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Abstract 

Most of the adversarial attacks against speech recognition systems focus on specific adversarial perturbations, which 
are generated by adversaries for each normal example to achieve the attack. Universal adversarial perturbations 
(UAPs), which are independent of the examples, have recently received wide attention for their enhanced real-time 
applicability and expanded threat range. However, most of the UAP research concentrates on the image domain, 
and less on speech. In this paper, we propose a staged perturbation generation method that constructs Commander-
UAP, which achieves a high success rate of universal adversarial attack against speech recognition models. Moreover, 
we apply some methods from model training to improve the generalization in attack and we control the impercepti-
bility of the perturbation in both time and frequency domains. In specific scenarios, CommanderUAP can also transfer 
attack some commercial speech recognition APIs.
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Introduction
Speech is an efficient and rich information carrier, serv-
ing as a key mode of human–machine interaction. In 
recent years, related technologies such as automatic 
speech recognition (ASR) have attracted attention from 
academic and industrial communities. Amodei et  al. 
(2016) have achieved accuracy rates beyond human levels 
in specific tasks. Intelligent voice devices or assistant ser-
vice software based on ASR have been deeply integrated 
into our daily life, such as Google Assistant, Microsoft 
Cortana, Apple Siri, and iFLYTEK. As an important tech-
nology in deep learning, ASR will have wider support and 
application in the future.

Deep Neural Networks (DNN) have rapidly become 
popular in many tasks due to their powerful learning 
representation capabilities. At the same time, the secu-
rity issues inherent in the model have also become a 
research hotspot, such as adversarial attacks, data poi-
soning attacks, and model stealing attacks. Adversarial 
attack is a type of attack during the model inference, 
which is defined as the adversary add crafted perturba-
tion to the normal example to generate an adversarial 
example (AE). AE is difficult for humans to perceive as 
abnormal but will cheat the target model to output incor-
rect or specified inference results. The concept of AE 
was first proposed in Szegedy et  al. (2013) for the task 
of handwritten digit recognition, and most of the subse-
quent work focused on images. Other fields such as lan-
guage processing and ASR have also emerged some novel 
AE generation methods, further revealing the security 
issues of machine learning. The existence of adversarial 
attacks poses a threat to the development and applica-
tion of machine learning, casting a shadow over it. Ilyas 
et al. (2019) pointed out that adversarial attacks are not 
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a problem that can be solved, but a flaw inherent in the 
model. Studying adversarial attacks is significant as it 
helps us enhance defensive measures and gain a deeper 
understanding of machine learning.

Although there are numerous studies on adversarial 
attacks in the field of speech recognition, research on 
universal attacks remains limited. Common adversarial 
attack methods against ASR involve generating a small 
perturbation and adding it to a normal audio example, 
causing the target model or other model to recognize 
incorrect text. Typically, this perturbation is generated 
based on a single example and only affects that example. 
We refer to this perturbation as a specific adversarial per-
turbation (SAP). Currently, the majority of work in this 
area is concentrated on SAP (Carlini and Wagner 2018; 
Qin et al. 2019; Yuan et al. 2018; Chen et al. 2020; Khare 
et  al. 2018; Alzantot et  al. 2018; Du et  al. 2020; Taori 
et  al. 2019). In contrast, universal adversarial perturba-
tion (UAP) is more destructive, which is audio-agnostic, 
meaning it has a high attack success rate when added 
to any audio example. However, due to the require-
ment of simultaneously affecting multiple audios, exist-
ing methods struggle to maintain high success rates and 
imperceptibility under such strict constraints. Therefore, 
there is little research on UAP in ASR and each has its 
limitations (Neekhara et  al. 2019; Zong et  al. 2021; Lu 
et  al. 2021; Guo et  al. 2022). Furthermore, several stud-
ies concentrate on UAP attacks in other speech-related 
domains, such as speaker recognition (Li et  al. 2020b; 
Xie et al. 2021b), speech command classification (Li et al. 
2020b; Vadillo and Santana 2019; Abdoli et al. 2019), and 
environmental sound classification (Xie et al. 2021b).

This paper proposes a targeted UAP generation method 
that can launch attacks with a high success rate and great 
imperceptibility in both online and physical worlds. 
Our method will generate a CommanderUAP according 
to the target command, achieving the effect of deceiv-
ing the ASR model on a large number of normal audio 
examples. The process of constructing CommanderUAP 
adopts a two-stage generation method, with different 
stages having different purposes. In addition, we have 
applied some methods used in normal DNN training to 
optimize the attack effect. Experimental results show that 
the online attack constructed for 10 commands achieved 
a maximum of 84.0% and an average of 64.6% attack suc-
cess rate. The average attack success rate in the physical 
world is 50.4%. In terms of perturbation imperceptibility, 
we control from both the time domain and the frequency 
domain. According to results from a human hearing per-
ceptual survey, 98.8% of the auditory surveys were unable 
to perceive the presence of commands in Commander-
UAP by listeners. Finally, after relaxing the restrictions, 
CommanderUAP can achieve different degrees of attack 

success rates on commercial APIs such as iFLYTEK and 
Baidu.

Contributions:

• New generation algorithm We designed a phased 
perturbation generation algorithm, that is, first elimi-
nate the original semantics of normal examples, and 
then construct meaningful attacks. In addition, we 
summarized the control of perturbations in other 
papers and proposed a new method to improve 
perturbation imperceptibility from both the time 
domain and frequency domain.

• Improved training methods We linked the gen-
eration process of UAP with the training process of 
normal DNN, which provides a reference for future 
related research.

• Transfer attack on commercial APIs To our knowl-
edge, we are the first to verify the attack effect of tar-
geted UAP on commercial ASR APIs, although this 
requires sacrificing a certain degree of auditory per-
ceptibility.

Background
Adversarial attacks can be classified according to vari-
ous criteria. One criterion is the desired outcome of the 
attack: whether it aims to induce a specific output from 
the target model (targeted attack) or any output other 
than the correct one (untargeted attack). Another cri-
terion is the level of access to the target model: whether 
the adversary requires the model’s parameters or archi-
tecture (white-box attack), partial information about the 
model (grey-box attack), or no information at all (black-
box attack). And as said before, in terms of whether the 
perturbations can affect multiple examples simultane-
ously, we categorize adversarial attacks into SAP attacks 
and UAP attacks. In this section, we review the problem 
definitions and existing advances of SAP and UAP attacks 
on ASR, and we present the threat model and basic con-
cepts of CommanderUAP.

Problem formulation
The definitions of SAP and UAP for targeted attacks are 
different. Given an audio x0 selected from the dataset 
D, the ASR model f : Rd → T  outputs the recognition 
result with the highest prior probability, expressed as 
f (x0) = “what is the weather” , where x0 ∈ D ∈ R

d . The 
SAP generation method S : Rd → R

d generates a cor-
responding perturbation δ for each normal audio, based 
on the target command chosen by the adversary, such 
that the model f misclassifies the perturbed audio as the 
target command. This perturbation typically needs to 
satisfy a p-norm constraint, i.e., ||δ||p < ε . For instance, 
f (x∗0) = “turn off the light” , where x0

∗ = x0 + δ0 , and 
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δ0 = S(x0) . To achieve generality, the UAP generation 
method U : Rd → R

d trains an audio-agnostic pertur-
bation µ on multiple audio examples xm∼n , which can be 
added to most normal audio and leads to misrecognition 
by f as the target statement. Formally, for a given xi ∈ D , 
f (x∗i ) = “turn off the light” , where x∗i = xi + µ , and 
µ = U(xm∼n) . To distinguish, we use δ and µ to represent 
SAP and UAP respectively, in fact, they both represent 
the perturbations added to the audio by the adversary. 
In this paper, the generation of CommanderUAP can be 
simply expressed as:

where D represents the distribution of normal examples 
x, µ denotes the resulting CommanderUAP, C is the indi-
cator function, t is the target command specified by the 
adversary, p represents the norm type (such as L1, L2, 
or L ∞ ), and ε is the upper constraint on the norm value. 
In summary, our objective is to train a universal pertur-
bation µ that is acoustically imperceptible, so that the 
model will output the target command for most audio 
examples with µ added to them.

Related works
Specific adversarial perturbation The field of SAP 
attacks has been extensively studied, with the most diver-
sified methods. Carlini and Wagner (2018) introduced 
an efficient adversarial attack for ASR by designing a 
loss function using Connectionist Temporal Classifica-
tion (CTC) loss, achieving nearly 100% attack success 
rate against DeepSpeech (Amodei et al. 2016). Qin et al. 
(2019) utilized psychoacoustic masking effects to hide 
perturbations within the imperceptible range of human 
hearing while successfully attacking the Lingvo model 
(Shen et  al. 2019). CommanderSong, proposed by Yuan 
et  al. (2018), employed music segments as carriers and 
achieved a nearly 100% attack success rate against the 
Kaldi toolkit (Povey et al. 2011). It was also the first SAP 
attack method to demonstrate effectiveness in the physi-
cal world. Chen et  al. (2020) proposed a method called 
Devil’s Whisper, a black-box transfer attack on multiple 
commercial APIs and Intelligent Voice Control (IVC) 
devices, using substitute models. Other black-box attack 
methods, such as gradient estimation (Taori et al. 2019), 
genetic algorithms (Alzantot et al. 2018; Khare et al. 2018; 
Du et  al. 2020), have also achieved high attack success 
rates. Despite the unique algorithms and applicable sce-
narios of these SAP methods, they all generate a one-to-
one adversarial perturbation corresponding to a specific 
input audio. Furthermore, most methods assume that the 

(1)
argmax

µ
x∈D

C(f (x + µ) = t)

subject to �µ�p ≤ ε

adversary has prior knowledge of the user’s input audio 
to the model or API, whereas, in practical scenarios, the 
user’s input is often unknown. Consequently, SAP meth-
ods often lack real-time performance and generality in 
practical deployments.

