
Yin et al. Cybersecurity (2024) 7:30
https://doi.org/10.1186/s42400-024-00224-w

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Discovering API usage specifications
for security detection using two‑stage code
mining
Zhongxu Yin1*, Yiran Song2† and Guoxiao Zong1*† 

Abstract 

An application programming interface (API) usage specification, which includes the conditions, calling sequences,
and semantic relationships of the API, is important for verifying its correct usage, which is in turn critical for ensur-
ing the security and availability of the target program. However, existing techniques either mine the co-occurring
relationships of multiple APIs without considering their semantic relationships, or they use data flow and control flow
information to extract semantic beliefs on API pairs but difficult to incorporate when mining specifications for mul-
tiple APIs. Hence, we propose an API specification mining approach that efficiently extracts a relatively complete
list of the API combinations and semantic relationships between APIs. This approach analyzes a target program
in two stages. The first stage uses frequent API set mining based on frequent common API identification and filtra-
tion to extract the maximal set of frequent context-sensitive API sequences. In the second stage, the API relationship
graph is constructed using three semantic relationships extracted from the symbolic path information, and the speci-
fications containing semantic relationships for multiple APIs are mined. The experimental results on six popular
open-source code bases of different scales show that the proposed two-stage approach not only yields better results
than existing typical approaches, but also can effectively discover the specifications along with the semantic rela-
tionships for multiple APIs. Instance analysis shows that the analysis of security-related API call violations can assist
in the cause analysis and patch of software vulnerabilities.

Keywords  Specification mining, Frequent API sequence, Semantic relationship, Under-constrained symbolic
execution, Vulnerability mining

Introduction
In programming, calls to application programming
interface (API) functions usually need to follow a
particular specification. These specifications gener-
ally express the intrinsic characteristics and security

requirements of the program. Program developers
who fail to adhere to these specifications can easily
introduce defects into the program, which may even
cause serious security problems. In SSLINT (He et al.
2015), the author manually built the API security usage
specifications of the certificate validation process
in the open-source projects OpenSSL and GnuTLS,
and found a dozen or so lack of verification errors in
the source code that could lead to man-in-the-middle
attacks. Unfortunately, although some APIs give for-
mal usage specifications in the official documentation,
many APIs do not have public usage specifications
(Jana et al. 2016). Because the same set of APIs may be
widely used, the vulnerability caused by violations of

†Yiran Song and Guoxiao Zong have contributed equally to this work.

*Correspondence:
Zhongxu Yin
yinzhxu@163.com
Guoxiao Zong
zonegoalshall@foxmail.com
1 Information Engineering University, Zhengzhou 450001, China
2 Henan University of Animal Husbandry Economy, Zhengzhou 450046,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00224-w&domain=pdf

Page 2 of 23Yin et al. Cybersecurity (2024) 7:30

the specification is highly likely to be reproduced in dif-
ferent applications. Therefore, the mining of API usage
specifications in a program has become an important
aspect of program security analysis.

Some methods automatically extract API usage specifi-
cation and use the specifications for security analysis. To
mine the association relationships of APIs, PR-Miner (Li
and Zhou 2005) uses an effective frequent itemset mining
technique. Frequent itemset mining is a branch of data
mining that focuses on looking at sequences of actions or
events, each of which have a number of features. The aim
of a frequent itemset mining algorithm is to find all com-
mon sets of items, defined as those itemsets that have
at least a minimum support (Tamaskar and Raut 2016).
However, the rules extracted by PR-Miner are redundant
and lack of parameters of and conditional dependencies
between APIs.

For other mining methods such as frequent subgraph
mining (Huan et al. 2004) and under-constrained sym-
bolic execution (Ramos and Engler 2015), the seman-
tic beliefs are included. Instead of performing symbolic
execution from the start position of the program, under-
constrained symbolic execution assumes a certain pre-
condition and starts analysis directly from the entry of
the target function of interest. Even so, the computing
cost is relatively large and cannot be scaled to large pro-
grams. There are still plenty of complex functions in large
and complex programs, the overhead is still unaffordable.

In this paper, our aim is to use an API specification
mining approach that efficiently extracts a relatively com-
plete list of the API combinations and semantic relation-
ships between APIs. The extracted API specifications and
security-sensitive function model (Yin et al. 2020) consti-
tute the static method to detect the call sequences that
violates the API specification and for bug discovery and
repairment.

The existing methods of extracting the relationship
between APIs are usually limited to the relationship
between pairwise APIs. Our method extracts the rela-
tionship in all related API sequences, and then recover
the API call specifications without documents.

To achieve the goal above, we proposed an approach to
analyze the target program in two phases. The first phase
extracts context-sensitive frequent API sequences using
frequent itemset mining. The second phase takes the
sequences mined in the first phase and mines the speci-
fications that contain the semantic relationships of mul-
tiple APIs using under-constrained symbolic execution.

The main contributions of this work are:

1.	 A new API specification mining approach that can
automatically and efficiently extract API specifica-

tions containing semantic relationships for multiple
APIs. The approach has two features.

(a)	 Mainly from source code. The approach can
mine specifications mainly from software code
without any prior knowledge about the soft-
ware or requiring any rule templates, annota-
tion, or feedback from programmers.

 (b)	 Domain adapted. Our method is able to
deal with longer and relatively complete API
sequences. Meanwhile, path pruning based on
domain adapting can obtain better extraction
efficiency and scalability.

The experimental results show that the approach can
mine usage specifications that contain the semantic rela-
tionships among multiple APIs. Moreover, the accuracy
and efficiency are clearly better than those of the existing
typical approaches.

2.	 We proposed the concept of frequent common API
in the problem domain of frequent API sequence
mining. The structural characteristics of frequent
common APIs in the FP tree are proposed and
engaged with an accurate identification and filtra-
tion method of frequent common API, which greatly
improved the effectiveness of our proposed frequent
API maximum sequence mining algorithm. An FP
tree is the main structure for representing itemsets
in the frequent closed-itemset mining algorithm
FPclose(Grahne and Zhu 2003a). Some APIs are
called frequently, but they are mainly common func-
tions that implement error message prompts after an
error. Such APIs are referred as frequent common
APIs in this paper. The algorithm identifies and filters
out the frequent common API nodes in the FP tree
that are close to the root node and have a large over-
all frequency and out degree, which reduces their
interference on the mining results.

3.	 We implemented the proposed approach and made
evaluations. The results show that the proposed
semantic relationship specification mining approach
is effective and superior to relevant approaches.
Further analysis on violations of the specifications
reveals various security problems.

The remainder of this paper is organized as fol-
lows: Sect. "Related work" presents the related work.
Sect. "Problem definition" analyzes the key issues of this
paper for specification mining through a motivating
example. sect. "Semantic relationship sensitive API speci-
fication mining approach" describes the overall approach

Page 3 of 23Yin et al. Cybersecurity (2024) 7:30 	

of our method, the improved maximal frequent itemset
mining algorithm, and the semantic relationship extrac-
tion and call specification mining of APIs. Sect. "Imple-
mentation and evaluation" describes the implementation
and presents the evaluation results. Sect. "Analysis of API
call specifications violations" states the typical case. Sect.
"Conclusion" concludes our work and discusses direc-
tions for future work.

Related work
API specification mining uses source code mining
approaches to discover the conditions, calling sequences,
and semantic relationships of API calls in a program
(Dyer et al. 2013). After more than ten years of efforts
by researchers and the development of program analy-
sis technology, research in this area has gained some
achievements. Typical examples include frequent item-
set mining-based approaches, security-sensitive func-
tion-based mining approaches, template-based mining
approaches and document-based method.

Security‑sensitive function‑based mining approach
In the security-sensitive function-based mining approach,
security-sensitive functions (Chen et al. 2018) are discov-
ered. The specifications are then revealed by mining the
pre-and post-conditions of these functions (Nguyen et al
2015, 2014; Ramanathan et al. 2007)) Liang et al. proposed
AntMiner ((Bian et al. 2018a; Liang et al. 2016), which
uses the idea of program slicing to preprocess the source
code and reduce noise interference. It then finds secu-
rity-sensitive functions through a heuristic approach and
computes their preconditions to yield the specification.
The Chucky approach (Yamaguchi et al. 2013) proposed
by Yamaguchi et al. uses a manually specified sensi-
tive function or variable as a starting point. It then slices
statements in the calling functions of a sensitive function
and clusters the conditional statements in the slice, out-
putting the analysis result as a usage specification for the
sensitive function. The APEX approach (Kang et al. 2016)
proposed by Yuan et al. analyzes the post-conditions of
each API function called by the program, finds the fal-
lible APIs that are sensitive to error handling, and iden-
tifies error paths and non-error paths according to the
number of branching points of the path to find the error
return values that handle specification. The approach pro-
posed by Chang (Chang et al. 2008, 2012) first chooses
the set of APIs of interest, then for every API, uses each
of its call site instances to construct dependence spheres
from a system dependency graph of the target program.
It then performs frequent isomorphic graph minor min-
ing from the dependence spheres. The frequent isomor-
phic graph minors are selected as the usage specification.

This approach can discover the calling order and semantic
relationships of multiple APIs in a program.

The security-sensitive function-based mining
approaches implement path-sensitive and flow-sensitive
specification mining for specific functions but must first
locate sensitive functions. Their effectiveness depends
on the accuracy of security-sensitive function identifi-
cation, and they cannot discover specifications in APIs
that are not recognized as sensitive functions. Moreover,
the relationships for more than two functions cannot be
obtained. In our approach, we filter unrelated APIs and
retain the other APIs instead of just choosing candidate
APIs for specification mining. This enables us to have
greater coverage and fewer false negatives.

