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Abstract 

Website Fingerprinting (WF) attacks enable a local eavesdropper to use metadata of packet flow, such as size, tim-
ing, and direction, to infer the websites a user is visiting. This can damage the user privacy provided by anonymity 
systems such as Tor. Tor has implemented the WF defense called Circuit Padding Framework, which provides an inter-
face for developers to implement their own defenses. However, these defenses in the framework were overcome 
by the Deep Fingerprinting (DF) attack. In this paper, we propose a novel defense approach called break burst 
padding (Break-Pad), which injects a random number of padding packets into an incoming burst once the number 
of consecutive incoming packets exceeds a set number. We integrated Break-Pad into the existing Circuit Padding 
Framework. In addition, we have implemented two padding machines named August and October in the new 
framework and conducted experiments to evaluate these machines. In the open-world setting, our results show 
that August, with 29% bandwidth overhead, reduces Tik-Tok’s TPR by 14.48% and DF’s TPR by 22%. October outper-
forms the best padding machine, RBB. With 36% bandwidth overhead, it drops Tik-Tok’s TPR to 74.24% and DF’s TPR 
to 65.36%. In the one-page setting, October further reduces the bandwidth overhead by 11% while achieving similar 
performance to RBB. In the information leak analysis, for the burst sequence feature of the traffic, October leaks 
at 2.453 bits, while the best comparable padding machine Interspace leaks at 2.629 bits.

Introduction
Tor (Dingledine et  al. 2004) is one of the most popular 
anonymity systems to hide information about personal 
browsing websites. In Tor, a user establishes a multi-
hop path (called a circuit) to visit a website and trans-
mits fixed-size encrypted packets (called cells) on this 
path. So, any single node cannot link the user’s identity 
with the website the user accessing. Unfortunately, Tor is 
vulnerable to a class of traffic analysis known as Website 
Fingerprinting (WF) (Wang et al. 2014; Kwon et al. 2015; 
Hayes and Danezis 2016; Panchenko et  al. 2016; Rim-
mer et al. 2018; Sirinam et al. 2018; Bhat et al. 2019; Siri-
nam et al. 2019; Rahman et al. 2020; Se Eun et al. 2021; 

Cherubin et al. 2022; Shen et al. 2023; Deng et al. 2023). 
WF allows eavesdroppers to learn metadata of packet 
flow and feed the information into a machine learning 
classifier to train it. They then use the trained classifier 
to predict which pages the user visited even though the 
traffic is encrypted.

In response, many works have proposed defense algo-
rithms to defeat WF attacks. Some defenses (Dyer et al. 
2012; Cai et al. 2014a, b; Juarez et al. 2016; Lu et al. 2018; 
Abusnaina et al. 2020; Gong and Wang 2020; Al-Naami 
et al. 2021; Holland and Hopper 2022) morph the traffic 
according to predefined patterns, and some (Wang et al. 
2014; Nithyanand et al. 2014; Wang and Goldberg 2017; 
Rahman et al. 2021; Gong et al. 2022) modify the traffic 
based on the reference traffic they generate, and some 
(De la Cadena et al. 2020; Henri et al. 2020) split the traf-
fic and send it over multiple network paths. The Tor Pro-
ject community is also concerned about such attacks and 
has deployed a WF defense, Circuit Padding Framework 
(padding spec 2019). The framework allows developers 
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to implement their own defenses, which inject padding 
packets into time gaps in the packet flow without adding 
any latency to traffic. However, these defenses are either 
ineffective against state-of-the-art attacks, such as DF 
(Sirinam et  al. 2018), or bring unacceptably high band-
width overhead.

In this paper, we propose a novel defense called break 
burst padding (Break-Pad), which injects padding pack-
ets into incoming bursts to break burst patterns of traf-
fic. Break-Pad utilizes padding based on the number 
of incoming packets: it sends padding packets once the 
number of incoming packets exceeds a threshold. The 
defense effectively disrupts burst patterns by splitting 
a long burst into a set of smaller-sized bursts. In addi-
tion, both padding packets and thresholds for Break-
Pad are sampled from the probability distributions we 
set. The randomness of the number of padding packets 
and threshold, even for the same web page, makes the 
burst pattern of each trace different, which also helps to 
improve the effectiveness of our defense. And, we can 
limit the bandwidth overhead by adjusting the probability 
distribution of the defense.

We combined our defense with Circuit Padding Frame-
work (padding spec 2019) and implemented two pad-
ding machines: August and October. August is a one-way 
padding machine with Break-Pad, which only allows 
the client machine to send padding packets. October is 
a two-way padding machine, which can inject padding 
packets in both directions.

To show the defense performance of our padding 
machines, we conducted experiments and compared 
them with other machines and WF defenses. Compared 
to other padding machines, in the open-world setting, 
August is effective against the best WF attacks: with 29% 
bandwidth overhead, it reduces Tik-Tok’s (Rahman et al. 
2020) TPR to 83.28% and DF’s (Sirinam et al. 2018) TPR 
to 76.84%, and October outperforms the best padding 
machine, RBB (Mathews et al. 2018), but with less band-
width overhead: it, with 11% less bandwidth overhead 
than RBB, reduces Tik-Tok’s TPR to 74.24% while RBB 
only reduces it to 82.75%. To have a comprehensive eval-
uation of the machines, we also conduct the information 
leakage analysis (Li et al. 2018) and perform the evalua-
tion in the one-page setting (Wang 2021). In the infor-
mation leakage analysis, for the Burst category, October 
leaks at 2.453 bits, compared to the best machine Inter-
space (Pulls 2020) gets 2.629 bits. In the one-page set-
ting, October limits the precision of the k-FP (Hayes and 
Danezis 2016) attack to 82.44%, while RBB achieved a 
precision of 82.35%. However, October incurs 11% less 
bandwidth overhead than RBB. Compared to other WF 
defenses, on various security mode datasets, August 
and October outperformed the best WF defense DFD 

(Abusnaina et  al. 2020). In the larger open-world set-
ting, both August and October significantly decrease the 
performance of the DF (Sirinam et al. 2018) attack as the 
unmonitored set increases.

We summarize the contributions of our work as 
follows:

•	 We propose a realistic and novel WF defense 
approach called break burst padding (Break-Pad) 
within the existing Circuit Padding Framework of the 
Tor network, which obfuscates traffic characteristics 
with a more efficient padding approach.

•	 We designed and implemented two padding machines 
with Break-Pad: August and October. Experimental 
results show that both machines have high defense 
performance with low bandwidth overhead in the 
open-world setting and the one-page setting.

•	 We utilized the distribution fitting approach to search 
the optimal parameters for the padding machines. To 
the best of our knowledge, we are the first to use this 
approach to fix the parameters.

