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Abstract 

Stealth address protocol (SAP) is widely used in blockchain to achieve anonymity. In this paper, we formalize a key 
derivable signature scheme (KDS) to capture the functionality and security requirements of SAP. We then propose 
a framework to construct key separation KDS, which follows the key separation principle as all existing SAP solutions 
to avoid the reuse of the master keys in the derivation and signature component. We also study the joint security 
in KDS and construct a key reusing KDS framework, which implies the first compact stealth address protocol using 
a single key pair. Finally, we provide instantiations based on the elliptic curve (widely used in cryptocurrencies) 
and on the lattice (with quantum resistance), respectively.
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Introduction
Modern blockchain is a distributed ledger that allows 
transactions among different users. Typically, the ledger 
is in the form of a key-value storage, where the key is the 
user’s address; and the value is the balance of this address. 
For engineering simplicity, the address is usually a pub-
lic, efficient encoding of a group element over a certain 
elliptic curve. This group element is also used as a pub-
lic key. To spend from this address, one simply needs to 
provide a digital signature and post the transaction to the 
blockchain. This method has been used by main crypto-
currency platforms (Nakamoto 2008; Wood 2014; Sasson 
et al. 2014; Wood 2016; Gilad et al. 2017).

A main drawback of the above design is the lack of pri-
vacy, i.e., everyone can figure out the transactions. Stealth 
address protocol (SAP), adopted by Monero, Bytecoin 

and Samourai Wallet (Saberhagen 2012; Noether and 
Mackenzie 2016), is a common cryptographic approach 
to hide the identity of the receiver. To date, those plat-
forms have a combined market cap of 3.1 billion US 
dollars. In a nutshell, a stealth address can be seen as a 
derived public key from the user’s master public key. In a 
Monero-like protocol, for an address bG , where b is a field 
element and G is the group generator, its stealth address 
is in the form of (r + b)G , where r is randomly chosen by 
the sender and shared with the receiver via key exchange 
scheme. Early designs adopted this idea and modified the 
protocol when suffering from security risks (Saberhagen 
2012, 2013; Noether and Mackenzie 2016; Courtois and 
Mercer 2017), which lacks a formalized algorithm defi-
nition, and a security model including security/privacy 
requirements and capturing adversary capabilities.

In 2019, Liu et  al. made the first attempt to define a 
crypiographic tool to formalize SAP named publicly 
derived public key scheme (PDPKS), and proposed an 
instantiation based on pairing friendly curve (Liu et  al. 
2019b). However, the definition in PDPKS does not allow 
for signing with user’s master keys. This may create a dis-
crepancy with the widespread application of SAP. When 
deploying SAP in a widely-used blockchain, there are 
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already numerous transactions in the system that have 
been signed by users’ master keys. These transactions 
are publicly accessible and permanently recorded on the 
blockchain. Therefore, it is important for the SAP to have 
a well-defined approach to handling master key signa-
tures and related security measures to ensure the con-
tinued safety and privacy of the system. In addition, the 
security model of PDPKS allows the adversary to corrupt 
the derived secret keys, which imposes a strong security 
requirement that is rarely targeted in subsequent stealth 
address protocols (Feng et al. 2020; Yu 2020). There is still 
a lack of cryptographic formalization that should match 
the SAP usage in blockchain, and a security model cap-
turing the basic security requirements of Monero-like 
SAPs and the stronger security proposed in PDPKS, 
respectively.

On the other side, current SAPs and PDPKS are all 
dual-key schemes, that is, a scan key pair to share and 
check the stealth address, and a spend key pair to sign 
and verify transactions. This design is for security con-
cern, especially using the principle of key separation (i.e., 
independence of keys, which is essential in cryptogra-
phy) to avoid the reuse of the master key pair. However, 
key reusing is also possible with well-defined security. 
It implies a compact SAP using single key pair for sim-
pler systems and broader application scenarios. We can 
deploy such a compact SAP into popular single-key cryp-
tocurrency systems, especially Bitcoin. There is still a lack 
of such design after 10 years of SAP deployment.

In addition, current constructions of SAP and PDPKS 
are built on concrete assumptions. For example, Mon-
ero-like protocols use the discrete logarithm problem 
on the elliptic curve and the latest PDPKS construction 
(Liu et al. 2020) exploits the trapdoor function on the lat-
tice. It is desirable to design a framework based on crypto 
primitives that captures multiple instantiations according 
to the application. Thus, the motivation of this paper is 
to revise a better formal definition to abstract SAP, pro-
pose framework constructions, and support key reusing 
for compact schemes.

Our results
This paper analyzes the main existing stealth address 
protocols and the concept of publicly derived public key 
scheme. We improve this cryptographic tool into the key 
derivable signature scheme (KDS), and propose general 
frameworks and instantiations. Specifically, our contribu-
tions can be summarized as follow:

KDS Scheme and Security Model.
We first introduce and formalize a KDS scheme and its 
security model to capture the functionality and security 
requirements of SAP. Compared to the similar concept 

PDPKS, KDS allows signing with master keys, which can 
better match SAP application scenarios on the block-
chain; secondly, we revise the existential unforgeable 
(EUF) and public key unlinkable (UNL) security pro-
posed in PDPKS accordingly, to allow the adversary to 
access the signing oracle via the master key and win the 
game by forging a master key signature. We enforce the 
basic security EUF/UNL of KDS to its strong version 
strong-EUF/strong-UNL (SUNF/SUNL), by considering 
the derived secret key leakage.

KDS Frameworks and Instantiations.
We give two KDS frameworks. To achieves this, two 

barriers should be addressed: the first one is the lack 
of a cryptographic primitive to capture the key deriva-
tion; the second one is the key reuse problem in KDS. To 
address the first issue, we define a key derivation scheme 
(KDV), as well as its re-linkability and leakage-resistance. 
Re-linkability of KDV requires that the derived public 
key does not leak information about master public key, 
whereas leakage-resistance is a stronger security and 
requires that the derived secret key does not leak infor-
mation about the master secret key. We then overcome 
the second problem with two design approaches:

• Key Separation KDS (KS-KDS) Framework The first 
approach is a KS-KDS following key separation prin-
ciple. Our framework is based on a KDV, a public 
key encryption (PKE), and a canonical identifica-
tion protocol (CID). Specifically, we use the KDV to 
extract the derived key pair from user’s master key 
pair, use Fujisaki-Okamoto transformation on PKE to 
get a KEM to share and check the stealth addresses, 
and use Fiat-Shamir transformation on CID to con-
struct a signature scheme to sign and verify transac-
tions. An EUF and UNL secure KS-KDS requires that 
the KDV is re-linkable, the PKE is indistinguishable 
under chosen-plaintext attack (IND-CPA) and indis-
tinguishable of keys under chosen-plaintext attack 
(IK-CPA); and the CID should be secure against 
impersonation under key-only attack (IMP-KOA) 
and honest-verifier zero-knowledge (HVZK). Fur-
ther, if the KDV also satisfies leakage-resistance, then 
we can obtain a strong KS-KDS satisfying SEUF and 
SUNL security. We give a KS-KDS instantiation on 
the elliptic curve, and a strong KS-KDS instantiation 
on the lattice.

• Key Reusing KDS (KR-KDS) Framework To enable a 
KR-KDS, where a single master key pair is reused for 
both key derivation and signature, we resort to the 
techniques of joint security (Haber and Pinkas 2001). 
We construct a jointly secure and key private com-
bined signature and key encapsulation mechanism 
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(CSK) using CID, PKE and random oracles (RO). 
This construction follows an observation that the RO 
plays a similar role to key separation in our KS-KDS 
framework. We then construct a (strong) KR-KDS 
by combining such a CSK scheme with a re-linkable 
(and leakage-resistant) KDV scheme. To illustrate the 
effectiveness of our result, we give the first compact 
stealth address protocol instantiation which can be 
deployed in widely used cryptocurrencies such as 
Bitcoin to provide privacy protection.

The comparison between our work and other SAP solu-
tions is shown in Table 1.

Related work
There has been a lot of recent work based on Monero-like 
stealth address. For example, Yu (2020) proposed a solu-
tion allowing for multiple addresses within one wallet, 
Liu et  al. (2019a) proposed a lattice-based linkable ring 
signature scheme with stealth address, and Wang et  al. 
(2024) proposed a universally composable (UC) linkable 
ring signature supporting stealth address. Motivated by 
these works, we present a formalized KDS definition and 
a security model to capture the essence of stealth address.

Another line of research on stealth address is based 
on publicly derived public key schemes (PDPKS), which 
is designed to maintain security even when derived keys 
have been corrupted. Liu’s team first proposed this defi-
nition (Liu et al. 2019b), and later extended it to lattice-
based (Liu et al. 2020) and UC (Zhu et al. 2023) settings. 
However, they do not consider the key-reusing property, 
which is essential to achieve a compact stealth address 
protocol that can be deployed into most blockchains, 
not just specially designed systems such as Monero. 
We revised their model and discuss the joint security in 
blockchain stealth address.