Frequent itemset mining based approach
The frequent itemset mining based approach uses the
program’s statements or structural pattern sequences to
extract frequently occurring subsequences as specifica-
tions. For example, PR-Miner uses the frequent closed-
itemset mining algorithm FPclose (Grahne and Zhu.
2003a) to mine the co-occurrences of statements in the
function. This approach can mine the co-occurrence rela-
tionships among multiple APIs but does not reflect the
semantic relationships between APIs (Li and Zhou 2005).
In addition, the false positive rate in the mining results is
high. In the evaluation of PR-Miner, 45 of the top 60 vio-
lations for the extracted rules in the violation report for
PostgreSQL were false positives caused by false program-
ming rules. In addition, when dealing with multiple API
call sequences, the API sequence will be split into multi-
ple pairwise sequences, such as [A, B, C] will be split into
[A, B], [A, C], [B, C], which will lead to redundancy in
subsequent rule extraction. Sequences without semantic
relationship become the interference items of specifica-
tion mining.

Henkel et al. proposed a specification mining approach
based on unsupervised learning (Henkel et al. 1904). The
approach assumes that APIs in a specification have simi-
larities in the function name. Then it clusters the APIs
with function names. The frequent itemset mining is
conducted with the projection of elements in the domain
of clusters.

PR-Miner uses FPclose algorithm to get all closed sub-
itemsets labeling with different threshold as confidence
for the corresponding rule. The algorithm overcomes
the problem of traditional frequent pattern mining that
generates excessive pattern results according to threshold
settings.

There are several works that highly related to maximal
pattern mining, Unil Yun et al. proposed more efficient
maximal weighted frequent pattern mining considering
weight information as well as the support values based

Page 4 of 23Yin et al. Cybersecurity (2024) 7:30

on tree and array structures((Lee and Yun 2018; Yun and
Lee 2016; Yun et al. 2016)), they also use approximate
weighted maximal frequent patterns considering error
tolerance(Lee et al. 2016).

Template‑based specification
The template-based specification mining approach uses a
defined specification template to filter out the sequences
that match its patterns and adopts a statistical approach
to select a high-support pattern as a specification (Bian
et al. 2018b). For example, Lemieux regards a program
as a linear execution sequence of statements (Lemieux
et al. 2015), extracts the proposition that satisfies the
user-specified temporal logic template, and uses a statis-
tical approach to mine the property with the highest con-
fidence as the true proposition. Then, this method uses
the true proposition to construct the temporal logic as a
specification. Yun et al. (Yun et al. 2016) records the API
node sequence and symbolic execution path by perform-
ing a lightweight static symbolic execution. Then, the fre-
quency of context patterns, including the return value of
a single API, the constrained causal relationships of the
API pairs, and the implicit pre-and post-condition rela-
tionships of API pairs in the recorded result, is used to
find the return processing of a single API and the control
dependency relationship specification between pairs of
APIs. Such approaches can mine specifications targeted
by a particular specification template. However, the types
of specifications that are mined are limited to the types
defined in the template and the semantic relationships
extracted are only between specific API pairs. A frame-
work was proposed for API usage constraint and misuse
classification which describe several typical templates
(Schlichtig et al. 2022).

Template-based approaches are highly targeted and
have a low false positive rate, but they cannot effectively
mine relationships for specifications containing multiple
APIs. If they are directly extended to mine multiple API
specifications, the complexity of the algorithm increases
rapidly according to the number of possible API combi-
nations and number of potential semantic relationships,
which can lead to scalability problems. For example,
in (Chang et al. 2008, 2012), the frequent isomorphic
graph minor of the program dependency graph centered
on the selected candidate API is used as a specifica-
tion. The specification mining problem is then modeled
as a frequent graph minor mining problem, which is an
NP-complete problem. In complex protocol handling
programs, there are often call specifications between
multiple APIs. Therefore, how to efficiently and accu-
rately mine call specifications among multiple APIs is
critical to the security analysis of these programs. In our
approach, we use a two-stage process and focus on API

sequence mining and semantic relationship extraction in
different stages to improve scalability.

Document‑based method
There are also some methods, which extract specifica-
tions from official or community documentation of open-
source software for matching. Lv et al. (Lv et al. 2020)
proposed method useing NLP to extract integration
assumptions from the library documents and then verify
the consistency with the APIs used in a program. Wang
et al. (Wang and Zhao 2023) combined source code and
documents to cross-validate and extract patterns.

Document-based methods extract relationships of a
code fragment (function scope, file scope, et al.), most of
them extract only return value of pairwise APIs, which
has drawbacks on completeness of specification. In addi-
tion, the inaccuracy of descriptions of the documents
may introduce deviation.

Problem definition
In this section, we further explain the problems we need
to solve through motivating examples. The functions
for tasks such as access control and protocol processing
in programs are mainly implemented in the code base
through API calls. The APIs are the main carrier for the
interface and encapsulate the internal states of the pro-
gram. Missing, out-of-order, and lacking checks for API
calls can lead to security breaches and performance deg-
radation. Specification mining extracts a set of associated
APIs from multiple instances of API calls to verify their
correct usage. In these instances, the necessary condi-
tion checks and calling context restrictions related to the
associated API are an important part of the specification.
The following typical examples of code introduce the goal
of our approach.

Figure 1a shows the code snippet that implements
time-stamp verification in the well-known cryptographic
library OpenSSL, which calls certificate verification APIs
to verify the certificate contained in the time-stamp sig-
nature. The following five APIs are called in the code
snippet to implement the certificate verification:

1.	 X509_STORE_CTX_init, which initializes the certifi-
cate verification environment.

2.	 X509_STORE_CTX_set_purpose, which sets the
certificate verification purpose.

3.	 X509_verify_cert, which verifies the certificate.
4.	 X509_STORE_CTX_get1_chain, which obtains the

certificate chain information after the verification is
successful.

5.	 X509_STORE_CTX_free, which cleans up the cer-
tificate verification environment.

Page 5 of 23Yin et al. Cybersecurity (2024) 7:30 	

We found that violations of the following three situa-
tions will cause security problems.

1.	 The API calls cannot be missing

 Figure 1b shows relationship of APIs mentioned above.
In the sequence of API calls shown in Fig. 1a, the relevant

APIs cannot be missing. The initialization operation per-
formed by X509_STORE_CTX_init on line 258 is a pre-
requisite for all subsequent API calls. If the code does not
call X509_STORE_CTX_set_purpose on line 260, the
purpose of the verification will be ambiguous. If X509_
STORE_CTX_free is not called on line 273, it will cause a
memory leak in the certificate verification environment.

Fig. 1  OpenSSL code snippet implementing the time-stamp protocol

Page 6 of 23Yin et al. Cybersecurity (2024) 7:30

2.	 The order of invocation and control dependencies
among these APIs cannot be violated

 A later API is called on the premise that an earlier API
has already been called. In Fig. 1b, the edges labeled C
indicate the control dependencies between the rel-
evant APIs. For example, X509_STORE_CTX_init and
X509_STORE_CTX_set_purpose must be called before
X509_verify_cert. At the end of the certificate verifica-
tion, X509_STORE_CTX_free must be called to clear the
environment. In addition, as shown on lines 258 and 273,
the initialization API X509_STORE_CTX_init and the
end API X509_STORE_CTX_free appear as a pair, but
a X509_STORE_CTX_init call does not necessarily fol-
low a call of X509_STORE_CTX_free. When the X509_
STORE_CTX_init call fails, the X509_STORE_CTX_free
function cannot be called; otherwise, a NULL pointer
reference problem will occur. X509_STORE_CTX_get1_
chain must be called if X509_verify_cert returns a certifi-
cate verification success.

3.	 The semantic relationships (data dependence and
parameter sharing) cannot be missing

 Again, the data dependence and parameter sharing rela-
tionships are also an important part of the specification.
In Fig. 1b, the edges marked with D indicate the data
dependence relationships between the related APIs, and
the edges marked with S indicate the shared parameter
relationships among the related APIs.

For instance, X509_STORE_CTX_init creates the
shared parameter relationships among the related APIs.
For instance, X509_STORE_CTX_init creates the cert_
ctx certificate validation environment and the rest of the
APIs share the cert_ctx parameter. Data dependence and
parameter sharing can distinguish whether the call sites
of a series of APIs are semantically associated. There-
fore, it is necessary to analyze them. In this paper, we
refer to the above three relationships of APIs as semantic
relationships.

Clearly, the usage specifications of these APIs should
include not only whether they should appear together,
but also the control and data flow relationships among
them, expressed as a condition statement, related param-
eters, and the return values. Fig. 2 shows the client-side
code of the SSL protocol in mbed TLS, which is ARM’s
open-source encryption library. If the code snippet does

Fig. 2  SSL API calls in main function of dtls_client.c in the mbed TLS library

Page 7 of 23Yin et al. Cybersecurity (2024) 7:30 	

not call the mbedtls_ssl_get_verify_result API in line
229 to verify the certificate or if mbedtls_ssl_read and
mbedtls_ssl_write are called without evaluating their
return values, the related device may construct a fake
certificate to disguise itself as an SSL server, bypass-
ing the verification process of the client program in the
embedded system and enabling a man-in-the-middle
attack. Further, if mbedtls_ssl_free is not called after
mbedtls_ssl_read and mbedtls_ssl_write, the resource is
not released. Finally, if the mbedtls_ssl_close_notify API
call on line 308 does not conform to the specification, the
connection will be unstable, and the performance of the
communication will be heavily degraded.