We organize the rest of the paper as follows. We 
introduce the background and related work in sec-
tion  “Background and Related Work”. We next give, In 
section “Preliminaries”. In section  “Break Burst Padding 
Defense”, we proposed our defense, Break-Pad. We evalu-
ate our padding machines in section  “Evaluation” and 
give the discussion in section   “Discussion”. Finally, we 
conclude our work in section  “Conclusion”, and we share 
the source code for both machines in the “Appendix”.

Background and related work
In this section, we summarize previous work on WF 
attacks and defenses. Then we describe the WF defense 
deployed on Tor, which is known as Circuit Padding 
Framework (padding spec 2019), and padding machines 
(Mathews et al. 2018; Pulls 2020; Kadianakis et al. 2021) 
proposed in the framework.

Website fingerprinting attacks
The WF attacks proposed early used machine learning 
models as classifiers with hand-crafted features as input 
(Wang et al. 2014; Kwon et al. 2015; Hayes and Danezis 
2016; Panchenko et al. 2016). After that, a variety of WF 
attacks using deep learning were proposed (Rimmer et al. 
2018; Sirinam et al. 2018; Bhat et al. 2019; Sirinam et al. 
2019; Rahman et  al. 2020; Se  Eun et  al. 2021; Cherubin 
et al. 2022; Shen et al. 2023; Deng et al. 2023).

1)    ML-based attacks: The state-of-the-art ML-based 
WF attacks are Wang-kNN (Wang et  al. 2014), k-FP 
(Hayes and Danezis 2016), and CUMUL (Panchenko 
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et  al. 2016). Wang-kNN (Wang et  al. 2014) extracts 
more than 3000 statistical features from the packet flow 
and feeds these features into the classifier based on the 
k-Nearest Neighbor algorithm (kNN) to predict the web-
sites visited by users. k-FP (Hayes and Danezis 2016) also 
uses kNN as a classifier. However, unlike Wang-kNN, 
k-FP does not feed statistical features directly into the 
classifier, but rather a website fingerprint generated by a 
Generator as input. A website fingerprint is represented 
by a vector of leaf identifiers from a trained Random For-
est. CUMUL (Panchenko et al. 2016) uses Support Vector 
Machine (SVM) as a classifier and takes the cumulative 
sum of packet lengths as input features to the classifier. 
These attacks are effective against undefended traffic. 
However, for defended traffic, the performance of these 
attacks will be significantly reduced.

2)   DL-based attacks: The classic DL-based attacks are 
AWF (Rimmer et al. 2018), DF (Sirinam et al. 2018), Var-
CNN (Bhat et  al. 2019), Tik-Tok (Rahman et  al. 2020). 
Rimmer et al. (2018) propose using a simple Convolution 
Neural Network (CNN) (Lecun et al. 1998) architecture 
in their Automatic Website Fingerprinting (AWF). In 
the closed-world setting (containing 900 classes), AWF 
obtained an accuracy of 91.79%. Sirinam et  al. (2018) 
proposed the Deep Fingerprinting (DF) model, which 
utilizes a 1D-CNN architecture with more hidden lay-
ers. DF achieves over 98% accuracy on undefended traf-
fic. And, DF gets more than 90% accuracy against traffic 
defended by the WTF-PAD (Juarez et al. 2016) defense. 
The results show that DF breaks WTF-PAD. Bhat et  al. 
(2019) proposed Var-CNN, which integrates two classical 
ResNet-18 (He et al. 2016). One ResNet-18 model takes 
the direction sequence as input, and the other ResNet-18 
model takes the timestamp sequence as input. Compared 
to DF, it gets better performance in the low-data setting. 
Rahman et  al. (2020) proposed Tik-Tok, which utilizes 
the directional timing feature to effectively enhance the 
performance of the DF. The directional timing feature 
is a sequence of values, where each value is yielded by 
multiplying the packet’s timestamp by its direction. In 
the closed-world setting, Tik-Tok achieved 97% accuracy 
on traffic defended by Walkie-Talkie (Wang and Gold-
berg 2017). The results show that Tik-Tok overcomes 
Walkie-Talkie.

Website fingerprinting defenses
To counter WF attacks, WF defenses (Panchenko et  al. 
2011; Dyer et  al. 2012; Cai et  al. 2014a, b; Nithyanand 
et al. 2014; Juarez et al. 2016; Cherubin et al. 2017; Wang 
and Goldberg 2017; Lu et al. 2018; Abusnaina et al. 2020; 
Gong and Wang 2020; De  la Cadena et  al. 2020; Henri 
et  al. 2020; Al-Naami et al. 2021; Nasr et  al. 2021; Rah-
man et  al. 2021; Gong et  al. 2022; Holland and Hopper 

2022; Smith et al. 2022; Mathews et al. 2023) modify the 
original pattern of traffic to reduce the amount of infor-
mation leaked to the adversary. Existing defenses typi-
cally inject, delay, merge, and split packets into the traffic 
or transmit the traffic over multiple network channels. 
We roughly categorize previous defenses into five broad 
categories: Fix-rate, Padding, Reference Trace, Traffic 
Splitting, and others.

(1)    Fix-rated Defenses: These defenses aim to morph 
packet sequence patterns to appear similar or identical, 
preventing the adversary from distinguishing among 
them. BuFLO (Dyer et  al. 2012) operates by sending 
fixed-sized packets at fixed intervals. If there is no real 
packet to be sent within the set time, it sends a dummy 
packet. CS-BuFLO (Cai et al. 2014a) is an improved ver-
sion of BuFLO, which can adjust the transmission rate 
appropriately based on the network congestion. Tamaraw 
(Cai et al. 2014b) is proposed as a lightweight BuFLO that 
reduces defense overhead while guaranteeing defense 
effectiveness. RegulaTor (Holland and Hopper 2022) 
regularizes the surges in the packet sequences that often 
occur in download traffic. surge is defined as a large num-
ber of packets sent in a short period of time. While these 
defenses can counter WF attacks using simple algorithms 
and do not require additional resources (e.g., storage 
space) or packet sequence information from the target 
site, their bandwidth and latency overhead are extremely 
high, making them difficult to apply in practice.

(2)    Padding-based Defenses: These defenses add 
dummy packets based on predefined rules to mask the 
original pattern of the traffic. WTF-PAD (Juarez et  al. 
2016) uses delay-based padding, where sending a pad-
ding packet is triggered when the chosen delay expires. It 
tries to obfuscate the packet interval time characteristics 
of the traffic. DFD (Abusnaina et  al. 2020) only injects 
padding packets into the outgoing burst. After the client 
sends two consecutive packets, DFD starts injecting pad-
ding packets. The number of padding packets is half of 
the length of the previous outgoing burst. FRONT (Gong 
and Wang 2020) injects padding packets at the front of 
the traffic. It samples the total number of padding pack-
ets from the Uniform distribution, and samples the time 
of each padding packet in the Rayleigh distribution. It 
then sends the padding packets at the set times.