Universal adversarial perturbation Most UAP 
research in ASR lacks effective trade-offs between success 
rate and imperceptibility and rarely considers the attack 
scenarios of UAP transferring to non-target models. The 
earliest UAP attack was proposed in image recognition 
(Moosavi-Dezfooli et al. 2017). Subsequently, many UAP 
studies emerged in the image field (Zhang et  al. 2021). 
Neekhara et al. (2019) first proposed an untargeted UAP 
attack against the ASR model DeepSpeech. Untargeted 
attacks are less threatening and enlightening than tar-
geted attacks, especially in ASR. In addition, the authors 
also verified the attack performance of their UAP when 
transferring to WaveNet. Zong et al. (2021) successfully 
implemented a targeted UAP attack against DeepSpeech. 
The author’s generation method was divided into two 
stages: in the first stage, the perturbation value was not 
penalized, and the UAP obtained in this stage achieved 
a success rate of about 99% on five commands, but the 
imperceptibility was very poor; the second phase pun-
ished the perturbation maximum, which effectively 
improved the imperceptibility, but the average success 
rate dropped to 54.21%. Lu et  al. (2021) proposed two 
types of UAPs: additive perturbation and prefix perturba-
tion. They focused on exploring the robustness of end-to-
end models when facing UAPs. The results showed that 
the LAS model had an attack success rate of over 99% for 
both types of UAPs; the RNN-T model only showed some 
low robustness to prefix perturbation, with an attack suc-
cess rate of about 40%; and the CTC model was robust to 
both types of UAPs, with an attack success rate of almost 
0%. The article only used empty sentences and “thank 
you” as target commands. In addition, the authors did not 
impose any restrictions on the perturbation throughout 
the experiment. The above works are the basis of speech 
recognition UAP research, which shows different degrees 
of attack capabilities in specific scenarios, but they have 
some shortcomings in terms of threat or imperceptibility.

Li et  al. (2020b) and Guo et  al. (2022) are the latest 
developments related to UAP in ASR. The target model 
of Li et al. (2020b) was speaker recognition model X-vec-
tors and lightweight speech command recognition model 
Speech Command. The authors generated subsecond 
time-independent targeted UAPs that could work in the 
physical world. We concentrated on their simple attempt 
to attack the DeepSpeech. The experimental results 
showed that their UAPs were hard to penetrate to distant 
speech inputs. Guo et al. (2022) trained SpecPatch on the 
segmented phoneme level, achieving good generality and 
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time independence. The method inserts silent frames to 
disrupt the original user semantics in normal audio. The 
experimental results showed that SpecPatch achieved 
online white-box attack success rates of over 90% on 10 
commands. Like other targeted works, Guo et al. (2022) 
did not explore the attack effect of SpecPatch when trans-
ferring to other models or commercial APIs.

Threat model
In this paper, we define the adversary’s goal as generating 
concealed UAPs and deceiving the ASR model or com-
mercial API service to output a specified target command 
on most normal audios. The adversary achieves this by 
embedding pre-generated UAPs into the user’s normal 
audio input without knowledge of the specific audio. We 
assume that the adversary can arbitrarily specify the tar-
get command, without being limited by the length of the 
target command or the original audio information.

The target model, i.e., Povey et al. (2011), is a white-box 
to the adversary. This implies that the adversary has all 
the knowledge about this model such as model structure 
and parameters, etc., so the adversary can perform oper-
ations such as extracting intermediate results, repeatedly 
modifying perturbations in the input, and adding con-
straints on perturbations, which are common assump-
tions and methods in other adversarial attack methods 
(Neekhara et al. 2019; Zong et al. 2021; Lu et al. 2021; Li 
et  al. 2020b; Guo et  al. 2022; Carlini and Wagner 2018; 
Qin et al. 2019; Yuan et al. 2018; Alzantot et al. 2018).

Other models, such as speech recognition APIs pro-
vided by commercial companies such as iFLYTEK 
(https:// www. iso. org/ stand ard/ 34222. html), Alibaba 
(https:// www. aliba baclo ud. com/ zh/ produ ct/ intel ligent- 
speech- inter action), Baidu (https:// ai. baidu. com/ tech/ 
speech), and Tencent (https:// cloud. tence nt. com/ docum 
ent/  produ ct/ 1093), are black-box themselves. Both 
adversaries and users can only use them by sending audio 
and getting recognition results. Although adversaries 
only have access rights to such other models, Yuan et al. 
(2018), Chen et  al. (2020), Xie et  al. (2021a), Neekhara 
et al. (2019) rely on the transferability of AEs to achieve 
attacks on black-box models.

In addition, we assume that the adversary can launch 
attacks in the physical world by means of playing 
through speakers and inputting through microphones. 

The specific settings will be described in the subsequent 
experimental process.

Target model
CommanderUAP is a further exploration based on (Yuan 
et  al. 2018), mainly for a universal adversarial attack 
against the open source speech recognition toolkit Kaldi. 
Kaldi is one of the most popular high-accuracy ASR plat-
forms, with 12.6k stars and 5.2k forks on GitHub. Fig-
ure 1 illustrates the workflow of Kaldi. Initially, the audio 
undergoes preprocessing such as pre-emphasis, framing, 
and windowing. Relevant features are then extracted, 
with Mel Frequency Cepstrum Coefficients (MFCC) 
being the chosen method in this case. Next, the acous-
tic model takes the MFCC features of the audio as input 
and computes the corresponding Hidden Markov Model 
(HMM) states for each frame of the audio data. These 
states are then mapped to the corresponding phoneme 
states, ultimately yielding a phoneme identifier sequence. 
The language model computes the probability of the 
text corresponding to the phoneme identifier sequence 
appearing in the corpus. By integrating the computations 
of multiple parts, Kaldi produces the recognized text. 
Currently, popular end-to-end ASR models (Amodei 
et al. 2016; Graves and Jaitly 2014; Battenberg et al. 2017) 
no longer explicitly separate the acoustic model and lan-
guage model components.

Specifically, we select the ASpIRE Chain Model from 
Kaldi as our target model. ASpIRE utilizes an HMM-DNN 
acoustic model, where the DNN takes MFCC features as 
input and computes the posterior probability matrix M . 
Each element Mij(1 < i < n, 1 < j < k) represents the 
posterior probability that the i-th frame of MFCC features 
belongs to the j-th phoneme state. Phoneme states are rep-
resented by posterior density function identifiers known 
as pdf-ids. The range of i depends on the number of fea-
ture groups in the MFCC features, which is determined 
by the total number of frames. The range of j is the num-
ber of all phoneme states, i.e., the total number of pdf-ids, 
determined by the granularity set during model training. 
By extracting the maximum value from each row of M , we 
obtain the pdf-id sequence m . The entire process of fea-
ture extraction and DNN forward calculation for audio x 
is represented by g(x), so g(x) = m = (m1,m2, . . . ,mn) , 
where mi = arg maxj Mi,j . The computation process of 
g(x) is differentiable. m is the most likely pdf-id sequence 

Fig. 1 The workflow of Kaldi

https://www.iso.org/standard/34222.html
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https://ai.baidu.com/tech/speech
https://ai.baidu.com/tech/speech
https://cloud.tencent.com/document/%20product/1093
https://cloud.tencent.com/document/%20product/1093
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corresponding to the audio x, and by further transforma-
tion, we can obtain the phoneme state sequence. Sub-
sequently, the phoneme state sequence is merged into a 
phoneme sequence by other components of the HMM 
and language model, leading to the inference of the corre-
sponding text. In summary, the pdf-id sequence outputted 
by the DNN serves as a crucial intermediate feature in the 
entire speech recognition process. Therefore, it is a feasible 
method to construct AEs by modifying the original audio 
data from the perspective of the pdf-id sequence.

Pdf‑id sequence matching
The pdf-id sequence matching algorithm is the core 
method of Yuan et  al. (2018) to launch attacks on Kaldi. 
The authors initially refactored a large number of shell 
scripts and C++ code into Python and then proposed the 
pdf-id sequence matching algorithm to construct AEs. 
Specifically, the authors extract MFCC features from the 
perturbed audio and the target command audio (obtained 
through Text-to-Speech (TTS)), input them into Kaldi’s 
DNN, and obtain the corresponding pdf-id sequences 
for each. Then, the authors utilize a custom loss function 
Eq.  2 to describe the difference between the two pdf-id 
sequences:

where the term g(x + δ) represents the pdf-id sequence 
associated with an audio segment x that has been added 
by a perturbation δ . The term b represents the pdf-id 
sequence that corresponds to a pre-selected target com-
mand, which is called the optimization reference target 
in the subsequent context. The objective is to iteratively 
calculate the Lossnet and backpropagates it to the distor-
tion term δ for gradient descent, aiming to minimize the 
discrepancy between g(x + δ) and b . The resulting AE 
x + δ will then be recognized as the target command (the 
command corresponding to b).

