
Huang and Du ﻿Cybersecurity (2024) 7:28
https://doi.org/10.1186/s42400-024-00222-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Break‑Pad: effective padding machines
for tor with break burst padding
Bin Huang1* and Yanhui Du1 

Abstract 

Website Fingerprinting (WF) attacks enable a local eavesdropper to use metadata of packet flow, such as size, tim-
ing, and direction, to infer the websites a user is visiting. This can damage the user privacy provided by anonymity
systems such as Tor. Tor has implemented the WF defense called Circuit Padding Framework, which provides an inter-
face for developers to implement their own defenses. However, these defenses in the framework were overcome
by the Deep Fingerprinting (DF) attack. In this paper, we propose a novel defense approach called break burst
padding (Break-Pad), which injects a random number of padding packets into an incoming burst once the number
of consecutive incoming packets exceeds a set number. We integrated Break-Pad into the existing Circuit Padding
Framework. In addition, we have implemented two padding machines named August and October in the new
framework and conducted experiments to evaluate these machines. In the open-world setting, our results show
that August, with 29% bandwidth overhead, reduces Tik-Tok’s TPR by 14.48% and DF’s TPR by 22%. October outper-
forms the best padding machine, RBB. With 36% bandwidth overhead, it drops Tik-Tok’s TPR to 74.24% and DF’s TPR
to 65.36%. In the one-page setting, October further reduces the bandwidth overhead by 11% while achieving similar
performance to RBB. In the information leak analysis, for the burst sequence feature of the traffic, October leaks
at 2.453 bits, while the best comparable padding machine Interspace leaks at 2.629 bits.

Introduction
Tor (Dingledine et al. 2004) is one of the most popular
anonymity systems to hide information about personal
browsing websites. In Tor, a user establishes a multi-
hop path (called a circuit) to visit a website and trans-
mits fixed-size encrypted packets (called cells) on this
path. So, any single node cannot link the user’s identity
with the website the user accessing. Unfortunately, Tor is
vulnerable to a class of traffic analysis known as Website
Fingerprinting (WF) (Wang et al. 2014; Kwon et al. 2015;
Hayes and Danezis 2016; Panchenko et al. 2016; Rim-
mer et al. 2018; Sirinam et al. 2018; Bhat et al. 2019; Siri-
nam et al. 2019; Rahman et al. 2020; Se Eun et al. 2021;

Cherubin et al. 2022; Shen et al. 2023; Deng et al. 2023).
WF allows eavesdroppers to learn metadata of packet
flow and feed the information into a machine learning
classifier to train it. They then use the trained classifier
to predict which pages the user visited even though the
traffic is encrypted.

In response, many works have proposed defense algo-
rithms to defeat WF attacks. Some defenses (Dyer et al.
2012; Cai et al. 2014a, b; Juarez et al. 2016; Lu et al. 2018;
Abusnaina et al. 2020; Gong and Wang 2020; Al-Naami
et al. 2021; Holland and Hopper 2022) morph the traffic
according to predefined patterns, and some (Wang et al.
2014; Nithyanand et al. 2014; Wang and Goldberg 2017;
Rahman et al. 2021; Gong et al. 2022) modify the traffic
based on the reference traffic they generate, and some
(De la Cadena et al. 2020; Henri et al. 2020) split the traf-
fic and send it over multiple network paths. The Tor Pro-
ject community is also concerned about such attacks and
has deployed a WF defense, Circuit Padding Framework
(padding spec 2019). The framework allows developers

*Correspondence:
Bin Huang
beenhuang@126.com
1 People’s Public Security University of China, No. 1, Muxidi Nanli, Xicheng
District, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00222-y&domain=pdf

Page 2 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

to implement their own defenses, which inject padding
packets into time gaps in the packet flow without adding
any latency to traffic. However, these defenses are either
ineffective against state-of-the-art attacks, such as DF
(Sirinam et al. 2018), or bring unacceptably high band-
width overhead.

In this paper, we propose a novel defense called break
burst padding (Break-Pad), which injects padding pack-
ets into incoming bursts to break burst patterns of traf-
fic. Break-Pad utilizes padding based on the number
of incoming packets: it sends padding packets once the
number of incoming packets exceeds a threshold. The
defense effectively disrupts burst patterns by splitting
a long burst into a set of smaller-sized bursts. In addi-
tion, both padding packets and thresholds for Break-
Pad are sampled from the probability distributions we
set. The randomness of the number of padding packets
and threshold, even for the same web page, makes the
burst pattern of each trace different, which also helps to
improve the effectiveness of our defense. And, we can
limit the bandwidth overhead by adjusting the probability
distribution of the defense.

We combined our defense with Circuit Padding Frame-
work (padding spec 2019) and implemented two pad-
ding machines: August and October. August is a one-way
padding machine with Break-Pad, which only allows
the client machine to send padding packets. October is
a two-way padding machine, which can inject padding
packets in both directions.

To show the defense performance of our padding
machines, we conducted experiments and compared
them with other machines and WF defenses. Compared
to other padding machines, in the open-world setting,
August is effective against the best WF attacks: with 29%
bandwidth overhead, it reduces Tik-Tok’s (Rahman et al.
2020) TPR to 83.28% and DF’s (Sirinam et al. 2018) TPR
to 76.84%, and October outperforms the best padding
machine, RBB (Mathews et al. 2018), but with less band-
width overhead: it, with 11% less bandwidth overhead
than RBB, reduces Tik-Tok’s TPR to 74.24% while RBB
only reduces it to 82.75%. To have a comprehensive eval-
uation of the machines, we also conduct the information
leakage analysis (Li et al. 2018) and perform the evalua-
tion in the one-page setting (Wang 2021). In the infor-
mation leakage analysis, for the Burst category, October
leaks at 2.453 bits, compared to the best machine Inter-
space (Pulls 2020) gets 2.629 bits. In the one-page set-
ting, October limits the precision of the k-FP (Hayes and
Danezis 2016) attack to 82.44%, while RBB achieved a
precision of 82.35%. However, October incurs 11% less
bandwidth overhead than RBB. Compared to other WF
defenses, on various security mode datasets, August
and October outperformed the best WF defense DFD

(Abusnaina et al. 2020). In the larger open-world set-
ting, both August and October significantly decrease the
performance of the DF (Sirinam et al. 2018) attack as the
unmonitored set increases.

We summarize the contributions of our work as
follows:

•	 We propose a realistic and novel WF defense
approach called break burst padding (Break-Pad)
within the existing Circuit Padding Framework of the
Tor network, which obfuscates traffic characteristics
with a more efficient padding approach.

•	 We designed and implemented two padding machines
with Break-Pad: August and October. Experimental
results show that both machines have high defense
performance with low bandwidth overhead in the
open-world setting and the one-page setting.

•	 We utilized the distribution fitting approach to search
the optimal parameters for the padding machines. To
the best of our knowledge, we are the first to use this
approach to fix the parameters.

We organize the rest of the paper as follows. We
introduce the background and related work in sec-
tion “Background and Related Work”. We next give, In
section “Preliminaries”. In section “Break Burst Padding
Defense”, we proposed our defense, Break-Pad. We evalu-
ate our padding machines in section “Evaluation” and
give the discussion in section “Discussion”. Finally, we
conclude our work in section “Conclusion”, and we share
the source code for both machines in the “Appendix”.

Background and related work
In this section, we summarize previous work on WF
attacks and defenses. Then we describe the WF defense
deployed on Tor, which is known as Circuit Padding
Framework (padding spec 2019), and padding machines
(Mathews et al. 2018; Pulls 2020; Kadianakis et al. 2021)
proposed in the framework.

Website fingerprinting attacks
The WF attacks proposed early used machine learning
models as classifiers with hand-crafted features as input
(Wang et al. 2014; Kwon et al. 2015; Hayes and Danezis
2016; Panchenko et al. 2016). After that, a variety of WF
attacks using deep learning were proposed (Rimmer et al.
2018; Sirinam et al. 2018; Bhat et al. 2019; Sirinam et al.
2019; Rahman et al. 2020; Se Eun et al. 2021; Cherubin
et al. 2022; Shen et al. 2023; Deng et al. 2023).

1) ML-based attacks: The state-of-the-art ML-based
WF attacks are Wang-kNN (Wang et al. 2014), k-FP
(Hayes and Danezis 2016), and CUMUL (Panchenko

Page 3 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

et al. 2016). Wang-kNN (Wang et al. 2014) extracts
more than 3000 statistical features from the packet flow
and feeds these features into the classifier based on the
k-Nearest Neighbor algorithm (kNN) to predict the web-
sites visited by users. k-FP (Hayes and Danezis 2016) also
uses kNN as a classifier. However, unlike Wang-kNN,
k-FP does not feed statistical features directly into the
classifier, but rather a website fingerprint generated by a
Generator as input. A website fingerprint is represented
by a vector of leaf identifiers from a trained Random For-
est. CUMUL (Panchenko et al. 2016) uses Support Vector
Machine (SVM) as a classifier and takes the cumulative
sum of packet lengths as input features to the classifier.
These attacks are effective against undefended traffic.
However, for defended traffic, the performance of these
attacks will be significantly reduced.

2) DL-based attacks: The classic DL-based attacks are
AWF (Rimmer et al. 2018), DF (Sirinam et al. 2018), Var-
CNN (Bhat et al. 2019), Tik-Tok (Rahman et al. 2020).
Rimmer et al. (2018) propose using a simple Convolution
Neural Network (CNN) (Lecun et al. 1998) architecture
in their Automatic Website Fingerprinting (AWF). In
the closed-world setting (containing 900 classes), AWF
obtained an accuracy of 91.79%. Sirinam et al. (2018)
proposed the Deep Fingerprinting (DF) model, which
utilizes a 1D-CNN architecture with more hidden lay-
ers. DF achieves over 98% accuracy on undefended traf-
fic. And, DF gets more than 90% accuracy against traffic
defended by the WTF-PAD (Juarez et al. 2016) defense.
The results show that DF breaks WTF-PAD. Bhat et al.
(2019) proposed Var-CNN, which integrates two classical
ResNet-18 (He et al. 2016). One ResNet-18 model takes
the direction sequence as input, and the other ResNet-18
model takes the timestamp sequence as input. Compared
to DF, it gets better performance in the low-data setting.
Rahman et al. (2020) proposed Tik-Tok, which utilizes
the directional timing feature to effectively enhance the
performance of the DF. The directional timing feature
is a sequence of values, where each value is yielded by
multiplying the packet’s timestamp by its direction. In
the closed-world setting, Tik-Tok achieved 97% accuracy
on traffic defended by Walkie-Talkie (Wang and Gold-
berg 2017). The results show that Tik-Tok overcomes
Walkie-Talkie.

Website fingerprinting defenses
To counter WF attacks, WF defenses (Panchenko et al.
2011; Dyer et al. 2012; Cai et al. 2014a, b; Nithyanand
et al. 2014; Juarez et al. 2016; Cherubin et al. 2017; Wang
and Goldberg 2017; Lu et al. 2018; Abusnaina et al. 2020;
Gong and Wang 2020; De la Cadena et al. 2020; Henri
et al. 2020; Al-Naami et al. 2021; Nasr et al. 2021; Rah-
man et al. 2021; Gong et al. 2022; Holland and Hopper

2022; Smith et al. 2022; Mathews et al. 2023) modify the
original pattern of traffic to reduce the amount of infor-
mation leaked to the adversary. Existing defenses typi-
cally inject, delay, merge, and split packets into the traffic
or transmit the traffic over multiple network channels.
We roughly categorize previous defenses into five broad
categories: Fix-rate, Padding, Reference Trace, Traffic
Splitting, and others.

(1) Fix-rated Defenses: These defenses aim to morph
packet sequence patterns to appear similar or identical,
preventing the adversary from distinguishing among
them. BuFLO (Dyer et al. 2012) operates by sending
fixed-sized packets at fixed intervals. If there is no real
packet to be sent within the set time, it sends a dummy
packet. CS-BuFLO (Cai et al. 2014a) is an improved ver-
sion of BuFLO, which can adjust the transmission rate
appropriately based on the network congestion. Tamaraw
(Cai et al. 2014b) is proposed as a lightweight BuFLO that
reduces defense overhead while guaranteeing defense
effectiveness. RegulaTor (Holland and Hopper 2022)
regularizes the surges in the packet sequences that often
occur in download traffic. surge is defined as a large num-
ber of packets sent in a short period of time. While these
defenses can counter WF attacks using simple algorithms
and do not require additional resources (e.g., storage
space) or packet sequence information from the target
site, their bandwidth and latency overhead are extremely
high, making them difficult to apply in practice.

(2) Padding-based Defenses: These defenses add
dummy packets based on predefined rules to mask the
original pattern of the traffic. WTF-PAD (Juarez et al.
2016) uses delay-based padding, where sending a pad-
ding packet is triggered when the chosen delay expires. It
tries to obfuscate the packet interval time characteristics
of the traffic. DFD (Abusnaina et al. 2020) only injects
padding packets into the outgoing burst. After the client
sends two consecutive packets, DFD starts injecting pad-
ding packets. The number of padding packets is half of
the length of the previous outgoing burst. FRONT (Gong
and Wang 2020) injects padding packets at the front of
the traffic. It samples the total number of padding pack-
ets from the Uniform distribution, and samples the time
of each padding packet in the Rayleigh distribution. It
then sends the padding packets at the set times.

(3) Traffic Splitting Defenses: This class of defenses
resists WF attacks by splitting traffic over multiple net-
work channels so that none of the channels can get
full information about the target website. The classical
defenses are TrafficSilver (De la Cadena et al. 2020) and
HyWF (Henri et al. 2020). TrafficSliver (De la Cadena
et al. 2020) uses the circuit with multiple entry nodes,
splits application traffic over multiple entry nodes for
transmission, and merges traffic at the middle nodes.

Page 4 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

HyWF (Henri et al. 2020) splits traffic over two different
access points (e.g. one for Cellular network and the other
for home WiFi) and merges traffic at a multipath-com-
patible Tor bridge.

(4) Reference Trace-based Defenses: These defenses
morph the original traffic pattern of the web page from
the reference trace they create. The two defenses, Glove
(Nithyanand et al. 2014) and Supersequence (Wang et al.
2014), group web pages into clusters and create a super-
trace for each cluster. When users visits a page in a clus-
ter, it modifies the traffic pattern of the page by injecting
and delaying packets according to the super-trace of
that cluster. Walkie-Talkie (Wang and Goldberg 2017)
has modified the browser so that it can communicate in
half-duplex. And it molds the burst sequence of a sensi-
tive page based on a non-sensitive page (which is a refer-
ence trace) to make the two pages look the same. Surakav
(Gong et al. 2022) utilizes Generative Adversarial Net-
works (GAN) (Goodfellow et al. 2020) to generate send-
ing patterns (which is a reference trace) and regulates
target traffic based on the generated patterns.

(5) Other Defenses: Panchenko et al. (2011) proposed
Decoy, which loads a decoy webpage simultaneously
when a user visits a website. It mixes the traffic of two
web pages together, making it hard for an attacker to get
the “pure” traffic of a single web page. Recent research
(Wang 2021) has shown that its bandwidth overhead is
too high and does not guarantee the effectiveness of the
defense.

Circuit padding framework and padding machines
Against the WF attacks, the Tor Project community
has deployed the Circuit Padding Framework (padding
spec 2019) based on the research results of Shmatikov
and Wang (Shmatikov and Wang 2006) and Juarez et al.
(2016). In this framework, a developer can implement his
own padding defense by designing a padding machine, a
finite state machine. In the machine, each state samples
the inter-packet delay from a histogram or probability
distribution and injects a padding packet if the chosen
delay expires. They can define different histograms or
probability distributions to perform different padding
patterns.

Tor currently deploys two padding machines enabled
by default: the Client-side Introduction Circuit Hiding
machine (padding spec 2019) and the Client-side Ren-
dezvous Circuit Hiding machine (padding spec 2019),
both of which aim to hide features of the construction
cell sequence of the client-side onion service circuit.
Mathews et al. (2018) used histograms to implement two
padding machines: Random Extend Bursts (REB) and
Random Break Bursts (RBB). Both machines determine
to send padding bursts with a 10% probability. When a

padding burst is sent, they will decide whether to con-
tinue sending a padding packet with a 50% probability.
Pulls (2020) used genetic programming to create the pad-
ding machine called Spring. Based on Spring, the author
added the probabilistic state transitions approach to gen-
erate a new padding machine called Interspace. Kadi-
anakis et al. (2021) proposed a padding machine called
Preemptive Circuit Padding (PCP), which injects dummy
onion handshakes in the preemptive phase.

Preliminaries
Threat model
Figure 1 illustrates the threat model. We assume that the
attacker is a relay adversary, who is located on the entry
node of the Tor circuit. As a node of the circuit, they
are able to see cells (fixed-size packets) transferred on
the circuit. Although he cannot see the contents of the
cells, he can still obtain the type and direction of all cells
transferred on the target circuit. Besides, the adversary
is a passive observer who cannot insert, drop, modify, or
delay packets.

For traffic analysis of the malicious entry relay, the cli-
ent and the middle relay cooperate to defend against such
attacks in Tor. In the Tor network, they only send pad-
ding cells to each other, and cannot delay cells. In addi-
tion, the middle relay automatically drops all padding
cells from the client, so the exit relay and web server
would not be affected.

Defense overhead
Following the methodology of prior works, we evaluate
bandwidth and time overhead for the defenses. The band-
width overhead is the ratio of the total number of dummy
packets to the total number of real packets on the whole
dataset. In our work, we further evaluate the incoming
and outgoing bandwidth overhead. The incoming/outgo-
ing bandwidth overhead is calculated as the total num-
ber of incoming/outgoing dummy packets divided by
the total number of real incoming/outgoing packets. The
time overhead is the ratio of the total extra time added by
the defenses to the total time without defenses.

Fig. 1  The threat model, in which the client and the middle
node participate in defense together against traffic analysis
from the malicious entry node

Page 5 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

Metrics
We use multi-class classification metrics for the open-
world setting to evaluate the defense performance. We
first introduce TP-c, TP-i, FN, FP, and TN, and then
describe how to calculate Precision, True Positive Rate
(TPR), and False Positive Rate (FPR).

•	 True Positive with the correct website class (TP-c)
is the number of monitored classes predicted as the
monitored and the correct website class.

•	 True Positive with the incorrect website class (TP-i)
is the number of monitored classes predicted as the
monitored and the incorrect website class.

•	 False Negative (FN) is the number of monitoring
classes predicted as unmonitored.

•	 False Positive (FP) is the number of unmonitored
classes predicted as monitored.

•	 True Negative (TN) is the number of unmonitored
classes predicted as unmonitored.

Precision is calculated as the number of monitored
classes classified as monitored and correct website
classes divided by the total number of predicted moni-
tored classes.

TPR (Recall) is calculated as the number of monitored
classes classified as monitored and correct website
classes divided by the total number of monitored classes.

FPR is calculated as the number of unmonitored classes
classified as monitored divided by the total number of
unmonitored classes.

Break burst padding defense
In this section, we introduce our break burst padding
defense. We first discuss the motivation. Then we give an
overview of our defense and describe how to fix the best
parameters. Finally, we show two padding machines with
break burst padding.

Motivation
The Circuit Padding Framework (padding spec 2019) uses
delay-based padding, where sending a padding packet is
triggered only when the chosen delay expires. However,

(1)Precision =
TP- c

TP- c + TP- i + FP

(2)TPR =
TP- c

TP- c + TP- i + FN

(3)FPR =
FP

FP + TN

it cannot meet the requirement of injecting padding
packets in bursts with less bandwidth overhead. In traf-
fic, generally, the inter-packet time of bursts is short and
the inter-burst time is long. If we set a long delay, the
defense cannot inject padding packets in the burst, so the
traffic still retains the characteristics of the burst pattern.
Since the burst pattern is not broken, making it success-
fully overcome by the DF (Sirinam et al. 2018) attack. If
we set a short delay, the defense injects padding packets
between almost every real packet or injects a large num-
ber of padding packets during the idle time of the traffic.
It causes the defense to incur huge bandwidth overhead,
e.g., the total number of padding packets is much larger
than the total number of real packets. And, the delay-
based padding is very difficult to set appropriate delays
that allow the defense to inject sufficient padding packets
in each burst and not to inject too many padding pack-
ets between bursts or during the idle time of the traffic.
To deal with the above problems of the Circuit Padding
Framework, we try to find a padding approach that can
effectively break burst patterns of packet sequences in
the existing Circuit Padding Framework with less defense
overhead to resist WF attacks such as DF (Sirinam et al.
2018).

Overview of break burst padding
We first introduce a type of padding approach called
break burst. As shown in Fig. 2, a break burst means that
it uses a padding burst B (containing 3 packets) to divide
a real incoming burst R (containing 5 packets) into two
short bursts R1 (containing 4 packets) and R2 (containing
1 packet), and B is located between them.

Break Burst Padding (Break-Pad) is designed by uti-
lizing the break burst approach. Specifically, the pad-
ding position selection in Break-Pad is determined by
the number of incoming packets: it sends some padding
packets when the number of packets it receives exceeds
the threshold. Moreover, rather than using a fixed pad-
ding pattern, the defense samples random numbers of
thresholds and padding packets from the probability dis-
tributions each time, so that the same traffic will show
different burst patterns. In addition, we set the probabil-
ity distribution of our defense based on the data distribu-
tion of the traffic in the monitored class.

Fig. 2  Visualization of break burst for one time

Page 6 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

Algorithm 1  Break Burst Padding Algorithm

Break-Pad works as shown in Algorithm 1. we first
samples a threshold p and a padding burst b from Dp and
Db , respectively (Line 2). In each iteration, if the packet is
incoming, the number of consecutive incoming packets n
is added to 1. When n equals the threshold p, we succes-
sively send b padding packets and sample the new values
of p and b (See Line 4–11). If the packet is outgoing and n
is not equal to 0, we set n to its initial value of 0 and sam-
ple the new values of p and b (Line 12–15).

Break-Pad mainly destroys the burst sequence char-
acteristics of the packet flow. We used Li’s WeFDE (Li
et al. 2018) tool to calculate the amount of information
leaked by traffic defended by Break-Pad. WeFDE gets the
amount of information that an attacker can obtain from
F about W by calculating the mutual information I(F; W),
where W denotes the website information and F is a ran-
dom variable representing the website fingerprint of W.
The calculation formula is:

Break-Pad reduces information leakage from 5.215 bits to
2.539 bits when only the client applies our defense, and
to 2.453 bits when both the client and the relay apply our
defense. In addition, we analyze in detail the information
leakage of Break-Pad with respect to other categories of
features in Section .

Setting parameters of probability distribution
Break-Pad is governed by four parameters in Table 1,
where parameter p is a threshold that determines the
number of incoming packets and parameter b determines
the number of padding packets, and it gets random values

(4)I(F;W) = H(W)−H(W |F)

of p and b in each round by sampling from Dp and Db ,
respectively. In this section, we introduce the approach
for setting the parameters of the probability distributions
Dp and Db.

If the outgoing bursts (request packets) sent by a user
in a dataset fit a probability distribution. We believe that
the padding packets we sent should also match this dis-
tribution, otherwise, these padding packets will become
another characteristic of the traffic. And, we believe that
the number of incoming packets we set (padding points)
should also match the distribution of incoming bursts in
the dataset. Accordingly, we get the distribution param-
eters of the Break-Pad by fitting a probability distribution
to the dataset.

The workflow of the parameter tuning approach is
described as follows. We first count the number of
incoming and outgoing bursts on the dataset and sort
them by length. The results are shown in Fig. 3. Then, we
select the top N bursts (e.g., when N is 10, we select all

Table 1  Parameters for Break-Pad

Parameter Description

p Number of incoming packets

b Number of padding packets

Dp Probability distribution of p

Db Probability distribution of b

Fig. 3  Distribution of incoming and outgoing bursts
on the Goodenough dataset

Page 7 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

bursts with lengths less than or equal to 10) and fit the
probability distribution to the data to obtain the parame-
ters of the probability distribution. Using the above fitting
approach, we choose different N bursts each time and fit
the probability distribution to the data to obtain differ-
ent parameters. Finally, we evaluate the performance of
all parameters obtained by the fitting approach and pick
the parameters that achieve the lowest TPR.

August: one‑way Break‑Pad machine
We designed the one-way padding machine with Break-
Pad called August. The August machine consists of a
client machine on the client and a relay machine on the
middle node. We implemented the Break-Pad defense in
the Break state of August’s client machine.

In Fig. 4, the client machine has three states: Start,
Wait, and Break. Start is the initial state of the machine.
After receiving a padding negotiated cell sent by the relay
machine, it transitions from Start to Wait. When the
machine received a real cell sent by the server, it tran-
sitions to Break and samples the values of p (padding
point) and b (padding burst) from Dp and Db , respec-
tively. In the Break state, the machine subtracts 1 from p
each time it receives a cell. When p is 0, it continuously
sends b padding cells. It then resamples to get the new
values of p and b. If the machine sends a real cell and p is
not 0, it transitions back to Wait.

Figure 5 shows all states of the relay machine, which
has two states: Start and Wait. Same as the client
machine, the initial state is still Start. It transitions from
Start to Wait when receiving a client’s padding negotiate
cell. In Wait, it only drops the padding cells from the cli-
ent. Since the relay machine is not allowed to send pad-
ding cells to the client, we do not need to set probability
distributions for it.

Table 2 summarizes all parameters of August we need
to fix. Dc

p denotes the probability distribution of padding
points of the client machine, and Dc

b denotes the proba-
bility distribution of padding bursts of the client machine.
For each probability distribution, we need to set the type
of the distribution, as well as two parameters for the dis-
tribution. We will fix the parameters using the approach
introduced in Section .

October: two‑way Break‑Pad machine
In this subsection, we introduce the two-way padding
machine with Break-Pad, October. Compared with
August, October is able to send padding cells in both
directions. So, we believe that October is more effective
against WF attacks than August. We implemented the
Break-Pad defense in the Break state of client and relay
machines in October. Since the client machine of Octo-
ber is similar to the client machine of August, we will not
introduce it again.

As shown in Fig. 6, the relay machine of October
includes three states: Start, Wait, and Break. Start is the
initial state. When a padding negotiate cell is received,
it transitions to Wait. In Wait, it transitions to Break if
receiving a real cell from the client. In the Break state,
it runs the Break-Pad algorithm, which first samples the
values of p and b. Then the value of p is subtracted by 1
every time a padding or real cell is received. When the
value of p is 0, a padding burst including b cells is sent to
the client. If it forwards a real cell sent from the server to
the client and p is not 0, it transitions to Wait.

We show all the parameters for October in Table 3. Dc
p

and Dc
b denote the probability distributions of padding

Fig. 4  State diagram for the client machine of August

Fig. 5  State diagram for the relay machine of August

Table 2  Parameters for August

Machine Probability distribution Parameter

Client Dc
p Type

Param_1

Param_2

Dc
b

Type

Param_1

Param_2

Fig. 6  State diagram for the relay machine of October

Page 8 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

points and padding bursts for the client machine, respec-
tively, and Dr

p and Dr
b denote the probability distribu-

tions of padding points and padding bursts for the relay
machine, respectively.

Evaluation
Here we evaluate August and October against other
machines and the WF defenses. We first describe the
dataset we used and the parameter tuning for both
machines. Then we compare August and October with
other machines and other WF defenses in several aspects.

Dataset
In this study, we use the Goodenough dataset1, which is
collected by Pulls and used to evaluate the performance
of Spring and Interspace in his work (Pulls 2020). The
Goodenough dataset contains three separate datasets
that are based on the Tor Browser’s three security set-
tings: Standard, Safer, and Safest. The Standard is the
default security level for the Tor Browser, allowing all
content and scripts on a web page; The Safer disallows
scripts from running on non-HTTPS sites and blocks
some dynamic contents such as audio and video; The
Safest disallows scripts from running on all websites and
blocks more dynamic content from loading, including
fonts, icons, math symbols, images, audio, and video.

In the Goodenough dataset, for each security mode,
the dataset consists of 10,000 monitored instances from
50 websites (in which each of the 10 subpages per website
was visited 20 times) and 10,000 unmonitored instances
from 10,000 websites (in which each of the index pages of
the website was visited 1 time).

Parameter tuning
type of probability distribution
To find the best combination of distribution types for
Dp and Db , we tried all the distribution types provided
by Tor in Dp and Db of the August machine. We exclude
the uniform distribution by observing the burst distribu-
tion of the Goodenough dataset (see Fig. 3 in Section).
To reduce computational complexity and obtain results
more quickly, we pick up incoming bursts with lengths
less than or equal to 10 (the value of Nc

in is 10) and outgo-
ing bursts with lengths less than or equal to 20 (the value
of Nc

out is 20). Then, we fit the different types of distri-
butions to the chosen burst data (incoming or outgoing
bursts) to obtain the corresponding parameters for each
type of distribution. And we set different distribution
types and corresponding parameters in the Dp and Db of
the August machine to generate multiple machines con-
taining different distributions. Finally, DF (Sirinam et al.
2018) was used to evaluate the defense performance of
all machines. Figure 7 shows bandwidth overhead and
DF’s TPR for all machines. When Dp is set to the Weibull
distribution and Db is set to the Pareto distribution, this
combination of distributions gets the lowest TPR (about
75%) with the 29% bandwidth overhead. Therefore, in the
following experiments, we set Dp to the Weibull distribu-
tion and Db to the Pareto distribution by default.

Parameters of probability distribution
The parameters can determine the location, shape, or
scale of the distribution, so we get the best distribution
by adjusting the parameters. And, we fit only the training
data to obtain the parameters of the distribution.

Table 4 shows the search range and final values of Nc
in

and Nc
out for the August machine. Nc

in represents incom-
ing burst data with burst length less than or equal to the

Table 3  Parameters for October

Machine Probability distribution Parameter

Client Dc
p Type

Param_1

Param_2

Dc
b Type

Param_1

Param_2

Relay Dr
p Type

Param_1

Param_2

Dr
b

Type

Param_1

Param_2
Fig. 7  Performance with different combinations in the August
machine. Different distribution types of Dp are represented
in different colors

1  https://​github.​com/​pylls/​paddi​ng-​machi​nes-​for-​tor/​tree/​master/​datas​et

https://github.com/pylls/padding-machines-for-tor/tree/master/dataset

Page 9 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

value of Nc
in , and Nc

out represents outgoing burst data with
burst length less than or equal to the value of Nc

out . We fit
the default probability distributions to the Nc

in data and
the Nc

out data to get the parameter values of Dc
p and Dc

b for
August’s client machine, respectively. When Nc

in is 10 and
Nc
out is 20, the combination of parameters obtained by fit-

ting achieves the lowest DF’s TPR. The specific parameter
values for August are shown in “Appendix A.1”.

We present the search range and final values for the
October machine in Table 5. Nc

in and Nc
out are incoming

burst data and outgoing burst data, respectively, which
are fitted to produce parameters for the client machine;
Nr
in and Nr

out are incoming burst data and outgoing burst
data, respectively, which are fitted to produce parameters
for the relay machine. We find that the best results are
yielded when Nc

in is 20, Nc
out is 25, Nr

in is 25, and Nr
out is 3.

(see specific parameter values for the October machine in
“Appendix B”).

Performance in open‑world
Experimental setting
Similar to prior experiments on defenses, we also con-
ducted simulation experiments. We first implemented
the Break-Pad defense and integrated it into the Circuit
Padding Framework (padding spec 2019) on Tor 0.4.7.8.
We then add the circuit padding simulator (Circpad-
Sim2) developed by Pulls (Pulls 2020) to the modified Tor.
Circpad-Sim uses Tor’s unit test framework to simulate
applying padding machines to generate defended traces.
In addition, we rewrite the Python script for running the
simulator inspired by Pulls’s script. In this experiment,
we only used the Standard dataset from Goodenough.

We applied CUMUL (Panchenko et al. 2016), k-FP
(Hayes and Danezis 2016), DF (Sirinam et al. 2018), and
Tik-Tok (Rahman et al. 2020) as benchmarks to evalu-
ate the effectiveness of the machines. CUMUL based on
SVM is heavily dependent on the correct parameters, so
we performed parameter tuning on the candidate param-
eters suggested by Panchenko et al. (2016) and found the
optimal parameters by grid search with cross-validation.
All classifiers extracted features from the first 5000 cells
of the defended trace.

Defense overhead
The bandwidth overheads for each machine are pre-
sented in Table 6. The bandwidth overhead of Spring and
Interspace is over 123%, which indicates that the padding
packets are more than the real ones. From Fig. 8, both
Spring and Interspace add too many incoming padding
packets, resulting in high bandwidth overhead. By con-
trast, in our design, August does not generate incoming
padding packets, so the bandwidth overhead is less than
30%.

In Table 6, The bandwidth overhead of REB and RBB is
less than 50%. However, REB injects much more incoming
padding packets than outgoing padding packets from Fig. 8.
On the contrary, the outgoing padding packets of RBB are
more than the incoming padding packets. We believe that
too many incoming/outgoing padding packets than the
other padding packets will not obtain good performance. In

Table 4  Search range and final values for August

Hyperparameter Search range Final

Nc
in [5 ... 50] 10

Nc
out [5 ... 50] 20

Table 5  Search range and final values for October

Hyperparameter Search range Final

Nc
in [5 ... 50] 20

Nc
out [5 ... 50] 25

Nr
in [5 ... 50] 25

Nr
out [1 ... 15] 3

Table 6  Bandwidth overhead (BW) for padding machines (%)

Our work is shown in bold

Machine Outgoing BW Incoming BW Total BW

Spring 324 100 123

Interspace 542 111 157

REB 47 48 48

RBB 421 5 47

August 281 0 29
October 191 18 36

Fig. 8  Components of defended traces. A trace is composed of real
incoming packets (green), real outgoing packets (blue), padding
incoming packets (yellow), and padding outgoing packets (red)

2  https://​github.​com/​pylls/​circp​ad-​sim

https://github.com/pylls/circpad-sim

Page 10 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

comparison, for October, the incoming padding packets are
similar to the outgoing padding packets.

Results
We show the results in Table 7. When there is no machine
applied, CUMUL (Panchenko et al. 2016), k-FP (Hayes
and Danezis 2016), DF (Sirinam et al. 2018), and Tik-Tok
(Rahman et al. 2020) achieve more than 92% Precision,
more than 91% TPR, and less than 6.5% FPR. DF has the
highest TPR (98.4%) and k-FP has the highest Precision
(95.94%) and the lowest FPR (2.78%) among all attacks.
The results show that WF attacks are highly effective in
the open-world setting when no machine is used. REB
has the worst performance among all machines. With
48% bandwidth overhead, REB only reduced Tik-Tok’s
Precision by 3.65% (95.04% → 91.39%), reduced Tik-
Tok’s TPR by 5.19% (97.76% → 92.57%), and increased
Tik-Tok’s FPR by 2.21% (4.39% → 6.6%). Spring is more
effective against all attacks. The Precision of Tik-Tok
is reduced to 46.15%, the TPR of Tik-Tok is reduced to
45.89%, and the FPR of CUMUL is increased to 35.16%,
however, it brings a massive bandwidth overhead (123%).
By contrast, August, only with 29% bandwidth overhead,
dropped the Precision of Tik-Tok from 95.04% to 86.83%,
dropped the TPR of Tik-Tok from 97.76% to 78.15%, and
increased the FPR of CUMUL from 6.55% to 30.68%.

Interspace has the best defense performance against
all attacks. It achieved the lowest Tik-Tok Precision
(36.13%) and the lowest Tik-Tok TPR (31.29%) in all
results. However, Interspace also requires the highest
bandwidth overhead (156%) among all machines. RBB
achieves good defensive performance against all attacks.
RBB reduced Tik-Tok’s Precision from 95.04% to 82.47%,
reduced Tik-Tok’s TPR from 97.76% to 82.75%, and
increased CUMUL’s FPR from 6.55% to 33.93%, with
47% bandwidth overhead. Compared with RBB, October,
with less bandwidth overhead, gets better defense perfor-
mance. With 11% less bandwidth overhead compared to

RBB, it further decreased Tik-Tok’s Precision by 3.74%
(82.47% → 78.73%), decreased Tik-Tok’s TPR by 13.5%
(82.75% → 69.25%), and increased CUMUL’s FPR by
1.36% (33.93% → 35.29%).

Information leakage analysis
To gain further insight into the machines, we performed
information leakage analysis using Website Fingerprint
Density Estimation (WeFDE) proposed by Li et al. (2018).
WeFDE calculates the mutual information of a website W
and a fingerprint F of W to estimate the amount of informa-
tion that an adversary learns from F about W. It consists of
two components: Website Fingerprint Modeler and Mutual
Information Analyzer. Website Fingerprint Modeler uses
Adaptive Kernel Density Estimate (AKDE) (Rosenblatt
1956) to model the probability density function of fea-
tures and produce an estimate of the information leakage
for each feature. Mutual Information Analyzer is used for
feature dimension reduction. It only picks out the top 100
most informative non-redundant features and clusters the
features. The redundant features are those that have higher
mutual information than a threshold value (0.9).

Experimental setting
we evaluate the information leakage for each feature cat-
egory for machines. Following their methodology, we
compute the information leakage for 14 feature catego-
ries used in Li et at. (2018). Since some categories con-
tain a large number of features, we prune the redundant
features with a threshold of 0.9 and pick the top non-
redundant 50 features in these categories (Transposition,
Interval-I, Interval-II, Interval-III, and Pkt. Distribution).
In calculating the amount of information leakage for each
category, we did not cluster features within the category.

Results
Table 8 and Fig. 9 shows the results. All machines greatly
reduce leakage of certain types (Burst, First 20, First 30,

Table 7  Defense performance for padding machines in open-world (%)

Our work is highlighted in bold

Machine Precision TPR FPR BW

CUMUL k-FP DF Tik-Tok CUMUL k-FP DF Tik-Tok CUMUL k-FP DF Tik-Tok

None 92.90 95.94 95.48 95.04 94.2 91.26 98.4 97.76 6.55 2.78 4.12 4.39 0

Spring 17.06 44.32 39.70 46.15 13.97 10.02 34.76 45.89 35.16 3.07 29.62 26.13 123

Interspace 8.55 32.19 31.13 36.13 6.02 5.36 16.16 31.29 33.2 2.59 17.58 23.54 156

REB 78.62 83.89 87.52 91.39 80.32 59.46 93.09 92.57 15.83 5.29 10.75 6.6 48

RBB 31.86 60.88 64.51 82.47 28.16 22.03 71.63 82.75 33.93 5.10 27.69 12.29 47

August 48.06 68.47 66.76 86.83 46.38 30.45 76.84 78.15 30.68 5.38 27.15 6.5 29
October 38.42 63.24 64.98 78.73 36.88 23.20 65.36 69.25 35.29 4.78 22.34 9.65 36

Page 11 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

and Last 30). For the Burst category, October leaks at
2.453 bits which is the lowest leakage except Spring’s. It
means that October is effective to break the burst pat-
tern with low bandwidth overhead. Some categories
(Pkt. Count, Time, and Transposition) of information
leakage have also decreased. We found that some cat-
egories (Ngram, Interval-I, Interval-II, Interval-III, Pkt.

Distribution, and Pkt. per Second) still produce high
information leakage. Compared with the very low TPR of
CUMUL (Panchenko et al. 2016), the CUMUL category
in the August and the October machines have high infor-
mation leakage, 5.494 bits and 5.424 bits. However, it can
be shown in Fig. 9 that August and October significantly
reduce the information leakage

Table 8  Information Leakage by feature category (bits) Coloring: (x > 5.0) red, (4.0 < x < 5.0) orange, (3.0 < x < 4.0) yellow, (x < 3.0)
uncolored

Fig. 9  Information Leakage by feature category

Page 12 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

Performance in one‑page
Wang (2021) proposes a higher evaluation standard
(called one-page setting) to analyze WF defense perfor-
mance, where there is only one monitored class and one
unmonitored class. The monitored class contains only
some instances of the same webpage that the attacker
wants to identify.

Experimental setting
To show the defense effect of our padding machines, we
performed the same experiments in the one-page setting.
Each time, we randomly selected 200 instances from one
website of the monitored class as positive samples and 200
instances from the unmonitored class as negative samples
and performed binary classification with k-FP (Hayes and
Danezis 2016). We repeated this evaluation 50 times each
time using a different website of the monitored class (the
monitored class of the Standard dataset contains 50 web-
sites) and calculated the average of Precision, TPR, and
FPR for all results as the final result of the experiment.