(3)    Traffic Splitting Defenses: This class of defenses 
resists WF attacks by splitting traffic over multiple net-
work channels so that none of the channels can get 
full information about the target website. The classical 
defenses are TrafficSilver (De la Cadena et al. 2020) and 
HyWF (Henri et  al. 2020). TrafficSliver (De  la Cadena 
et  al. 2020) uses the circuit with multiple entry nodes, 
splits application traffic over multiple entry nodes for 
transmission, and merges traffic at the middle nodes. 
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HyWF (Henri et al. 2020) splits traffic over two different 
access points (e.g. one for Cellular network and the other 
for home WiFi) and merges traffic at a multipath-com-
patible Tor bridge.

(4)    Reference Trace-based Defenses: These defenses 
morph the original traffic pattern of the web page from 
the reference trace they create. The two defenses, Glove 
(Nithyanand et al. 2014) and Supersequence (Wang et al. 
2014), group web pages into clusters and create a super-
trace for each cluster. When users visits a page in a clus-
ter, it modifies the traffic pattern of the page by injecting 
and delaying packets according to the super-trace of 
that cluster. Walkie-Talkie (Wang and Goldberg 2017) 
has modified the browser so that it can communicate in 
half-duplex. And it molds the burst sequence of a sensi-
tive page based on a non-sensitive page (which is a refer-
ence trace) to make the two pages look the same. Surakav 
(Gong et  al. 2022) utilizes Generative Adversarial Net-
works (GAN) (Goodfellow et al. 2020) to generate send-
ing patterns (which is a reference trace) and regulates 
target traffic based on the generated patterns.

(5)   Other Defenses: Panchenko et al. (2011) proposed 
Decoy, which loads a decoy webpage simultaneously 
when a user visits a website. It mixes the traffic of two 
web pages together, making it hard for an attacker to get 
the “pure” traffic of a single web page. Recent research 
(Wang 2021) has shown that its bandwidth overhead is 
too high and does not guarantee the effectiveness of the 
defense.

Circuit padding framework and padding machines
Against the WF attacks, the Tor Project community 
has deployed the Circuit Padding Framework (padding 
spec 2019) based on the research results of Shmatikov 
and Wang (Shmatikov and Wang 2006) and Juarez et al. 
(2016). In this framework, a developer can implement his 
own padding defense by designing a padding machine, a 
finite state machine. In the machine, each state samples 
the inter-packet delay from a histogram or probability 
distribution and injects a padding packet if the chosen 
delay expires. They can define different histograms or 
probability distributions to perform different padding 
patterns.

Tor currently deploys two padding machines enabled 
by default: the Client-side Introduction Circuit Hiding 
machine (padding spec 2019) and the Client-side Ren-
dezvous Circuit Hiding machine (padding spec 2019), 
both of which aim to hide features of the construction 
cell sequence of the client-side onion service circuit. 
Mathews et al. (2018) used histograms to implement two 
padding machines: Random Extend Bursts (REB) and 
Random Break Bursts (RBB). Both machines determine 
to send padding bursts with a 10% probability. When a 

padding burst is sent, they will decide whether to con-
tinue sending a padding packet with a 50% probability. 
Pulls (2020) used genetic programming to create the pad-
ding machine called Spring. Based on Spring, the author 
added the probabilistic state transitions approach to gen-
erate a new padding machine called Interspace. Kadi-
anakis et  al. (2021) proposed a padding machine called 
Preemptive Circuit Padding (PCP), which injects dummy 
onion handshakes in the preemptive phase.

Preliminaries
Threat model
Figure 1 illustrates the threat model. We assume that the 
attacker is a relay adversary, who is located on the entry 
node of the Tor circuit. As a node of the circuit, they 
are able to see cells (fixed-size packets) transferred on 
the circuit. Although he cannot see the contents of the 
cells, he can still obtain the type and direction of all cells 
transferred on the target circuit. Besides, the adversary 
is a passive observer who cannot insert, drop, modify, or 
delay packets.

For traffic analysis of the malicious entry relay, the cli-
ent and the middle relay cooperate to defend against such 
attacks in Tor. In the Tor network, they only send pad-
ding cells to each other, and cannot delay cells. In addi-
tion, the middle relay automatically drops all padding 
cells from the client, so the exit relay and web server 
would not be affected.

Defense overhead
Following the methodology of prior works, we evaluate 
bandwidth and time overhead for the defenses. The band-
width overhead is the ratio of the total number of dummy 
packets to the total number of real packets on the whole 
dataset. In our work, we further evaluate the incoming 
and outgoing bandwidth overhead. The incoming/outgo-
ing bandwidth overhead is calculated as the total num-
ber of incoming/outgoing dummy packets divided by 
the total number of real incoming/outgoing packets. The 
time overhead is the ratio of the total extra time added by 
the defenses to the total time without defenses.

Fig. 1  The threat model, in which the client and the middle 
node participate in defense together against traffic analysis 
from the malicious entry node
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Metrics
We use multi-class classification metrics for the open-
world setting to evaluate the defense performance. We 
first introduce TP-c, TP-i, FN, FP, and TN, and then 
describe how to calculate Precision, True Positive Rate 
(TPR), and False Positive Rate (FPR).

•	 True Positive with the correct website class (TP-c) 
is the number of monitored classes predicted as the 
monitored and the correct website class.

•	 True Positive with the incorrect website class (TP-i) 
is the number of monitored classes predicted as the 
monitored and the incorrect website class.

•	 False Negative (FN) is the number of monitoring 
classes predicted as unmonitored.

•	 False Positive (FP) is the number of unmonitored 
classes predicted as monitored.

•	 True Negative (TN) is the number of unmonitored 
classes predicted as unmonitored.

Precision is calculated as the number of monitored 
classes classified as monitored and correct website 
classes divided by the total number of predicted moni-
tored classes.

TPR (Recall) is calculated as the number of monitored 
classes classified as monitored and correct website 
classes divided by the total number of monitored classes.

FPR is calculated as the number of unmonitored classes 
classified as monitored divided by the total number of 
unmonitored classes.

Break burst padding defense
In this section, we introduce our break burst padding 
defense. We first discuss the motivation. Then we give an 
overview of our defense and describe how to fix the best 
parameters. Finally, we show two padding machines with 
break burst padding.

Motivation
The Circuit Padding Framework (padding spec 2019) uses 
delay-based padding, where sending a padding packet is 
triggered only when the chosen delay expires. However, 

(1)Precision =
TP- c

TP- c + TP- i + FP

(2)TPR =
TP- c

TP- c + TP- i + FN

(3)FPR =
FP

FP + TN

it cannot meet the requirement of injecting padding 
packets in bursts with less bandwidth overhead. In traf-
fic, generally, the inter-packet time of bursts is short and 
the inter-burst time is long. If we set a long delay, the 
defense cannot inject padding packets in the burst, so the 
traffic still retains the characteristics of the burst pattern. 
Since the burst pattern is not broken, making it success-
fully overcome by the DF (Sirinam et al. 2018) attack. If 
we set a short delay, the defense injects padding packets 
between almost every real packet or injects a large num-
ber of padding packets during the idle time of the traffic. 
It causes the defense to incur huge bandwidth overhead, 
e.g., the total number of padding packets is much larger 
than the total number of real packets. And, the delay-
based padding is very difficult to set appropriate delays 
that allow the defense to inject sufficient padding packets 
in each burst and not to inject too many padding pack-
ets between bursts or during the idle time of the traffic. 
To deal with the above problems of the Circuit Padding 
Framework, we try to find a padding approach that can 
effectively break burst patterns of packet sequences in 
the existing Circuit Padding Framework with less defense 
overhead to resist WF attacks such as DF (Sirinam et al. 
2018).

Overview of break burst padding
We first introduce a type of padding approach called 
break burst. As shown in Fig. 2, a break burst means that 
it uses a padding burst B (containing 3 packets) to divide 
a real incoming burst R (containing 5 packets) into two 
short bursts R1 (containing 4 packets) and R2 (containing 
1 packet), and B is located between them.

Break Burst Padding (Break-Pad) is designed by uti-
lizing the break burst approach. Specifically, the pad-
ding position selection in Break-Pad is determined by 
the number of incoming packets: it sends some padding 
packets when the number of packets it receives exceeds 
the threshold. Moreover, rather than using a fixed pad-
ding pattern, the defense samples random numbers of 
thresholds and padding packets from the probability dis-
tributions each time, so that the same traffic will show 
different burst patterns. In addition, we set the probabil-
ity distribution of our defense based on the data distribu-
tion of the traffic in the monitored class.

Fig. 2  Visualization of break burst for one time
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Algorithm 1  Break Burst Padding Algorithm

Break-Pad works as shown in Algorithm  1. we first 
samples a threshold p and a padding burst b from Dp and 
Db , respectively (Line 2). In each iteration, if the packet is 
incoming, the number of consecutive incoming packets n 
is added to 1. When n equals the threshold p, we succes-
sively send b padding packets and sample the new values 
of p and b (See Line 4–11). If the packet is outgoing and n 
is not equal to 0, we set n to its initial value of 0 and sam-
ple the new values of p and b (Line 12–15).

Break-Pad mainly destroys the burst sequence char-
acteristics of the packet flow. We used Li’s WeFDE (Li 
et  al. 2018) tool to calculate the amount of information 
leaked by traffic defended by Break-Pad. WeFDE gets the 
amount of information that an attacker can obtain from 
F about W by calculating the mutual information I(F; W), 
where W denotes the website information and F is a ran-
dom variable representing the website fingerprint of W. 
The calculation formula is:

Break-Pad reduces information leakage from 5.215 bits to 
2.539 bits when only the client applies our defense, and 
to 2.453 bits when both the client and the relay apply our 
defense. In addition, we analyze in detail the information 
leakage of Break-Pad with respect to other categories of 
features in Section .

Setting parameters of probability distribution
Break-Pad is governed by four parameters in Table  1, 
where parameter p is a threshold that determines the 
number of incoming packets and parameter b determines 
the number of padding packets, and it gets random values 

(4)I(F;W ) = H(W )−H(W |F)

of p and b in each round by sampling from Dp and Db , 
respectively. In this section, we introduce the approach 
for setting the parameters of the probability distributions 
Dp and Db.

If the outgoing bursts (request packets) sent by a user 
in a dataset fit a probability distribution. We believe that 
the padding packets we sent should also match this dis-
tribution, otherwise, these padding packets will become 
another characteristic of the traffic. And, we believe that 
the number of incoming packets we set (padding points) 
should also match the distribution of incoming bursts in 
the dataset. Accordingly, we get the distribution param-
eters of the Break-Pad by fitting a probability distribution 
to the dataset.

The workflow of the parameter tuning approach is 
described as follows. We first count the number of 
incoming and outgoing bursts on the dataset and sort 
them by length. The results are shown in Fig. 3. Then, we 
select the top N bursts (e.g., when N is 10, we select all 

Table 1  Parameters for Break-Pad

Parameter Description

p Number of incoming packets

b Number of padding packets

Dp Probability distribution of p

Db Probability distribution of b

Fig. 3  Distribution of incoming and outgoing bursts 
on the Goodenough dataset
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bursts with lengths less than or equal to 10) and fit the 
probability distribution to the data to obtain the parame-
ters of the probability distribution. Using the above fitting 
approach, we choose different N bursts each time and fit 
the probability distribution to the data to obtain differ-
ent parameters. Finally, we evaluate the performance of 
all parameters obtained by the fitting approach and pick 
the parameters that achieve the lowest TPR.

August: one‑way Break‑Pad machine
We designed the one-way padding machine with Break-
Pad called August. The August machine consists of a 
client machine on the client and a relay machine on the 
middle node. We implemented the Break-Pad defense in 
the Break state of August’s client machine.

In Fig.  4, the client machine has three states: Start, 
Wait, and Break. Start is the initial state of the machine. 
After receiving a padding negotiated cell sent by the relay 
machine, it transitions from Start to Wait. When the 
machine received a real cell sent by the server, it tran-
sitions to Break and samples the values of p (padding 
point) and b (padding burst) from Dp and Db , respec-
tively. In the Break state, the machine subtracts 1 from p 
each time it receives a cell. When p is 0, it continuously 
sends b padding cells. It then resamples to get the new 
values of p and b. If the machine sends a real cell and p is 
not 0, it transitions back to Wait.

Figure  5 shows all states of the relay machine, which 
has two states: Start and Wait. Same as the client 
machine, the initial state is still Start. It transitions from 
Start to Wait when receiving a client’s padding negotiate 
cell. In Wait, it only drops the padding cells from the cli-
ent. Since the relay machine is not allowed to send pad-
ding cells to the client, we do not need to set probability 
distributions for it.

Table 2 summarizes all parameters of August we need 
to fix. Dc

p denotes the probability distribution of padding 
points of the client machine, and Dc

b denotes the proba-
bility distribution of padding bursts of the client machine. 
For each probability distribution, we need to set the type 
of the distribution, as well as two parameters for the dis-
tribution. We will fix the parameters using the approach 
introduced in Section .