In addition, Carlini and Wagner (2018) introduced a 
generic noise model to simulate electronic noise and back-
ground noise, forcing the AEs to be generated under such 
noise effects. Therefore, when deployed to the real physical 
world, the AEs can resist the influence of the actual envi-
ronment and still attack successfully. The calculation Eq. 2 
after introducing the noise effect is:

where n represents a random noise vector sampled 
from a uniform distribution ( −N  , N). N is the bound 
of random values, and 100 is usually taken in experi-
ments. Evaluation results demonstrate that the method 
of incorporating random noise can enhance the robust-
ness of x + δ against distortions caused by environmental 

(2)Lossnet =
∥

∥g(x + δ)− b
∥

∥

1

(3)Lossnet =
∥

∥g(x + δ + n)− b
∥

∥

1

factors, thereby enabling attacks in physical scenarios. In 
the generation of CommanderUAP, we similarly intro-
duce random noise to improve the robustness of the 
perturbation.

Overview
The research method in this paper mainly consists of four 
steps: (1) Random shuffling and grouping of the dataset; 
(2) Stage 1 generation; (3) Stage 2 generation; (4) Transfer 
attack. First, we randomly shuffle the dataset to prevent 
UAP from learning the order of the dataset during gen-
eration, which would weaken its generalization ability. 
Then, the generation of CommanderUAP will be divided 
into two stages, each with different purposes. In Stage 1, 
we generate BaseUAP to cover the entire normal audio, 
eliminating the influence of the original semantics on the 
recognition result. Subsequently, based on BaseUAP, we 
continue to generate AttackUAP with practical attack 
significance, which is Stage 2. The specific differences 
between the two stages will be discussed in sections 
"Two-stage generation" and "Regulating the impercep-
tibility of CommanderUAP". The CommanderUAP is 
obtained by adding the BaseUAP and AttackUAP, that is, 
CommanderUAP = BaseUAP + AttackUAP. Finally, to 
maintain the attack capability when transferring to other 
models, we relaxed some constraints during the UAP 
generation process.

Approach
Our attack aims to overcome two challenges: (1) elimi-
nating the influence of the original semantics of normal 
audios on the recognition results, thereby forcing the 
model to output the results expected by the adversary; (2) 
achieving high success rates while making the command 
as imperceptive as possible. To overcome the first chal-
lenge, we propose using a two-stage generation method, 
as shown in section  "Two-stage generation". Addition-
ally, in sections  "Batch training and weighted gradient" 
and "Dropout", we introduce techniques from regular 
deep learning tasks into the generation of perturbations 
to accelerate the convergence process and enhance the 
attack effect. Regarding the second challenge, we employ 
a method that simultaneously controls the imperceptibil-
ity in both the time and frequency domains, which will 
be detailed in section  "Regulating the imperceptibility 
of CommanderUAP". Finally, Section  "Transfer attack 
on API" outlines the attempts made to launch attacks on 
non-target models.
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Two‑stage generation
The generation of CommanderUAP is divided into two 
stages, each with different meanings and goals. Both per-
turbations are initialized as 0 vectors and are trained on 
the same training dataset using a group parallel method, 
but the generation algorithms are slightly different. Fig-
ure 2 shows the process details of the two stages in the 
generation of CommanderUAP, where the purple part 
and the green part respectively represent the choices of 
Stage 1 and Stage 2. It should be noted that BaseUAP and 
AttackUAP must be added to normal audio at the same 
time to deceive the ASR model.

The purpose of Stage 1 is to allow BaseUAP to cover 
the semantics of normal audio. In each round of epoch in 
Stage 1, a uniformly distributed noise audio of the same 
duration as the normal audio is generated, and the noise-
pdf-id sequence extracted from this noise audio is used 
as the optimization reference target for calculating loss 
in this epoch ( b in Eq. 3). After multiple epochs of train-
ing, a BaseUAP that meets the requirements is obtained. 
The reason for extracting noise-pdf-id sequences from 
a new noise file as the optimization reference target in 
each epoch is to let BaseUAP learn more general fea-
tures of random noise, and enhance BaseUAP’s attack 
ability to transform normal audios into “[noise]”. If we 
fix a noise-pdf-id sequence as the optimization target in 
Stage 1, although the entire optimization quickly tends to 
be stable, the obtained BaseUAP shows an "overfitting" 
characteristic and poor auditory concealment. Therefore, 
although the method of changing the optimization target 
in every epoch in Stage 1 prolongs the training time and 
difficulty, it effectively improves the success rate and con-
cealment, which also helps the generation of Stage 2.

The BaseUAP and normal examples are combined pair-
wise to create a new training set, and stage 2 generates 
the AttackUAP on this basis. The target pdf-id sequence 

in this stage is called the command-pdf-id and needs to 
be chosen and fixed according to the adversary’s speci-
fied attack command. For example, the audio generated 
by TTS of the command "take a picture" can be used to 
extract the corresponding command-pdf-id sequence. 
Since BaseUAP already covers the majority of the origi-
nal semantics in normal examples, the command-pdf-id 
sequence selected in Stage 2 can be shorter while still 
maintaining attack effectiveness. Let’s assume the length 
of the target pdf-id sequence is L. During the training 
process, it is necessary to align the first L pdf-id values 
of each example with the target. Therefore, the duration 
of the final AttackUAP is typically shorter than that of 
normal audio. The rest of the audio is still influenced by 
BaseUAP, causing it to be misidentified as “[noise]”. As a 
result, the AE is likely to be recognized as "target com-
mand" + "[noise]". which does not affect the feasibility of 
the UAP attack.

Batch training and weighted gradient
Training a UAP with a high success rate and great 
imperceptibility in adversarial attack is similar to train-
ing a DNN model with high generalization ability and 
low complexity in deep learning. Therefore, we consider 
migrating some common basic methods in DNN training 
to UAP generating, such as batch training and weighted 
gradient.

In the generation, batch training refers to shuffling the 
training dataset first in each epoch, and then dividing 
it into several batches according to the specified batch 
size (such as 5 audios per batch), and the subsequent 
training process is carried out in every batch. By read-
ing other papers and codes of UAP about ASR, we find 
that the batch training method has not been widely used. 

Fig. 2 Process of Stage1 for BaseUAP and Stage2 for AttackUAP
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Previous methods were all based on forward propagation 
and updates on individual normal audio.

Within each batch, the update of CommanderUAP 
employs a weighted gradient. We first add the UAP to 
each example in the batch and calculate the loss and gra-
dient for each with respect to the UAP. Then we assign 
weights to the gradients based on the corresponding loss 
values. Finally, the UAP is updated using the weighted 
gradient. In this approach, an example with higher loss 
values in the batch will have larger weights, which means 
that the current update will focus more on optimizing the 
direction for example that is farther away from the target 
command. UAP is updated only once per batch, and the 
calculation process is shown in formula (4):

where i represents the index of the current audio within 
the batch, b represents the batch size, ωi and gi represent 
the weight coefficient and gradient of the current audio.

Figure 3 compares the differences between using batch 
training with weighted gradients and using single exam-
ple training with its gradient. To simplify the illustra-
tion, the dimensionality of the audio space is reduced to a 
two-dimensional plane in the figure. Let’s assume a batch 
size of 2 and ignore the learning rate and other update 
methods for simplicity. Figure  3a represents the tradi-
tional approach of using single example gradient descent. 
Assuming the current UAP is µ1 , the loss and gradient g1 
are computed using example 1, and the UAP is updated 
from µ1 to µ2 . This process is repeated for UAP updates. 
It is similar to setting the batch size to 1 in regular DNN 
training, resulting in a more erratic path, and a higher 

(4)
Gweighted =

b
∑

i

ωi ∗ gi

ωi =
Lossi

∑b
i Lossi

risk of getting stuck in local minima. Figure  3b repre-
sents the batch training with weighted gradients used in 
CommanderUAP generation. Starting from the current 
perturbation µ1 , Loss1 and g1 are computed for example 
1, and similarly, Loss2 and g2 are computed for exam-
ple 2. Then, the weighted sum of gradients is calculated 
according to Eq. 4, and the perturbation is updated from 
µ1 to µ2 . This update process is indicated by the yellow 
arrow in Fig. 3b. The method makes each update of UAP 
affected by the optimization direction of multiple exam-
ples, which not only reduces the chaos of the gradient by 
considering global updates but also stably advances to the 
optimal point with methods such as momentum.

Dropout
We have introduced dropout for the first time in the 
training of UAPs to enhance their generalization across 
different normal audio and models. Dropout is a DNN 
training technique that reduces model variance and over-
fitting risks while enhancing generalization. It achieves 
the effect of self-ensemble learning by randomly drop-
ping some neurons. In the field of adversarial attacks 
and defenses, dropout has been used in previous work to 
achieve different objectives. Wang et al. (2018) uses drop-
out for a certain layer of the network during inference, 
which can effectively defend against adversarial attacks. 
Xie et  al. (2021a) proposes a dropout-based gradient 
iterative attack method to improve transferability and 
verify the input invariance of dropout from the data level. 
Inspired by these works, we aim to adapt UAPs during 
the training process to overcome information loss caused 
by dropout and improve their generalization across audio 
and even models.

Different from using dropout at the model level (neu-
ron level), we use dropout at the perturbation data level. 
In the computational graph, the data first goes through 
a layer of dropout processing before acoustic feature 
extraction. Specifically, each value of CommanderUAP 
has a certain probability of being temporarily set to 0, 
and this part of values will not be updated during back-
propagation. The probability is called the dropout rate. 
It should be noted that to avoid losing too much infor-
mation in audio preprocessing, we recommend using a 
lower dropout rate in the generation of UAP. This saves 
time and ensures the attack effect of UAP.

Regulating the imperceptibility of CommanderUAP
In the generation of CommanderUAP, we adopt an audi-
tory masking penalty method that controls the percepti-
bility of perturbations in the frequency domain. On the 
other hand, most SAP and UAP methods use the ‖µ‖2 
as a penalty term in the objective function, or apply clip-
ping to dB(µ) or �µ�∞ after each perturbation update, 

Fig. 3 Comparison of normal and weighted gradient decent
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aiming to reduce the perturbation’s value. This approach 
of penalizing can be seen as controlling the perturba-
tion’s imperceptibility in the time domain. However, 
when combined with the Adam optimization method, it 
may weaken the penalty (Loshchilov and Hutter 2017). 
By simultaneously controlling the perturbation in both 
the frequency and time domains, CommanderUAP 
exhibits excellent imperceptibility properties in human 
perception.

Controling frequency domain imperceptibility
There have been many works trying to use methods 
such as high-frequency perturbation (Zhang et al. 2017), 
spectral modification (Guo et  al. 2022; Abdullah et  al. 
250251), and psychoacoustic masking effect (Qin et  al. 
2019; Schönherr et al. 2018) to hide the perturbation in 
the area that human ear cannot perceive. However, we 
found in our experiments that if UAP is controlled using 
frequency masking effect manner in Qin et  al. (2019), 
although the imperceptibility of UAP is very good, it will 
greatly affect its attack capability.

To mitigate the perceptibility of perturbations in the 
frequency domain, we leverage the equal loudness con-
tours known as the Fletcher–Munson curve (https:// 
www. iso. org/ stand ard/ 34222. html). The curve graphi-
cally represents the sensitivity of human hearing to 
sounds at different sound pressure levels and frequen-
cies. Figure  4 shows the equal loudness curve from 0 
to 80 phones. Each line expresses the sound pressure 
level required for a sound of different frequencies to be 
perceived as that loudness by the human ear. It can be 
observed that the trend of the curves remains basically 
consistent across different loudness levels. The lowest line 
in the figure is the auditory curve of quiet conditions (0 
loudness), which is called the human ears auditory curve. 

By leveraging this characteristic, we utilize the data of the 
human auditory curve as a vector, denoted as D. Through 
operations such as linear interpolation, normalization, 
and reflection, we derive the frequency domain weights 
FQW. The perturbed frequency domain values are multi-
plied by FQW, and the L2 norm of the resulting vector is 
calculated, yielding the Losshearing:

where FQW = 1− Normalize(Interpolate(D)).
Therefore, in a practical attack, we employ a weighted 

sum of Eqs. 3 and 5 as our objective function, given by

where c is a coefficient that controls the correlation 
between the two components. Under the influence of 
the Losshearing penalty term, CommanderUAP weakens 
the magnitude in the frequency domain during its gen-
eration process, with a milder penalty on high-frequency 
components and a stronger penalty on low-frequency 
components, aligning with the auditory characteristics 
of the human ear. We do not intentionally pursue mak-
ing the loudness of CommanderUAP at all frequencies 
below a specific standard; instead, we aim to apply pen-
alties through optimization as much as possible. Hence, 
although it might be considered a more coarse method 
compared to applying frequency masking on each frame 
as done in Qin et  al. (2019), this paper simply uses the 
sensitivity of human hearing as a reference for the global 
frequency domain penalty for CommanderUAP.

Guo et  al. (2022) also utilizes the characteristics of 
auditory curves, but it only penalizes the most sensi-
tive frequency range of the human ear. For example, it 
applies penalties only to the magnitude of perturbations 
within the range of 1.6kHz to 4kHz. Since SpecPatch 
adds small, localized patches to the spectrum of the clean 
audio, it is feasible to apply penalties to specific frequen-
cies using auditory curve data. However, in the case of 
CommanderUAP, where the frequency range of BaseUAP 
and AttackUAP covers the entire spectrum, we choose to 
apply different levels of penalties to perturbations across 
the entire frequency range.

Controling time domain imperceptibility
In addition to hiding perturbations in the frequency 
domain, it is also essential to control the values of Com-
manderUAP in the time domain. During the training 
process, we utilized the AdamW method (Loshchilov 
and Hutter 2017), which improves the regularization of 
the Adam optimizer by decoupling weight decay and 

(5)Losshearing = �FQW ∗ FFT (µ)�2

(6)Loss = Lossnet + c ∗ Losshearing

Fig. 4 Equal loudness contours and hearing curve of human

https://www.iso.org/standard/34222.html
https://www.iso.org/standard/34222.html
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gradient updates. AdamW addresses the issue that when 
using L2 regularization on input data together with the 
Adam optimizer, the gradient computation of the regu-
larization term can influence the backpropagation, lead-
ing to inadequate penalties for large values. However, 
CommanderUAP requires more iterations so that the 
deficiency of inadequate penalties can accumulate. To 
avoid this problem, the AdamW optimizer does not add 
an L2 penalty term in the objective function but directly 
modifies the input data. Specifically, before modifying the 
data x based on the gradient, x is first multiplied by the 
decay coefficient. The decay coefficient is less than 1, for 
example, if 0.995 is taken, then x = 0.995 ∗ x . Apart from 
this modification, the application of AdamW is consistent 
with Adam regarding momentum and RMSprop meth-
ods. Furthermore, AdamW helps mitigate the drawbacks 
introduced by the L2 norm computation in Losshearing.

It should be noted that another important difference 
between Stage 1 and Stage 2 is the control methods of 
imperceptibility. While it is ideal to regulate in the fre-
quency and time domains, after practical validation, we 
decided to use both the Losshearing penalty term and the 
AdamW optimizer only in Stage 1, which is the process 
of generating BaseUAP. In Stage 2, but just rely on the 
Losshearing penalty term and use the regular Adam opti-
mizer in Stage 2. The attack success rate of using AdamW 
in Stage 2 is approximately 40% lower than that of using 
Adam. This is because if too much noise control is added 
in Stage 2, even if the perturbation is not easy to be per-
ceived, the attack success rate will also decrease sig-
nificantly. Obviously, it is more important for Stage 2 to 
achieve accurate attack success. On the other hand, the 
BaseUAP generated in Stage 1 already has a large search 
space which can achieve the expected attack effect even 
under double constraints in frequency and time domains. 
Additionally, although Stage 2 lacks the weakening of 
numerical values in the time domain, AttackUAP still 
maintains good imperceptibility based on the auditory 
properties of BaseUAP. As a result, the final generated 
AEs are unlikely to be perceived by human ears as con-
taining the target command. The detailed processes of 
Stage 1 and Stage 2 are presented in Algorithm  1 and 
Algorithm 2, respectively.

Algorithm 1 Stage 1

Input: dataset D, normal distribution
N µ, σ2

)
, batch size S

Output: BaseUAP µ
1 initialize model g(x), µ ← 0;
2 randomly divide D into batches;
3 for number of training iterations do
4 for each batch do
5 Generate a noise audio from N and

extract noise-pdf-id;
6 for i ← 1 to S in batch do
7 Compute the Lossi and gi

using Eq. (4), (5), (6);
8 end
9 Compute weitght of each gradient:

wi = Lossi/sum(Lossi);
10 Compute Gweighted = wi ∗ gi;
11 Update perturbation:

µ = AdamW (µ,Gweighted);
12 end
13 end
14 return BaseUAP

Algorithm 2 Stage 2

Input: dataset D, target command t,
batch size S, BaseUAP

Output: AttackUAP µ
1 initialize model g(x), µ ← 0;
2 randomly divide D into batches;
3 for each audio in D do
4 Xi = xi +BaseUAP ;
5 end
6 extract command-pdf-id according to t;
7 for number of training iterations do
8 for each batch do
9 for i ← 1 to S in batch do

10 Compute the Lossi and gi
using Eq. (4), (5), (6);

11 end
12 Compute weitght of each gradient:

wi = Lossi/sum(Lossi);
13 Compute Gweighted = wi ∗ gi;
14 Update perturbation:

µ = Adam(µ,Gweighted);
15 end
16 end
17 return AttackUAP
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Transfer attack on API
Another important metric for assessing AEs attack capa-
bility is the transfer attack success rate in black-box sce-
narios. The transferability of AEs enables them to pose a 
threat to models other than the target model. Although 
some studies in the CV field have enhanced the trans-
ferability of UAP (Li et  al. 2020a; Hashemi et  al. 2020), 
only (Neekhara et al. 2019) conducted untargeted attacks 
from DeepSpeech to WaveNet in ASR.

The CommanderUAP generated by the above two-
stage method has poor transferability. The reason is that 
the perturbation overfits the decision space of the Kaldi 
ASpIRE model in terms of model independence during 
the training process, resulting in insufficient generaliza-
tion ability across models. Additionally, the control over 
perturbation imperceptibility also constrains its feature 
representation capacity.

By relaxing the constraints on perturbation impercep-
tibility to some extent and improving the generalization 
capability, CommanderUAP can achieve a high success 
rate in black-box transfer attacks against commercial 
ASR APIs. Specifically, we no longer use the two-stage 
generation method, but instead, skip the stage 1 step 
and directly generate perturbations targeting the desired 
command. This process is similar to stage 2 but with 
modifications to the algorithm details. Firstly, the opti-
mization reference target is set to the pdf-id sequence 
of a specific command that matches the length of the 
normal audio, ensuring that each frame of the normal 
audio is directly affected by the perturbation. Addition-
ally, the dropout rate is appropriately increased to make 
the generated perturbations more robust and adaptable 
to damage, so that it still has a chance to succeed when 
transferring to commercial APIs. In terms of impercepti-
bility control, only the Losshearing penalty term is used to 
control the frequency domain performance.

Evaluation
This section presents the experimental results of the 
above methods. We mainly evaluate the attack capability 
of CommanderUAP generated by the two-stage method 
in terms of white-box attack and physical attack. In addi-
tion, we verify under what conditions AEs can achieve 
transfer attacks on APIs. Finally, to assess whether the 
AEs are easy to be perceived by human hearing, we 
design a human perception survey and collect results on 
a crowdsourcing platform.

Setup
We used TensorFlow to implement our method. We first 
designed 10 commands as target commands and used 
Microsoft TTS to generate the corresponding audio. 

After ensuring that each audio could be accurately rec-
ognized by Kaldi, we extracted the pdf-id sequences 
corresponding to each audio, which were probably used 
as optimization reference targets in subsequent experi-
ments. The specific commands are shown in Table 1. The 
target model remains consistent with (Yuan et al. 2018), 
which is the ASpIRE Chain model released on Octo-
ber 15, 2016. We experimented on an Ubuntu server 
equipped with an NVIDIA 2080ti GPU.

Dataset and hyperparameters For the choice of nor-
mal audio which is the carrier of perturbation, we used 
the conversational dataset LibriSpeech (Panayotov et  al. 
2015). Based on the recording background of the audio, 
the dataset is divided into multiple subsets. We selected 
the test-clean subset as the normal audio dataset for 
training and testing CommanderUAP. Since these audios 
have varying durations, we split all audios into 2.5-sec-
ond segments and discarded the part of the audio shorter. 
Finally, we obtained 3986 audio examples. Generating 
UAP does not require a large amount of training data 
(Zong et al. 2021; Moosavi-Dezfooli et al. 2017). We ran-
domly selected 50 segmented audios and set the batch 
size to 10. With a small training set of audios, combined 
with methods like random shuffling and weighted gradi-
ent descent in batch, the perturbation already possessed 
attack capability. In this scenario, further expanding the 
dataset or using data augmentation operations would not 
significantly improve the success rate. Instead, it would 
only prolong the training time. During the testing phase, 
we randomly selected 100 audios as carriers for perturba-
tion verification.

Compared to the range of pixel values in images being 
(0,255), audio data has a much larger value range. In our 
experiments, we chose 16-bit raw audio without normali-
zation, with a value range of ( −32767,32767). Therefore, 
the learning rate was set to a larger value of 100. The 

Table 1 White-box attack results

Target command SRoA(%) WER SNR(dB)

“take a picture” 84 0.2 0.15

“shut down now” 71 0.19 0.13

“turn on GPS” 58 0.19 − 0.32

“lock phone” 56 0.51 0.34

“open the front door” 59 0.23 − 0.03

“make a credit card payment” 69 0.14 − 0.43

“turn off the light” 63 0.21 0.17

“read mail” 55 0.46 0.34

“airplane mode on” 62 0.27 0

“where is my car” 69 0.2 − 0.05

Average 64.6 0.26 0.03
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hyperparameters for AdamW were selected according 
to the recommended default values in Kingma and Ba 
(2014), such as beta1 = 0.9, beta2 = 0.999, and the weight 
decay coefficient was set to 0.995.

Metric We used the following metrics to evaluate the 
effectiveness of our work: 

1. Success Rate of Attack (SRoA): It is the proportion 
of successfully attacked audios in the test set. The 
criteria for determining the success of the AEs may 
vary depending on the experimental conditions, and 
the specific definition will be introduced later in the 
paper.

2. Word Error Rate (WER): This metric represents the 
ratio of total errors (substitutions, insertions, and 
deletions) to the total number of words in the refer-
ence text. The adversary’s goal is to make the model’s 
recognition result for the AEs match the target com-
mand exactly, which corresponds to a WER of 0. 
Therefore, the lower the WER, the more successful 
the attack. It should be noted that our strategy allows 
for the possibility of content such as “[noise]” or 
“[laughter]” in the recognition results. This irrelevant 
information does not affect the adversary’s expected 
attack effectiveness but may have some impact on the 
performance of WER.

3. Signal-to-Noise Ratio (SNR): This metric is widely 
used to quantify the level of noise relative to 
the power of an audio signal. It is calculated as 
SNR(dB)=10log10(Px/Pµ) , where P x and Pµ rep-
resent the average power of the clean audio and the 
perturbed audio, respectively. A higher SNR indicates 
lower noise energy, thus indicating a more impercep-
tive perturbation. Research that uses psychoacoustic 
characteristics to hide perturbations usually does not 
use metrics such as SNR or sound pressure level to 
demonstrate imperceptibility.

White‑box attack
White-box online attacks on the target model represent 
an idealized attack scenario. We first demonstrate the 
attack capability of CommanderUAP in this simplest 
setup. Stage 1 and Stage 2 are the same in all parameters 
except for the way of obtaining the pdf-id sequence as the 
optimization reference target and the optimization algo-
rithm. In each epoch of stage 1, we generate noise audio 
within the range of 0 to 2000 to extract the noise-pdf-id 
sequence.

In the white-box online attack experiments, we con-
sider an AE successful if the recognition result is the 
complete target command or if it starts with the tar-
get command and ends with irrelevant content such as 

“[noise]” or “[laughter]”. Under this setup, the results of 
white-box attacks are shown in Table 1.

Dropout rate In the common DNN training process, 
the dropout rate is usually fixed at 0.5, or initialized to 
a smaller value and then gradually increased. Appropri-
ate dropout can effectively reduce the risk of overfitting 
and improve generalization. The effect of dropout value 
on SRoA and SNR is shown in Fig.  5. The experimen-
tal results show that the increase in dropout rate can 
only bring a slight improvement in attack success rate. 
On the other hand, the dropout rate and the number 
of iterations for both stages are positively correlated. 
The number of iterations for Stage 1 shows exponen-
tial growth, while the number of iterations for Stage 2 
increases very slightly. When the dropout rate is set to 
0.25, Stage 2 only needs to iterate 30 more times than 
when no dropout is used. A high dropout rate means 
that the important information learned by UAP in the 
current iteration is likely to be masked by the dropout 
in the next iteration. Figure  6 shows how the spectro-
gram of an AE changes as the dropout increases from 0 
(i.e., no dropout) to 0.5 (i.e., dropping audio values with 
a half probability). It can be seen that as the dropout 
rate increases, the harmonics of the audio, such as the 
portion highlighted by the red box in Fig.  6, become 
more and more blurred, which means that the impor-
tant information in the audio is flattened. The update 
process with higher dropout rates is actually unstable 
and requires many iterations. Furthermore, the result-
ing AEs have more noticeable command traces when 
perceived by human ears. Therefore, we set the drop-
out rate to 0.1, which improves the attack success rate 
while avoiding too many iterations. Exploring the effect 
of dropout rate on AE transferability (Xie et al. 2021a) 
also shows that setting the dropout rate between 0 and 

Fig. 5 SRoA and iterations with different dropout rates
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0.2 achieves the best performance for white-box attack 
and black-box transfer attacks.

Physical attack
In the physical world, which is a more realistic and mean-
ingful attack scenario, we aim to enhance the robustness 
of CommanderUAP by introducing noise and dropout 
during the generation process. Our attack targets are 
IVCs or voice assistants. Since it is difficult to determine 
which devices or services are Kaldi-based, we follow the 
approach presented in Yuan et al. (2018): we play the AEs 
through a speaker and simultaneously record the sound 
using a microphone. The recorded audio is then sent to 
the Kaldi platform for recognition. In this way, the AEs 
will be affected by environmental noise, energy loss, and 
echo in the room, which is consistent with the environ-
mental factors in other papers (Chen et  al. 2020; Guo 
et  al. 2022) that directly target IVC devices for physical 
attacks.

We use B &O speakers for playback and Audio-Tech-
nica microphones for recording, with a distance of 0.5 ms 
between them. For each command, we selected 25 AEs 
as test objects, and each audio was played and recorded 
5 times. If at least two out of the five recordings of an AE 
are recognized as the target command, we consider it a 
successful physical attack. Table 2 shows the replay phys-
ical attack experiment results for 10 commands.

The results indicate that target commands with high 
success rates in white-box online attacks also maintain 
relatively high success rates in the physical world. For 
instance, CommanderUAP with “take a picture” as the 

target command can achieve an 80% deception success 
rate in the physical world. The average SRoA of 10 com-
mands is 50.8%. It is expected that the SRoA of physical 
world attacks is lower than those of online white-box 
attacks. Despite we use of methods such as injecting ran-
dom noise to improve the robustness of perturbations, it 
remains challenging to completely eliminate the complex 
environmental interferences.