In addition, inter-procedure analysis should be con-
ducted in the specification mining process. The call site
of the APIs in the sequence could be distributed over-
various functions in a function call chain, such as in
the OpenSSL time-stamp response code in Fig. 3. Here,
TS_RESP_new and TS_RESP_free should be called as
a pair, but in TS_RESP_create_response, there is only a
direct call to TS_RESP_new. The call to TS_RESP_free
is executed indirectly through TS_RESP_CTX_free, and
intra-procedure specification mining approaches cannot
discover this association.

It will introduce important risks without data flow
and parameter sharing analysis. As shown in Fig. 4, the
BN_generate_dsa_nonce function in OpenSSL-1.1.1 is
called by the ecdsa_sign_setup function to generate a

random number k in the ecdsa signature to protect the
weak random number generator. The k value requires
strict protection to prevent leakage. The k value should
be reset to zero after usage. A calling specification was
shown in Fig. 13. As it is shown, the call sequence con-
forms to the specifications from the perspective of call
sequence and completeness. However, the function
OpenSSL_cleanse is not called to clean SHA512_CTX,
but to clean variable private_bytes from the perspective
of parameter sharing. The risk is that after k is gener-
ated and hash calculated by SHA512, the k value can be
restored by the data left in memory of SHA512_CTX in
a particular situation.

Similarly in pageant handle msg function in Pageant.c
of Putty (shown Fig. 16). The hash execution environ-
ment data structure is not cleaned after MD5Final is
called, which will lead to potential memory leaks.

In summary, the goal of specification mining is to mine
the associated API sequences that must co-occur in the
program and analyze the control dependencies and data
flow relationships among the APIs in the sequence.

As described in Section Related work, current fre-
quent itemset mining based approaches mine the
co-occurring relationships of multiple APIs without
considering their semantic relationships. They lack flow-
sensitive, path-sensitive, and context-sensitive analysis
and do not obtain information about the data and con-
trol flows of the APIs. In addition, these approaches

Fig. 3  TS_RESP_create_response function in ts_rsp_sign.c of OpenSSL-1.1.1 and its time-stamp API calls

Page 8 of 23Yin et al. Cybersecurity (2024) 7:30

lack inter-procedure analysis. The security-sensitive
function-based approaches are limited to the semantic
relationship analysis of the functions that are specified
as sensitive. Moreover, in template-based and security-
sensitive function-based approaches, the target program
is represented in the form of symbolic paths or program
dependency graphs. The data flow and control flow infor-
mation are included in the mined specification. However,
these approaches are difficult to extend to tasks that mine
specifications for multiple APIs.

To address this problem, we propose a two-stage API
call specification mining approach that that efficiently
extracts a relatively complete list of the API combinations
and semantic relationships between APIs. It focuses on
API sequence mining and semantic relationship extrac-
tion in different stages to mine specifications for multiple
APIs in a scalable way.

Semantic relationship sensitive API specification
mining approach
Current popular open-source projects usually have
strong modularity with good API design, and in the main
project code, the relevant APIs are correctly called in a
certain number of instances. Under these assumptions,
this study focuses on specification mining for open-
source projects. Our approach efficiently extracts a rela-
tively complete list of the API combinations for the code
of the target program under analysis, which reduce the
unnecessary analysis when dealing with multiple APIs
in co-occurrence relationship. Based on this, the seman-
tic relationship between APIs is extracted for an accu-
rate analysis with lower costs compared with traditional
symbolic execution. The main process of this approach is
shown Fig. 5. which consist of two stages. The input of

openssl-1.1.1a\crypto\bn\bn_rand.c
205 int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range,
 const BIGNUM *priv, const unsigned char *message,
 size_t message_len, BN_CTX *ctx)
{
209 SHA512_CTX sha;
……
223 k_bytes = OPENSSL_malloc(num_k_bytes);
224 if (k_bytes == NULL)
 goto err;
….
241 for (done = 0; done < num_k_bytes;) {
242 if (RAND_priv_bytes(random_bytes, sizeof(random_bytes)) != 1)
243 goto err;
244 SHA512_Init(&sha);
245 SHA512_Update(&sha, &done, sizeof(done));
246 SHA512_Update(&sha, private_bytes, sizeof(private_bytes));
247 SHA512_Update(&sha, message, message_len);
248 SHA512_Update(&sha, random_bytes, sizeof(random_bytes));
249 SHA512_Final(digest, &sha);
}
……
266 err: OPENSSL_cleanse(private_bytes, sizeof(private_bytes));
267 return ret;
}

Fig. 4  The code of BN generates dsa nonce function in OpenSSL-1.1.1 calls hash related API

Page 9 of 23Yin et al. Cybersecurity (2024) 7:30 	

our approach is the source code of the projects, and the
API calling specification is mined as output. In the pro-
cess, counter examples will be reported and analyzed to
distinguish interference APIs and violations of API call
specifications.

Stage 1: Frequent API set mining based on frequent
common API identification and filtration.

In this stage, frequent API set mining is performed
on the given open-source project to find frequent API
sequences. First, the number of API calls related to the
specifications may be small in some projects, which
makes it difficult to extract valid API sequences through
frequent itemset mining approaches. Hence, we use cli-
ent code calling these libraries for specification mining.
Then, a global interprocedural analysis is performed on
the target source code, and a call graph is constructed
to extract inter-procedure API sequences by traversing
each node (which corresponds to a function) in the call
graph. Then, for the extracted sequence set, the maxi-
mal frequent itemset mining approach (Grahne and Zhu
2003a, 2003b) is used to obtain frequently appearing
API sequences. Some APIs in the program have a higher
overall frequency and are distributed among multiple
frequent sequences, but the correlation between these
APIs and the APIs that implement the main function
is not strong. Typical examples include APIs related
to error handling and log operations. This increases
the number of frequent APIs that are not semantically
related, affecting the quality of the specification and
occupying a large amount of algorithm execution time.
Hence, such APIs are first discarded before frequent
API mining is performed. This effectively improves
the quality of the specification and the efficiency of the
algorithm.

Stage 2: API semantic relationship specification mining
based on domain adapted under-constrained symbolic
execution and graph based relationship aggregation.

This stage performs a domain adapted under-con-
strained symbolic execution to extract the API semantic
relationship specification from frequent API sequences
of the first stage. First, a path-and flow-sensitive analy-
sis of the code of the target program under analysis is
performed for the under-constrained symbolic execu-
tion, and the frequent API sequences are used as trigger
points to record the symbolic information and path con-
straint information of the API in these sequences. Then,
the control dependencies among the APIs are extracted
from the path constraint information, and the pairwise
relationships of shared parameters and return value
data dependencies for the APIs are extracted from the
symbolic information of the API call site. Using the API
sequences and their pairwise semantic relationships, the
API relationship graph is constructed, and the relation-
ships are aggregated. The context-sensitive, path-sensi-
tive, and flow-sensitive specifications for multiple APIs
are mined from the graph. The scope of related symbolic
path and constraint information collection at this stage
is limited to the relatively small-scale API sequence set
in the frequent sequences. Moreover, only the relation-
ships of the APIs in this limited set are mined, which sig-
nificantly reduces the scope and the search states of the
relationships.

Frequent API set mining based on frequent common API
identification and filtration
Definition of frequent common API
We define frequent common APIs illustrated below as
interference APIs, which interfere the mining frequent

Report

Source
Code

Preprocessing
Interprocedural
API sequence
extraction

Frequent
sequence mining

Frequent API
sequence

Under-constrained
symbolic execution

API calling
specification

Mining

First Stage

Second Stage

Multi-API relationship
extraction based on

relation graph

API semantic
relationship type

Frequent
common API
filtering

API pair semantic
relationship
extraction

Counter
examples

Violations of
API call

specifications

Further
analysis

Interference
APIs

Discard

Fig. 5  Overview of the proposed specification mining approach

Page 10 of 23Yin et al. Cybersecurity (2024) 7:30

APIs. In the remainder of this section, we would explain
the motivation.

In the first stage of analysis, the API sequences are first
extracted from the code of the target program under
analysis, and the frequent itemset mining algorithm is
used to mine API sequences with two or more combined
APIs to find the API co-occurrence relationships. A fre-
quent itemset is a set of sequences that frequently appear
in a data set and whose degree of support is greater than
or equal to the minimum support degree (min_sup),
where the support degree refers to the frequency at
which a certain set appears in all sequences. For speci-
fication mining, the existing frequent itemset-based
approach has the following three problems.

1.	 For some target open-source projects, specification-
related APIs may occur infrequently, resulting in
insufficient support. This makes it difficult to extract
valid API sequences.

2.	 Without context-sensitive analysis, it is difficult to
find inter-procedure API sequences and related spec-
ifications.

3.	 There is no filtration of frequently occurring com-
mon functions. If these APIs are not filtered, they
are likely to form frequent co-occurring relationships
with other APIs, resulting in the output of many
redundant or unrelated API sequences, increasing
the number of invalid specifications and using up the
algorithm’s calculation resources. Therefore, frequent
common APIs should be filtered to reduce interfer-
ence.

To address the first problem, the following two strat-
egies are adopted to increase the frequency of the
specification-related APIs: 1) related code is added by
introducing other project files that reference the code
base and 2) functional verification and performance
testing code that large open-source projects usually
provide (usually in the "test" folder) is added. These
additional lines of code usually do not consider secu-
rity, which is reflected in their non-compliance with
the specified semantic relationships among APIs. In the
second phase of the analysis, we exclude these supple-
mentary lines of code.

For the second problem, a global inter-procedural
analysis is performed to extract the API call sequences
across functions by means of a function call graph
constructed by the compiler framework. First, the
source code is analyzed by the compiler front end,
and the abstract syntax tree and control flow graph in
the function are constructed through lexical and syn-
tax analysis. Then, using the call relationships between

functions, a global function call graph is defined. In
the function call graph, a node represents a function,
and an edge represents a calling relationship between
the functions. Then, using the source code compilation
engine, each node in the function call graph is traversed
and the inter-procedure API call sequence is extracted.