October: two‑way Break‑Pad machine
In this subsection, we introduce the two-way padding 
machine with Break-Pad, October. Compared with 
August, October is able to send padding cells in both 
directions. So, we believe that October is more effective 
against WF attacks than August. We implemented the 
Break-Pad defense in the Break state of client and relay 
machines in October. Since the client machine of Octo-
ber is similar to the client machine of August, we will not 
introduce it again.

As shown in Fig.  6, the relay machine of October 
includes three states: Start, Wait, and Break. Start is the 
initial state. When a padding negotiate cell is received, 
it transitions to Wait. In Wait, it transitions to Break if 
receiving a real cell from the client. In the Break state, 
it runs the Break-Pad algorithm, which first samples the 
values of p and b. Then the value of p is subtracted by 1 
every time a padding or real cell is received. When the 
value of p is 0, a padding burst including b cells is sent to 
the client. If it forwards a real cell sent from the server to 
the client and p is not 0, it transitions to Wait.

We show all the parameters for October in Table 3. Dc
p 

and Dc
b denote the probability distributions of padding 

Fig. 4  State diagram for the client machine of August

Fig. 5  State diagram for the relay machine of August

Table 2  Parameters for August

Machine Probability distribution Parameter

Client Dc
p Type

Param_1

Param_2

Dc
b

Type

Param_1

Param_2

Fig. 6  State diagram for the relay machine of October
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points and padding bursts for the client machine, respec-
tively, and Dr

p and Dr
b denote the probability distribu-

tions of padding points and padding bursts for the relay 
machine, respectively.

Evaluation
Here we evaluate August and October against other 
machines and the WF defenses. We first describe the 
dataset we used and the parameter tuning for both 
machines. Then we compare August and October with 
other machines and other WF defenses in several aspects.

Dataset
In this study, we use the Goodenough dataset1, which is 
collected by Pulls and used to evaluate the performance 
of Spring and Interspace in his work (Pulls 2020). The 
Goodenough dataset contains three separate datasets 
that are based on the Tor Browser’s three security set-
tings: Standard, Safer, and Safest. The Standard is the 
default security level for the Tor Browser, allowing all 
content and scripts on a web page; The Safer disallows 
scripts from running on non-HTTPS sites and blocks 
some dynamic contents such as audio and video; The 
Safest disallows scripts from running on all websites and 
blocks more dynamic content from loading, including 
fonts, icons, math symbols, images, audio, and video.

In the Goodenough dataset, for each security mode, 
the dataset consists of 10,000 monitored instances from 
50 websites (in which each of the 10 subpages per website 
was visited 20 times) and 10,000 unmonitored instances 
from 10,000 websites (in which each of the index pages of 
the website was visited 1 time).

Parameter tuning
type of probability distribution
To find the best combination of distribution types for 
Dp and Db , we tried all the distribution types provided 
by Tor in Dp and Db of the August machine. We exclude 
the uniform distribution by observing the burst distribu-
tion of the Goodenough dataset (see Fig.  3 in Section). 
To reduce computational complexity and obtain results 
more quickly, we pick up incoming bursts with lengths 
less than or equal to 10 (the value of Nc

in is 10) and outgo-
ing bursts with lengths less than or equal to 20 (the value 
of Nc

out is 20). Then, we fit the different types of distri-
butions to the chosen burst data (incoming or outgoing 
bursts) to obtain the corresponding parameters for each 
type of distribution. And we set different distribution 
types and corresponding parameters in the Dp and Db of 
the August machine to generate multiple machines con-
taining different distributions. Finally, DF (Sirinam et al. 
2018) was used to evaluate the defense performance of 
all machines. Figure  7 shows bandwidth overhead and 
DF’s TPR for all machines. When Dp is set to the Weibull 
distribution and Db is set to the Pareto distribution, this 
combination of distributions gets the lowest TPR (about 
75%) with the 29% bandwidth overhead. Therefore, in the 
following experiments, we set Dp to the Weibull distribu-
tion and Db to the Pareto distribution by default.

Parameters of probability distribution
The parameters can determine the location, shape, or 
scale of the distribution, so we get the best distribution 
by adjusting the parameters. And, we fit only the training 
data to obtain the parameters of the distribution.

Table 4 shows the search range and final values of Nc
in 

and Nc
out for the August machine. Nc

in represents incom-
ing burst data with burst length less than or equal to the 

Table 3  Parameters for October

Machine Probability distribution Parameter

Client Dc
p Type

Param_1

Param_2

Dc
b Type

Param_1

Param_2

Relay Dr
p Type

Param_1

Param_2

Dr
b

Type

Param_1

Param_2
Fig. 7  Performance with different combinations in the August 
machine. Different distribution types of Dp are represented 
in different colors

1  https://​github.​com/​pylls/​paddi​ng-​machi​nes-​for-​tor/​tree/​master/​datas​et

https://github.com/pylls/padding-machines-for-tor/tree/master/dataset
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value of Nc
in , and Nc

out represents outgoing burst data with 
burst length less than or equal to the value of Nc

out . We fit 
the default probability distributions to the Nc

in data and 
the Nc

out data to get the parameter values of Dc
p and Dc

b for 
August’s client machine, respectively. When Nc

in is 10 and 
Nc
out is 20, the combination of parameters obtained by fit-

ting achieves the lowest DF’s TPR. The specific parameter 
values for August are shown in “Appendix A.1”.

We present the search range and final values for the 
October machine in Table 5. Nc

in and Nc
out are incoming 

burst data and outgoing burst data, respectively, which 
are fitted to produce parameters for the client machine; 
Nr
in and Nr

out are incoming burst data and outgoing burst 
data, respectively, which are fitted to produce parameters 
for the relay machine. We find that the best results are 
yielded when Nc

in is 20, Nc
out is 25, Nr

in is 25, and Nr
out is 3. 

(see specific parameter values for the October machine in 
“Appendix B”).

Performance in open‑world
Experimental setting
Similar to prior experiments on defenses, we also con-
ducted simulation experiments. We first implemented 
the Break-Pad defense and integrated it into the Circuit 
Padding Framework (padding spec 2019) on Tor 0.4.7.8. 
We then add the circuit padding simulator (Circpad-
Sim2) developed by Pulls (Pulls 2020) to the modified Tor. 
Circpad-Sim uses Tor’s unit test framework to simulate 
applying padding machines to generate defended traces. 
In addition, we rewrite the Python script for running the 
simulator inspired by Pulls’s script. In this experiment, 
we only used the Standard dataset from Goodenough.

We applied CUMUL (Panchenko et  al. 2016), k-FP 
(Hayes and Danezis 2016), DF (Sirinam et al. 2018), and 
Tik-Tok (Rahman et  al. 2020) as benchmarks to evalu-
ate the effectiveness of the machines. CUMUL based on 
SVM is heavily dependent on the correct parameters, so 
we performed parameter tuning on the candidate param-
eters suggested by Panchenko et al. (2016) and found the 
optimal parameters by grid search with cross-validation. 
All classifiers extracted features from the first 5000 cells 
of the defended trace.

Defense overhead
The bandwidth overheads for each machine are pre-
sented in Table 6. The bandwidth overhead of Spring and 
Interspace is over 123%, which indicates that the padding 
packets are more than the real ones. From Fig.  8, both 
Spring and Interspace add too many incoming padding 
packets, resulting in high bandwidth overhead. By con-
trast, in our design, August does not generate incoming 
padding packets, so the bandwidth overhead is less than 
30%.

In Table 6, The bandwidth overhead of REB and RBB is 
less than 50%. However, REB injects much more incoming 
padding packets than outgoing padding packets from Fig. 8. 
On the contrary, the outgoing padding packets of RBB are 
more than the incoming padding packets. We believe that 
too many incoming/outgoing padding packets than the 
other padding packets will not obtain good performance. In 

Table 4  Search range and final values for August

Hyperparameter Search range Final

Nc
in [5 ... 50] 10

Nc
out [5 ... 50] 20

Table 5  Search range and final values for October

Hyperparameter Search range Final

Nc
in [5 ... 50] 20

Nc
out [5 ... 50] 25

Nr
in [5 ... 50] 25

Nr
out [1 ... 15] 3

Table 6  Bandwidth overhead (BW) for padding machines (%)

Our work is shown in bold

Machine Outgoing BW Incoming BW Total BW

Spring 324 100 123

Interspace 542 111 157

REB 47 48 48

RBB 421 5 47

August 281 0 29
October 191 18 36

Fig. 8  Components of defended traces. A trace is composed of real 
incoming packets (green), real outgoing packets (blue), padding 
incoming packets (yellow), and padding outgoing packets (red)

2  https://​github.​com/​pylls/​circp​ad-​sim

https://github.com/pylls/circpad-sim
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comparison, for October, the incoming padding packets are 
similar to the outgoing padding packets.

Results
We show the results in Table 7. When there is no machine 
applied, CUMUL (Panchenko et  al. 2016), k-FP (Hayes 
and Danezis 2016), DF (Sirinam et al. 2018), and Tik-Tok 
(Rahman et  al. 2020) achieve more than 92% Precision, 
more than 91% TPR, and less than 6.5% FPR. DF has the 
highest TPR (98.4%) and k-FP has the highest Precision 
(95.94%) and the lowest FPR (2.78%) among all attacks. 
The results show that WF attacks are highly effective in 
the open-world setting when no machine is used. REB 
has the worst performance among all machines. With 
48% bandwidth overhead, REB only reduced Tik-Tok’s 
Precision by 3.65% (95.04% → 91.39%), reduced Tik-
Tok’s TPR by 5.19% (97.76% →    92.57%), and increased 
Tik-Tok’s FPR by 2.21% (4.39% →   6.6%). Spring is more 
effective against all attacks. The Precision of Tik-Tok 
is reduced to 46.15%, the TPR of Tik-Tok is reduced to 
45.89%, and the FPR of CUMUL is increased to 35.16%, 
however, it brings a massive bandwidth overhead (123%). 
By contrast, August, only with 29% bandwidth overhead, 
dropped the Precision of Tik-Tok from 95.04% to 86.83%, 
dropped the TPR of Tik-Tok from 97.76% to 78.15%, and 
increased the FPR of CUMUL from 6.55% to 30.68%.

Interspace has the best defense performance against 
all attacks. It achieved the lowest Tik-Tok Precision 
(36.13%) and the lowest Tik-Tok TPR (31.29%) in all 
results. However, Interspace also requires the highest 
bandwidth overhead (156%) among all machines. RBB 
achieves good defensive performance against all attacks. 
RBB reduced Tik-Tok’s Precision from 95.04% to 82.47%, 
reduced Tik-Tok’s TPR from 97.76% to 82.75%, and 
increased CUMUL’s FPR from 6.55% to 33.93%, with 
47% bandwidth overhead. Compared with RBB, October, 
with less bandwidth overhead, gets better defense perfor-
mance. With 11% less bandwidth overhead compared to 

RBB, it further decreased Tik-Tok’s Precision by 3.74% 
(82.47% →  78.73%), decreased Tik-Tok’s TPR by 13.5% 
(82.75%  →  69.25%), and increased CUMUL’s FPR by 
1.36% (33.93% → 35.29%).

Information leakage analysis
To gain further insight into the machines, we performed 
information leakage analysis using Website Fingerprint 
Density Estimation (WeFDE) proposed by Li et al. (2018). 
WeFDE calculates the mutual information of a website W 
and a fingerprint F of W to estimate the amount of informa-
tion that an adversary learns from F about W. It consists of 
two components: Website Fingerprint Modeler and Mutual 
Information Analyzer. Website Fingerprint Modeler uses 
Adaptive Kernel Density Estimate (AKDE) (Rosenblatt 
1956) to model the probability density function of fea-
tures and produce an estimate of the information leakage 
for each feature. Mutual Information Analyzer is used for 
feature dimension reduction. It only picks out the top 100 
most informative non-redundant features and clusters the 
features. The redundant features are those that have higher 
mutual information than a threshold value (0.9).

Experimental setting
we evaluate the information leakage for each feature cat-
egory for machines. Following their methodology, we 
compute the information leakage for 14 feature catego-
ries used in Li et at. (2018). Since some categories con-
tain a large number of features, we prune the redundant 
features with a threshold of 0.9 and pick the top non-
redundant 50 features in these categories (Transposition, 
Interval-I, Interval-II, Interval-III, and Pkt. Distribution). 
In calculating the amount of information leakage for each 
category, we did not cluster features within the category.

Results
Table 8 and Fig. 9 shows the results. All machines greatly 
reduce leakage of certain types (Burst, First 20, First 30, 

Table 7  Defense performance for padding machines in open-world (%)

Our work is highlighted in bold

Machine Precision TPR FPR BW

CUMUL k-FP DF Tik-Tok CUMUL k-FP DF Tik-Tok CUMUL k-FP DF Tik-Tok

None 92.90 95.94 95.48 95.04 94.2 91.26 98.4 97.76 6.55 2.78 4.12 4.39 0

Spring 17.06 44.32 39.70 46.15 13.97 10.02 34.76 45.89 35.16 3.07 29.62 26.13 123

Interspace 8.55 32.19 31.13 36.13 6.02 5.36 16.16 31.29 33.2 2.59 17.58 23.54 156

REB 78.62 83.89 87.52 91.39 80.32 59.46 93.09 92.57 15.83 5.29 10.75 6.6 48

RBB 31.86 60.88 64.51 82.47 28.16 22.03 71.63 82.75 33.93 5.10 27.69 12.29 47

August 48.06 68.47 66.76 86.83 46.38 30.45 76.84 78.15 30.68 5.38 27.15 6.5 29
October 38.42 63.24 64.98 78.73 36.88 23.20 65.36 69.25 35.29 4.78 22.34 9.65 36
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and Last 30). For the Burst category, October leaks at 
2.453 bits which is the lowest leakage except Spring’s. It 
means that October is effective to break the burst pat-
tern with low bandwidth overhead. Some categories 
(Pkt. Count, Time, and Transposition) of information 
leakage have also decreased. We found that some cat-
egories (Ngram, Interval-I, Interval-II, Interval-III, Pkt. 

Distribution, and Pkt. per Second) still produce high 
information leakage. Compared with the very low TPR of 
CUMUL (Panchenko et al. 2016), the CUMUL category 
in the August and the October machines have high infor-
mation leakage, 5.494 bits and 5.424 bits. However, it can 
be shown in Fig. 9 that August and October significantly 
reduce the information leakage

Table 8  Information Leakage by feature category (bits) Coloring: (x > 5.0) red, (4.0 < x < 5.0) orange, (3.0 < x < 4.0) yellow, (x < 3.0) 
uncolored

Fig. 9  Information Leakage by feature category
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Performance in one‑page
Wang  (2021) proposes a higher evaluation standard 
(called one-page setting) to analyze WF defense perfor-
mance, where there is only one monitored class and one 
unmonitored class. The monitored class contains only 
some instances of the same webpage that the attacker 
wants to identify.

Experimental setting
To show the defense effect of our padding machines, we 
performed the same experiments in the one-page setting. 
Each time, we randomly selected 200 instances from one 
website of the monitored class as positive samples and 200 
instances from the unmonitored class as negative samples 
and performed binary classification with k-FP (Hayes and 
Danezis 2016). We repeated this evaluation 50 times each 
time using a different website of the monitored class (the 
monitored class of the Standard dataset contains 50 web-
sites) and calculated the average of Precision, TPR, and 
FPR for all results as the final result of the experiment.

Results
Table  9 summarizes the results. On the undefended 
dataset, k-FP got 96.02% Precision, 98% TPR, and 4.05% 
FPR, showing that it is highly effective in identifying 
single webpages. Although Spring and Interspace get 
the best defensive performance among all machines, 
they carry too much bandwidth overhead. Compared 
to August, Spring only reduced Precision by 11.33% 
(86.80% → 75.47%), TPR by 12.16% (91.95% → 79.79%), 
and increased FPR by 12.21% (14.25% →  26.46%), but 
increased bandwidth overhead by 94% (29% →  123%). 
Compared with Spring, with 33% more bandwidth over-
head, Interspace only decreased TPR by 2.54% (79.79% 
→ 77.25%). REB is the least effective defense. With 48% 
bandwidth overhead, it only reduced Precision by 3.44% 
(96.02% → 92.58%), TPR by 1.67% (98% → 96.33%), and 
increased FPR by 3.94% (4.05% → 7.99%). RBB performed 

slightly better than August by further reducing Precision 
by 4.45% (86.80% →  82.35%), reducing TPR by 2.77% 
(91.95% → 89.18%), and increasing FPR by 5.39% (14.25% 
→  19.64%). However, RBB incurs 18% more bandwidth 
overhead than August. October gets good defense per-
formance with less bandwidth overhead. While achiev-
ing similar performance to RBB, October further reduced 
bandwidth overhead by 11% (47% →   36%).

Performance against other WF defenses
We evaluated the performance of these two machines 
(August and October), as well as other WF defenses, 
using datasets based on three security modes in the Tor 
Browser Bundle (TBB): Standard, Safer, and Safest.

Experimental setting
Based on the original paper, we have re-implemented the 
WF defenses, including DFD (Abusnaina et al. 2020), Reg-
ulaTor (Holland and Hopper 2022), and TrafficSilver (De la 
Cadena et al. 2020). There are two versions of RegulaTor: 
RegulaTor-Light and RegulaTor-Heavy. For this experi-
ment, RegulaTor-Light, which has less defense overhead, 
is chosen. TrafficSilver adopts 3 circuits and the batch-
weighted random (BWR) splitting strategy. We evaluated 
the effectiveness of the defenses using Tik-Tok  (Rahman 
et  al. 2020). To get more features of the traffic, Tik-Tok 
extracted features from the first 10,000 packets of traffic 
rather than the 5,000 packets in the original paper.

Defense overhead
Table 10 shows the defense overhead for each defense on 
the various security model datasets. In all three datasets, 
DFD always brings about 55% bandwidth overhead. On 
Standard and Safer datasets, RegulaTor brings 24% band-
width overhead and around 33% time overhead. On the Saf-
est dataset, the bandwidth overhead of RegulaTor increased 
to 56% due to the reduction in actual traffic. TrafficSilver 
uses only traffic splitting, so its bandwidth and time over-
head are both 0%. For various TBB security modes, August 
and October always incur lower bandwidth overheads of 
29% and 36%, respectively. August and October in the Cir-
cuit Padding Framework do not delay any packets, so they 
both have 0% time overhead. We have found that both 
machines are padding based on actual traffic, and therefore 
have been maintaining a stable bandwidth overhead.

Results
Figure  10 shows the precision-recall curves for Tik-
Tok (Rahman et  al. 2020) against the WF defenses on 
the dataset of the three security modes. As expected, 
Tik-Tok achieved high precision and recall in the three 
undefended datasets, showing that the attack is highly 
effective. DFD has the worst performance among all 

Table 9  Defense performance of padding machines against 
k-FP attack in the one-page setting (%)

Our work is marked in bold

Machine Precision TPR FPR Bandwidth

None 96.02 98 4.05 0

Spring 75.47 79.79 26.46 123

Interspace 70.32 77.25 33.06 156

REB 92.58 96.33 7.99 48

RBB 82.35 89.18 19.64 47

August 86.80 91.95 14.25 29
October 82.44 89.30 19.40 36



Page 13 of 18Huang and Du ﻿Cybersecurity            (2024) 7:28 	

defenses. On both Standard and Safer datasets, it did 
almost nothing to reduce Tik-Tok’s classification results. 
RegulaTor effectively reduces the performance of Tik-
Tok. Its performance is better than the two padding 
machines in the Circuit Padding Framework and worse 

than TrafficSilver. However, RegulaTor imposes the 
time overhead of about 35%, which is why it cannot be 
deployed on the Tor network. At present low-latency 
anonymity systems such as Tor prohibit WF defenses 
from using delay packet operations. TrafficSilver gets 
the best defense performance. Particularly on Standard 
dataset, TrafficSilver kept Tik-Tok’s precision rate less 
than 70%. Tik-Tok’s classification effectiveness is signifi-
cantly reduced by the fact that the adversary is only able 
to obtain approximately one-third of the traffic. How-
ever, the implementation of TrafficSilver in the Tor net-
work requires modification of the existing Tor protocol. 
Compared to other WF defenses, August and October 
significantly decrease the performance of Tik-Tok on 
datasets with various security modes. Moreover, August 
and October do not utilize delayed packet operations and 
do not need to modify the Tor protocol, so they can be 
deployed directly into the Tor network.

Performance in larger open‑world
In this subsection, we evaluate the performance of both 
padding machines in the larger open-world setting with 
significantly more negative than positive samples. As far 
as we know, the largest unmonitored dataset contains 
the index pages of 400,000 websites collected by Rimmer 
et al. (AWF400K)3.

Experimental setting
Using the AWF400K dataset, we evaluate the defense 
performance against different sizes of the unmonitored 
set (10K, 50K, 100K, 200K, and 400K). Since AWF400K 
does not include packet timing, we choose the DF (Siri-
nam et  al. 2018) attack that does not adopt packet tim-
ing features. The positive samples are from 5 randomly 
selected websites in the Goodenough dataset, totaling 
1,000 instances.

Results
Figure  11 shows the performance of both August and 
October in the larger open-world setting. The results 
show that the performance of both defenses improves 
significantly with increasing size of the unmonitored set. 
For the 10K unmonitored websites, August and October 
reduced the DF’s precision to 75.58% and 73.87%, respec-
tively. Against the moderate-sized unmonitored websites 
of 100K size, August and October further dropped the 
DF’s precision to 60.55% and 58.29%, respectively. For the 
largest unmonitored websites of 400K size, August and 
October further reduced the DF’s precision to 40.60% 
and 39.58% respectively. Thus, we intuitively believe that 

Fig. 10  Precision-recall curves of Tik-Tok against WF defenses 
in Open-world

3  https://​github.​com/​Distr​iNet/​DLWF

https://github.com/DistriNet/DLWF


Page 14 of 18Huang and Du ﻿Cybersecurity            (2024) 7:28 

both defenses would perform more well in the real world, 
where there are 200 million active websites4.

Discussion
Padding based on delay or based on the number of incom-
ing packets? In the padding based on delay, the expiration 
of the set delay triggers the injection of padding pack-
ets. So, the defense tends to send more padding packets 
than intended in the case of network congestion. In real-
ity, congestion in the underlying network or relays in Tor 
often causes the latency of incoming packets. And these 
latencies lead the defense to send extra padding packets. 
The extra padding packets not only increase bandwidth 
overhead but also make the network more congested.

In contrast, padding based on the number of incoming 
packets injects padding packets only when the number of 
incoming packets exceeds the set number. So, even if the 
incoming packets are delayed, the defense does not send 
additional padding packets.

Should we evaluate the impact of defense on the Tor net-
work? To evaluate the effectiveness of the defense, prior 
works either conduct trace simulations, in which the 
simulator adds or delays packets according to the defense 

scheme; or the proposed defense is implemented as a plug-
gable transport (bridges and pluggable transports 2016), 
which obfuscates the traffic between a single client and a 
node in the live Tor network. And a defense that achieves 
worse attack results than other defenses is considered a bet-
ter defense. However, these studies ignore the impact on the 
Tor network when all Tor users have deployed the proposed 
defense. The study of Wither et al. (2022) shows that if the 
padding-based defense were deployed on a large scale, the 
added padding packets will increase latency in the Tor net-
work. This is a bad situation for Tor. Therefore, for a more 
comprehensive evaluation of defense, we should evaluate 
the impact on the Tor network after the proposed defense is 
deployed on a large scale. However, we are currently unable 
to deploy the WF defense on a large scale in the live Tor net-
work, nor have we found a suitable simulator for testing.

Conclusion
In this paper, we presented Break-Pad, a practical defense 
that can be effective against the best WF attacks. Break-
Pad decides whether to send padding packets based on the 
number of consecutive incoming packets. It selects random 
numbers of thresholds and padding packets each round, 
which are sampled from predefined probability distribu-
tions. In addition, we integrated our defense into Circuit 
Padding Framework in the Tor source code. In the modi-
fied framework, we implemented two padding machines, 
August and October. August is a one-way padding, light-
weight defense where only the client machine sends pad-
ding packets using the Break-Pad approach. October is a 
two-way padding defense, where both the client and the 
relay machines can send padding packets to each other.

To show the effectiveness of our padding machines, we 
compared our padding machines with the previous best 
machines extensively in both the open-world setting and 
the one-page setting. Our open-world results show that 
August reduced Tik-Tok’s TPR by 19.61% with only 29% 
bandwidth overhead. October outperformed RBB against 
the state-of-the-art attacks. With 11% less bandwidth 
overhead than RBB, October further reduced Tik-Tok’s 
TPR by 13.5%. In the one-page setting, at a similar k-FP’s 

Table 10  Bandwidth (BW) and Time overhead for WF defenses for Standard, Safer, and Safest TBB Security Modes (%)

Our work is shown in bold

Defense Standard Safer Safest

BW Time BW Time BW Time

DFD 55 0 55 0 54 0

RegulaTor 24 35 24 33 56 35

TrafficSilver 0 0 0 0 0 0

August 29 0 29 0 29 0
October 36 0 35 0 35 0

Fig. 11  Performance for padding machines with growing numbers 
of unmonitored sites

4  https://websitesetup.org/news/how-many-websites-are-there/
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Precision and TPR as RBB, the bandwidth overhead of 
October was further reduced by 11%. Additionally, we 
evaluate the information leakage for the traces defended 
by the machines. In the information leakage analysis, 
for the Burst category, October leaks 2.453 bits while 
the best machine Interspace leaks 2.629 bits. Compared 

to other WF defenses, August and October outperform 
the state-of-the-art WF defense DFD on all three secu-
rity mode datasets. In the larger open-world setting, both 
August and October consistently reduced the DF’s per-
formance with increasing unmonitored sets.

Appendix A: Source code for August
Appendix A.1: Client machine

Appendix A.2: Relay machine
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Appendix B: Source code for October
Appendix B.1: Client machine
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Appendix B.2: Relay machine
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