Results
Table 9 summarizes the results. On the undefended
dataset, k-FP got 96.02% Precision, 98% TPR, and 4.05%
FPR, showing that it is highly effective in identifying
single webpages. Although Spring and Interspace get
the best defensive performance among all machines,
they carry too much bandwidth overhead. Compared
to August, Spring only reduced Precision by 11.33%
(86.80% → 75.47%), TPR by 12.16% (91.95% → 79.79%),
and increased FPR by 12.21% (14.25% → 26.46%), but
increased bandwidth overhead by 94% (29% → 123%).
Compared with Spring, with 33% more bandwidth over-
head, Interspace only decreased TPR by 2.54% (79.79%
→ 77.25%). REB is the least effective defense. With 48%
bandwidth overhead, it only reduced Precision by 3.44%
(96.02% → 92.58%), TPR by 1.67% (98% → 96.33%), and
increased FPR by 3.94% (4.05% → 7.99%). RBB performed

slightly better than August by further reducing Precision
by 4.45% (86.80% → 82.35%), reducing TPR by 2.77%
(91.95% → 89.18%), and increasing FPR by 5.39% (14.25%
→ 19.64%). However, RBB incurs 18% more bandwidth
overhead than August. October gets good defense per-
formance with less bandwidth overhead. While achiev-
ing similar performance to RBB, October further reduced
bandwidth overhead by 11% (47% → 36%).

Performance against other WF defenses
We evaluated the performance of these two machines
(August and October), as well as other WF defenses,
using datasets based on three security modes in the Tor
Browser Bundle (TBB): Standard, Safer, and Safest.

Experimental setting
Based on the original paper, we have re-implemented the
WF defenses, including DFD (Abusnaina et al. 2020), Reg-
ulaTor (Holland and Hopper 2022), and TrafficSilver (De la
Cadena et al. 2020). There are two versions of RegulaTor:
RegulaTor-Light and RegulaTor-Heavy. For this experi-
ment, RegulaTor-Light, which has less defense overhead,
is chosen. TrafficSilver adopts 3 circuits and the batch-
weighted random (BWR) splitting strategy. We evaluated
the effectiveness of the defenses using Tik-Tok (Rahman
et al. 2020). To get more features of the traffic, Tik-Tok
extracted features from the first 10,000 packets of traffic
rather than the 5,000 packets in the original paper.

Defense overhead
Table 10 shows the defense overhead for each defense on
the various security model datasets. In all three datasets,
DFD always brings about 55% bandwidth overhead. On
Standard and Safer datasets, RegulaTor brings 24% band-
width overhead and around 33% time overhead. On the Saf-
est dataset, the bandwidth overhead of RegulaTor increased
to 56% due to the reduction in actual traffic. TrafficSilver
uses only traffic splitting, so its bandwidth and time over-
head are both 0%. For various TBB security modes, August
and October always incur lower bandwidth overheads of
29% and 36%, respectively. August and October in the Cir-
cuit Padding Framework do not delay any packets, so they
both have 0% time overhead. We have found that both
machines are padding based on actual traffic, and therefore
have been maintaining a stable bandwidth overhead.

Results
Figure 10 shows the precision-recall curves for Tik-
Tok (Rahman et al. 2020) against the WF defenses on
the dataset of the three security modes. As expected,
Tik-Tok achieved high precision and recall in the three
undefended datasets, showing that the attack is highly
effective. DFD has the worst performance among all

Table 9  Defense performance of padding machines against
k-FP attack in the one-page setting (%)

Our work is marked in bold

Machine Precision TPR FPR Bandwidth

None 96.02 98 4.05 0

Spring 75.47 79.79 26.46 123

Interspace 70.32 77.25 33.06 156

REB 92.58 96.33 7.99 48

RBB 82.35 89.18 19.64 47

August 86.80 91.95 14.25 29
October 82.44 89.30 19.40 36

Page 13 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

defenses. On both Standard and Safer datasets, it did
almost nothing to reduce Tik-Tok’s classification results.
RegulaTor effectively reduces the performance of Tik-
Tok. Its performance is better than the two padding
machines in the Circuit Padding Framework and worse

than TrafficSilver. However, RegulaTor imposes the
time overhead of about 35%, which is why it cannot be
deployed on the Tor network. At present low-latency
anonymity systems such as Tor prohibit WF defenses
from using delay packet operations. TrafficSilver gets
the best defense performance. Particularly on Standard
dataset, TrafficSilver kept Tik-Tok’s precision rate less
than 70%. Tik-Tok’s classification effectiveness is signifi-
cantly reduced by the fact that the adversary is only able
to obtain approximately one-third of the traffic. How-
ever, the implementation of TrafficSilver in the Tor net-
work requires modification of the existing Tor protocol.
Compared to other WF defenses, August and October
significantly decrease the performance of Tik-Tok on
datasets with various security modes. Moreover, August
and October do not utilize delayed packet operations and
do not need to modify the Tor protocol, so they can be
deployed directly into the Tor network.

Performance in larger open‑world
In this subsection, we evaluate the performance of both
padding machines in the larger open-world setting with
significantly more negative than positive samples. As far
as we know, the largest unmonitored dataset contains
the index pages of 400,000 websites collected by Rimmer
et al. (AWF400K)3.

Experimental setting
Using the AWF400K dataset, we evaluate the defense
performance against different sizes of the unmonitored
set (10K, 50K, 100K, 200K, and 400K). Since AWF400K
does not include packet timing, we choose the DF (Siri-
nam et al. 2018) attack that does not adopt packet tim-
ing features. The positive samples are from 5 randomly
selected websites in the Goodenough dataset, totaling
1,000 instances.

Results
Figure 11 shows the performance of both August and
October in the larger open-world setting. The results
show that the performance of both defenses improves
significantly with increasing size of the unmonitored set.
For the 10K unmonitored websites, August and October
reduced the DF’s precision to 75.58% and 73.87%, respec-
tively. Against the moderate-sized unmonitored websites
of 100K size, August and October further dropped the
DF’s precision to 60.55% and 58.29%, respectively. For the
largest unmonitored websites of 400K size, August and
October further reduced the DF’s precision to 40.60%
and 39.58% respectively. Thus, we intuitively believe that

Fig. 10  Precision-recall curves of Tik-Tok against WF defenses
in Open-world

3  https://​github.​com/​Distr​iNet/​DLWF

https://github.com/DistriNet/DLWF

Page 14 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

both defenses would perform more well in the real world,
where there are 200 million active websites4.

Discussion
Padding based on delay or based on the number of incom-
ing packets? In the padding based on delay, the expiration
of the set delay triggers the injection of padding pack-
ets. So, the defense tends to send more padding packets
than intended in the case of network congestion. In real-
ity, congestion in the underlying network or relays in Tor
often causes the latency of incoming packets. And these
latencies lead the defense to send extra padding packets.
The extra padding packets not only increase bandwidth
overhead but also make the network more congested.

In contrast, padding based on the number of incoming
packets injects padding packets only when the number of
incoming packets exceeds the set number. So, even if the
incoming packets are delayed, the defense does not send
additional padding packets.

Should we evaluate the impact of defense on the Tor net-
work? To evaluate the effectiveness of the defense, prior
works either conduct trace simulations, in which the
simulator adds or delays packets according to the defense

scheme; or the proposed defense is implemented as a plug-
gable transport (bridges and pluggable transports 2016),
which obfuscates the traffic between a single client and a
node in the live Tor network. And a defense that achieves
worse attack results than other defenses is considered a bet-
ter defense. However, these studies ignore the impact on the
Tor network when all Tor users have deployed the proposed
defense. The study of Wither et al. (2022) shows that if the
padding-based defense were deployed on a large scale, the
added padding packets will increase latency in the Tor net-
work. This is a bad situation for Tor. Therefore, for a more
comprehensive evaluation of defense, we should evaluate
the impact on the Tor network after the proposed defense is
deployed on a large scale. However, we are currently unable
to deploy the WF defense on a large scale in the live Tor net-
work, nor have we found a suitable simulator for testing.

Conclusion
In this paper, we presented Break-Pad, a practical defense
that can be effective against the best WF attacks. Break-
Pad decides whether to send padding packets based on the
number of consecutive incoming packets. It selects random
numbers of thresholds and padding packets each round,
which are sampled from predefined probability distribu-
tions. In addition, we integrated our defense into Circuit
Padding Framework in the Tor source code. In the modi-
fied framework, we implemented two padding machines,
August and October. August is a one-way padding, light-
weight defense where only the client machine sends pad-
ding packets using the Break-Pad approach. October is a
two-way padding defense, where both the client and the
relay machines can send padding packets to each other.

To show the effectiveness of our padding machines, we
compared our padding machines with the previous best
machines extensively in both the open-world setting and
the one-page setting. Our open-world results show that
August reduced Tik-Tok’s TPR by 19.61% with only 29%
bandwidth overhead. October outperformed RBB against
the state-of-the-art attacks. With 11% less bandwidth
overhead than RBB, October further reduced Tik-Tok’s
TPR by 13.5%. In the one-page setting, at a similar k-FP’s

Table 10  Bandwidth (BW) and Time overhead for WF defenses for Standard, Safer, and Safest TBB Security Modes (%)

Our work is shown in bold

Defense Standard Safer Safest

BW Time BW Time BW Time

DFD 55 0 55 0 54 0

RegulaTor 24 35 24 33 56 35

TrafficSilver 0 0 0 0 0 0

August 29 0 29 0 29 0
October 36 0 35 0 35 0

Fig. 11  Performance for padding machines with growing numbers
of unmonitored sites

4  https://websitesetup.org/news/how-many-websites-are-there/

Page 15 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

Precision and TPR as RBB, the bandwidth overhead of
October was further reduced by 11%. Additionally, we
evaluate the information leakage for the traces defended
by the machines. In the information leakage analysis,
for the Burst category, October leaks 2.453 bits while
the best machine Interspace leaks 2.629 bits. Compared

to other WF defenses, August and October outperform
the state-of-the-art WF defense DFD on all three secu-
rity mode datasets. In the larger open-world setting, both
August and October consistently reduced the DF’s per-
formance with increasing unmonitored sets.

Appendix A: Source code for August
Appendix A.1: Client machine

Appendix A.2: Relay machine

Page 16 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

Appendix B: Source code for October
Appendix B.1: Client machine

Page 17 of 18Huang and Du ﻿Cybersecurity (2024) 7:28 	

Appendix B.2: Relay machine

References
Abusnaina A, Jang RHO, Khormali A et al (2020) DFD: adversarial learning-

based approach to defend against website fingerprinting. In: 39th
IEEE conference on computer communications (IEEE INFOCOM), IEEE
INFOCOM, pp 2459–2468. https://​doi.​org/​10.​1109/​INFOC​OM410​43.​2020.​
91554​65

Al-Naami K, El-Ghamry A, Islam MS et al (2021) BiMorphing: a bi-directional
bursting defense against website fingerprinting attacks. IEEE Trans
Dependable Secure Comput 18(2):505–517. https://​doi.​org/​10.​1109/​tdsc.​
2019.​29072​40

Bhat S, Lu D, Kwon A et al (2019) Var-CNN: a data-efficient website fingerprint-
ing attack based on deep learning. In: Proceedings on privacy enhancing
technologies, pp 292–310. https://​doi.​org/​10.​2478/​popets-​2019-​0070

bridges, pluggable transports (2016) Bridges and pluggable transports.
https://​blog.​torpr​oject.​org/​tor-​heart-​bridg​es-​and-​plugg​able-​trans​ports/

De la Cadena W, Mitseva A, Hiller J et al (2020) TrafficSliver: fighting website
fingerprinting attacks with traffic splitting. In: ACM SIGSAC conference
on computer and communications security (ACM CCS), pp 1971–1985.
https://​doi.​org/​10.​1145/​33722​97.​34233​51

Cai X, Nithyanand R, Johnson R (2014a) Cs-buflo: A congestion sensitive
website fingerprinting defense. In: Proceedings of the 13th workshop on
privacy in the electronic society. Association for Computing Machinery,
New York, pp 121–130. https://​doi.​org/​10.​1145/​26659​43.​26659​49

Cai X, Nithyanand R, Wang T et al (2014b) A systematic approach to develop-
ing and evaluating website fingerprinting defenses. In: 21st ACM confer-
ence on computer and communications security (CCS), pp 227–238.
https://​doi.​org/​10.​1145/​26602​67.​26603​62

Acknowledgements
We would like to thank the anonymous reviewers for their helpful feedback.

Author contributions
BH: Conceptualization, Methodology, Software, Writing Manuscript. YD:
Supervision

Funding
Not applicable.

Availability of data and materials
We publish all code used in this paper at https://github.com/beenhuang/
padding-machine.

Declarations

Ethical approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Competing interest
The authors declare that they have no competing interest in the publication
of this study.

Received: 10 August 2023 Accepted: 20 February 2024

https://doi.org/10.1109/INFOCOM41043.2020.9155465
https://doi.org/10.1109/INFOCOM41043.2020.9155465
https://doi.org/10.1109/tdsc.2019.2907240
https://doi.org/10.1109/tdsc.2019.2907240
https://doi.org/10.2478/popets-2019-0070
https://blog.torproject.org/tor-heart-bridges-and-pluggable-transports/
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.1145/2665943.2665949
https://doi.org/10.1145/2660267.2660362

Page 18 of 18Huang and Du ﻿Cybersecurity (2024) 7:28

Cherubin G, Hayes J, Juárez M (2017) Website fingerprinting defenses at the
application layer. In: Proceedings on privacy enhancing technologies, pp
186–203. https://​doi.​org/​10.​1515/​popets-​2017-​0023

Cherubin G, Jansen R, Troncoso C (2022) Online website fingerprinting:
Evaluating website fingerprinting attacks on tor in the real world. In: 31st
USENIX security symposium, pp 753–770

Deng X, Yin Q, Liu Z et al (2023) Robust multi-tab website fingerprinting
attacks in the wild. In: 2023 IEEE symposium on security and privacy (SP),
pp 1005–1022, https://​doi.​org/​10.​1109/​SP462​15.​2023.​10179​464

Dingledine R, Mathewson N, Syverson P (2004) Tor: the second-generation
onion router. In: 13th USENIX security symposium, pp 303–319

Dyer KP, Coull SE, Ristenpart T et al (2012) Peek-a-Boo, i still see you: Why
efficient traffic analysis countermeasures fail. In: 33rd IEEE symposium
on security and privacy (SP), IEEE symposium on security and privacy, pp
332–346. https://​doi.​org/​10.​1109/​sp.​2012.​28

Gong J, Zhang W, Zhang C et al (2022) Surakav: generating realistic traces
for a strong website fingerprinting defense. In: 43rd IEEE symposium on
security and privacy, pp 1558–1573. https://​doi.​org/​10.​1109/​SP462​14.​
2022.​98337​22

Gong JJ, Wang T (2020) Zero-delay lightweight defenses against website
fingerprinting. In: 29th USENIX security symposium, pp 717–734

Goodfellow I, Pouget-Abadie J, Mirza M et al (2020) Generative adversarial net-
works. Commune ACM 63(11):139–144. https://​doi.​org/​10.​1145/​34226​22

Hayes J, Danezis G (2016) k-fingerprinting: a robust scalable website finger-
printing technique. In: 25th USENIX security symposium, pp 1187–1203

He KM, Zhang XY, Ren SQ et al (2016) Deep residual learning for image recog-
nition. In: 2016 IEEE conference on computer vision and pattern recogni-
tion (CVPR), IEEE conference on computer vision and pattern recognition,
pp 770–778. https://​doi.​org/​10.​1109/​cvpr.​2016.​90

Henri S, Garcia-Aviles G, Serrano P et al (2020) Protecting against website
fingerprinting with multihoming. In: Proceedings on privacy enhancing
technologies, pp 89–110. https://​doi.​org/​10.​2478/​popets-​2020-​0019

Holland JK, Hopper N (2022) Regulator: a straightforward website fingerprint-
ing defense. In: Proceedings on privacy enhancing technologies, pp
344–362. https://​petsy​mposi​um.​org/​popets/​2022/​popets-​2022-​0049.​
php

Juarez M, Imani M, Perry M et al (2016) Toward an efficient website fingerprint-
ing defense. In: 21st european symposium on research in computer secu-
rity (ESORICS), pp 27–46. https://​doi.​org/​10.​1007/​978-3-​319-​45744-4_2

Kadianakis G, Polyzos T, Perry M et al (2021) Tor circuit fingerprinting defenses
using adaptive padding. arXiv:​2103.​03831​v2

Kwon A, AlSabah M, Lazar D et al (2015) Circuit fingerprinting attacks: passive
deanonymization of tor hidden services. In: 24th USENIX security sympo-
sium, pp 287–302

Lecun Y, Bottou L, Bengio Y et al (1998) Gradient-based learning applied to
document recognition. Proc IEEE 86(11):2278–2324. https://​doi.​org/​10.​
1109/5.​726791

Li S, Guo HJ, Hopper N (2018) Measuring information leakage in website
fingerprinting attacks and defenses. In: ACM SIGSAC conference on com-
puter and communications security (CCS), pp 1977–1992. https://​doi.​org/​
10.​1145/​32437​34.​32438​32

Lu D, Bhat S, Kwon A et al (2018) Dynaflow: An efficient website fingerprinting
defense based on dynamically-adjusting flows. In: 17th ACM workshop
on privacy in the electronic society (WPES), pp 109–113. https://​doi.​org/​
10.​1145/​32673​23.​32689​60

Mathews N, Sirinam P, Wright M (2018) Understanding feature discovery in
website fingerprinting attacks. In, (2018) IEEE Western New York Image
and Signal Processing Workshop (WNYISPW), 2018 IEEE Western New
York Image and Signal Processing Workshop. WNYISPW 2018. https://​doi.​
org/​10.​1109/​WNYIPW.​2018.​85763​79

Mathews N, Holland JK, Oh SE et al (2023) SoK: a critical evaluation of efficient
website fingerprinting defenses. In: 2023 IEEE symposium on security and
privacy, pp 344–361

Nasr M, Bahramali A, Houmansadr A (2021) Defeating dnn-based traffic
analysis systems in real-timewith blind adversarial perturbations. In: 30th
USENIX security symposium, pp 2705–2722

Nithyanand R, Cai X, Johnson R (2014) Glove: a bespoke website fingerprint-
ing defense. In: Proceedings of the 13th workshop on privacy in the
electronic society. Association for Computing Machinery, New York, pp
131–134. https://​doi.​org/​10.​1145/​26659​43.​26659​50

Panchenko A, Niessen L, Zinnen A et al (2011) Website fingerprinting in onion
routing based anonymization networks. In: Proceedings of the 10th
Annual ACM Workshop on Privacy in the Electronic Society. Association
for Computing Machinery, pp 103–114. https://​doi.​org/​10.​1145/​20465​
56.​20465​70

Panchenko A, Lanze F, Zinnen A et al (2016) Website fingerprinting at internet
scale. In: 23rd annual network and distributed system security sympo-
sium (NDSS). https://​doi.​org/​10.​14722/​ndss.​2016.​23477

Pulls T (2020) Towards effective and efficient padding machines for tor. arXiv:​
2011.​13471

Rahman MS, Sirinam P, Mathews N et al (2020) Tik-tok: the utility of packet
timing in website fingerprinting attacks. In: Proceedings on privacy
enhancing technologies, vol 2020. De Gruyter, pp 5–24, https://​doi.​org/​
10.​2478/​popets-​2020-​0043

Rahman MS, Imani M, Mathews N et al (2021) Mockingbird: defending against
deep-learning-based website fingerprinting attacks with adversarial
traces. IEEE Trans Inf Forensics Secur 16:1594–1609. https://​doi.​org/​10.​
1109/​tifs.​2020.​30396​91

Rimmer V, Preuveneers D, Juarez M et al (2018) Automated website finger-
printing through deep learning. In: 25th annual network and distributed
system security symposium (NDSS). https://​doi.​org/​10.​14722/​ndss.​2018.​
23105

Rosenblatt M (1956) Remarks on some nonparametric estimates of a density
function. Ann Math Stat 27(3):832–837. https://​doi.​org/​10.​1214/​aoms/​
11777​28190

Se Eun O, Mathews N, Rahman MS et al (2021) Gandalf: gan for data-limited
fingerprinting. In: Proceedings on privacy enhancing technologies, pp
305–322. https://​doi.​org/​10.​2478/​popets-​2021-​0029

Shen M, Ji K, Gao Z et al (2023) Subverting website fingerprinting defenses
with robust traffic representation. In: 32nd USENIX security symposium.
USENIX Association, pp 607–624

Shmatikov V, Wang MH (2006) Timing analysis in low-latency mix networks:
attacks and defenses. In: 11th European symposium on research in com-
puter security. https://​doi.​org/​10.​1007/​11863​908_2

Sirinam P, Imani M, Juarez M et al (2018) Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In: ACM SIGSAC con-
ference on computer and communications security (CCS), pp 1928–1943.
https://​doi.​org/​10.​1145/​32437​34.​32437​68

Sirinam P, Mathews N, Rahman MS, et al (2019) Triplet fingerprinting: more
practical and portable website fingerprinting with n-shot learning. In:
ACM SIGSAC conference on computer and communications security
(CCS), pp 1131–1148. https://​doi.​org/​10.​1145/​33195​35.​33542​17

Smith JP, Dolfi L, Mittal P et al (2022) QCSD: a QUIC client-side website-
fingerprinting defence framework. In: 31st USENIX security symposium,
pp 771–789

Padding spec (2019) Tor padding specification. https://​github.​com/​torpr​oject/​
torsp​ec/​blob/​main/​paddi​ng-​spec.​txt/

Wang T (2021) The one-page setting: a higher standard for evaluating website
fingerprinting defenses. In: ACM SIGSAC conference on computer and
communications security (ACM CCS), pp 2794–2806. https://​doi.​org/​10.​
1145/​34601​20.​34847​90

Wang T, Goldberg I (2017) Walkie-talkie: an efficient defense against passive
website fingerprinting attacks. In: 26th USENIX Security Symposium. pp
1375–1390

Wang T, Cai X, Nithyanand R et al (2014) Effective attacks and provable
defenses for website fingerprinting. In: 23rd USENIX security symposium,
pp 143–157

Witwer E, Holland JK, Hopper N (2022) Padding-only defenses add delay in tor.
In: Proceedings of the 21st workshop on privacy in the electronic society,
pp 29–33. https://​doi.​org/​10.​1145/​35596​13.​35632​07

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1515/popets-2017-0023
https://doi.org/10.1109/SP46215.2023.10179464
https://doi.org/10.1109/sp.2012.28
https://doi.org/10.1109/SP46214.2022.9833722
https://doi.org/10.1109/SP46214.2022.9833722
https://doi.org/10.1145/3422622
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.2478/popets-2020-0019
https://petsymposium.org/popets/2022/popets-2022-0049.php
https://petsymposium.org/popets/2022/popets-2022-0049.php
https://doi.org/10.1007/978-3-319-45744-4_2
http://arxiv.org/abs/2103.03831v2
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3243734.3243832
https://doi.org/10.1145/3243734.3243832
https://doi.org/10.1145/3267323.3268960
https://doi.org/10.1145/3267323.3268960
https://doi.org/10.1109/WNYIPW.2018.8576379
https://doi.org/10.1109/WNYIPW.2018.8576379
https://doi.org/10.1145/2665943.2665950
https://doi.org/10.1145/2046556.2046570
https://doi.org/10.1145/2046556.2046570
https://doi.org/10.14722/ndss.2016.23477
http://arxiv.org/abs/2011.13471
http://arxiv.org/abs/2011.13471
https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.2478/popets-2020-0043
https://doi.org/10.1109/tifs.2020.3039691
https://doi.org/10.1109/tifs.2020.3039691
https://doi.org/10.14722/ndss.2018.23105
https://doi.org/10.14722/ndss.2018.23105
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.2478/popets-2021-0029
https://doi.org/10.1007/11863908_2
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3319535.3354217
https://github.com/torproject/torspec/blob/main/padding-spec.txt/
https://github.com/torproject/torspec/blob/main/padding-spec.txt/
https://doi.org/10.1145/3460120.3484790
https://doi.org/10.1145/3460120.3484790
https://doi.org/10.1145/3559613.3563207

	Break-Pad: effective padding machines for tor with break burst padding
	Abstract
	Introduction
	Background and related work
	Website fingerprinting attacks
	Website fingerprinting defenses
	Circuit padding framework and padding machines

	Preliminaries
	Threat model
	Defense overhead
	Metrics

	Break burst padding defense
	Motivation
	Overview of break burst padding
	Setting parameters of probability distribution
	August: one-way Break-Pad machine
	October: two-way Break-Pad machine

	Evaluation
	Dataset
	Parameter tuning
	type of probability distribution
	Parameters of probability distribution

	Performance in open-world
	Experimental setting
	Defense overhead
	Results

	Information leakage analysis
	Experimental setting
	Results

	Performance in one-page
	Experimental setting
	Results

	Performance against other WF defenses
	Experimental setting
	Defense overhead
	Results

	Performance in larger open-world
	Experimental setting
	Results

	Discussion
	Conclusion
	Appendix A: Source code for August
	Appendix A.1: Client machine
	Appendix A.2: Relay machine

	Appendix B: Source code for October
	Appendix B.1: Client machine
	Appendix B.2: Relay machine

	Acknowledgements
	References