For the third problem, we combine the filtration of
interference APIs with the classic FPMAX algorithm to
mine maximally frequent API sequences to improve the
quality and efficiency of specification mining (Grahne
and Zhu 2003b).

The approach of PR-Miner use FPclose algorithm to
mine only the closed sub-itemsets. A closed sub-item-
set is the sub-itemset whose support is different from
that of its super-itemsets (Chang and Podgurski 2012).
For example, in an itemset database

The frequent sub-itemset {b}, {d}, {a,b}, {a,d} and
{b,d} are not closed since their supports are the same
as their super itemset {a,b,d}

{

a, b, d
}

 . FPclose generates
the closed sub-itemsets {a}{a} :4 and {a,b,d}

{

a, b, d
}

 :3
as closed sub-itemset. While FPMAX would generates
the itemsets {a,b,d} a, b, d  :3 as maximal frequent sub-
itemset with the minimum support threshold of 3. In
our approach, we only mine the frequent API sequence
exceeded the specified threshold. One of our goals is to
get a relatively complete API calling sequence includ-
ing all the subsequences without considering the differ-
ent confidence of the subsequences. So, we use FPMAX
instead of FPclose and FPGrowth algorithm.

The classic FPMAX algorithm requires each ele-
ment to appear only once in each call sequence, so we
deleted duplicate APIs in the sequences. Then, the total
frequency of each API in the sequences is counted, and
those APIs whose frequencies are lower than the mini-
mum support are filtered out of each sequence. Then, the
APIs are sorted in descending order according to their
frequency. The APIs in each sequence and their frequen-
cies are inserted into the FP tree one by one to construct
it. The insertions begin at the root node. If the API to be
inserted does not exist inthe tree, a new branch is cre-
ated. Otherwise, the frequency of the API is added to the
frequency of the corresponding node. Fig. 6 shows a por-
tion of an FP tree constructed from the API sequences
extracted from the libTIFF-4.0.10 code. Here, φ is the
root node of the FP tree, and the remaining node show
the name of the corresponding APIs and their frequen-
cies on the path. Each vertical path (solid line connec-
tion) in the FP tree is a data item set that satisfies the
minimum support degree in the sequence. To quickly

D =
{{

a, b, c, d, e
}

,
{

a, b, d, e, f
}

,
{

a, b, d, g
}

,
{

a, c, g, h
}}

Page 11 of 23Yin et al. Cybersecurity (2024) 7:30 	

access the same items in the tree, all the same items are
connected using a linked list through the header table,
which points to the linked list and is represented in the
Fig. 6 by horizontal dashed lines.

By analyzing the characteristics of the nodes of inter-
ference APIs (TIFFErrorExt and TIFFError) in the FP
tree Fig. 6, we can find that a candidate interference API
has the following three characteristics:

1.	 The overall frequency is over a certain value. Accord-
ing to its definition, an interference API must fre-
quently appear in the code of the target program
under analysis.

2.	 The node appears in the upper layers and is closer to
the root node. Because the overall frequency of inter-
ference APIs tends to be higher, when the elements
of the API sequence are sorted by frequency, they
appear at the top. Hence, when the FP tree is con-
structed in this order, they are always in the upper
layers of the tree.

3.	 Its out degree exceeds the average value. Interference
APIs appear in multiple API sequences.

When these sequences are inserted into the FP tree, the
insertion traversal usually first passes through nodesrep-
resenting frequent common APIs, and then the node is
inserted below nodes corresponding to APIs with a rela-
tively low frequency. Interference API nodes act as the
parent nodes of multiple less frequent API nodes and
usually have more branches.

Improved FPMAX algorithm
In the improved FPMAX algorithm, the maximal fre-
quent API sequence is tracked by the global MFI tree
(Maximal Frequent Itemset tree). The MFI tree also starts
from root node φ. For each frequent sequence extracted
through the FP tree, if the sequence is not a subsequence
starting at any node in the MFI tree, it is inserted into the
MFI tree. The insertion of sequences into the MFI tree is
the same as the insertion of nodes into the FP tree. The
algorithm starts with a sequence initialized to be empty
as a prefix of the FP tree, and performs recursive process-
ing as follows:

1.	 If there is only one path in the tree, set the level of
path support to the minimal value of frequency of
each API. If the support level is greater than the min-
imum support level, insert the path into the MFI tree
and return.

2.	 Identify and filter out interference APIs from the
child nodes of the root node according to the fre-
quency and degree of the nodes. Put the interference
APIs into the look-aside list and reconstruct the FP
tree after filtration.

3.	 Extract each node pointed to by the header table in
the FP tree as well as its frequency. Link them to the
prefix sequence to form a new prefix. The support
level of the new prefix is the minimum value of the
frequency of each API.

4.	 If the support is less than the minimum support, dis-
card the prefix.

 :0

TIFFmalloc:19 TIFFfree:122 TIFFErrorExt:45

TIFFmalloc:91

TIFFError:24

TIFFErrorExt:10

TIFFError:5 TIFFErrorExt:28
TIFFOpen:2

TIFFClose:2

TIFFScanlineSize:3

TIFFReadScanline:2TIFFStripSize:2

_TIFFFillStriles:2

TIFFmalloc

TIFFfree

TIFFError

TIFFErrorExt

TIFFStripSize

_TIFFFillStriles

Header
table

TIFFRasterScanlineSize:12

TIFFWriteDirectoryTagData:12

Fig. 6  Part of an FP tree for the API sequences mined from libTIFF-4.0.10

Page 12 of 23Yin et al. Cybersecurity (2024) 7:30

5.	 If the support is greater than the minimum support,
construct a conditional FP tree that removes the
node, and call the algorithm recursively with the new
prefix and the conditional FP tree as parameters.

Figure 7 shows the pseudo code of the improved
FPMAX algorithm. Here, input T represents a con-
structed FP tree containing three fields: base, header, and
root. "T.base" is the prefix of the current tree to be mined,
"header" represents the header table of the FP tree,
"LookAside" is a candidate list for interference APIs, and
"MFIT" is a global MFI tree structure. The description of
the algorithm Fig. 7 is based on the original FPMAX algo-
rithm inGrahne and Zhu 2003b by supplementing the
processing of interference APIs in Lines 5–8. Lines 1–4 of
the algorithm are the terminal path of the recursive pro-
cess. When there is only one path in the tree and the sup-
port is greater than the minimum support, the path and
its support are inserted into the MFI tree. Lines 5–8 filter
the interference APIs and reconstruct the filtered FP tree.
In line 6, "midnum" is the minimum support number of
interference APIs and "midout" is the lowest out degree
of interference APIs. The values of midnum and midout
are calculated by finding the median of support number
and out degree of the child nodes of the root of the initial

FP tree. Lines 9–11 build and recursively analyze the con-
ditional FP tree (represented by Ty T  ) for each node. In
lines 12–13, when the conditional FP tree is not empty,
the algorithm is called recursively with the conditional FP
tree as input.

After this process, the candidate interference APIs in
the LookAside list were distinguished. Frequent com-
mon APIs, such as {CRYPTO_malloc, CRYPTO_free} in
OpenSSL and {_TIFFmalloc, _TIFFfree} in the libTIFF
library, have obtained plenty of co-occurrence relation-
ships and less significance for subsequent semantic anal-
ysis. Other functions like TIFFError and TIFFErrorEXT
in the libTIFF library, which obtain a high frequency in
calling sequence, also increase the cost of analysis.

API semantic relationship specification mining based
on domain adapted under‑constrained symbolic execution
and graph‑based relationship aggregation
The frequent API sequences mined in Sect. "Seman-
tic relationship sensitive API specification mining
approach" are frequently occurring API combinations
that may be semantically independent of each other.
The second phase further extracts control and data
dependencies on the parameters and return values of

Fig. 7  Pseudocode for the proposed FPMAX algorithm with frequent common API processing

Page 13 of 23Yin et al. Cybersecurity (2024) 7:30 	

the APIs in the frequent sequences of the code of the
target program under analysis so that flow-and path-
sensitive specifications may be mined. The current
flow-and path-sensitive API call specification mining
approaches have the following two problems:

1.	 The analysis, extraction, recording, and matching of
all APIs in the code incur large computational and
storage overheads with low scalability.

2.	 There is no semantic relationship matching among
multiple APIs. When searching for dependence rela-
tionships between arbitrary APIs, as the number of
APIs increases, the number of possible relation-
ships between APIs increases rapidly. As a result, the
search runtime increases sharply, reducing scalabil-
ity.

In this section, we present our method for extract-
ing the symbolic path constraint information for APIs
in the frequent sequences output by the first stage and
construct the API relationship graph according to the
relationships between pairs of APIs to mine multiple
API call specifications.

Domain adapted symbolic path constraint information
extraction
For the first problem, we propose an under-con-
strained symbolic execution path information extrac-
tion approach. The scope of the symbolic execution path
recording, and constraint information analysis are lim-
ited to the APIs in the frequent sequences. As shown
Fig. 8, the variables involved are first symbolized and
updated by traversing the statements of all the paths of
the program from the entry point of the code control
flow graph. Then, the statements in the program are
parsed into expressions with symbolic variables and con-
stants. If a control statement is encountered, a path-sen-
sitive analysis is performed, and both paths of the branch
targets are independently explored while appending the
control condition to the related path constraint. When
traversing any of the APIs in the frequent API sequence
set, the path constraint is solved and the symbol execu-
tion environment information, which includes the name
of the API node, the symbol execution path constraint,
the corresponding parameters, and return value informa-
tion, is recorded. Finally, the analysis results are recorded.
By reducing the range of symbol path information that is

Target
Program

Path constraint
information

Control flow graph
analysis

Symbolic execution
environment information

Constraint analysis

Frequent API sequence

Traversal and
symbolic analysis

of program

Global scheduling
policy

Under-constrained
symbol execution

Symbolized path
information

Fig. 8  Symbol execution analysis based on frequent API sequence

Table 1  Symbol types for the symbol execution trace

Type Name Symbolic form

API function fx,
(

argx(1), argx(2) . . . argx(m)
)

, (retx(1), retx(2) . . . retx(n))

fx ,
(

argx(1), argx(2) . . . argx(m)
)

, (retx(1), retx(2) . . . retx(n))

Symbolic variable var argx(i)i ∈ {1,m}|retx(j)j ∈ {1, n}argx(i) i ∈ {1,m}|retx(j) j ∈ {1, n}

Constant const num|srtringnum|string

Comparison operator Δcmp = |�=| < |>| ≤ | ≥ =| ≠| <|> ≤|≥ 

Expression exp var1�cmpvar2|var�cmpconstvar1�cmpvar2|var�cmpconst

Logical ΔL |∧|∨
Constraint information constraint exp1�Lexp2

API call functionCall function,constaint

Trace functionCallSeq functionCallSeq functionCall + 

Page 14 of 23Yin et al. Cybersecurity (2024) 7:30

recorded and reducing the number of instances of con-
straint solving, this approach greatly reduces the comput-
ing and storage overheads. It also reduces the scope of
the analysis in the next stage.

Table 1 lists the definitions of the symbols recorded
during symbolic execution. Here, "trace" represents the
recorded symbolic path information, which included the
sequence of the API in the path, and each record of API
information includes the name, parameter, return value,
and path constraint information.

Multiple API call specification mining
To address the second problem, this section presents an
API relationship graph that combines pairwise semantic
relationships of APIs to obtain a multi-API call specifi-
cation. We first define the types of pairwise semantic
relationships of APIs. Then, using the symbolized path
information previously obtained, the relationships are
matched to pairs of APIs. Then, using these matches, the
API relationship graph is constructed, and the multi-API
call specification is obtained by searching the connected
subgraph. Because the symbolic path information only
includes APIs that appear in frequent API sequences and
the number of possible relationships between a limited
number of API pairs is relatively small, the computational
overhead of the proposed multi-API call specification
mining is greatly reduced.

1.	 Types of API pairwise semantic relationships and
their matching

 The analysis in Section Related Work demonstrates that
the semantic relationship between API pairs usually
includes control dependencies, data dependencies, and
parameter sharing relationships. The control dependency
relationship of an API pair is reflected by the fact that
the return value of an API helps to determine whether to
execute another API. For example, the mbed TLS APIs
mbedtls_ssl_read/mbedtls_ssl_write should be called
only after the mbedtls_ssl_get_verify_result call returns
successfully, so their path constraint contains the return
value of mbedtls_ssl_get_verify_result (shown Fig. 2).
A data dependency occurs when the return value or
vari-ables defined by one API and transferred through
parameters to another API. For example, the mbed
TLS APIs mbedtls_ssl_init is used as the parameter of
mbedtls_ssl_handshake (shown Fig. 2). Parameter shar-
ing occurs when a pair of APIs have shared parameters.
For example, mbed TLS APIs of mbedtls_ssl_close_notify
and mbedtls_ssl_read have a common "&ssl" parameter
(shown in Fig. 2).

The matching rules for determining whether an API
pair (fx,fy) has the above three relationships are shown in
Fig. 2. Here, argx(i) is argy(j) means that parameter argx(i)
in function fx is the same variable as argy(j) parameter in
function fy, and constraint

(

fy
)

 constraint(fy) denotes the
symbolic variable contained in the path constraint infor-
mation of function fy fy.

When mining the relationship between API pairs, we
use a corresponding relationship support matrix for
tracking the support of the relationship for each API pair

Fig. 9  Relationship support matrix

Table 2  API relationship matching rules

Relation type Matching rule

Control dependence ControlRelations(seq) =
{(

fx , fy
)

|∃i, retx(i) ∈ constraint
(

fy
)}

ControlRelations(seq) = {(fx , fy)|∃i, retx(i) ∈ constraint(fy)}

Data dependence RetRelations(seq) =
{(

fx , fy
)

|∃i, j, retx(i)isargy(j)
}

RetRelations(seq) =
{

(fx , fy)|∃i, j, retx(i)is argy(j)
}

Parameter sharing ArgRelations(seq) =
{(

fx , fy
)

|∃i, j, argx(i)isargy(j)
}

ArgRelations(seq) =
{

(fx , fy)|∃i, j, arg(i)is argy(j)
}

Page 15 of 23Yin et al. Cybersecurity (2024) 7:30 	

in the frequent API sequences for each relationship. The
elements of this matrix are initialized to 0, as shown in
Fig. 9, where RMControlRelation, RMRetRelation, and RMArgRela-

tion respectively represent the support matrices of control
dependence, data dependence, and parameter sharing
relationships.

Then, for any function pair (fx,fy)
(

fx, fy
)

 in each
recorded symbolic path, the different relationships are
matched according to the rules of Table 2. That is, if the
symbolic variable of a return value of fx is included in the
symbolic variable set related to the path constraint of fy,
there is a control dependency relationship between fx and
fy fx, fy . If the symbolic variable of a return value of fx and
the symbolic variable of a parameter in the parameter list
of fy fy are the same, then there is a data dependency rela-
tionship between fx and fy. If the symbolic variable of a
parameter of fx is the same as the symbolic variable of a
parameter of fy, then there is a shared parameter relation-
ship between fx and fy corresponding element of

(

fx, fy
)

(fx,fy) in the relationship support matrix is increased by
one. Finally, if the If there is a relationship between fx and
fy, the corresponding element value of the function pair
in a relationship support matrix is greater than a given
threshold, the quad

(

fx, fy, 〈L, τ 〉
)

(fx,fy,(L,τ)) is added to the
corresponding relationship list, where the L represents
the relationship type and τ represents the dependent or

shared variable set. The representations of L and τ for dif-
ferent relationship types is shown Table 3.

2.	 Multi-API semantic relationship aggregation based
on the API relationship graph

 The paired API relationships are combined to obtain the
usage specifications of multiple APIs. First, the frequent
API sequences and the paired relationship list are used to
construct an API relationship graph. Then, the algorithm
to find the maximally connected subgraph of a non-con-
nected graph (Karp and Tarjan 1980) proposed by Tarjian
is used to find the largest connected subgraph in the API
relationship graph. Finally, connected subgraphs contain-
ing at least two nodes are retained and the specifications
for multi-API relationships are constructed according to
the subgraphs.

For example, using the set of frequent API sequences
{BN_CTX_new, BN_CTX_free, BN_CTX_start, BN_
CTX_end, BN_CTX_get, BN_new, BN_free, BN_copy}
obtained by analyzing the OpenSSL source code, we can
construct the API relationship graph shown in Fig. 10.
The nodes in the figure represent the APIs in the frequent
API sequences. The three relationship lists are traversed,
and an undirected edge is added between the nodes

Table 3  Relationship type tags and corresponding dependencies or shared variable set representations

Relation type L τ

Control dependence C NULL NULL

Data dependence D RET x ∩ ARGy , RETx ∩ ARG​y, RETx represents the return variables set of fx and parameter variables passed to fx which
is also defined in the function fx. ARG​y represents the parameter variables set of fy

Parameter sharing S ARGx ∩ ARGy , ARG​x ∩ ARG​y, ARG​x represents the parameter variables set of fx, ARG​y represents the parameter variables set
of fy

BN_CTX_new

BN_CTX_start

BN_CTX_freeBN_CTX_end

BN_CTX_get

BN_copy

BN_new

BN_free

S,
(B

N_
CT
X

*c
tx

)

S,
(B

N_
CT
X

*c
tx

)

S,(BN_CTX *ctx)

S,(BN_CTX *ctx)

D,
(B

IG
NU

M
*a
)

C,
!=

0

C,!=0 C,=0

Fig. 10  API-pair relationship graph of a frequent API sequence in OpenSSL source code

Page 16 of 23Yin et al. Cybersecurity (2024) 7:30

corresponding to the APIs for which a pair relationship
exists. The labels of the edges represent different relation-
ship types and dependent or shared variable sets. An API
pair can have more than one semantic relationship. For
instance, BN_CTX_new and BN_CTX_free have both
control dependence and data dependence relationships.
Hence, a node pair in the API relationship graph can have
more than one edge. Actually, an API pair can have both
control dependence and data dependence or both control
dependence and a parameter sharing relationship. Three
connected subgraphs can be found from the API rela-
tionship graph. The connected subgraph with the single
node BN_copy is discarded. For each of the remaining
two connected subgraphs, the API set and theAPI-pair
relationship set in the subgraph are extracted to obtain
the two specifications shown in Fig. 11.

Implementation and evaluation
Evaluation setup
Using the Clang static analyzer (from the LLVM frame-
work), a specification mining tool called specificsan
was implemented. The Clang static analyzer’s symbolic
execution engine performs context-and path-sensitive

interprocess flow analysis for C/C +  + code. The graph
reachability engine and the symbolic execution engine,
which constitute the infrastructure for the data flow anal-
ysis, were used for analysis (Shastry et al. 2016).

In the first phase of the implementation, the API
sequence extractor was implemented using the graph
reachability engine, which tracks the call-return seman-
tics (context sensitivity) of the procedure call and extracts
the inter-procedure API sequence.

API sequences does it solve the path constraint and
collect symbolic path and constraint information. In
the analysis, the loop is unrolled only once, so that the
path condition of each API obtained by the local analy-
sis can be saved on one node and the analysis result can
be reused in different contexts, thereby further improv-
ing the analysis efficiency. When matching the three
types of semantic relationships between API pairs, the
scope of the analysis is relatively small because the fre-
quent API sequences have been extracted. To avoid
missing relationships between APIs as much as possi-
ble and to exclude the occasional relationship that has a
single instance, when the three types of semantic rela-
tionships between the API pairs are evaluated using the

Specification 1
APISequence:{ BN_CTX_new, BN_CTX_free, BN_CTX_start, BN_CTX_end, BN_CTX_get}
RelationSequence:
{ [BN_CTX_new,BN_CTX_free,<C,!=0>],
[BN_CTX_new,BN_CTX_start,<C,!=0>],
[BN_CTX_new,BN_CTX_end,<C,!=0>],
[BN_CTX_new,BN_CTX_get,<C,!=0>],
[BN_CTX_new,BN_CTX_free,<D,(BN_CTX *ctx)>],
[BN_CTX_new,BN_CTX_start,<D,(BN_CTX *ctx)>],
[BN_CTX_new,BN_CTX_end,<D,(BN_CTX *ctx)>],
[BN_CTX_new,BN_CTX_start,<D,(BN_CTX *ctx)>],
[BN_CTX_start,BN_CTX_end, BN_CTX_get, BN_CTX_free,<S,(BN_CTX *ctx)>],
[BN_CTX_new,BN_CTX_start,<M,NULL>],
[BN_CTX_start,BN_CTX_get,<M,NULL>],
[BN_CTX_get,BN_CTX_end,<M,NULL>],
[BN_CTX_free,BN_CTX_end,<P,NULL>],
[BN_CTX_free,BN_CTX_start,<P,NULL>],
[BN_CTX_end,BN_CTX_get,<P,NULL>],
}
Specification 2
APISequence:{BN_new,BN_free}
RelationSequence:
{[BN_new,BN_free,<C,!=0>],
[BN_new,BN_free,<D,(BIGNUM *a)>],
[BN_new,BN_free,<M,NULL>]
}

Fig. 11  Specifications of a frequent API sequence in OpenSSL source code

Page 17 of 23Yin et al. Cybersecurity (2024) 7:30 	

relationship support matrix, the threshold of support is
set to two. The specification mining tests were carried
out on several types of open-source projects as detailed
in Table 4. Further experiments were implemented on
six projects of them. libTIFF-4.0.10, OpenSSH-7.9, mbed
TLS-2.16.0, OpenSSL-1.1.1, Putty-0.7 and zlib-1.2.11.
Of these, OpenSSL and mbed TLS are well-known pro-
jects implemented with encryption and the SSL/TLS
protocol. OpenSSH is a well-known encryption library
project with SSH protocol. libTIFF is well-known open-
source projects that deal with the complex formats of
libTIFF. These projects are widely used, their API inter-
faces are rich, and the correctness of their API calls are
important for security. Because of the low frequency of
calls to the main function APIs in mbed TLS, Microchip’s
open-source test case code (MicrochipTech 2019), which
references mbed TLS, was added. For libTIFF-4.0.10,
Openssh-7.9 and OpenSSL-1.1.1, client code of debian

packages using these libraries were used for specification
mining.

Selection of the minimum support number of frequent
item
During the mining process, we found that the differ-
ent settings of the minimum support of frequent items
have a large impact on the mining results of frequent
API sequences. This section compares the mining results
of each open-source project with different values for
the minimum support of frequent items, analyzes the
changes in mining performance with different settings,
and selects the appropriate minimum support number.
Fig. 12 shows the number of total frequent API sequences
extracted from OpenSSL and Openssh as well as the
effective sequences confirmed.

In the review process, we directly used the seman-
tic relationship extraction method in the second step

Table 4  Test target open-source project information

Project name Amount of code (KB) Client code Client code example

libTIFF-4.0.10 2649 8 debian packages using libTIFF Ghostscript, libfox, libwraster, vagrant, etc

Openssh-7.9 3717 16 debian packages using Openssh Vagrant,sshuttle,ssh-krb5,etc

mbedTLS-2.16.0 4206 Microchip’s open-source test case code Microchip’s open-source test case code

OpenSSL-1.1.1 22,922 45 debian packages using Openssl Tinyca openvpn dsniff ssvn, etc

Putty-3.4 2386 5 open-source projects using putty PuttyRider, WebPutty, etc

FFmpeg-3.0.12 10,854 8 open-source projects using ffmpeg FFMpegCore, mobile-ffmpeg, etc

MuPDF-1.14.0 54,272 7 open-source projects using MuPDF Android-MuPDF, mppdf-qt, go-fiz, etc

php-7.0.22 19,148 5 open-source projects using php PHPOfficeSpreadsheet, etc

Pidgin-2.13.0 13,209 5 open-source projects using Pidgin Skyp4pidgin, pidgin-lwqq, etc

zlib-1.2.11 1464 8 open-source projects using zlib Zlib-ng, zlib-searcher, etc

Fig. 12  Specification count and effective number for different minimum support values the FPMAX algorithm for a OpenSSL and b Openssh

Page 18 of 23Yin et al. Cybersecurity (2024) 7:30

of our approach. The judgment criteria were that if the
items in the sequence do not have any semantic relation-
ships with each other, we consider the sequence to be
ineffective.

The minimum support number was dynamically
and optimally selected for different target projects. As
Fig. 12a shows, for OpenSSL, as the minimum support
number decreases, the total number and effective num-
ber of mined frequent sequences increases. When the
minimum support setting is reduced from 4 to 3, the
total number is further increased, but the effective num-
ber does not increase, Hence, for OpenSSL, the mini-
mum support number was set to 4. As Fig. 12b shows,
for Openssh, when the minimum support number
decreases from 5 to 4, the effective number no longer
increases, so the minimum support number was set to
5. Using a similar experimental analysis for libTIFF, and
mbed TLS, the minimum support numbers were cho-
sen to be 3 and 4, respectively. It is worth mentioning
that the minimum support number may be different due
to the specific features of the open-source projects, the
amount of code, etc. The range of minimum support
numbers is limited. The experiments are conducted by
estimation and prior analysis, and it’s easy to find the
optimal value.

Specification mining results
API frequent sequence mining results
Existing approaches such as PR-Miner and ml4spec only
mine frequent API sequences, so this section compares
the results of the PR-Miner approach with the results

of the first phase of our approach. To test the effect of
eliminating interference APIs on the mining results, the
results of the first stage of the approach with and without
filtering out the interference APIs are compared.

The effective sequences mined by the PR-Miner
approach and those mined in the first stage of our
approach are merged as the benchmark data of the fre-
quent API sequences for each open-source project. Then,
the recall and effective ratios of the different approaches
are analyzed. The recall ratio

is the ratio of the correctly reported samples to all bench-
mark samples. The effective ratio

is the ratio of the correctly reported samples to the total
number reported.

The results are summarized in Table 5. Compared with
PR-Miner, the RR of the frequent API sequences in the
first stage of our approach is much higher. This is because
the PR-Miner approach extracts the API sequences
intra-procedurally, and it may miss useful APIs in the
sequence. Moreover, eliminating interference APIs has
no effect on the RR of the first stage of the approach, but
its ER of the first phase is significantly improved. This is
because there are many interference APIs in these test
objects (Table 6 shows the frequency of some interfer-
ence APIs), and these interference APIs generate many
invalid frequent sequences that contain them. By filtering

RR = TP/(TP+ FN)

ER = TP/(TP+ FP)

Table 5  Comparison of PR-Miner,ml4spec and the proposed method (first stage) results. FCA: frequent common APIs

Project PR-Miner ml4spec FCA count Without FCA removal With FCA removal

RR(%) ER(%) RR(%) ER(%) RR(%) ER(%) RR(%) ER(%)

libTIFF-4.0.10 60 55 66 84 7 74 63 74 85

OpenSSL-1.1.1 53 54 55 80 17 68 58 68 81

OpenSSH-7.9p1 56 64 62 78 11 72 74 72 82

Mbed TLS-2.16.0 57 63 61 74 15 73 63 73 77

Putty-0.7 58 62 63 77 13 70 62 72 78

zlib-1.2.11 60 64 60 76 10 66 70 74 80

Table 6  Number of frequent common APIs found in the experimental projects. FCA name: name of frequent common API, FR:
frequency

Mbed TLS OpenSSL Libtiff OpenSSH Putty Zlib

FCA name FR FCA name FR FCA name FR FCA name FR FCA name FR FCA name FR

Test_fail 302 ERR_PUT_error 3,425 TIFFErrorExt 591 ssh_err 750 safefree 384 gz_error 12

Mbedtls_platform_zeroize 16 BIO_printf 2,084 TIFFError 488 strerror 607 safemalloc 260 free 12

Mbedtls_debug_print_msg 55 ERR_print_errors 472 _TIFFfree 440 logit 273 saferealloc 91 _tr_flush_bits 7

Page 19 of 23Yin et al. Cybersecurity (2024) 7:30 	

them out, the invalid sequences are eliminated. At the
same time, the elimination of interference APIs reduces
the size of the data set and significantly reduces the pro-
cessing time of the algorithm.

The RR of the proposed approach is significantly higher
than the ml4spec approach. After analyzing the experi-
mental data, it was found that the ml4spec approach
used the text similarity method to cluster and filter the
API based on the clustering process, and some textually
dissimilar APIs were omitted. For example, in the valid
sequence in OpenSSL {SHA512_Init, SHA512_Update,
SHA512_Final, Openssl_cleanse}, the sequence mined
by the ml4spec method contains only the first three
functions. In terms of ER, the ml4spec method is supe-
rior to the first stage of the proposed approach without
removing interference APIs and is closer to the case of
removing interference APIs. This is because the clus-
tering method based on textual similarity can eliminate
some of the interference APIs, but still introduces some
frequent common APIs with similar function names with
functional APIs, such as TIFFErrorExt, mbedtls_debug_
print_msg, etc.

API relationship mining experiment results
The goal of our approach is to mine a specification that
contains the semantic relationships among multiple
APIs. The current approaches can only efficiently mine
the semantic relationship between API pairs. APISan
is a typical approach proposed by Yun et al. (Yun et al.
2016). In this section, we compare the performance
of the proposed approach with that of the APISan
approach at extracting relationships of API pairs.

Among the three semantic relationships of API
pairs mined in this paper, APISan only mines con-
trol dependencies and does not analyze parameter
sharing and data dependency relationships. The 45
debian packages using Openssl as shown in Table 4
were employed as test data, because of the absence

of public benchmark in API relationship mining. The
benchmark data is set to the set of APIs relation-
ships extracted by the two approaches. If the mini-
mum support degree of the API relationship set in the
APISan approach is greater than or equal to 5, many
valid relationships will be missed, whereas when it is
equal to 1, many invalid accidental relationships will
be reported. Therefore, in the experiment, the APISan
approach’s API relationship minimum support was set
to 2, 3 and 4 and then compared with the RR and ER
of the extraction results of our approach. The results
are shown in Table 7. This table shows that the effi-
ciency of our approach is significantly higher than that
of the APISan approach, mainly because the results
extracted by the APISan approach contain many inva-
lid relationships related to frequent common APIs. To
analyze impact of frequent common APIs to the rela-
tionship mining, we made comparison of the result of
under-constrained symbolic execution with and with-
out removing them in the sequence mined from the
first stage. As show in Table 7, with the removing of
frequent common APIs, the RR is not changed but the
ER is significantly improved. The memory usage and
the processing time is reduced accordingly. It shows
that the removing of frequent common APIs is effec-
tive in reducing the redundant API relationships in
the result.

Moreover, the RR of the proposed approach is signifi-
cantly higher than the APISan approach. This is because
the APISan only mines control dependencies and does
not analyze parameter sharing and data dependency rela-
tionships. In addition, we found that of.

the total 38 rules, 11 rules were uniquely mined by
the proposed approach, as compared with the APISan
approach.

In terms of memory usage and time overhead, the
proposed approach is clearly superior to the APISan
approach. This is mainly because the proposed approach

Table 7  Experimental results of this approach and APISan
approach

45 debian packages using Openssl were employed as test data.th: threshold, RR:
recall rate, and ER: effective rate

Indicators APISan Without
FCA
removal

With
FCA
removalth = 2 th = 3 th = 4

RR(%) 71 61 58 95 95

ER(%) 68 78 85 82 91

Maximum
memory usage
(MB)

2544 2437 2305 424 251

Time (s) 542 445 356 322 296

Table 8  specification mining results

API sequences: the number of API sequences extracted in the first stage, where
each path contains at least two or more APIs, support: the minimum support for
frequent items selected for different open-source project

Program API sequences Mined
specifications

Correct
specifications

libTIFF 1,534 43 21

OpenSSH 3,516 98 54

mbed TLS 705 68 29

OpenSSL 13,406 113 72

Putty 1,905 89 53

zlib 310 27 15

Page 20 of 23Yin et al. Cybersecurity (2024) 7:30

only performs relationship extraction analysis on the
APIs in the frequent sequences mined from the first
stage, which filters out frequent common APIs and other
infrequent APIs. The APISan approach extracts and
analyzes the relationships among all APIs. The search-
ing space for the possible API-pair relationship is sub-
stantially increased, so the time and memory overhead
are large. The APISan approach can only analyze partial
code because of the large memory overhead. The lower
memory and time overhead of our approach enables it to
analyze the entire code of the target project.

In addition, we found that the number of rules
extracted by the proposed approach is much lower
than the number of APISan. This is because the rules
extracted by the proposed approach contains the aggre-
gation of the relationships of multiple APIs, while the
rules extracted by APISan contains the pre/post condi-
tions and return value dependencies between each API
pair. There is no aggregation of multiple API semantic
relationships, which would greatly increase the number
of rules and the cost of subsequent vulnerability analy-
sis. The final experiment combines the pairs of relation-
ships and explores the usage specifications of multiple
APIs. Table 8 shows the specification mining results for
six open-source projects. The number of sequences
extracted, the mining runtime, and the size of the code
increase proportionally. The number of specifications is
also consistent with the size of the code except that the
number of specifications of mbed TLS-2.16.0 is less than
that of OpenSSH-7.9 and that of mbed TLS-1.14.0 is less
than that of OpenSSL-1.1.1. This is because the protocols
implemented by OpenSSH-7.9 and OpenSSL-1.1.1 are
more complex than those of the others.

Analysis of API call specifications violations
Counter examples generate after the frequent API sets
and the API call specifications mining. During our experi-
ment on OpenSSL, Putty, Gnutls and mbed TLS, we made
further analysis on counter examples and found that viola-
tions of API call specifications, such as missing calls, miss-
ing checks, ignoring return values, cause security threats
likely. API call models constructed by specifications con-
tributes to automatic tools (CGF) to mine vulnerabilities.
This paper selects two typical security threats caused by
violations of API call specifications, including information
leakage and access check bypass, and selects vulnerability
examples to analyze and illustrate our thoughts.

Information leakage
Figure 13 shows the API call specifications of hash opera-
tions in Putty-0.70 and OpenSSL-1.1.1. When the hash
function was called, the clean function needs to be called
to perform the memory deallocation of the hash variable.

We reported our findings to the OpenSSL development
team, and it was officially acknowledged. The issue has
been fixed in later versions.

Access control bypass
Unckeck GnuTLS certificate
Gnutls is an OpenSSL-like implementation of the SSL
protocol used in several projects such as pidgin, scrollz,
and mod_gnutls. The SSL operating specifications is
shown in Fig. 14. The specification is about how an SSL
connection determines whether the opponent certificate
is valid. If not invoked correctly, the certificate validation
function will fail and a risk of "man-in-the-middle attack"
exists by forged certificate.

Only in the current proxy mode in mod_gnutls module
after calling gnutls_init, the gnutls_certificate_set_verify_
function function is called for access verification, while
nothing is called for certificate validation in any other
path. Such API calling sequence leads to attacks in the
form of forged certificates.

Unchecked return value in mbed TLS
The program for the embedded system references the
mbed TLS (formerly known as PolarSSL) library, an
implementation of the embedded SSL protocol. The
SSL operation specifications is shown in Fig. 15.

We found two violations of this API call specifica-
tions. The one is in dtls server module. The missing call
of mbedtls_ssl_get_verify_result to verify the certifi-
cate of client after calling mbedtls_ssl_handshake will
lead to potential SSL man-in-the-middle attacks. The
other is in cert_app module, where the missing check of
return value after calling mbedtls_ssl_close_notify will
cause unilateral close of connection without consulta-
tion and affect the usability of the program.

MD5Init

MD5Update

SharedArgs PathCondition

MD5Final

SharedArgs PathCondition

SharedArgs PathCondition

smemclr

SHA512_Init

SHA512_Update

SharedArgs PathCondition

SHA512_Final

SharedArgs

SharedArgs

Openssl_cleanse

(a) (b)

Fig. 13  API call specifications of hash operations in Putty
and OpenSSL. a API call specification of hash operation in Putty. b API
call specification of hash operation in OpenSSL

Page 21 of 23Yin et al. Cybersecurity (2024) 7:30 	

The code of BN_generate_dsa_nonce function in
OpenSSL-1.1.1 calls hash related API (Fig. 4). The
code of pageant_handle_msg function in Putty calls
hash related API (Fig. 16). Code of unchecked return
value of mbedtls_ssl_close_notify function in cert_app
module in mbed TLS (Fig. 17).

Conclusion
This paper proposed an API specification mining
approach that efficiently extracts a relatively complete
list of the API combinations and semantic relationships
between APIs. The approach mines the target code in
two stages. The first stage uses the improved maximum
frequent item-set mining algorithm after frequent com-
mon API identification and filtration to obtain accurate
frequent API sequences. Using the results of the first
stage, the second stage employs a semantic relationship
sensitive API specification automatic mining method
based on domain adapted under-constrained symbolic
execution and graph-based relationship aggregation to
mine flow-, path-, and context-sensitive multiple API
call specifications. The experimental results show that
the proposed frequent itemset mining algorithm is
superior to the classical PR-Miner approach in terms of
efficiency and recall rate. For the final API call speci-
fication, not only is the performance of the proposed
API-pair relationship mining better than that of the
existing typical approach of APISan, but it can mine

gnutls_init

gnutls_certificate_set_verify_function

PathCondition

gnutls_handshake

gnutls_bye

gnutls_deinit(session)

gnutls_credentials_set

SharedArgs

SharedArgs

SharedArgs

gnutls_certificate_allocate_credentials

gnutls_certificate_free_credentials

SharedArgs

SharedArgs

DataDependency DataDependency PathCondition

Fig. 14  API call specifications of SSL related in Gnutls

mbedtls_ssl_setup

DataDependency

mbedtls_ssl_handshake

mbedtls_ssl_close_notify

mbedtls_ssl_free

SharedArgs

mbedtls_ssl_get_verify_result

SharedArgs

mbedtls_ssl_init

mbedtls_ssl_set_hostname

PathCondition

PathCondition

SharedArgsPathCondition

SharedArgsPathCondition

SharedArgsPathCondition

Fig. 15  API call specifications of SSL related in mbed TLS

Page 22 of 23Yin et al. Cybersecurity (2024) 7:30

multiple API call specifications. Moreover, the mining
efficiency was also shown to be significantly improved.

Acknowledgements
We thank the anonymous reviewers for their helpful remarks. We thank the
editor and the reviewers for their useful feedback that improved this paper.

Author contributions
Zhongxu Yin: Conceptualization of this study, Methodology, Validation. Yiran
Song: Formal analysis, Data Curation. Guoxiao Zong: Investigation, Data Cura-
tion, Writing—Original draft preparation, Visualization.

Funding
No funding.

Availability of data and materials
All data generated or analyzed during this study are included in this published
article.

Declarations

Competing interests
All authors disclosed no relevant relationships.

Received: 3 July 2023 Accepted: 20 February 2024

References
Bian P et al (2018a) Detecting bugs by discovering expectations and their

violations. IEEE Trans Softw Eng 45(10):984–1001
Bian P et al. (2018) “Nar-miner: Discovering negative association rules from

code for bug detection”. In: Proceedings of the 2018 26th ACM joint
meeting on European software engineering conference and sympo-
sium on the foundations of software engineering. pp. 411–422.

Chang R-y, Podgurski A (2012) Discovering programming rules and viola-
tions by mining interprocedural dependences. J Softw: Evolut Process
24(1):51–66

Chang R-Y, Podgurski A, Yang J (2008) Discovering neglected conditions
in software by mining dependence graphs. IEEE Trans Softw Eng
34(5):579–596

Chen L et al (2018) Automatic mining of security-sensitive functions from
source code. Comput, Mater Continua. https://​doi.​org/​10.​3970/​cmc.​2018.​
02574

Dyer R et al. (2013) “Boa: A language and infrastructure for analyzing ultra-
large- scale software repositories”. In: 2013 35th international conference
on software engineering (ICSE). IEEE. pp. 422–431.

putty-0.70\pageant.c
286 void *pageant_handle_msg(const void *msg, int msglen, int *outlen,

void *logctx, pageant_logfn_t logfn)
{
……
306 switch (type) {
……
376 case SSH1_AGENTC_RSA_CHALLENGE:
……
454 MD5Init(&md5c);
455 MD5Update(&md5c, response_source, 48);
456 MD5Final(response_md5, &md5c);
457 smemclr(response_source, 48); /* burn the evidence */
458 freebn(response); /* and that evidence */
459 freebn(challenge); /* and that evidence */
474 break;…
}
……
892 return ret;
}

Fig. 16  The code of pageant handle msg function in Putty calls hash related API

466 mbedtls_printf("%s\n", buf);
……
468 mbedtls_ssl_close_notify(&ssl);
470 ssl_exit:
471 mbedtls_ssl_free(&ssl);
472 mbedtls_ssl_config_free(&conf);

Fig. 17  Code of unchecked return value of mbedtls_ssl_close_notify
function in cert app module in mbed TLS

https://doi.org/10.3970/cmc.2018.02574
https://doi.org/10.3970/cmc.2018.02574

Page 23 of 23Yin et al. Cybersecurity (2024) 7:30 	

 Grahne G and Zhu J (2003) “Efficiently using prefix-trees in mining frequent
itemsets.” In: FIMI. Vol. 90 pp 65.

Grahne G and Zhu J (2003) “High performance mining of maximal frequent
itemsets”. In: 6th International workshop on high performance data min-
ing. Vol. 16. pp 34.

 He B et al. “Vetting SSL Usage in Applications with SSLINT”. In: 2015 IEEE
Symposium on Security and Privacy. 2015, pp. 519–534. doi: https://​doi.​
org/​10.​1109/​SP.​2015.​38.

Henkel J et al. (2019) “Enabling Open-World Specification Mining via Unsuper-
vised Learning”. In: arXiv preprint arXiv:​1904.​12098

 Huan J et al. (2004) “Spin: mining maximal frequent subgraphs from graph
databases”. In: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp 581–586.

Jana S, Kang Y J, Roth S, et al. (2016) Automatically detecting error handling
bugs using error specifications[C]//25th USENIX Security Symposium
(USENIX Security 16). pp 345–362.

 Kang Y, Ray B and Jana S . (2016) “Apex: Automated inference of error spec-
ifications for c apis”. In: Proceedings of the 31st IEEE/ACM international
conference on automated software engineering, pp 472– 482.

 Karp RM and Tarjan RE . (1980) “Linear expected-time algorithms for
connectivity problems”. In: Proceedings of the twelfth annual ACM
symposium on Theory of computing. pp 368–377.

Lee G et al. “Approximate maximal frequent pattern mining with weight
conditions and error tolerance”. In: International Journal of Pattern
Recognition and Artificial Intelligence 30.06 (2016), p. 1650012.

Lee G, Yun U (2018) Performance and characteristic analysis of maximal fre-
quent pattern mining methods using additional factors. Soft Comput
22:4267–4273

Lemieux C , Park D , and Beschastnikh I . (2015) “General LTL speci- fica-
tion mining (T)”. In: 2015 30th IEEE/ACM international conference on
automated software engineering (ASE). IEEE., pp 81–92.

Liang B et al. (2016) “AntMiner: mining more bugs by reducing noise
interference”. In: Proceedings of the 38th international conference on
software engineering. pp 333–344.

Li Z, Zhou Y (2005) PR-Miner: automatically extracting implicit program-
ming rules and detecting violations in large software code. ACM
SIGSOFT Softw Eng Notes 30(5):306–315

Lv T, Li R, Yang Y, et al. Rtfm! automatic assumption discovery and verifica-
tion derivation from library document for api misuse detection[C]//
Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 2020 pp 1837-1852

MicrochipTech. MicrochipTech mbedtls examples. https://​github.​com/​Micro​
chipT​ech/​mbedt​ls-​examp​les. 2019.

Nguyen HA et al. (2014) “Mining preconditions of APIs in large-scale code cor-
pus”. In: Proceedings of the 22nd ACM SIGSOFT international symposium
on foundations of software engineering. pp. 166–177.

 Nguyen HA et al. (2015) “Consensus-based mining of API preconditions in big
code”. In: Companion Proceedings of the 2015 ACM SIGPLAN interna-
tional conference on systems, programming, languages and applications:
software for humanity. pp 5–6.

 Ramanathan MK, Grama A , and Jagannathan S. (2007) “Static specification
inference using predicate mining”. In: ACM SIGPLAN Notices 42.6, pp
123–134.

Ramos DA and Engler D (2015) “Under-constrained symbolic execution: Cor-
rectness checking for real code”. In: 24th USENIX Security Symposium
(USENIX Security 15), pp 49–64.

Schlichtig M, Sassalla S, Narasimhan K, et al. (2022) Fum-a framework for api
usage constraint and misuse classification[C]//2022 IEEE international
conference on software analysis, evolution and reengineering (SANER).
IEEE, pp 673–684.

Shastry B et al. (2016) “Towards vulnerability discovery using staged program
analysis”. In: detection of intrusions and malware, and vulnerability assess-
ment: 13th international conference, DIMVA 2016, San Sebasti´an, Spain,
July 7–8, Proceedings 13. Springer. 2016, pp 78–97.

Tamaskar SD, Raut AB. Approach for Mining in Lossless Representation of
Closed Itemsets[J]. 2016(11).

Wang X, Zhao L. APICAD: Augmenting API Misuse Detection through Specifi-
cations from Code and Documents[C]//2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 2023: 245–256.

Yamaguchi F, Wressnegger C, Gascon H, et al. Chucky: Exposing missing
checks in source code for vulnerability discovery[C]//Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security.
2013: pp 499-510

Yin Z et al (2020) A security sensitive function mining approach based on pre-
condition pattern analysis. Comput, Mater Continua 63(2):1013–1029

Yun I et al. (2016) “APISan: Sanitizing API Usages through Semantic Cross-
Checking.” In: Usenix Security Symposium. pp. 363–378.

Yun U, Lee G (2016) Incremental mining of weighted maximal frequent item-
sets from dynamic databases. Expert Syst Appl 54:304–327

Yun U, Lee G, Lee K-M (2016) Efficient representative pattern mining based on
weight and maximality conditions. Expert Syst 33(5):439–462

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/SP.2015.38
https://doi.org/10.1109/SP.2015.38
http://arxiv.org/abs/1904.12098
https://github.com/MicrochipTech/mbedtls-examples
https://github.com/MicrochipTech/mbedtls-examples

	Discovering API usage specifications for security detection using two-stage code mining
	Abstract
	Introduction
	Related work
	Security-sensitive function-based mining approach
	Frequent itemset mining based approach
	Template-based specification
	Document-based method

	Problem definition
	Semantic relationship sensitive API specification mining approach
	Frequent API set mining based on frequent common API identification and filtration
	Definition of frequent common API
	Improved FPMAX algorithm

	API semantic relationship specification mining based on domain adapted under-constrained symbolic execution and graph-based relationship aggregation
	Domain adapted symbolic path constraint information extraction
	Multiple API call specification mining

	Implementation and evaluation
	Evaluation setup
	Selection of the minimum support number of frequent item
	Specification mining results
	API frequent sequence mining results
	API relationship mining experiment results

	Analysis of API call specifications violations
	Information leakage
	Access control bypass
	Unckeck GnuTLS certificate
	Unchecked return value in mbed TLS

	Conclusion
	Acknowledgements
	References