Transferable black‑box attack to APIs
In addition to white-box attacks and physical world 
attacks, we also explored the performance of Com-
manderUAP when transferring to commercial ASR APIs. 
After a survey of commonly used speech service plat-
forms, we chose iFLYTEK (https:// www. xfyun. cn/ servi 
ces/ voice dicta tion), Alibaba (https:// www. aliba baclo ud. 
com/ zh/ produ ct/ intel ligent- speech- inter action), Baidu 
(https:// ai. baidu. com/ tech/ speech), and Tencent (https:// 
cloud. tence nt. com/ docum ent/  produ ct/ 1093) as the 
attack targets for transfer attacks. Thanks to the maturity 
of deep learning in ASR, the above APIs have extremely 
high recognition accuracy. Although we have no way of 
knowing the model and training dataset behind these 
APIs, there must be different recognition preferences 
between models. For UAP, which is a special distribution 
of data, the performance of different APIs may exhibit 
greater differences.

Transferring AEs to attack unknown models is a chal-
lenging task. By coping and repeating the entire sequence 
and appending 0 and 91 (which are the pdf-id extracted 
from silent audio clips) at the end to keep the same 
length as the benign audio, we constructed 5 pdf-id tar-
get sequences of the required length by repeating com-
mands and adding silent segments. The corresponding 
commands are shown in the first column of Table  3. In 
terms of parameters for the transferability experiment, 

Fig. 6 Spectrograms with different dropout rate

Table 2 Physical attack results

Target command SRoA (%) Decrease (%)

“take a picture” 80 4

“shut down now” 56 15

“turn on GPS” 28 30

“lock phone” 40 16

“open the front door” 56 3

“make a credit card payment” 64 5

“turn off the light” 36 27

“read mail” 32 23

“airplane mode on” 60 2

“where is my car” 56 13

Average 50.80 13.80

https://www.xfyun.cn/services/voicedictation
https://www.xfyun.cn/services/voicedictation
https://www.alibabacloud.com/zh/product/intelligent-speech-interaction
https://www.alibabacloud.com/zh/product/intelligent-speech-interaction
https://ai.baidu.com/tech/speech
https://cloud.tencent.com/document/%20product/1093
https://cloud.tencent.com/document/%20product/1093
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we reduced the coefficient of the auditory penalty term to 
2*e-9, fixed the weight decay coefficient at 1, and started 
iterating the next batch or the next epoch when the aver-
age loss in the current batch was less than 60. Besides, 
we increased the dropout rate to 0.3, trying to enhance 
the robustness. In summary, we alleviated the control of 
the imperceptibility of the perturbation in the program 
in various ways, enhanced the random exploration of 
the perturbation in the optimization process, and signifi-
cantly improved the SRoA of the modified Commander-
UAP when transferring to different commercial APIs.

Table 3 shows the success rates of these AEs in transfer-
ring attacks against the four commercial APIs. Since the 
target commands are repeated two or three times, if an 
audio recognition result from the API contains the target 
command at least once, we consider it a successful attack 
against that API. The analysis reveals that the modified 
CommanderUAP can attack commercial APIs, but the 
success rates are unstable. The transfer attack on iFlytek 
(https:// www. xfyun. cn/ servi ces/ voice dicta tion) yields the 
best results, with an average SRoA of 66.6%, followed by 
an attack on Baidu (https:// ai. baidu. com/ tech/ speech) 
with 48.6%. We infer that the model used by iFlytek API 
is likely related to the Kaldi platform, making it more sus-
ceptible to deception by our UAP. This observation aligns 
with the findings in Yuan et al. (2018).

The attack performance on Tencent (https:// cloud. 
tence nt. com/ docum ent/  produ ct/ 1093) and Ali (https:// 
www. aliba baclo ud. com/ zh/ produ ct/ intel ligent- speech- 
inter action) fluctuates greatly. The success rate varies on 
different commands and models, which is essentially still 
due to the difficulty in estimating model preferences. AEs 
contain certain features related to the data distribution, 
and different models may exhibit varying sensitivities to 
that. A carefully crafted perturbation can cause model 
A to recognize an AE as the target command, but the 
impact of the perturbation on model B with a different 
decision space remains unknown. One reason why the 
Tencent API is hard to attack by transfer is that the model 
may have some defense mechanisms in place, making it 
more robust to CommanderUAP. Another reason is that, 

according to our tests, the API often labels noisy audio as 
“null”, so most of the AEs end up with this result.

Another strange phenomenon is that CommanderUAP 
generated by the modified method has a certain transfer 
attack ability, but the SRoA for the target model Kaldi 
Aspire has dropped significantly. As can be seen from 
Table  3, the average SRoA of 5 commands on Aspire is 
only 31.4%. Although these AEs are still constructed 
using Kaldi Aspire, the improvement of cross-model gen-
eralization ability affects the attack effect on it.

Human perception
To measure the perceptibility of audio adversarial per-
turbations, it is more reasonable to investigate whether 
human ears can detect anomalies under realistic con-
ditions. We recruited 50 native English speakers as 
listeners from Prolific,1 an online marketplace for crowd-
sourcing platforms, to conduct a survey. We added five 
CommanderUAPs with different commands as targets to 
different normal audio carriers and placed them in the 
survey questionnaire. Based on the characteristics of the 
example, we designed the following questions: 1) Com-
pared to the normal clean audio, what was added to this 
audio (the four options are noise, current sound, another 
person’s speech, nothing was added); 2) If noise or cur-
rent sound was chosen in 1), please give the perturbation 
intensity level (the option range is set to between 1 and 
5, the higher the level, the louder the noise); 3) If another 
person’s speech was chosen in 1), please write down what 
he said; 4) If you had a conversation with someone under 
this audio condition, would you accept it. The analysis of 
the survey results is as follows:

Table  4 shows the auditory results of our white-box 
CommanderUAP obtained from 50 listeners. It is evident 
that for all auditory survey questions, the listeners per-
ceived the additional components in the example. Among 
them, 80% and 18.8% of them identified the presence of 
electric current sound and noise, respectively, and the 
average disturbance level given by these listeners was 

Table 3 Transfer Attack results to APIs

Target command * Number 
of repetitions

SNR White‑box attack to 
Kaldi (%)

iFLYTEC (%) Baidu (%) Tencent (%) Alibaba (%)

“open the front door” * 2 0.13 36 68 45 0 4

“good night” * 3 0.01 33 70 50 0 14

“take a picture” * 3 − 0.01 27 79 44 4 71

“turn on the light” * 2 0.96 36 66 70 59 5

“where is my car” * 3 0.79 25 50 34 3 29

Average 0.62 31.4 66.6 48.6 13.2 24.6

1 https:// www. proli fic. co/.

https://www.xfyun.cn/services/voicedictation
https://ai.baidu.com/tech/speech
https://cloud.tencent.com/document/%20product/1093
https://cloud.tencent.com/document/%20product/1093
https://www.alibabacloud.com/zh/product/intelligent-speech-interaction
https://www.alibabacloud.com/zh/product/intelligent-speech-interaction
https://www.alibabacloud.com/zh/product/intelligent-speech-interaction
https://www.prolific.co/
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3.69. Only in 1.2% of the cases did the listeners believe 
that there was another person’s voice in the AEs, but even 
after repeated listening, they could not correctly write 
down any word from the target command.

2% of the listeners believed that the interference in 
the audio had no effect on daily conversation, 50% of 
the users believed there was interference but could still 
hear each other clearly, and 48% found such conditions 
unacceptable. Finally, we surveyed the frequency of users 
using IVC devices or voice assistants. The results showed 
that 28% of users use them every day, approximately 24% 
use them once a week, 8% use them once a month, and 
40% of the users stated that they rarely or never use such 
devices or assistants.

In summary, by balancing the SRoA and impercepti-
bility and weakening the perceptibility of the perturba-
tion from two angles, the command in the disturbance 
is indeed difficult for the human ear to perceive, but 
there is still obvious noise interference. In the following 
work, the main challenge is to further reduce the per-
ceptibility of the perturbations to make them completely 
undetectable by humans. We provide a link2 to our sur-
vey questionnaire. While the questionnaire is no longer 
accepting submissions, readers can still listen to the dif-
ferences between our five universal adversarial examples 
and their corresponding normal examples in the survey 
questionnaire.

Ablation study
Our methodology comprises multiple constituent meth-
ods. We now proceed with an ablative analysis of certain 
methods. Section  "White-box attack" and Fig.  6 have 
already delved into the impact of varying the dropout rate 
on experimental results. It is evident that a value of 0.1 
leads to a significant improvement compared to a value 
of 0 (i.e., the absence of the dropout method). Besides, 
without staging but directly using the target command’s 
pdf-id to generate perturbations, the process is similar to 
Sections "Transfer Attack on API" and  "Regulating the 
imperceptibility of CommanderUAP". It is straightfor-
ward to generate perturbations with high SRoA. How-
ever, the auditory imperceptibility of the samples is very 
poor, making human ears clearly perceive the target com-
mand. Therefore, both the Dropout and two-stage meth-
ods hold value.

To explore the difference between using a fixed noise-
pdf-id sequence and a dynamically extracted noise-pdf-id 
sequence as the target in stage 1, we conducted experi-
mental tests, and the results are shown in Table 5. Except 
for the selection method of the noise-pdf-id sequence, 
other parameter settings are the same. If we keep it con-
stant, the resulting BaseUAP would exhibit a 100% SRoA 
on the training set, but it would only achieve a 79% on 
the test set, which is considerably inferior to the dynamic 
extraction method.

Batch training and weighted gradient are crucial foun-
dations of the CommanderUAP. The division of train-
ing set samples and the setting of batch size affect the 
experimental results. With “take a picture” as the target 
command, we tested these factors in the second stage. 
Setting the batch size to 1 is equivalent to not using 

Table 4 Results of the human perception evaluation

Target command Noise (%) Electric current sound 
(%)

Average perturbation 
level

Another person’s voice 
(%)

No extra 
added 
(%)

“take a picture” 22 78 3.22 0 0

“turn off the light” 22 78 3.56 0 0

“shut down now” 18 80 4.00 2 0

“open the front door” 16 82 3.69 2 0

“airplane mode on” 16 82 3.98 2 0

Average 18.8 80.0 3.69 1.2 0

Table 5 The ablation study of noise-pdf-id setting in Stage 1

How to Set noise‑pdf‑id Sequence Iteration Times SRoA on Training Set SRoA on Testing Set SNR

Fixed noise-pdf-id 1609 100% 79% 2.22

Dynamically Extract noise-pdf-id 3797 98% 96% 2.64

2 https:// jinsh uju. net/f/ kVsh2p.

https://jinshuju.net/f/kVsh2p
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batch training and weighted gradient updates. As shown 
in Table  6, this setting results in the highest number of 
iterations, the lowest SRoA and SNR. This is because the 
perturbation update only depends on one audio in every 
update, resulting in an unstable optimization path and 
reduced perturbation performance. Increasing batch size 
and training set size, the perturbation optimization is 
more stable. When batch size is set to 5, the training set 
has 50 audio files, the effect is the best.

As mentioned earlier, based on the characteristics of 
different stages and the trade-off between perceptibility 
and SRoA, we employ both time-domain and frequency-
domain controls in Stage 1, while only adding frequency-
domain auditory curve control in Stage 2. Continuing 
with the “take a picture” command as the target, the 
results of the ablation experiment for perceptibility 
control in Stage 2 are shown in Table  7. Applying only 
time-domain manipulation achieves a higher SRoA than 
applying only frequency-domain manipulation, but it 
compromises the stealthiness significantly, as human ears 
can easily detect the embedded commands. Applying 
both time-domain and frequency-domain manipulation 
leads to a drastic reduction in success rate to 56% and a 
noticeable increase in iteration times while maintain-
ing a good SNR of 0.96. Therefore, we adopt a balanced 
strategy in our experiment, that is, to introduce only fre-
quency-domain manipulation in Stage 2. With this set-
ting, the test set SRoA reaches 84%, and the SNR is 0.15. 
In the human auditory perception survey, we include AEs 
generated from this experiment. The results indicate that 
none of the listeners recognized any anomalous com-
mands in the sample.

Defense
Defense mechanisms against audio adversarial attacks 
have also rapidly evolved (Yuan et  al. 2018; Yang et  al. 
2018; Samizade et al. 2020; Rajaratnam and Kalita 2018; 
Guo et  al. 2023). In this section, to evaluate the per-
formance of CommanderUAP when facing defense 
mechanisms, we chose two common and proven effec-
tive methods for various attacks: Temporal Dependency 
Detection (TDD) (Yang et al. 2018) and resampling (Yuan 
et al. 2018). The results demonstrate that although these 
defense methods can effectively block attacks from Com-
manderUAP under specific settings, they also indiscrimi-
nately affect the model’s recognition of normal audio.

Temporal dependency detection
The temporal dependency of audio is an important infor-
mation dimension in speech data. However, the per-
turbation added in the AEs may disrupt the temporal 
information of the original sequence while directing the 
DNN output. Based on this characteristic, Yang et  al. 
(2018) proposed an efficient method that utilizes tem-
poral dependency detection (TDD) to discriminate AEs 
and block the attacks of three audio adversarial methods. 
Given an audio example W, the defender first truncates 
its initial k portion (such as the first 1/2 of the audio, 
which is the most commonly used value in Yang et  al. 
(2018)) as the model’s input, yielding a recognition result 
of Sk . The entire audio is then transcribed, and a prefix of 
the same length as Sk is truncated from the transcription 
result, denoted as S{whole,k} . If the audio W is a normal 
example, then Sk and S{whole,k} will maintain high simi-
larity; otherwise, W is likely an AE. The determination 
of detection success can be simply judged by whether Sk 
and S{whole,k} are strictly identical, or evaluate the area 
under the curve score by metrics such as WER, charac-
ter error rates, or longest common prefix. The experi-
mental results of Yang et  al. (2018) show that TDD has 
a detection success rate of up to 100% for Commander-
Song (Yuan et al. 2018) and can defend against adaptive 
attacks.

In our study, we investigated the detection capability of 
the TDD method for CommanderUAP. We constructed 
an audio set consisting of two categories: 69 AEs gener-
ated in the white-box attack experiments with the tar-
get command “turn off the light”, and 100 normal audio 
examples. The AEs were labeled as positives, while the 
normal examples were labeled as negatives. We recorded 
the precision and recall of the TDD method for the con-
structed audio set. Precision represents the proportion of 
examples identified as positives by the TDD method that 
actually belong to the category of true AEs. Higher pre-
cision indicates fewer cases where normal examples are 

Table 6 The ablation study of batch training and batch size in 
Stage 2

Batch size/training 
set size

Iteration times SRoA on testing 
set

SNR

1/50 5893 67% − 1.32

5/50 1237 85% − 0.26

10/50 532 84% 0.15

10/100 1094 80% − 0.09

20/100 500 80% 0.19

Table 7 The ablation study of imperceptibility control in Stage 2

How to control imperceptibility Iteration times SRoA on 
testing 
set

SNR

Only in time domain 500 91% − 1.22

Only in frequency domain 532 84% 0.15

both of them domain 628 56% 0.96
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falsely identified as adversarial. The recall represents the 
proportion of actual AEs that are detected as positives by 
the TDD method, with higher recall indicating a higher 
probability of capturing AEs. An effective detection 
method should have both high precision and high recall.

For CommanderUAP, the defense performance of the 
TDD method changes greatly depending on the value of 
k. Generally, a higher detection success rate can only be 
achieved when the k value is relatively small. For exam-
ple, if k=0.1, the recall is 100%, indicating that all AEs 
are detected. However, as k increases slightly, the recall 
rapidly drops to around 0%. This phenomenon appears to 
differ from the results in Yang et al. (2018), where setting 
k as 1/2 achieved a high detection success rate. In Com-
manderUAP, the AttackUAP generated in Stage 2 plays a 
role in implicitly embedding the target command. In each 
2.5s AE we tested, the AttackUAP only covers approxi-
mately the first 1  s, while the remaining part is only 
affected by the BaseUAP. Therefore, theoretically, the 
TDD method will only interrupt the AttackUAP when 
k ≤ 0.4 . If k is set to a larger value, the perturbations in 
the extracted audio prefix will include both the entire 
AttackUAP and a portion of the BaseUAP. In this case, 
the TDD method fails to detect the AEs. Thus the time 
dependency of the AttackUAP is easily disrupted, while 
the BaseUAP is more robust. This is also related to the 
choice of optimization reference targets in Stage 1 and 
Stage 2.

On the other hand, from Table  8, it can be observed 
that the precision of the TDD method consistently per-
forms poorly. When k=0.1, the precision is 40.38%, 
indicating that among the audio examples identified as 
adversarial, approximately 59.62% are normal examples 
misjudged as AEs. Even if the TDD method is very effec-
tive in detecting AEs at this point, the recognition of 
normal examples will be greatly hindered. As the value 

of k increases, the precision worsens. Therefore, defend-
ers effectively defend CommanderUAP by deploying the 
TDD method in their models, it will also affect their per-
formance on normal examples.

Resampling
Audio resampling is a common preprocessing method 
used in defense against adversarial attacks (Yuan et  al. 
2018; Yang et al. 2018; Hussain et al. 2021). Although it 
may lead to a decrease in the overall audio quality, it can 
remove crucial information from the adversarial per-
turbations. Specifically, the defender can downsample 
the AEs to a predetermined target frequency and then 
upsample them back to the original frequency using 
interpolation.

We filtered out the part of white-box attack AEs that 
can accurately attack successfully with “turn off the light” 
as the target command and tested the SRoA of these 
examples after resampling. The resampling ratio (RR) is 
used to indicate the ratio between the target frequency 
after downsampling and the original frequency. The 
smaller the RR, the lower the target frequency of down-
sampling, and the greater the difference between the 
resampled audio with the original audio. Figure 7 shows 
that when the resampling ratio is less than 0.6, the attack 
SRoA of the resampled AEs is 0%. We also calculated 
the average WER of the recognition results for the AEs 
before and after resampling. It can be observed that the 
model’s recognition results for the AEs are significantly 
affected by resampling when RR is less than 0.7. At 
RR=0.4, the WER is 0.64, indicating that the majority 
of the recognized text has been altered. As RR becomes 
higher, more information on the example is preserved, so 
the attack SRoA increases and WER decreases.

Table 8 The defense result of TDD

*A precision of 0% or recall of 0% indicates that there are no “True Positives”, 
meaning that none of the AEs were detected as positive. In this case, the 
TDD method is ineffective in detecting AEs but may still have instances of 
misclassifying normal examples

k‑value Precision (%) Recall (%)

0.1 40.38 100

0.2 14.81 19.05

0.3 31.58 38.1

0.4 0* 0*

0.5 0 0

0.6 0 0

0.7 2.94 1.59

0.8 3.03 1.59

0.9 2.78 1.59

Fig. 7 The defense result of resampling
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Furthermore, we randomly selected 100 normal audio 
from LibriSpeech, applied resampling, and calculated the 
average WER of the recognition results before and after 
resampling. The results are plotted in Fig.  7. When the 
RR is low, the recognition of normal audio also under-
goes significant changes. Overall, normal audios are less 
affected by resampling compared to AEs. We recommend 
setting RR to 0.6, as it can effectively disrupt AEs without 
excessively affecting the recognition of normal audio.

Disscusion
Comparing to other works
Compared to other targeted UAP research in ASR, Com-
manderUAP possesses improvements in attack ability 
and expands its application scenarios. Previous works 
targeted different objective models with different target 
sentences, and there were also variations in measuring 
the imperceptibility of perturbations. Below, we compare 
CommanderUAP with other targeted UAP works.

As mentioned earlier, if no imperceptibility control is 
applied to the perturbations, even though some studies 
achieved nearly 100% white-box SRoA on specific models 
(Zong et al. 2021; Lu et al. 2021), such attacks lack practi-
cal feasibility. With clipping the perturbation norms to a 
reasonable range, Zong et al. (2021) achieved an average 
SRoA of 54.1%. The white-box attack average SRoA for 
CommanderUAP is 64.6%, and the results of the auditory 
survey indicate that none of the listeners perceived that 
commands different from the original audio have been 
added to the audio.

Li et  al. (2020b) proposed AdvPulse for generating 
adversarial perturbations in microseconds. The experi-
ments showed that the attack effect of their short-pulse 
audio started to decay at the third word after the inser-
tion position. This means that although AdvPulse has a 
short duration, it is not suitable for long benign audio 
carriers. In our method, since BaseUAP has already 
masked the original content of the audio, AttackUAP 
can have a short duration, and together they achieve the 
effect of launching attacks on long audio.

Guo et al. (2022) achieved online attack success rates of 
over 90% on 10 commands. If the power of SpecPatch is 
appropriately amplified, it can also achieve attacks in the 
physical world, but this will hurt the imperceptibility of 
the perturbation. SpecPatch is audio-agnostic and is syn-
chronization-free, but the silent patch requires a specific 
generation for each audio. In addition, like other works 
on targeted UAP for ASR, (https:// cloud. tence nt. com/ 
docum ent/  produ ct/ 1093) did not explore the attack per-
formance of UAP when transferred to non-target mod-
els. CommanderUAP is not as stable as SpecPatch, but it 
has practical universality in both BaseUAP and Attack-
UAP. It can achieve different degrees of transfer attacks 

on commercial APIs under relaxed conditions, expanding 
the threat range.

Unlike the prevalent use of the L2 norms in the 
image domain to measure the size of perturbations, 
there are multiple metric scales for speech data. SNR 
is used by Yuan et al. (2018), Chen et al. (2020), Li et al. 
(2020b). The decibel difference between the perturba-
tion and the maximum value of the normal audio is 
used by Carlini and Wagner (2018), Zong et  al. (2021), 
Neekhara et  al. (2019): dBx(µ) = dB(µ)− dB(x) where 
dB(x) = maxi20 · log10(xi) . This is equivalent to calculat-
ing the difference in peak signal-to-noise ratio (PSNR). 
PSNR is determined by the maximum value (L∞ norm) 
of the perturbation, suitable for estimating and compar-
ing peak signal differences. SNR and PSNR are the most 
common imperceptibility metrics in speech adversarial 
attacks, where the former provides a more comprehen-
sive signal quality estimation, and the latter focuses on 
high-intensity areas. In addition, a few studies such as 
(Zhang et  al. 2017; Abdoli et  al. 2019) directly use the 
Sound Pressure Level (SPL) to control and describe per-
turbations. SPL is mainly used to describe the intensity 
and volume of sound and is not directly related to the 
quality of audio signals.

It should be noted that for works using psychoacoustic 
masking effects, auditory curve penalties, and other fre-
quency domain operations like (Qin et  al. 2019; Schön-
herr et al. 2018; Guo et al. 2022), it is not appropriate to 
use the above numerical indicators to measure pertur-
bations. These works typically consider the actual hear-
ing of the human ear, using survey questionnaires to 
assess whether perturbations can be perceived. As our 
method controls perturbations in both the frequency and 
time domains, we use both SNR and auditory percep-
tion survey experiments to describe the stealthiness of 
CommanderUAP.

Dependence on audio duration
We further investigated the dependency of Commander-
UAP on the duration of the normal audio which is the 
carrier of UAP. In the training and testing process, the 
duration of the normal audio was 2.5  s, and the perfor-
mance on longer audio is unknown. The optimal method 
to verify it would be to retrain using a dataset consisting 
of longer audio examples. But generating BaseUAP for 
longer audio means that there is more data to optimize, 
which will bring great optimization difficulty and time 
consumption. Therefore, we chose a simpler approach by 
duplicating and extending the BaseUAP data to match the 
duration of the longer audio. The AttackUAP remained 
unchanged and was directly added to the beginning 
of the audio. For example, we repeated the 2.5s Base-
UAP twice and added it to a 5 s normal audio segment, 

https://cloud.tencent.com/document/%20product/1093
https://cloud.tencent.com/document/%20product/1093
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then added the AttackUAP to the beginning, thus creat-
ing a series of 5 s AEs. Through this simple transforma-
tion, we tested the SRoA for the 10 commands listed in 
Table  1. The results showed that the average SRoA was 
43.8% which decreased by 20.8% compared to attacks 
on the 2.5s. This indicates that CommanderUAP exhib-
its a certain dependency on the duration of the normal 
audio. With this simple transformation, CommanderUAP 
is capable of launching attacks with lower capability on 
extended audio.

Understanding UAP from a “signal” perspective
To advance research on ASR model security, it is cru-
cial to explain the existence of AEs. Many studies have 
explored this issue from various perspectives, such as 
the model’s local linear accumulations (Goodfellow 
et  al. 2014), overfitting to normal examples (Szegedy 
et al. 2013), and learning non-robust features (Ilyas et al. 
2019). However, most of the explanations proposed by 
these works are aimed at SAP, which may not fully apply 
to UAP. In terms of UAP, Moosavi-Dezfooli et al. (2017) 
pointed out that there is a subspace in the high-dimen-
sional space of the model that is easily deceived by UAP.

We try to explain the existence and working principle 
of UAP from the perspective of signal and feature. We 
think that UAP can be viewed as a “signal”, which con-
tains both relevant features of the target command and 
can resist most normal examples. When such a carefully 
constructed “signal” is added to normal examples, the 
relevant features of the target command will dominate 
the subsequent recognition process, while the normal 
examples will be considered as “noise”. We chose to vali-
date this viewpoint in Stage 2, as it is easier to construct 
based on BaseUAP than in Stage 1. For the AttackUAP 
generated in the first epoch of Stage 2, when added to 
BaseUAP, it always leads to the recognition of the target 
command, although this process does not meet the defi-
nition of an adversarial attack. However, when we deploy 
the AttackUAP from the first epoch together with Base-
UAP on the test set, the attack performance is very poor, 
with an SRoA of approximately 10%. The attack SRoA 
will increase and stabilize in subsequent epochs. The 
reason for this phenomenon is that AttackUAP quickly 
learns the relevant features of the target command, but 
its ability to resist different normal examples still requires 
multiple epochs of training. The training process for 
UAP effectively optimizes the target feature expression 
capability and the ability to resist interference from nor-
mal examples. The fine-generated UAP can pull normal 
examples into the high-dimensional subspace mentioned 
in Moosavi-Dezfooli et  al. (2017), making the model’s 
recognition result directed to the target command.

Conclusion
In this paper, we propose the generation method of 
CommanderUAP, which achieves high success rates for 
universal adversarial attacks against ASR in white-box, 
black-box, and physical scenarios. Our evaluation results 
demonstrate that CommanderUAP can launch attacks 
on most normal audios, unaffected by their original 
semantic content. Furthermore, the results of auditory 
perception surveys indicate that the existence of target 
commands in the AEs is not apparent. Compared to pre-
vious works, CommanderUAP shows improvements in 
practicality and threat range. We also explore the effec-
tiveness of two defense methods, providing references for 
building more robust ASR models.

Research description
This paper proposes a staged perturbation generation 
method that constructs CommanderUAP, which achieves 
a high success rate of universal adversarial attack against 
speech recognition models. The evaluation results dem-
onstrate that CommanderUAP can launch attacks on 
most normal audios in white-box, black-box, and physi-
cal scenarios. Moreover, we control the imperceptibility 
of the perturbation in both time and frequency domains. 
The results of human perception surveys indicate that the 
existence of target commands in the adversarial examples 
is not apparent.
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