Joint security ensures the security of the cryptographic 
tools in the case of key reusing, and can significantly 
simplify the system and reduce storage in engineering 

implementations. Haber and Pinkas (2001) introduced 
the concept of the jointly secure combined public key 
scheme in 2001, which combines a signature scheme 
and an encryption scheme using the same key pair. 
Prior works mainly focus on combined signature and 
encryption schemes, such as ElGamal-based signature 
and encryption (Vasco et  al. 2008), Schnorr and ECIES 
(Degabriele et al. 2012), and blind Schnorr signature and 
Schnorr-signed ElGamal encryption (Fuchsbauer et  al. 
2020). Adding a derivation algorithm based on such a 
combined scheme may lead to novel application scenar-
ios, such as our key derivable signature. Chen et al. (2021) 
proposed a hierarchical integrated signature and encryp-
tion (HISE) scheme, in which the encryption component 
used a derived key pair from the signature key pair.

Paper organization
This paper is organized as follows: “Preliminaries” sec-
tion reviews the crypto primitives; “Key derivable signa-
ture scheme” section presents our key derivable signature 
scheme (KDS) definition and security model, and com-
pares it with prior works; “The construction of (strong) 
key separation key derivable signature scheme” sec-
tion describes our key derivation scheme (KDV) defini-
tion and the framework to construct (strong) KS-KDS; 
“The construction of (strong) key reusing key derivation 
scheme” section improves this framework to construct 
KR-KDS; “Conclusion” section concludes the paper.

Preliminaries
Canonical identification protocol (CID)

Definition 1 (Canonical Identification Protocol) A 
canonical identification (CID) protocol with commit-
ment space COM, challenge space CH, and response 
space RSP consists of a triple of PPT algorithms 
(CID.Gen,CID.P = (P1,P2), CID.V = (V1,V2)) as 
follows:

Table 1 The comparison between our work and other SAP solutions

Here, Signmsk means the construction contains a master key signature algorithm. Framework means the construction is based on crypto primitives rather than 
concrete assumptions. Compact means the construction is key reusing rather than key separation

SAP Signmsk EUF/UNL SEUF/SUNL Framework Compact

Monero (Saberhagen 2013) � � × × ×
PDPKS 19 (Liu et al. 2019b) × � � × ×
PDPKS 20 (Liu et al. 2020) × � � × ×
Our KS-KDS � � � � ×
Our KR-KDS � � � � �
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• CID.Gen(pp) → (pk , sk) : The key generation takes 
the public parameters pp as input and outputs a pub-
lic key pk and a secret key sk.

• CID.P = (P1,P2) : The prover is a two-stage algo-
rithm that takes a secret key sk. P1 takes the secret key 
sk as input and outputs a commitment com ∈ COM 
and a state st ; P2 takes the secret key sk, a commit-
ment com ∈ COM , a challenge ch ∈ CH and a state 
st as input and outputs a response rsp ∈ RSP.

• CID.V = (V1,V2) : The verifier is a two-stage algo-
rithm that takes a public key pk as input. V1 takes 
the public key pk as input, chooses a random chal-
lenge ch $←− CH and sends it to the prover. V2 takes 
the public key pk and the conversation transcript 
(com,  ch,  rsp) as input and outputs a deterministic 
decision, 1 (acceptance) or 0 (rejection).

We denote the conversation transcript (com,  ch,  rsp) 
as P(sk) ↔ V(pk) . Here, (pk,  sk) represents the (pub-
lic key, secret key) pair generated by CID.Gen(pp) , and 
(com, ch, rsp) := P(sk) ↔ V(pk) denotes the information 
exchanged between CID.P and CID.V throughout the 
CID protocol interaction under (pk, sk).
Security against impersonation under key-only attacks 
(IMP-KOA) serves as a basic security for CID. It guaran-
tees that adversaries cannot impersonate the prover to 
deceive an honest verifier without having access to the 
secret key.

Definition 2 (IMP-KOA Security) A CID protocol 
CID = (CID.Gen,CID.P, CID.V) is IMP-KOA secure, 
if there exists a negligible function negl(·) such that the 
advantage AdvIMP−KOA

CID,A (pp) ≤ negl(�)1 for any PPT 
adversary A . The advantage is defined as follows:

where GIMP−KOA
CID,A (pp) is describe as in Fig. 1.

Honest-verifier zero-knowledge (HVZK) is a formali-
zation of the property where adversaries do not gain any 
additional knowledge from honest interactions.

Definition 3 (HVZK) A CID protocol is HVZK if there 
exists a PPT algorithm Sim and a negligible function 
negl(·) such that the advantage AdvHVZKCID,A(pp) ≤ negl(�) 
for any PPT adversary A . The advantage AdvHVZKCID,A(pp) is 
defined as follows:

Key privacy of public key encryption
The key privacy of a public key encryption scheme is 
effectively captured by the property known as “indis-
tinguishability of keys under chosen-plaintext attack” 
(IK-CPA). It ensures that adversaries, under a chosen-
plaintext attack, are unable to distinguish ciphertexts 
generated by different encryption keys.

Definition 4 (IK-CPA Security) A PKE scheme 
PKE = (PKE.Gen,PKE.Enc, PKE.Dec) is IK-CPA 
secure if there exists a negligible function negl(·) such 
that the advantage AdvIK−CPA

PKE,A (pp) ≤ negl(�) for any PPT 

adversary A . The advantage AdvIK−CPA
PKE,A (pp) is defined as 

follows:

where the IK-CPA game GIK−CPA
PKE,A (pp) is described as 

Fig. 2.

AdvIMP−KOA
CID,A (pp) = Pr GIMP−KOA

CID,A (pp) → 1 ,

AdvHVZKCID,A(pp) =|Pr [A(pk , com, ch, rsp) → 1|(com, ch, rsp) ← Sim(pk), (pk , sk)

← CID.Gen(pp)]− Pr [A(pk , (com, ch, rsp)) → 1|(com, ch, rsp)

← (P(sk),V(pk)), (pk , sk) ← CID.Gen(pp)]|.

AdvIK−CPA
PKE,A (pp) = |Pr [GIK−CPA

PKE,A (pp) → 1] − 1/2|,

Fig. 1 IMP-KOA game for CID

1 The � , which appears here and later in this paper, is a security parameter. 
It is determined by pp.



Page 5 of 24Wang et al. Cybersecurity            (2024) 7:43  

Key derivable signature scheme
Algorithm definition
In this section, we introduce the key derivable signature 
(KDS). This scheme enables the generation of derived 
key pairs from the master key pair. Our formal defini-
tion of KDS is as follows:

Definition 5 (Key Derivable Signature) A KDS scheme 
with message space M consists of following algorithms:

• KeyGen(pp) → (mpk ,msk) . The key generation 
algorithm takes the public parameters pp as input 
and outputs a master public key/secret key pair 
(mpk, msk).

• DpkDerive(mpk) → dpk . The public key derivation 
algorithm takes a master public key mpk and out-
puts a derived public key dpk.

• DpkCheck(mpk ,msk , dpk) → 0/1 . The derived 
public key checking algorithm takes a master key 
pair (mpk,  msk) and a derived public key dpk as 
input, and outputs a bit b, where b = 1 means that 
dpk is a derived key generated from mpk and b = 0 
means not.

• DskDerive(mpk ,msk , dpk) → dsk . The secret 
key derivation algorithm takes a master key pair 
(mpk,  msk) and a derived public key dpk as input, 
and outputs a derived secret key dsk.

• Sign(sk ,m) → σ . The signing algorithm takes a 
secret key sk (a master secret key msk or a derived 
secret key dsk) and a message m ∈ M as input, and 
outputs a signature σ.

• Verify(pk ,m, σ) → 0/1 . The verification algorithm 
takes as a public key pk (a master public key mpk 
or a derived public key dpk), a message m and a sig-
nature σ as input, and outputs a bit b, where b = 1 
means that the signature is valid and b = 0 means 
not.

Additionally, the above algorithms must satisfy the fol-
lowing correctness properties:

• For any (mpk ,msk) ← KeyGen(pp) , there exists a 
negligible function negl(·) such that 

• For any (mpk ,msk) ← KeyGen(pp) and m ∈ M , 
there exists a negligible function negl(·) such that 

• For (mpk ,msk) ← KeyGen(pp) and m ∈ M , 

KDS is a revised definition of PDPKS, the security 
model of PDPKS is detailed in A. The major difference 
is that we consider a master key/derived key signature 
algorithm, while PDPKS only allows signing with derived 
keys. This change is motivated by practical considera-
tions. In most existing blockchain systems, except for 
those specifically designed for stealth address schemes 
(such as Monero), there is no definition or transac-
tion procedure related to derived keys. Transactions 
are signed using master keys, recorded on-chain, and 
publicly accessible. When deploying stealth address on 
such blockchains, it is necessary to have a well-defined 
approach to handling master key signatures and related 
security measures to ensure the safety and privacy of 
the system. According to our KDS definition, the stealth 
address protocol can be deployed as a plug-in. It effec-
tively protects the identity privacy while allowing users 
to still utilize master key signatures without affecting 

Pr
dpk←DpkDerive(mpk)

[DpkCheck(mpk ,msk , dpk) �= 1] ≤ neg(�).

Pr
σ←Sign(msk ,m)

[Verify(mpk ,m, σ) �= 1] ≤ neg(�).

Pr
dpk←DpkDerive(mpk)

[Verify(dpk ,m, σ) �= 1|dsk

← DskDerive(mpk ,msk ,mpk),

σ ← Sign(dsk ,m)] ≤ neg(�).

Fig. 2 IK-CPA game for PKE
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their token balance in permanent addresses. The stealth 
address works as follows:

For a sender Alice (A), who wants to send a transaction to 
a receiver Bob (B), A first runs DpkDerive(mpkB) → dpkB 
to derive a stealth address for B, where mpkB is B’s mas-
ter public key. Then A runs Sign(skA,mA) → σA to 
send a transaction, where skA can be either A’s mas-
ter secret key or derived secret key, and mA records the 
information such as the amount and receiver address 
dpkB . To receive the transaction, B actively monitors the 
blocks and runs DpkCheck(mpkB,mskB, dpk

′) → 0/1 
to check all potential dpk ′ , until finding his derived 
address dpkB and the corresponding transac-
tion. Then he validates the transaction by using 
Verify(pkA,m

′
A, σ

′
A) → 0/1 . To spend the coin in dpkB , B 

runs DskDerive(mpkB,mskB, dpkB) → dskB to derive the 
secret key dskB . Then he can use Sign(dskB,mB) → σB to 
sign a transaction spending the coin. Anyone else can vali-
date the transaction by using Verify(dpkB,m′

B, σ
′
B) → 0/1.

Security model
In this section, we provide a formal security model to 
capture the security and privacy requirements of KDS. 
We need to consider two cases motivated by the secu-
rity risks of cryptocurrencies: 

1. The adversary should not be able to forge the receiv-
er’s master/derived key signatures to steal their bal-
ance.

2. The adversary should not be able to trace the receiv-
er’s permanent address from the derived address.

Security We provide basic security properties: existential 
unforgeability (EUF) and public key unlinkability (UNL), 
as well as the stronger security properties: strong existen-
tial unforgeability (SEUF) and strong public key unlink-
ability (SUNL) of KDS, by distinguishing the adversary’s 
capabilities.

Fig. 3 EUF security and SEUF security of KDS with differences highlight in bold
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The EUF security property states that an adversary, 
with access to the signature algorithm and derived public 
key checking algorithm, cannot produce a valid forgery. 
A more detailed definition is as follows:

Definition 6 (EUF Security) A KDS scheme 
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,Sign,

Verify) is EUF secure, if there exists a negligible function 
negl(·) such that the advantage AdvEUFKDS,A(pp) ≤ negl(�) 
for any PPT adversary A . The advantage is defined as 
follows:

where the EUF game GEUF
KDS,A(pp) is described as in Fig. 3.

AdvEUFKDS,A(pp) = Pr
[

GEUF
KDS,A(pp) → 1

]

,

The UNL security states that an adversary, even with 
access to the signature algorithm and derived public key 
checking algorithm, cannot distinguish which of two 
master public keys was used to derive a specific derived 
public key. A more detailed definition is as follows:

Definition 7 (UNL Security) A KDS scheme 
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,

Sign,Verify) is UNL secure, if there exists a neg-
ligible function negl(·) such that the advantage 
AdvUNLKDS,A(pp) ≤ negl(�) for any PPT adversary A . The 
advantage AdvUNLKDS,A(pp) is defined as follows:

AdvUNLKDS,A(pp) = |Pr
[

GUNL
KDS,A(pp) → 1

]

− 1/2|,

Fig. 4 UNL security and SUNL security of KDS with differences highlight in bold
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where the UNL game GUNL
KDS,A(pp) is described as in 

Fig. 4.

The strong-EUF (SEUF) and strong-UNL (SUNL) secu-
rity, which correspond to EUF and UNL security, respec-
tively, provide the adversary with the additional capability 
of querying the secret key derivation algorithm. Their 
more detailed definitions are as follows:

Definition 8 (SEUF Security) A KDS scheme 
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,Sign,Verify ) 
is SEUF secure, if there exists a negligible negl(·) such 
that the advantage AdvSEUFKDS,A(pp) ≤ negl(�) for any PPT 
adversary A . The advantage is defined as follows:

where the SEUF game GSEUF
KDS,A(pp) is described as in 

Fig. 3.

Definition 9 (SUNL Security) A KDS scheme 
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,Sign,Verify ) 
is UNL secure, if there exists a negligible function negl(·) 
such that the advantage AdvSUNLKDS,A(pp) ≤ negl(�) for any 

PPT adversary A . The advantage AdvSUNLKDS,A(pp) is defined 
as follows:

where the SUNL game GUNL
KDS,A(pp) is described as in 

Fig. 4.

There are several differences between our security 
model and PDPKS’s. First, we allow the adversary to 
access OSig with the master key and win the game by 
forging the master key signatures. This modification cap-
tures the fact that an adversary can request transactions 
or look up transactions signed by a user with his master 

AdvSEUFKDS,A(pp) = Pr
[

GSEUF
KDS,A(pp) → 1

]

,

AdvSUNLKDS,A(pp) = |Pr
[

GSUNL
KDS,A(pp) → 1

]

− 1/2|,

key from the blockchain ledger, and steal the balance in 
the user’s permanent address by forging his master key 
signature. Second, we define security as the basic secu-
rity (EUF/UNL) and the strong security (SEUF/SUNL) 
by dividing adversary capabilities. In the basic security, 
we limit the adversary can only access ODpk and OSig , as 
considered in most SAP works. In the strong security, the 
adversary has an additional access to ODsk , which cap-
tures the assumption that user leaks his derived secret 
key, as PDPKS considered.

The construction of (strong) key separation key 
derivable signature scheme
In this section, we define a key derivation scheme (KDV) 
to extract derived keys from a master key pair, and pro-
pose a framework to construct (strong) key separation 
KDS (KS-KDS) as illustrated in Fig. 5.

Key derivation scheme

Definition 10 (Key Derivation Scheme) A 
KDV scheme consists of a triple PPT algorithms 
(KDV.Gen,KDV.Dpk,KDV.Dsk,KDV.Chk) as follows:

• KDV.Gen(pp) → (mpk ,msk ,R):The key genera-
tion algorithm takes the public parameters as input 
and outputs a master public key/secret key pair 
(mpk, msk) and a deterministic polynomial-time veri-
fiable relationship R.

• KDV.Dpk(mpk ,R) → dpk : The public key deri-
vation generation algorithm takes a master pub-
lic key mpk and a deterministic polynomial-time 
verifiable relationship R as input, selects a random 
number r $←− R,2 and outputs a derived public key 
dpk := DKV.Dpk(mpk ,R; r).

Fig. 5 A Framework to Construct KDS. Rectangles hold the crypto primitives, with security/privacy properties highlight in gray. Diamonds hold 
transformation algorithms

2 R is determined by R and mpk.
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• KDV.Dsk(mpk ,msk ,R) → dsk : The secret key 
derived generation algorithm takes a master public/
secret key pair (mpk, msk) and a deterministic poly-
nomial-time verifiable relationship R , selects a ran-
dom number r $←− R and outputs a derived secret key 
dsk := KDV.Dsk(mpk ,msk ,R; r).

• KDV.Chk(pk , sk ,R) → 0/1:The validity checking 
algorithm takes a public/secret key pair (pk,  sk) and 
a deterministic polynomial-time verifiable relation-
ship R and outputs a bit b, where b = 1 means that 
(pk , sk) ∈ R and b = 0 means that (pk , sk) /∈ R

Additionally, the above algorithms must satisfy the fol-
lowing correctness:

• For any (mpk ,msk ,R) ← KDV.Gen(pp) , 

• For any (mpk ,msk ,R) ← KDV.Gen(pp) and r ∈ R , 

 where dpk := KDV.Dpk(mpk ,R; r) and 
dsk := KDV.Dsk(mpk ,msk ,R; r)

• For any (mpk ,msk ,R) ← KDV.Gen(pp) , if r  = r′ , 
then 

 where dpk := KDV.Dpk(mpk ,R; r) and 
dsk := KDV.Dsk(mpk ,msk ,R; r′).

For a key generation algorithm Gen , if the relationship 
R := {(pk , sk)|(pk , sk) ← Gen(pp)} is polynomial-time 
verifiable, we can define a KDV for Gen as follows:

KDV.Chk(mpk ,msk ,R) = 1.

KDV.Chk(dpk , dsk ,R) = 1,

KDV.Chk(dpk , dsk ,R) = 0,

• KDV.Gen(pp) → (mpk ,msk ,R) : It runs (mpk ,msk) 
← Gen(pp) and extracts a deterministic polyno-
mial-time verifiable relation R := {(pk , sk)|(pk , sk)

← Gen(pp)} . Then outputs (mpk ,msk ,R).

Security. We define the re-linkability and leak-resist-
ance for KDV. Re-linkability states that a derived pub-
lic key dpk := KDV.Dpk(mpk ,R; r) can be relinked to 
mpk ′ �= mpk . It ensures that dpk does reveal any infor-
mation about the master public key mpk. Leak-resistance 
states that derived public/secret key pairs (dpk,  dsk) do 
not reveal any information about the master secret key 
msk.

Definition 11 (Re-linkability) A KDV scheme 
KDV = (KDV.Gen,KDV.Dpk, KDV.Dsk,KDV.Chk) 
is re-linkable, if there exists a PPT “re-link” algo-
rithm Rel and a negligible function negl(·) such that 
AdvRLinkKDV,A(pp) ≤ negl(�) for any PPT adversary A . The 
advantage is defined as follows:

where the game GRLink
KDV,A(pp) is described as Fig. 6.

Definition 12 (Leakage Resistance) A KDV scheme 
KDV = (KDV.Gen, KDV.Dpk,KDV.Dsk,KDV.Chk) 
is leakage resistant, if there exist a PPT algorithm 
Alt = (Alt1,Alt2) and a negligible function negl(·) such 
that the advantage AdvLRKDV,A(pp) ≤ negl(�) for any PPT 
adversary A . The advantage is defined as follows:

AdvRLinkKDV,A(pp) = |Pr
[

GRLink
KDV,A(pp) → 1

]

− 1/2|,

AdvLRKDV,A(pp) = |Pr[GLR
KDV,A(pp) → 1] − 1/2|,

Fig. 6 The re-linkability and leakage-resistance game for the KDV scheme KDV
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where the game GLR
KDV,A(pp) is described as Fig. 6.

A framework to construct (strong) KS‑KDS
We propose a KS-KDS framework that is based on 
a canonical identification protocol CID , a public key 
encryption PKE , and a key derivation scheme KDV.

Let CID = (CID.Gen,CID.P,CID.V) be a CID protocol 
and KDV = (KDV.Gen, KDV.Dpk,KDV.Dsk,KDV.Chk) 
be a KDV scheme for CID . Let PKE = (PKE.Gen, 
PKE.Enc,PKE.Dec) be a PKE scheme. We compose 
them to construct a KS-KDS as shown in Algorithm 1. We 
use Fiat-Shamir transformation (FS) on CID to get a signa-
ture scheme, use Fujisaki-Okamoto transformation (FO) 
on PKE to get a KEM. This KEM scheme is used to gener-
ated the k which is the randomness used to generated the 
derivable key pair. G, H and H1 are random oracles.

Algorithm 1 Key Separation Key Derivation Signature Scheme

Remark. Note that constructing KS-KDS using 
SIG, KEM, and KDV is also feasible. However, our 
approach prefers to build upon more fundamental 
cryptographic primitives, and this method is particu-
larly useful for designing the KR-KDS algorithm in 
“The construction of (strong) key reusing key deriva-
tion scheme” section.

Security. We then discuss the security of the above KS-
KDS construction.

Theorem 1 Let CID be an IMP-KOA secure CID proto-
col with HVZK. Let KDV be a re-linkable KDV scheme for 
CID . Let PKE be an IND-CPA secure PKE scheme. Let G, 
H and H1 are random oracles. Then, the KS-KDS scheme 
is EUF secure in the random oracle model.
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Proof Assume toward contradiction that there exists a 
PPT adversary A that breaks the EUF security of the KS-
KDS scheme with noticeable probability. That is, the fol-
lowing advantage is noticeable:

We consider two different cases and construct PPT 
adversary B or C against the IMP-POA security of CID , 
respectively:

Case 1 ( pk∗ = mpk ). A generate the valid forge signature 
for mpk. We then construct B to attack CID as follows:

• Setup Phase The IMP-KOA challenger generates a pair 
of public/secret keys (spk , ssk) ← CID.Gen(pp) . The 
IMP-KOA adversary B receives spk and public param-
eters pp. It runs (epk , esk) ← PKE.Gen(pp) and 
extracts a deterministic polynomial time verifiable rela-
tionship R := {(pk , sk)|(pk , sk) ← CID.Gen(pp)} . 
Let mpk := spk||epk||R and msk := ssk||esk . It sends 
mpk to A and initializes three query lists LH1

 , LDpk and 
LSig as empty sets. Let Sim be a PPT algorithm defined 
as in the Definition 3.

• Challenge Phase The challenger picks a challenge 
ch∗

$←− CH and sends it to B.
• Query Phase For each A ’s query m and (m, c), OG and 

OH return H(m) and H(m, c), respectively. Addition-
ally, OH1

 , ODpk and OSig are simulated by the adver-
sary B as follows:

• OH1
(com,m) : At beginning, the adversary B picks 

i∗
$←− [1, qH1

] . For A ’s i-th ( i  = i∗ ) query (com, m), 
if there exists (com||m, ch) ∈ LH1

 , it returns 
ch. Otherwise, it randomly selects ch and lets 
LH1

= LH1
∪ {(com||m, ch)} ; then returns h1 . Spe-

cially, for A ’s i∗-th query (com, m),3 it returns ch∗ 
and lets LH1

= LH1
∪ {(com||m, ch∗)}.

• ODpk(dpk) : For each A ’s query dpk = (c, sdpk) to ODpk , 
the adversary B calculates m := PKE.Dec(esk , c) . 
If m = ⊥ or PKE.Enc(esk ,m;G(m)) �= c , 
it returns 0. It calculates k := H(m, c) , if 
sdpk = KDV.Dpk(spk ,R; k) , it returns 1 and lets 
LDpk := LDpk ∪ {dpk} . Otherwise,it returns 0.

• OSig (pk ,m) : For each A ’s query (pk,  m) to 
OSig , if pk = (c, sdpk) ∈ LDpk or pk = mpk , 

AdvEUFKS−KDS,A(pp) = Pr[GEUF
KS−KDS,A(pp) → 1]

= Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk] + Pr[GEUF

KS−KDS,A(pp) → 1, pk∗ ∈ LDpk ].

B keeps running (com, ch, rsp) ← Sim(sdpk) 
or (com, ch, rsp) ← Sim(spk) respectively 
until there does not exist com′ �= com and 
ch′ �= ch such that (com′||m, ch) ∈ LH1

 and 

(com||m, ch′) ∈ LH1
 . It returns σ := (com, ch, rsp) 

and sets LH1
= LH1

∪ {(com||m, ch)} and 
LSig = LSig ∪ {(pk ,m)} . Otherwise, it returns ⊥.

• Output Phase When A outputs (pk∗,m∗, σ ∗) , 
B parses σ ∗ as (com∗, ch′∗, rsp∗) and outputs 
(com∗, rsp∗).

Since the adversary B has the secret key esk of the PKE , 
the simulation of ODpk is perfect. Since H1 is a random 
oracle, the simulation of OH1

 is perfect. Additionally, B 
simulates the oracle OSig without using of ssk. Because 
CID is HVZK, the probability that the simulation of 
OSig can be distinguished by the adversary A is at most 
qSig · AdvHVZKCID,A . Then for Case 1, we have (detailed deri-
vation can be found in E):

where qH1
 , qSig are the numbers of A’queries to OH1

 and 
OSig , respectively.

Case 2 ( pk∗ ∈ LDpk ). A generate the valid forge signa-
ture for a dpk ∈ LDpk . We then construct C to attack 
CID . Naturally, the challenge public key for C is a derived 
key which belongs to LDpk . Therefore C needs to gener-
ate related master public key of the challenge public key 
by using the re-linkability of KDV . The details of C are as 
follows:

• Setup Phase The IMP-KOA challenger generates a 
key pair (dspk , dssk) ← CID.Gen(pp′) . The IMP-
KOA adversary C receives dspk and public param-
eters pp. It runs (epk , esk) ← PKE.Gen(pp) and 
extracts a deterministic polynomial-time verifi-
able relationship R := {(pk , sk)|(pk , sk) ← CID.Gen(pp)} . 
It runs (spk , k∗) ← Rel(dspk ,R) and lets 
mpk := spk||epk||R . Then, it sends mpk and pp to 
A and initializes query lists LH , LH1

 , LDpk and LSig as 
empty sets. Let Sim be a PPT algorithm defined as in 
the Definition 3.

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk] ≤ qH1

· AdvIMP−POA
CID,B (pp)+

qSig · AdvHVZKCID,A(pp)+
1

|CH |
,

3 Without loss of generality, we assume that (com, m) has not been queried.
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• Challenge Phase The challenger generates a challenge 
ch∗ and sends it to C.

• Query Phase For each A ’ query m to OG , it returns 
r = G(m) . OH1

 , ODpk and OSig are simulated as in the 
construction of B . Additionally, OH is simulates by 
the adversary C as follows:

• OH (m, c) : The adversary C picks j∗ $←− [1, qH ] . For 
A ’s j-th ( j  = j∗ ) query (m, c) to OH , if there exists 
(m||c, k) ∈ LH1

 , it returns k. Otherwise, it randomly 
selects k and lets LH = LH ∪ {(m||c, k)} ; then 
returns h1 . Specially, for A ’s j∗-th query (m,  c),4 it 
returns k∗ and lets LH = LH ∪ {(m||c, k∗)}.

• Output Phase When A outputs (pk∗,m∗, σ ∗) , C parse 
σ ∗ as (com∗, ch′∗, rsp∗) and outputs (com∗, σ ∗).

Applying the same reasoning as in Case 1, the simula-
tion of ODpk and OH1

 is perfect and the simulation of OSig 
can be distinguished by the adversary A with probabil-
ity at most qSig · AdvHVZKCID,A(pp) . Since the re-linkability of 
KDV and OH is also a random oracle, the (mpk , dspk , k∗) 
and the simulation of OH can be distinguished by A with 
probability at most AdvRLinkCID,A(pp) . Then for Case 2, we 
have (detailed derivation can be found in E):

Put these results together,

Thus, the KS-KDS scheme is EUF secure in the random 
oracle model.  �

Theorem  2 Let CID be an IMP-KOA secure CID pro-
tocol with HVZK. Let KDV be a re-linkable and leakage-
resistant KDV scheme for CID . Let PKE be an IND-CPA 
secure PKE scheme. Let G, H and H1 are random oracles. 
Then, the KS-KDS scheme is SEUF secure in the random 
oracle model.

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ ∈ LDpk ] ≤ qH1

qH · AdvIMP−POA
CID,C (pp)+

qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
1

|CH |
,

Pr[GEUF
KS−KDS,A(pp) → 1] ≤ qH1

· AdvIMP−POA
CID,B (pp)+ qH1

qH · AdvIMP−POA
CID,C (pp)+

2qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
2

|CH |
.

Proof This theorem can be proved using the same proof 
strategy for Theorem 1. We put the full proof in E for self-
completeness.  �

Theorem 3 Let CID be an IMP-KOA secure CID proto-
col with HVZK. Let KDV be a re-linkable KDV scheme for 
CID . Let PKE be an IND-CPA secure and IK-CPA secure 
PKE scheme. Let G, H and H1 are random oracles. Then, 
the KS-KDS scheme is UNL secure in the random oracle 
model.

Proof Assume toward contradiction that there exists 
a PPT adversary A that breaks the UNL security of the 
KS-KDS scheme. We can construct a PPT adversary B , 
breaking the IK-CPA security of the PKE scheme, we put 
the full proof in E for self-completeness. �
Theorem  4 Let CID be an IMP-KOA secure protocol 
with HVZK. Let KDV be a re-linkable and leakage-resist-
ant KDV scheme for CID . Let PKE be an IND-CPA secure 
and IK-CPA secure PKE scheme. Let G, H and H1 are ran-
dom oracles. Then, the KS-KDS scheme is SUNL secure in 
the random oracle model.

Proof One can use the same proof strategy for Theo-
rems 2 and 3 to prove this theorem. We give the full proof 
in E for self-completeness.  �

Instantiation
Finally, we give two instantiations of our KS-KDS frame-
work with EUF/UNL security and SEUF/SUNL security, 
respectively.

A KS‑KDS instantiation on the elliptic curve
We instantiate the CID in Algorithm  1 to the Schnorr 
underlying identification protocol, which is HVZK and 

4 Without loss of generality, we assume that (m, c) has not been queried.
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IMP-KOA secure, the full proof could be derived from 
Pointcheval and Stern (1996); we instantiate the PKE to 
EC-Elgamal, which is IND-CPA secure and IK-CPA pri-
vate (this is noted in Naor and Reingold 1997; Cramer 
and Shoup 1998 and fully treated in Tsiounis and Yung 
1998). Let pp = (E,G, q) be system parameters specifying 
a secure elliptic curve E with a generator G that gener-
ates a secure cyclic subgroup G with prime order q. Then 
we propose a KDV instantiation on the elliptic curve as 
follows:

• KDV.Dpk(pp) → (B, b,R) : It randomly 
chooses b ∈ Zq and calculates B = b · G . Let 
R := {(pk , sk)|pk = sk · G, sk ∈ Zq} . Then, it out-
puts (B, b,R).

• KDV.Dpk(B,R) → B̃ : It randomly chooses r ∈ Zq 
and outputs B̃ := r · B

• KDV.Dsk(B, b,R) → b̃ : It randomly chooses r ∈ Zq 
and outputs b̃ := r · b mod q.

• KDV.Chk(pk , sk ,R) → b̃ : It checks whether 
(pk , sk) ∈ R . If (pk , sk) ∈ R , it outputs 1. Other-
wise, outputs 0.

This KDV is re-linkable since we can construct Rel 
as follow: It takes as input B̃ , and randomly chooses 
a ∈ Zq . It calculates B′ = a · B̃ and r′ = a−1 , then out-
puts (B′, r′).

A strong KS‑KDS instantiation on the lattice
We first propose a CID instantiation on the lattice using 
trapdoor generation algorithm TrapGen defined in 
Alwen and Peikert (2009), Boyen (2010) and pre-image 
sample algorithm SamplePre proposed in Gentry et al. 
(2008):

• CID.Gen(pp). The algorithm runs (A,TA) ← TrapGen(pp) , 
then outputs the public key A and the secret key TA.

• CID.P1(A) → (com, st) . CID.P1 randomly chooses 
t ← Z

n
q , computes com = At and generates the 

state st . It sends com to verifier V.
• CID.V1(A, com) → ch . On receiving com = At from 

P , CID.V1 randomly chooses r ∈ Zq and x ∈ Z
n
q . 

Calculates u = Ax and returns ch := (r,u).
• CID.P2(st,A,TA, com, ch) → rsp . On receiv-

ing ch := (r,u) , CID.P2 runs x
′ ← SamplePre

(A,TA,u) , and computes and returns rsp = t + rx′.
• CID.V2(A, com, ch, rsp) → 1/0 . On receiv-

ing rsp = t + rx′ , CID.V2 computes and checks 
com+ r · u = A · rsp . It accepts the proof when the 
check passes.

This CID is HVZK and IMP-KOA secure, the full proof 
could be derived from Lyubashevsky  (2012). We then 
instantiate the PKE in Algorithm 1 to LWEPKE, which is 
IND-

CPA secure and IK-CPA private (Regev 2009); and pro-
pose a re-linkable and leakage-resistant KDV inspired by 
the lattice-based PDPKS scheme (Liu et al. 2020):

• KDV.Gen(pp) → (A,TA,R) : It runs 
(A,TA) ← TrapGen(pp) , then outputs the master 
public key A , the master secret key TA , and a relation 
R := {(pk , sk)|pk · sk = 0}.

• KDV.Dpk(A,R) → F : It randomly chooses 
B ∈ Z

n×m
q  and R ∈ {−1, 1}m×m and calculates 

F = [B|BR + A] . Returns F.
• KDV.Dsk(A,TA,R) → TF : It randomly chooses 

B ∈ Z
n×m
q  and R ∈ {−1, 1}m×m and calculates 

TF ← DeleRight(A,TA,B,R,GP) . Returns TF.
• KDV.Chk(F′,TF

′,R) → 0/1 : it returns 1 if 
(F′,TF

′) ∈ R , and returns 0 otherwise.

DeleRight is a trapdoor delegation algorithm defined 
by Liu et al. (2020). This KDV is re-linkable and leakage-
resistant, we give the proof sketch in D.

Fig. 7 A Framework to Construct KR-KDS. Rectangles hold the crypto primitives, with security/privacy properties highlight in gray. Diamonds hold 
transformation algorithms
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The construction of (strong) key reusing key 
derivation scheme
In “The construction of (strong) key separation key deriv-
able signature scheme” section we propose a framework 
to construct KS-KDS. It is a dual-key framework that fol-
lows the key separation principle. We observe that the 
random oracles in our framework play a similar sepa-
ration role. Therefore, in this section we revise the key 
generation part to obtain a key reusing KDS (KR-KDS) 
framework as shown in Fig. 7.

A framework to construct (strong) KR‑KDS
We construct a KR-KDS based on a canonical identifica-
tion protocol CID and a public key encryption PKE shar-
ing the same key generation algorithm Gen , and a key 
derivation scheme KDV.

Let the CID = (Gen,CID.P,CID.V) is IMP-KOA secure 
and HVZK, the PKE = (Gen,PKE.Enc,PKE.Dec) is 
IND-CPA and IK-CPA secure, and KDV = (Gen,KDV.Dpk,

KDV.Dsk,KDV.Chk) is a KDV scheme for CID . Then 
we can construct a KR-KDS by simply replacing 
(epk , esk) = (spk , ssk) → (pk , sk) in Algorithm  1. The 
KeyGen algorithm of the KR-KDS scheme is as follows:

• KeyGen(GP) → (pk , sk) : It runs Gen(pp) to gets 
(pk, sk) and returns them.

We put the full algorithm in B for self-completeness.
Remark We remark that our KR-KDS framework 

contains a combined signature and KEM scheme 
(CSK): let SIG = FS(CID,H1) = (Gen,Sign,Verify) , 
KEM = FO(PKE,H) = (Gen,KEM.Enc,KEM.Dec)  , 
then we obtain a CSK scheme CSK = (Gen,Sign,Verify,

KEM.Enc,KEM.Dec) . This is a novel framework to con-
struct CSK that is jointly secure. It has independent inter-
ests outside of stealth address, which we present further 
discussion in C.

Security Our KR-KDS construction has EUF/UNL 
security when KDV is UNL secure, and SEUF/SUNL 
security when KDV is UNL and IND secure.

Theorem 5 Let CID be and IMP-KOA secure CID proto-
col with HVZK. Let PKE be an IND-CPA secure and IK-
CPA secure PKE scheme. Let KDV be a re-linkable KDV 
scheme for CID and PKE . Let G, H and H1 be random ora-
cles. Then the KR-KDS scheme is EUF and UNL secure in 
the random oracle model.

Proof The proof is similar to Theorems 1 and 3. We put 
the proof sketch in E.  �

Theorem 6 Let CID be and IMP-KOA secure CID pro-
tocol with HVZK. Let PKE be an IND-CPA secure and 
IK-CPA secure PKE scheme. Let KDV be a re-linkable and 
leakage-resistant KDV scheme for CID and PKE . Let G, H 
and H1 be random oracles. Then the KR-KDS scheme is 
SEUF and SUNL secure in the random oracle model.

Proof The proof is similar to Theorems 2 and 4. We put 
the proof sketch in E.  �

Instantiation
We then improve the two KS-KDS instantiations in 
“Instantiation” section to KR-KDS schemes.

The KR‑KDS instantiation on the elliptic curve
We still use the Schnorr CID , EC-Elgamal encryption 
and our elliptic curve KDV in “Instantiation” section to 
instantiate KR-KDS, since their key pair have the same 
relation. It implies a Schnorr-based compact stealth 
address protocol that can be used in the single-key 
cryptocurrency systems that support Schnorr signature 
such as Bitcoin (support from 2021.11), BCH and Pol-
kadot Wuille et al. (2021). The full algorithm in shown 
follows:

Let pp = (E,G, q) be system parameters specifying a 
secure elliptic curve E with a generator point G that gen-
erates a secure cyclic subgroup G with prime order q. 
Then the CKDS scheme can be described as follows:

• KeyGen(E,G, q) → ((E,G, q,B), b) : It picks b $←− Zq , cal-
culates B = b · G mod p and lets pk := (E,G, q,B) 
and sk := (b, pk) . Then, it returns (pk, sk).

• DpkDerive(pk) → (c, (E,G, q, B̃)) : It picks r $←− Zq 
and calculates c := (c1, c2) , where c1 = G(r) · G and 
c2 = rG(r) · B . Lets k = H(r||c) and B̃ := k · B . 
Then, it returns (c, B̃).

• DpkCheck(pk , sk , (c, B̃)) → 1/0 : It calculates 
r = c2/(b · c1) mod q . If c1 = G(r) · G , c2 = rG(r) · B 
and B̃ = H(r||c) · B , returns 1. Otherwise 0.
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• DskDerive(pk , sk , (c, B̃)) → dsk/⊥ : If DpkCheck

(pk , sk , (c, ˜B)) = 1 , it calculates r = c2/(b · c1)

mod q and lets b̃ = H(r, c) · b . Then, it returns 
dsk := (b̃, pk) . Otherwise, it returns ⊥.

• Sign(sk/dsk ,m) → σ : It parse sk (or dsk) as b′ and 

pk. It picks z $←− Zq and calculates com := z · G . 
Lets ch := H1(f (comx)||f (comy)||m) where comx/y 
denotes the x/y-coordinate of com and f (·) is a con-
version function that converts a field element into a 
bit-string. It computes rsp := z + hb′ mod q and 
returns (ch, rsp) unless rsp = 0 or ch = 0 . In this lat-
ter case the whole procedure is repeated.

• Verify((E,G, q,B′),m, σ) → 1/0 : If ch  = 0 and 
rsp ∈ Zq , it computes com′ = rsp · G − ch · B′ and 
ch′ = H1(f (com

′
x)||f (com′

y)||m) . If ch′ = ch , it 
returns 1. Otherwise, it returns 0.

Remark. Our solution is a framework that can have 
multiple instantiations, such as using EC-IES instead of 
EC-Elgamal. EC-IES satisfies the requirements set forth 
in “The construction of (strong) key reusing key deriva-
tion scheme” section and is jointly secure with Schnorr 
(Degabriele et al. 2012):

Lemma 1 (Degabriele et al. 2012) ECIES-KEM and EC-
Schnorr are jointly secure in the random oracle model, 
if the gap-DLP problem and gap-DH problem are both 
hard.

The strong KR‑KDS instantiation on the lattice
Unlike the KR-KDS implementation on the elliptic curve, 
we cannot use the same components as in the lattice 
instantiation in “Instantiation” section to construct the 
KR-KDS scheme. This is because our CID and KDV use 
a lattice basis and its trapdoor as a public and secret key 
pair, while LWEPKE use a different relation. We then 
propose a trapdoor encryption algorithm instead of 
LWEPKE:

According to the parameters of learning with errors 
problem (LWE) and the chosen ciphertext-secure encryp-
tion scheme constructed by Micciancio and Peikert (2012), 
let D := Dm̄×nk

Z,ω(
√

logn)
 , G ∈ Z

n×nk
q  is a gadget matrix for large 

enough prime power q = pe and k = O(logn) = O(logq) . 
A
⊥ denotes the transpose of A . We give a PKE scheme 

PKE = (PKE.Gen,PKE.Enc,PKE.Dec) as follows:

• PKE.Gen(pp) → (A,TA) : it randomly chooses 
A1 ∈ Z

n×m̄
q  and R ← D . Then lets A2 = −A1R

mod q , A = [A1|A2] and TA = [R⊥|I]⊥ . Returns 
(A,TA).

• PKE.Enc(A = [A1|A2], s) → c : it samples e1 ← Dm̄
Z,αq 

and e2 ← Dnk
Z,αq . And calculates c1 := sA1 + e1 and 

c1 := sG+ sA2 + e2.
• PKE.Dec(TA = [R|I], c = (c1, c2)) → s/⊥ : 

it calculates sG+ e1R + e2 = c2 + c1 · R and 
s ← sG+ e1R + e2.

Conclusion
Stealth address protocol, a cryptographic technique 
widely used in blockchain systems, lacks formalized defi-
nition, theoretical analysis and frameworks. Addition-
ally, there is no existing work that studies the key reuse 
in such a crypto primitive that contains both a derivation 
scheme and a signature scheme. In this paper, we fill all 
these gaps.

We proposed a key derivable signature scheme (KDS) 
to formalize the stealth address protocol, and propose 
frameworks and the first compact scheme by construct-
ing a jointly secure and key private CSK. Our construc-
tion can not only effectively simplify the stealth address 
protocol and privacy-preserving blockchain systems, 
but it also has the potential to be deployed into existing 
widely used cryptocurrency systems to provide privacy 
protection.

Appendix A: Security models of PDPKS
Definition 13 (PDPKS Liu et  al. 2019b) A PDPKS 
scheme with message space M consists of following 
algorithms:

• Setup(1�) → pp . The setup algorithm takes the 
security parameters 1� as input and outputs public 
parameters pp.

• KeyGen(pp) → (mpk ,msk) . The key generation 
algorithm takes the public parameters pp as input 
and outputs a master public key/secret key pair 
(mpk, msk).

• DpkDerive(mpk) → dpk . The public key derivation 
algorithm takes a master public key mpk and out-
puts a derived public key dpk.
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• DpkCheck(mpk ,msk , dpk) → 0/1 . The derived 
public key checking algorithm takes a master key 
pair (mpk,  msk) and a derived public key dpk as 
input, and outputs a bit b, where b = 1 means that 
dpk is a derived key generated from mpk and b = 0 
means not.

• DskDerive(mpk ,msk , dpk) → dsk . The secret 
key derivation algorithm takes a master key pair 
(mpk,  msk) and a derived public key dpk as input, 
and outputs a derived secret key dsk.

• Sign(sk ,m) → σ . The signing algorithm takes a 
secret key sk (a derived secret key dsk) and a mes-
sage m ∈ M as input, and outputs a signature σ.

• Verify(pk ,m, σ) → 0/1 . The verification algorithm 
takes as a public key pk (a derived public key dpk), 

a message m and a signature σ as input, and out-
puts a bit b, where b = 1 means that the signature is 
valid and b = 0 means not.

Definition 14 (EUF Security of PDPKS Liu et  al. 
2019b) A PDPKS scheme PDPKS = (Setup, 
KeyGen,DpkDerive,DpkCheck,DskDerive,Sign,Verify ) is EUF 
secure, if there exists a negligible function negl(·) such 
that the advantage AdvEUFPDPKS,A(1

�) ≤ negl(�) for any 
PPT adversary A . The advantage is defined as follows:

AdvEUFPDPKS,A(1
�) = Pr

[

GEUF
PDPKS,A(1

�) → 1
]

,

Fig. 8 EUF security of PDPKS



Page 17 of 24Wang et al. Cybersecurity            (2024) 7:43  

where the EUF game GEUF
PDPKS,A(1

�) is described as in 
Fig. 8.

Definition 15 (MPK-UNL Security of PDPKS Liu et al. 
2019b) A PDPKS scheme PDPKS = (Setup,KeyGen,

DpkDerive,DpkCheck,DskDerive,Sign,Verify) is MPK-
UNL secure, if there exists a negligible function negl(·) 
such that the advantage AdvMPK−UNL

PDPKS,A (1�) ≤ negl(�) for 

any PPT adversary A . The advantage AdvMPK−UNL
PDPKS,A (1�) is 

defined as follows:

where the UNL game GMPK−UNL
PDPKS,A (1�) is described as in 

Fig. 9.

AdvMPK−UNL
PDPKS,A (1�) = |Pr

[

GMPK−UNL
PDPKS,A (1�) → 1

]

− 1/2|,

Fig. 9 MPK-UNL Security of PDPKS
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Appendix B: Key reusing key derivable signature

Algorithm 2 Key Reusing Key Derivation Signature Scheme

Appendix C: Combined signature and key 
encapsulation scheme
A combined signature and key encapsulation scheme 
(CSK) consists of the following PPT algorithms:

• CSK.Gen(pp) → (pk , sk) : The key generation algo-
rithm takes the public parameters pp as input and 
outputs a pair of public/secret keys (pk, sk).

• CSK.Enc(pk) → (c, k) : The encapsulation algo-
rithm takes a public key pk as input and outputs a 
ciphertext c ∈ C and a key k ∈ K .

• CSK.Dec(sk , c) → k/⊥ : The decapsulation algo-
rithm takes a secret key sk and a ciphertext c as 
input, and outputs a key k or a rejection symbol ⊥.

• CSK.Sig(sk ,m) → σ : The signing algorithm takes 
a secret key sk and a message m as input, and out-
puts a signature σ.

• CSK.Ver(pk ,m, σ) → 0/1 : The verification algo-
rithm takes a public key pk, a message m and a sig-
nature σ as input, and outputs 1 or 0.

Appendix C.1: Security
We say that a CSK scheme is jointly secure if it is both 
IND-CCA &CMA and EUF-CMA &CCA secure. The 
IND-CCA &CMA denotes indistinguishability of the 
KEM component under an adaptive chosen ciphertext 
attack in the presence of an additional signing oracle. 
The EUF-CMA &CCA denotes existential unforgeability 
of the signature component under an adaptive chosen 
message attack in the presence of an additional decapsu-
lation oracle (Paterson et al. 2011).
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Appendix C.2: Key‑privacy of CSK
There is no explicit definition of key-privacy of CSK has 
been proposed in prior work, we denote it by IK-CCA 
&CMA property, capture the indistinguishability of 
keys under chosen-ciphertext attack in the presence of 
an additional signature oracle.

Appendix C.3: A framework to construct CSK
We construct a jointly secure and key private CSK from 
a canonical identification protocol CID with IMP-KOA 
security and HVZK, and an encryption scheme PKE with 
IND-CPA security and IK-CPA privacy that shares the 
same key generation algorithm KeyGen.

Let CID = (CID.Gen,CID.P,CID.V) , PKE = (PKE.Gen, 
PKE.Enc,PKE.Dec) , then a CSK scheme CSK = (CSK.Gen,

CSK.Enc,CSK.Dec,CSK.Sig,CSK.Ver) is constructed 
as Algorithm 3. 

Algorithm 3 CSK

Claim 1 Let CID be an IMP-POA secure CID protocol 
with HVZK. Let PKE be an IND-CPA and IK-CPA secure 
PKE scheme. Let G, H, and H1 be random oracle. Then the 
CSK scheme CSK is IND-CCA & CMA and IK-CCA & 
CMA secure in the random oracle model.

Proof Based on existing results, the KEM part of the 
CSK scheme is IND-CCA and IK-CCA secure in the ran-
dom oracle model. Assume toward contradiction that 
there exists a PPT adversary A breaking the IND-CCA 
& CMA and IK-CCA & CMA security of the KR-KDS 
scheme. Then one can construct a PPT adversary B , 
breaking the IND-CCA security of the KEM scheme. B 
can simulate OSig with lazy sampling of OH1

 and the algo-
rithm Sim in the Definition 3. Since the CID is HVZK, the 
simulation can only be distinguished by A with negligible 
probability. Thus, we prove the Claim.  �

Claim 2 Let CID be an IMP-POA secure CID protocol 
with HVZK. Let PKE be a OW-CPA secure PKE scheme. 
Let G, H, and H1 be random oracle. Then the CSK scheme 
CSK is EUF & CMA secure in the random oracle model.

Proof Based on existing results, the SIG part of the CSK 
scheme is EUF-CMA secure. Assume toward contradic-
tion that there exists a PPT adversary A breaking the EUF 
& CMA security of the KR-KDS scheme. Then one can 
construct a PPT adversary B , breaking the EUF-CMA 
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security of the SIG scheme. B can simulate ODec with lazy 
sampling of OG and Oh in the Definition 3. Since the PKE 
is OW-CPA secure, the simulation can only be distin-
guished by A with negligible probability. Thus, we prove 
the Claim.  �

Appendix D: The KS‑KDS instantiation 
on the lattice
We prove our lattice-based KDV is re-linkable and 
leakage-resistant based on the properties of algorithms 
TrapGen , DeleRight , and DeleLeft (Gentry et al. 2008).

For any dpk = F , we construct the Rel algorithm as 
follow: it takes as input F = [F1|F2] , randomly chooses 
R ∈ {−1, 1}m×m , lets B = F1 and A = F2 − BR , then 
returns (A,B||R) . In addition, let DeleRight and DeleLeft 
are trapdoor delegation algorithms which are defined 
by Liu et  al. (2020). We can construct a PPT algorithm 
Alt = (Alt1,Alt2) as follows:

• Alt1(pp,A) → (B||R,TB) : it takes as inputs the 
public parameters pp and a public key A . It runs 
(B,TB) ← TrapGen(pp) and randomly chooses 
R ∈ {−1, 1}m×m . Then returns (B||R,TB).

• Alt2(pp,A,B||R,TB) → (F,TF) : it takes as input 
(B||R,TB) and calculates F = [B|BR + A] and 
TF ← DeleLeft(B,A,TB,BR + A, pp) and returns 
TF.

Appendix E: Proofs
Appendix E.1: Theorem.1
Case 1 According to the definitions of EUF and IMP-
KOA, we have

AdvIMP−KOA
CID,B (pp)

= Pr[V2(spk , com
∗, ch∗, rsp∗) = 1]

≥ Pr[Verify(mpk ,m∗, σ ∗) = 1, ch′∗ = ch∗]
≥ Pr[Verify(mpk ,m∗, σ ∗) = 1, ch′∗ = ch∗, (com∗||m∗, ch′∗) ∈ LH1

]
= Pr[ch′∗ = ch∗|Verify(mpk ,m∗, σ ∗) = 1, (com∗||m∗, ch′∗) ∈ LH1

]·
Pr[Verify(mpk ,m∗, σ ∗) = 1, (com∗||m∗, ch′∗) ∈ LH1

],

and

where qSig is the number of A queries to OSig . If 
Verify(mpk ,m∗, σ ∗) = 1 , ch′∗ = H1(com

∗,m∗) . Moreover,

Due to the randomness of OH1
,

where |CH| is the size of H1 ’s range. Since OH1
 is simu-

lated by B as above,

where qH1
 is the number of A ’s queries to OH1

.
Combining these results, we have:

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk]

≤ Pr[Verify(mpk ,m∗, σ ∗) = 1] + qSig · AdvHVZKCID,A(pp),

Pr[Verify(mpk ,m∗, σ ∗) = 1] =Pr[Verify(mpk ,m∗, σ ∗) = 1,

(com∗||m∗, ch′∗) ∈ LH1
]

+ Pr[Verify(mpk ,m∗, σ ∗) = 1,

(com∗||m∗, ch′∗) /∈ LH1
].

Pr[Verify(mpk ,m∗, σ ∗) = 1, (com∗||m∗, ch′∗) /∈ LH1
]

= Pr[Verify(mpk ,m∗, σ ∗) = 1,H1(com
∗||m∗)

= ch′∗, (com∗||m∗, ch′∗) /∈ LH1
]

≤ Pr[H1(com
∗||m∗)

= ch′∗, (com∗||m∗, ch′∗) /∈ LH1
] =

1

|CH |
,

Pr[ch = ch∗|Verify(mpk ,m∗, σ ∗) =1, (com∗||m∗, ch)

∈ LH1
] ≥

1

qH1

,

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk] ≤ qH1

· AdvIMP−POA
CID,B (pp)+

qSig · AdvHVZKCID,A(pp)+
1

|CH |
.

Case 2 According to the definitions of EUF and IMP-
KOA, we have

AdvIMP−KOA
CID,C (pp) = Pr[V2(dspk , com

∗, ch∗, rsp∗) = 1]
≥ Pr[Verify(pk∗,m∗, (com∗, ch′∗, rsp∗))) = 1, pk∗ = (c∗, dspk), ch′∗ = ch∗],
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and

If pk∗ = (c∗, dspk) ∈ LDpk , there exists (m∗||c∗, k∗) ∈ LH 
such that dpk∗ = KDV.Dpk(spk ,R; k∗) and c∗ := PKE.Enc

(epk ,m∗;G(m∗)) . Therefore,

In addition,

where qH is the number of A ’s queries to OH and qH1
 is 

the number of A ’s queries to OH1
.

Similar to the analysis in Case 1, we can get

Put these results together,

Appendix E.2: Theorem.2

Proof Assume toward contradiction that there exists 
a PPT adversary A breaking the SEUF security of the 
KS-KDS scheme. Then one can construct a PPT adver-
sary B (or C ), breaking the IMP-KOA security of the CID 
scheme, in the same way as Theorem  1 except that OH 
and ODsk are simulated as follows:

• OH (m, c):

– For each A ’s query (m,  c) to OH , if 
c = PKE.Enc(epk ,m;G(m)) , B runs (k , aux) ←
Alt1(spk ,R) and (sdpk , dsk) = Alt2(spk ,R, k , aux) . 
Let dpk := (c, sdpk) , LH = LH ∪ {(m||c, k)} 
and LDsk ′ = LDsk ′ ∪ {(dpk , dsk)} , where LDsk ′ 
is initialized as a empty set at beginning. If 
c  = PKE.Enc(epk ,m;G(m)) and there exists 
(m||c, k) ∈ LH , it returns k. Otherwise, it randomly 

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ ∈ LDpk ]

≤ Pr[Verify(pk∗,m∗, σ ∗) = 1, pk∗ ∈ LDpk ] + qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp).

Pr[pk∗ = (c∗, dspk)|pk∗ ∈ LDpk ] ≥
1

qH
.

Pr[ch = ch∗|Verify(pk∗,m∗, σ ∗) = 1, (com∗||m∗, ch) ∈ LH1
] ≥

1

qH1

,

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ ∈ LDpk ] ≤ qH1

qH · AdvIMP−POA
CID,C (pp)+

qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
1

|CH |
,

Pr[GEUF
KS−KDS,A(pp) → 1] ≤ qH1

· AdvIMP−POA
CID,B (pp)+ qH1

qH · AdvIMP−POA
CID,C (pp)+

2qSig · ·AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
2

|CH |
.

picks k and sets LH = LH ∪ {(m||c, k)} . Then, it 
returns k

– C picks i∗ $←− [1, qH ] . For each A ’s i-th ( i  = i∗ ) 
query (m, c) to OH , C simulates OH like B . If i = i∗ , 
OH is simulated by C in the same way as in the pre-
vious proof of Theorem 1.

• ODsk(dpk) : For each query dpk, if dpk = (c, sdpk)

∈ LDpk , B/C checks the query list LH . If there exists 
(m||c, k) ∈ LH such that c = PKE.Enc(pk ,m;G(m)) 
and sdpk = KDV.Dpk(spk ,R; k) , it finds (sdpk , dsk)
∈ LDsk ′ and lets LDsk = LDsk ∪ {dsk} , where LDsk is 
initialized as ∅ . It returns dsk. Otherwise, it returns ⊥.

In the above simulation, B and C use the algorithm Alt 
to generate valid derived key pairs in advance. Thus, 
they can simulates ODsk without using ssk. According to 
the leakage-resistance of KDV , the simulation of ODsk 
can be distinguished by the adversary A with negligible 
probability. Then, similar to the analysis in the previous 
proof of Theorem 1, we can demonstrate the the KS-KDS 
scheme is SEUF security in the random oracle model.  �

Appendix E.3: Theorem.3

Proof Assume toward contradiction that there exists a 
PPT adversary A that breaks the UNL security of the KS-
KDS scheme. We can construct a PPT adversary B , break-
ing the IK-CPA security of the PKE scheme, as follows:

• Setup Phase The IK-CPA challenger generates 
(epk0, esk0) ← PKE.Gen(pp) and (epk1, esk1)
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← PKE.Gen(pp) . B receives (epk0, epk1) and  
public parameters pp. B extracts a deter-
ministic polynomial-time verifiable relation 
R := {(pk , sk)|(pk , sk) ← CID.Gen(pp)} and cal-
culates a derived key pair (sdpk∗, sdsk∗) . It runs 
Rel(sdpk∗,R) to generate (spk0, k∗0 ) and (spk1, k∗1 ) , 
where spk0  = spk1 . Let mpk0 = spk0||epk0||R , 
mpk1 = spk1||epk1||R . It sends mpk0 and mpk1 to A . 
The query lists LH,LG,LH1

,LDpk ,i and LSig ,i are initial-
ized as empty sets, where i ∈ {0, 1}.

• Challenge Phase The challenger picks b $←− {0, 1} and 
B randomly chooses m∗ ∈ M.The challenge cipher-
text c∗ ← PKE.Enc(epkb,m

∗) is sent to B . Let 
dpk∗ := (c∗, sdpk∗) . B sends dpk∗ to A.

• Query Phase OG , OH , OH1
 ODpk and OSig are simu-

lated as follows:

• OG(m) : For each A ’s query m to OG , if there exist 
(m, r) ∈ LG , it returns r. Otherwise, it randomly 
picks r and sets LG = LG ∪ {(m, r)} ; then, returns r.

• OH (m, c) : For each A ’s query (m, c) to OH , if there 
exist (m||c, k) ∈ LH , it returns k. Otherwise, it 
randomly picks k and sets LH = LH ∪ {(m||c, k)} ; 
then, returns r.

• OH1
(com,m) : For each A ’s query (com,  m) to 

OH1
 , if there exist (com||m, ch) ∈ LH , it returns 

ch. Otherwise, it randomly picks ch and sets 
LH1

= LH1
∪ {(com,m)} ; then, returns ch.

• ODpk(dpk  = dpk∗, i) : B parse dpk as c and 
sdpk. If there exists (m||c, k) ∈ LH such that 
PKE.Enc(epki,m;G(m)) = c and KDV.Dpk

(spki,R; k) = dpk , it sets LDpk ,i := LDpk ∪ {dpk} 
and returns 1. Otherwise, return 0.

• OSig (pk ,m, i) : If pk = (c, sdpk) ∈ LDpk ,i or 
pk = mpki , B keeps running (com, ch, rsp)

← Sim(sdpki) or (com, ch, rsp) ← Sim(spki) 
respectively until there does not exist com′ �= com 
and ch′ �= ch such that (com′||m, ch) ∈ LH1

 and 
(com||m, ch′) ∈ LH1

 . It returns σ := (com, ch, rsp) 
and lets LH1

= LH1
∪ {(com||m, ch)} and 

LSig = LSig ,i ∪ {(pk ,m)} . Otherwise, it returns ⊥.

• Output Phase. When A outputs a bit b′ , B outputs b′.

Due to the re-linkability of KDV , spki and spk can be dis-
tinguished by A with probability at most AdvRLinkCID,A(pp) , 
where (spk , ssk) ← CID.Gen(pp) . The simulation in Chal-
lenge Phase is perfect if A does not query m∗ to OG and 
m∗||c∗ to OH . We define that A query m∗ to OG or m∗||c∗ 
to OH as the event Event . Then we can construct a PPT 
adversary C attacking OW-CPA security of PKE such that

where qH is the number of A ’s queries to OH and qG is the 
number of queries to OG . Using the same proof strategy 
for Theorem 1, we can get

where qSig is the number of A ’s queries to OSig .  �

Appendix E.4: Theorem.4

Proof Assume toward contradiction that there exists a 
PPT adversary A breaking the SUNL security of the KS-
KDS scheme. Then one can construct a PPT adversary B , 
breaking the IK-CPA security of the CID scheme, in the 
same way as Theorem 3 except that OH and ODsk are sim-
ulated as follows:

• OH (m, c) : For each A ’s query (m,  c) to OH , if  
c = PKE.Enc(epki,m;G(m)) , B runs (k , aux) 
← Alt1(spki,R) and (sdpk , dsk) = Alt2(spki,

R, k , aux) . Let dpk := (c, sdpk) , LH = LH 
∪{(m||c, k)} and LDsk ′,i = LDsk ′,i ∪ {(dpk , dsk)} , where  
LDsk ′,i ( i ∈ {0, 1} ) is initialized as a empty set at begin-
ning.

• ODsk(dpk , i) : For each query (dpk, i), if dpk = (c, sdpk)

∈ LDpk ,i , B checks the query list LH . If there exists 
(m||c, k) ∈ LH such that c = PKE.Enc(epki,m;G(m)) 
and sdpk = KDV.Dpk(spki,R; k) , it finds (sdpk , dsk)
∈ LDsk ′,i and lets LDsk ,i = LDsk ,i ∪ {dsk} , where LDsk ,i 
is initialized as ∅ . It returns dsk. Otherwise, it returns 
⊥.

In the above simulation, B uses the algorithm Alt to gen-
erate valid derived key pairs in advance. Thus, it can 
simulates ODsk ,i without using sski . Then, similar to the 
analysis in the previous proofs of Theorems 2 and 3, we 
can demonstrate the the KS-KDS scheme is SUNL in the 
random oracle model.  �

Appendix E.5: Theorem.5

Proof Sketch: assume toward contradiction that there 
exists a PPT adversary A breaking the (S)EUF security 
of the KR-KDS scheme. Then one can construct a PPT 
adversary B or C , breaking the IMP-KOA security of the 
CID scheme. The simulations of oracles are similar to the 
proof of Theorem  1 (Theorem  2). Additionally, OG and 

(qG + qH ) · AdvOW−CPA
PKE,C (pp) ≥ Pr[Event],

AdvUNLKS−KDS,A(GP) ≤ (qG + qH ) · AdvOW−CPA
PKE,C (GP)

+ AdvIK−CPA
PKE,B + qSig · AdvHVZKCID,A + 2AdvRLinkCID,A(pp),
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OH both are simulated by lazy sampling because B does 
not have the secret key of PKE . B also simulates ODpk in 
the same way as in the proof of Theorem 3. Thus, it simu-
lates ODpk without using the secret key of PKE . Since G, 
H and H1 are different random oracles, these simulations 
can only be distinguished with negligible probability by 
A even in the case of key reusing. Thus, we can demon-
strate the KR-KDS scheme is (S)EUF secure in the ran-
dom oracle model.  �

Appendix E.6: Theorem.6

Proof Sketch: assume toward contradiction that there 
exists a PPT adversary A breaking the (S)UNL security 
of the KR-KDS scheme. Then one can construct a PPT 
adversary B or C , breaking the IK-CPA security of the 
PKE scheme. The simulations of oracles are similar to 
the proof of Theorem 3 (Theorem 4). Since G, H and H1 
are different random oracles, these simulations can only 
be distinguished with negligible probability by A even 
in the case of key reusing. