 for all valid signatures. ② For SM9-IBE, we
require that the keys derived from Encap and Decap are
identical. ③ For SM9-KA, we require the produced ses-
sion keys are identical. These checks guarantee the cor-
rectness of GAPS.

Metrics. Two performance metrics are considered:
throughput and latency. Latency is the processing time
(including the time for resource allocation and memory
transfer) of a batch of requests, which is denoted with
the symbol L. Throughput is the number of requests pro-
cessed within a time unit and is denoted with the symbol
T. Given batch size N and its latency L, the throughput is
calculated with T = N/L.

Performance of SM9 algorithms
Throughput
Table 2 gives the peak throughput (Tmax) of GAPS imple-
mentations. For SM9-IBS, GAPS ’s GPU implementa-
tion is capable of generating 2,038,070 signing keys,

producing 248,239 message signatures or verifying
88,024 signatures per second. For SM9-IBE-KEM, GAPS
can generate 550,718 user keys, produce 238,001 KEM
ciphertexts or decapsulate 159,160 ciphertexts per sec-
ond. For SM9-KA, GAPS can generate 550,348 user keys,
generate 1,137,014 exchange messages and 77,996 session
keys per second. The difference between the through-
put of SM9 algorithms can be verified by our overhead
analysis in Table 1. For example, the primary overhead of
SM9-IBS’s key generation algorithm is the point multipli-
cation in G1 , which is approximately 4 times faster than a
point multiplication in G2 that is the primary overhead of
SM9-IBE/KA’s key generation. Also, as the Decap algo-
rithm of SM9-IBS-KEM only requires 1 pairing and 1
KDF2 operation, therefore its performance is significantly
better than SM9-IBS’s Verify , which requires 1 pairing, 1
point multiplication in G2 and 1 exponentiation in GT .

Through analyzing Fig. 3, we can learn how the size of
the batch input N affects GAPS ’s throughput on the GPU
platform. Take SM9-IBS.KeyGen as an example, its

Table 3 Hardware specifications

1 Price obtained in USD from Amazon on Mar. 4, 2023
2 Price obtained in USD from Ebay on Mar. 4, 2023

Spec. GPU NVIDIA RTX 3080

Core configuration 68 SMs, 8704 cores

Core frequency 1440 MHz - 1710 MHz

L2 Cache 5 MB

Global memory 12 GB (760 GB/s)

Compute capability 8.6

Monetary cost $1,099.991

Spec. GPU Intel Xeon Platinum 8269CY

Core configuration 16 cores / 32 threads

Core frequency 2.50 GHz

Cache size 35.75 MB

Monetary cost $1,086.002

Fig. 3 The performance of GAPS ’s GPU implementation of SM9 as the input size N grows

https://a.co/d/iGfTBF8
https://tinyurl.com/4rkmuhae

Page 14 of 18Xu et al. Cybersecurity (2024) 7:29

throughput first grows linearly with N, then reaches the
peak throughput when the number of batch inputs
N = 16, 384 . At this point, the requests are processed
with latency L = 8.04 ms , so the batch’s throughput can
be obtained through T = N/L = 2, 038, 070 op/s . The
first time an implementation reaches its peak throughput
also indicates the full utilization of GPU’s resources.
After that point, increasing the batch size N no longer
raises GPU’s throughput, but will make it fluctuate in a
certain range. To understand this, suppose we increase
the batch size to N + 1 , which will introduce an addi-
tional round of processing as only N requests can be
simultaneously processed, taking proportional time
α · Lk , α ∈ (0, 1) . Therefore, the throughput will fluctuate
in the range [Nk+1

(1+α)·Lk
,
Nk
Lk
] as N keeps growing. Similar

trend can be observed for other SM9 algorithms as
shown in Fig. 3.

Additionally, we benchmarked the throughput of GAPS
’s CPU implementation on a single core. As shown in
Table 2, it only takes GAPS-CPU 0.22/1.00/3.06 ms to
process one SM9-IBS key generation, signature gen-
eration and verification request, 0.48/1.17/1.76 ms to
process one SM9-IBE-KEM key generation, key encap-
sulation and decapsulate request, or 0.49/0.36/3.86 ms to
process one SM9-KA key generation, message exchange
and session key generation request. The results show
that GAPS-CPU can efficiently handle small number of
requests in its idle mode.

Execution Time Analysis. To find out which operation
is the most expensive, we further conduct a breakdown
analysis of GAPS-GPU’s execution time. We split an exe-
cution into three stages: resource allocation, memory
transfer and kernel execution, as illustrated in Fig. 4. Spe-
cifically, resource allocation spans a duration of 0.17∼
1.34 ms across varying input sizes, while memory trans-
fer between CPU & GPU ranges from 0.55∼7.85 ms.
Nevertheless, these two stages collectively account for
only 0.53%∼29.40% of the total execution time. Kernel
execution on GPU, which takes around 70.60∼99.46% of
the time, is still the most expensive stage in GAPS-GPU.

Finding the optimal scheduling threshold
According to “System architecture” section, GAPS relies
on a threshold value η for its task scheduling. To deter-
mine the optimal threshold η , we measure the latency of
GAPS ’s CPU and GPU implementation for processing
small amount of requests (i.e., N ∈ [1, 10, 20, · · · , 100]).
As shown in Fig. 5 the latency of GAPS-CPU grows
linearly, while the latency of GAPS-GPU stays almost
constant due to parallelization on the GPU platform.
Therefore, we select the first batch size Nt = 20 that sat-
isfies LCPU > LGPU as the threshold. Starting from this
point, processing N ≥ Nt requests with GPU becomes
more efficient than CPU.

Performance of SM9_P256 curve
In this section, we evaluate the performance of GAPS ’s
GPU implementation of the SM9_P256 curve. Our goal
is to verify the effectiveness of our optimization tech-
niques in “Implementation of GAPS ” section.

Throughput of curve operations. We benchmark
the performance of SM9_P256 curve operations on

Fig. 4 Execution time breakdown of GAPS ’s GPU implementation of SM9

Fig. 5 The latency of GAPS ’s GPU and CPU implementations
for small request sizes

Page 15 of 18Xu et al. Cybersecurity (2024) 7:29

GPU by issuing inputs of size N ∈ [20, 21, · · · , 216] . As
shown in Table 4, GAPS can compute 15.9k pairings,
2.6M/26.9M unknown/fixed point multiplications in G1 ,
633.4k/5.2M unknown/fixed point multiplications in G2 ,
and 313.8k/936.2k unknown/fixed scalar exponentiations

in GT . The results indicate that GAPS ’s GPU imple-
mentation of the SM9_P256 curve not only improves
the performance of the SM9 cryptography schemes,
but also shows huge potential in its application to many
pairing-based protocols (e.g., attribute-based encryp-
tion) afflicted by bottlenecks in elliptic curve and pairing
operations.

Latency of curve operations. In Table 5, we provide
the latencies of running the curve operations with a
single warp (32× 1 threads), which is the minimal
unit for thread scheduling on CUDA GPUs. As the
table shows, GAPS can evaluate an optimal ate pair-
ing on the SM9_P256 curve in 15.60 ms. By studying
its individual algorithms, we find that our optimiza-
tion methods in “Optimal ate pairing” section provides
1.09×, 1.16× speedups for the Miller Loop and the
Final Exponentiation. For the scalar multiplications
in G1,G2 , the GLV/GLS-based decomposition meth-
ods in “The case of unknown scalars” section provide
1.95×, 3.42× speedups over the basic binary-and-add
algorithm. We also implemented the windowed-NAF
(wNAF) algorithm on GPU, and found that its latency
becomes 0.61×, 0.60× worse than the basic imple-
mentation, as wNAF introduces more data-dependent
divergences. Finally, for the scalar exponentiation in
GT , we first evaluated the basic square-and-multiply
method with Granger-Scott’s fast squaring formula
(Granger and Scott 2010), and found that it is 1.21×
faster than the basic method. Nevertheless, our GLS-
based method is even faster, as it provides 3.83×
speedup over basic method. Overall, the optimiza-
tion techniques in “Optimal ate pairing” and “Scalar
multiplication and exponentiation” sections have suc-
cessfully reduced the latency of these operations to
milliseconds level on GPU.

Effectiveness of the optimization methods. To figure
out the effectiveness of our optimization techniques
in “Low-level implementation” section, we conduct
ablation studies on the SM9_P256 curve. Specifically,
we first reduce to a baseline implementation with-
out any optimizations in “Low-level implementation”

Table 4 The peak performance of the SM9_P256 curve
operations on GPU

† The average peak throughput obtained from repeated experiments and the
results’ relative standard deviation

Operation Peak throughput

T
† (op/s) L (ms) N (op)

Pairing 158,991.15 ± 0.14% 103.05 16,384

G1 PM 2,585,630.99 ± 0.50% 25.35 65,536

G1 fixed PM 26,870,530.82 ± 1.15% 0.61 16,384

G2 PM 633,402.68 ± 0.26% 25.87 16,384

G2 fixed PM 5,189,675.14 ± 0.46% 3.16 16,384

GT Exp. 313,821.32 ± 0.16% 52.40 65,536

GT fixed Exp. 936,094.84 ± 0.61% 70.01 65,536

Table 5 Comparison of different algorithms for SM9_P256
curve operations on GPU

Type Operation Latency Speedup

e Miller Loop (basic) 9.15 ms –

Miller Loop (Sec 4.2) 8.37 ms 1.09×

Final Exp. (basic) 6.37 ms –

Final Exp. (Sec 4.2) 5.45 ms 1.16×

Pairing 15.60 ms –

G1 Scalar Mul. (basic) 5.33 ms –

Scalar Mul. (wNAF) 8.72 ms 0.61×

Scalar Mul. (Sec 4.3) 2.73 ms 1.95×

G2 Scalar Mul. (basic) 12.12 ms –

Scalar Mul. (wNAF) 20.36 ms 0.60×

Scalar Mul. (Sec 4.3) 3.54 ms 3.42×

GT Scalar Exp. (basic) 36.78 ms –

Scalar Exp. (fast-sqr) 30.29 ms 1.21×

Scalar Exp. (Sec 4.3) 9.60 ms 3.83×

Table 6 The latencies (microseconds) for performing low-level operations on SM9_P256 curve on GPU

Optimization Fq Fq2 Fq6 Fq12 (GT) G1 G2

Add. Mul. Sqr. Mul. Sqr. Mul. Sqr. Mul. Sqr. Add. Dbl. Add. Dbl.

Original 3.26 94.46 39.97 254.30 148.80 1,399.34 921.63 3,929.60 3,113.22 1,003.32 367.19 3,315.69 1,334.51

+ PTX-ISA 2.1× 2.6× 2.3× 2.2× 2.0× 2.1× 2.1× 1.9× 2.0× 2.3× 2.3× 2.2× 2.3×

+ Unrolled loop 9.9× 8.4× 4.9× 7.0× 5.5× 5.3× 4.7× 5.1× 5.3× 6.8× 4.9× 6.3× 5.3×

+ Inline function 1.9× 2.1× 1.8× 2.2× 1.9× 2.4× 2.0× 2.2× 2.0× 2.1× 2.1× 2.1× 2.1×

Overall 39.5× 45.9× 20.3× 33.9× 20.9× 26.7× 19.7× 21.3× 21.2× 32.8× 23.7× 29.1× 25.6×

Result 0.08 2.08 1.99 4.67 4.11 53.25 42.83 178.04 142.60 30.60 15.23 77.25 40.90

Page 16 of 18Xu et al. Cybersecurity (2024) 7:29

section, then consecutively apply the optimizations
to observe their effectiveness. According to Table 6,
using PTX-ISA introduces 1.9×–2.6× speedups over
the baseline, while loop unrolling contributes most to
the speedups. The final optimized result shows 19.7×–
45.9× speeupds over the baseline, performing low-level
operations at the microseconds level.

Comparison with related work
We compare with three types of related works (Table 7).
The first type of works optimizes the performance of
bilinear pairing on particular platforms. Among them,
Xie et al. (2022) reported the highest pairing through-
put (10,000 op/s) for the SM9_P256 curve, while Aranha
et al. (2011) reported the fastest CPU implementation
(1,923 op/s) of the BN254 pairing. Compared with these
works, GAPS-GPU’s implementation can compute
158,991 pairings per second, which is at least 15.9× faster
than previous works.

The second type of works implements other elliptic
curve or pairing based algorithms on GPU. Pan et al.
(2017) introduced a GPU-accelerated signature server
and reported over millions of operations per second for
ECDSA. Although their results are superior, it’s impor-
tant to know that ECDSA is based on non-pairing curves
and thereby their work cannot be applied to SM9. Hu
et al. (2023) proposed a GPU-based implementation of
the identity-based signature scheme specified in IEEE
(2013) that can generate 322,773 signatures or verify
40,643 signatures per second. Compared to them, GAPS

focuses on the implementation of the entire SM9 cipher
suites. It reports the highest throughput (158,991 op/s)
for 256-bit pairings and can verify 88,025 SM9 signatures
per second, outperforming existing implementations by
2.0×–3.6×.

The third type of works implements the entire SM9
cipher suites. GmSSL (2023) is the most popular open-
source implementation. We compile GmSSL and run it
locally in our environment. The results in Table 7 show
that GmSSL can only process 19–65 key generation
requests and a few signature generation & encryption
requests per second. Another known implementation of
SM9 is the commercial hardware security module (HSM)
by OLYM (2022). According to its document, SJJ1631-
HSM can handle 90,000 key generation requests, 27,000
signature generation requests and 30,000 encryption
requests per second. Nevertheless, GAPS ’s throughput is
even higher, as GAPS-GPU outperforms them by at least
6.1×, showing the efficacy of GAPS ’s design.

Discussion and future work
Security of GAPS . As a dedicated cryptography service,
GAPS offers higher security and robustness guarantees.
First, GAPS operates independently of the server’s com-
putational resources, ensuring the resilience of the sys-
tem against potential Denial-of-Service (DoS) attacks.
This also facilitates the service’s scalable deployment, as
more computing resources can be dynamically allocated
to adapt to the system’s workload. Moreover, the iso-
lated nature of CaaS offers an additional layer of defense

Table 7 Performance comparison with related work

Scheme Platform Algorithm(s) Curve throughput (op/s)

 Wang et al. (2019) Xilinx FPGA Virtex-7 Pairing SM9_P256 291

 Xie et al. (2022) ASIC 90 nm Pairing SM9_P256 10,000

 Hu et al. (2022) Intel Core i7-6500U Pairing SM9_P256 295

 Aranha et al. (2011) AMD Phenom II X4 940 Pairing BN254 1,923

 Cheung et al. (2011) Xilinx FPGA Virtex-6 Pairing BN254 1,745

 Pu and Liu (2013) GTX 680 Pairing BN254 3351

 Pan et al. (2017) GTX 780 Ti ECDSA-{Sign,Verify} NIST_P256 8,710,000 / 929,000

 Hu et al. (2023) GTX 3060 Pairing BN254 43,856

IBS-{Sign,Verify} 322,773 / 40,643

 GmSSL (2023) Intel Xeon Platinum 8269CY Pairing SM9_P256 8

SM9-IBS 65 / 5 / 3

SM9-IBE 20 / 4 / 4

SM9-KA 19 / 29 / 2

 OLYM (2022) SJJ1631-HSM SM9-{KeyGen,Encap,Sign} SM9_P256 90,000 / 27,000 / 30,000

GAPS (ours) RTX 3080 Pairing SM9_P256 158,991

SM9-IBS 2,038,071 / 248,240 / 88,025

SM9-IBE 550,718 / 238,002 / 148,262

SM9-KA 550,348 / 1,137,015 / 77,997

Page 17 of 18Xu et al. Cybersecurity (2024) 7:29

against external threats, as the publicly exposed server
no longer holds sensitive materials like private keys. This
mitigates the security risks of many server-side vulner-
abilities (e.g., OpenSSL Heartbleed Synopsys, Inc (2016))
and side-channel attacks like Spectre (Kocher et al. 2019)
and Meltdown (Lipp et al. 2018). Finally, due to the appli-
cation of the sign-aligned column recoding (“The case of
unknown scalars” section), the multiplication and expo-
nentiation with secret scalars are constant-time, pro-
tecting the implementations from side-channel timing
attacks. In summary, GAPS is a secure and robust solu-
tion for SM9 in many large-scale applications.

Future extension of GAPS. Currently, GAPS only imple-
ments the SM9_P256 and the identity-based crypto-
graphic schemes in SM9. It can be seamlessly extended
to support other pairing-friendly curves in the BN fam-
ily (Definition 1), or slightly modified to support other
pairing curve families (e.g., Barreto et al. 2002). In the
future, GAPS can be migrated to accelerate other pairing-
based cryptography protocols such as attribute-based
encryption (Sahai and Waters 2005), searchable encryp-
tion (Boneh et al. 2004) and zero knowledge proof sys-
tems (Groth 2016).

Conclusion
In this paper, we propose GAPS, a high-performance
Cryptography as a Service for SM9. Combined with
multiple optimization techniques, GAPS harnesses a
heterogeneous computing architecture that dynami-
cally balances the workload between a low-latency CPU
implementation and a high-throughput GPU implemen-
tation, scaling seamlessly across sporadic inputs and
batch inputs. Our evaluation shows that GAPS achieves
a scalable performance, making it a practical solution for
SM9 in large-scale applications.

Acknowledgements
The authors would like to thank the anonymous reviewers for their helpful
comments.

Author contributions
WX and HM participated in the system design and drafted the manuscript.
RZ participated in problem discussions and refinement of the manuscript.
WX implemented and benchmarked the system. All authors have read and
approved the submission of this manuscript.

Funding
This work is supported by National Natural Science Foundation of China (Nos.
62172411, 62172404, 61972094, and 62202458).

Availability of data and materials
The data used in this paper is available from the authors on a reasonable
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 30 November 2023 Accepted: 30 January 2024

References
Al-Riyami SS, Paterson KG (2003) Certificateless Public Key Cryptography. In:

ASIACRYPT, Lecture Notes in Computer Science, vol 2894. Springer, pp
452–473

Aranha DF, Gouvêa CPL, Markmann T, et al (2014) The RELIC toolkit. https://
github. com/ relic- toolk it/ relic

Aranha DF, Karabina K, Longa P, et al (2011) Faster Explicit Formulas for Com-
puting Pairings over Ordinary Curves. In: EUROCRYPT, Lecture Notes in
Computer Science, vol 6632. Springer, pp 48–68

Barreto PSLM, Lynn B, Scott M (2002) Constructing elliptic curves with pre-
scribed embedding degrees. In: SCN, lecture notes in computer science,
vol 2576. Springer, pp 257–267

Barreto PSLM, Naehrig M (2005) Pairing-Friendly Elliptic Curves of Prime Order.
In: Selected Areas in Cryptography, Lecture Notes in Computer Science,
vol 3897. Springer, pp 319–331

Benger N, Scott M (2010) Constructing tower extensions of finite fields for
implementation of pairing-based cryptography. In: WAIFI, Lecture Notes
in Computer Science, vol 6087. Springer, pp 180–195

Beuchat J, González-Díaz JE, Mitsunari S, et al (2010) High-speed software
implementation of the optimal ate pairing over Barreto–Naehrig curves.
In: Pairing, lecture notes in computer science, vol 6487. Springer, pp
21–39

Boneh D, Di Crescenzo G, Ostrovsky R, et al (2004) Public key encryption
with keyword search. In: Advances in cryptology-EUROCRYPT 2004:
international conference on the theory and applications of cryptographic
techniques, Interlaken, Switzerland, May 2-6, 2004. Proceedings 23,
Springer, pp 506–522

Cheng Z (2017) The SM9 cryptographic schemes. IACR Cryptol. ePrint Arch.
2017/117

Cheung RCC, Duquesne S, Fan J, et al (2011) FPGA implementation of pairings
using residue number system and lazy reduction. In: CHES, lecture notes
in computer science, vol 6917. Springer, pp 421–441

Ciet M, Joye M, Lauter KE, et al (2003) Trading inversions for multiplications in
elliptic curve cryptography. IACR Cryptol. ePrint Arch. 2003/257

Cook DL, Ioannidis J, Keromytis AD, et al (2005) Cryptographics: secret key
cryptography using graphics cards. In: CT-RSA, lecture notes in computer
science, vol 3376. Springer, pp 334–350

Costello C, Lange T, Naehrig M (2010) Faster pairing computations on curves
with high-degree twists. In: Public Key cryptography, lecture notes in
computer science, vol 6056. Springer, pp 224–242

Dai W, Sunar B, Schanck JM, et al (2016) NTRU modular lattice signature
scheme on CUDA GPUs. In: HPCS. IEEE, pp 501–508

Entrust (2023) Hardware security modules (HSMs). https:// www. entru st. com/
digit al- secur ity/ hsm

Faz-Hernández A, Longa P, Sánchez AH (2014) Efficient and secure algorithms
for glv-based scalar multiplication and their implementation on GLV-GLS
curves. In: CT-RSA, lecture notes in computer science, vol 8366. Springer,
pp 1–27

Galbraith SD, Lin X, Scott M (2009) Endomorphisms for faster elliptic curve
cryptography on a large class of curves. In: EUROCRYPT, Lecture notes in
computer science, vol 5479. Springer, pp 518–535

Gallant RP, Lambert RJ, Vanstone SA (2001) Faster point multiplication on
elliptic curves with efficient endomorphisms. In: CRYPTO, lecture notes in
computer science, vol 2139. Springer, pp 190–200

GM/T (2012) 0004-2012 SM3 Cryptogrpahic Hash Algorithm
GM/T (2016a) 0044.1-2016 Identity-Based Cryptographic Algorithms SM9 -

Part 1. General
GM/T (2016b) 0044.1-2016 identity-based cryptographic algorithms SM9 - Part

5. Parameter Definition
GmSSL (2023) GmSSL - An open source cryptographic toolkit. https:// github.

com/ guanz hi/ GmSSL, accessed: 2023-11-06
Granger R, Scott M (2010) Faster squaring in the cyclotomic subgroup of

sixth degree extensions. In: Public Key cryptography, lecture notes in
computer science, vol 6056. Springer, pp 209–223

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://www.entrust.com/digital-security/hsm
https://www.entrust.com/digital-security/hsm
https://github.com/guanzhi/GmSSL
https://github.com/guanzhi/GmSSL

Page 18 of 18Xu et al. Cybersecurity (2024) 7:29

Groth J (2016) On the size of pairing-based non-interactive arguments. In:
Fischlin M, Coron JS (eds) Advances in Cryptology - EUROCRYPT 2016.
Springer, Berlin, pp 305–326

Hu X, He D, Peng C et al (2022) A fast implementation of Rate pairing in SM9
algorithm. J Cryptol Res 9(5):936–948

Hu X, He D, Luo M et al (2023) High-performance implementation of the
identity-based signature scheme in IEEE P1363 on GPU. ACM Trans
Embed Comput Syst 22(2):25:1-25:35

IEEE (2013) 1363.3-2013 - IEEE Standard for Identity-based cryptographic
techniques using pairings

ISO/IEC (2018) ISO/IEC 14888-3:2018 - IT Security Techniques - Digital Signa-
tures with Appendix - Part 3: discrete logarithm based mechanisms

ISO/IEC (2021) ISO/IEC 18033-5:2021 - Information technology - Security tech-
niques - Encryption algorithms - Part 5: identity-based ciphers

Jang K, Han S, Han S, et al (2011) SSLShader: Cheap SSL acceleration with com-
modity processors. In: NSDI. USENIX Association

Jing S, Yang X, Feng Y, et al (2022) Hardware implementation of SM9 fast
algorithm based on FPGA. In: Proceedings of the 2nd international con-
ference on internet, education and information technology (IEIT 2022).
Atlantis Press, pp 797–803

Kocher P, Horn J, Fogh A, et al (2019) Spectre attacks: exploiting speculative
execution. In: 40th IEEE symposium on security and privacy (S &P’19)

Lai J, Huang X, He D et al (2022) Provably secure online/offline identity-based
signature scheme based on SM9. Comput J 65(7):1692–1701

Lipp M, Schwarz M, Gruss D, et al (2018) Meltdown: reading kernel memory
from user space. In: 27th USENIX security symposium (USENIX Security
18)

Mueller S (2017) ChaCha20 DRNG. https:// www. chron ox. de/ chach a20_ drng.
html

NVIDIA (2023) CUDA PTX-ISA. https:// docs. nvidia. com/ cuda/ paral lel- thread-
execu tion

OLYM (2022) GuoMi SJJ1631 Hardware Security Module (HSM). https:// new.
myibc. net/ bsmmj

Pan W, Zheng F, Zhao Y et al (2017) An Efficient Elliptic Curve Cryptography
Signature Server With GPU Acceleration. IEEE Trans Inf Forensics Secur
12(1):111–122

Pu S, Liu J (2013) EAGL: an elliptic curve arithmetic GPU-based library for
bilinear pairing. In: Pairing, lecture notes in computer science, vol 8365.
Springer, pp 1–19

RFC (2007) RFC 5091: Identity-Based Cryptography Standard (IBCS) #1:
supersingular curve implementations of the BF and BB1 cryptosystems.
https:// www. rfc- editor. org/ info/ rfc50 91

Sahai A, Waters B (2005) Fuzzy identity-based encryption. In: EUROCRYPT,
lecture notes in computer science, vol 3494. Springer, pp 457–473

Scott M, Benger N, Charlemagne M, et al (2009) On the final exponentiation
for calculating pairings on ordinary elliptic curves. In: Pairing, lecture
notes in computer science, vol 5671. Springer, pp 78–88

Shamir A (1984) Identity-based cryptosystems and signature schemes. In:
CRYPTO, lecture notes in computer science, vol 196. Springer, pp 47–53

Shigeo M (2015) MCL: a fast pairing-based cryptography library. https:// github.
com/ herumi/ mcl

Sun S, Ma H, Zhang R et al (2020a) Server-aided immediate and robust user
revocation mechanism for SM9. Cybersecur 3(1):12

Sun S, Zhang R, Ma H (2020b) Efficient parallelism of post-quantum signature
scheme SPHINCS. IEEE Trans Parallel Distrib Syst 31(11):2542–2555

Synopsys, Inc (2016) The heartbleed bug (cve-2014-0160). https:// heart bleed.
com/

Szerwinski R, Güneysu T (2008) Exploiting the power of gpus for asymmetric
cryptography. In: CHES, lecture notes in computer science, vol 5154.
Springer, pp 79–99

Vercauteren F (2008) Optimal pairings. Cryptol. ePrint Arch. 2008/96
Wang T, Guo W, Wei J (2019) Highly-parallel hardware implementation of

optimal ate pairing over Barreto–Naehrig curves. Integr 64:13–21
Wei R, Zheng F, Gao L, et al (2021) Heterogeneous-PAKE: bridging the gap

between PAKE protocols and their real-world deployment. In: ACSAC.
ACM, pp 76–90

Xiaomi (2023) Xiaomi 2023 Q2 Adjusted Net Profit Surges 147 Billion. https://
www. mi. com/ global/ disco ver/ artic le? id= 3008

Xie Y, Wang B, Zhang L et al (2022) A high-performance processor for optimal
ate pairing computation over Barreto–Naehrig curves. IET Circuits Dev
Syst 16(5):427–436

Zhang R, Zou H, Zhang C, et al (2020) Distributed key generation for SM9-
based systems. In: Inscrypt, lecture notes in computer science, vol 12612.
Springer, pp 113–129

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.chronox.de/chacha20_drng.html
https://www.chronox.de/chacha20_drng.html
https://docs.nvidia.com/cuda/parallel-thread-execution
https://docs.nvidia.com/cuda/parallel-thread-execution
https://new.myibc.net/bsmmj
https://new.myibc.net/bsmmj
https://www.rfc-editor.org/info/rfc5091
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://heartbleed.com/
https://heartbleed.com/
https://www.mi.com/global/discover/article?id=3008
https://www.mi.com/global/discover/article?id=3008

	GAPS: GPU-accelerated processing service for SM9
	Abstract
	Introduction
	Motivating scenario
	Challenges and solutions
	Related work

	Background
	Notations
	Bilinear pairing
	Algorithms in SM9
	GPGPU and CUDA

	Design of GAPS
	System architecture
	Concrete optimization ideas

	Implementation of GAPS
	Element representations
	Optimal ate pairing
	Scalar multiplication and exponentiation
	The case of unknown scalars
	The case of known scalars

	Low-level implementation

	Performance evaluation
	System configuration
	Performance of SM9 algorithms
	Throughput
	Finding the optimal scheduling threshold

	Performance of SM9_P256 curve
	Comparison with related work

	Discussion and future work
	Conclusion
	Acknowledgements
	References

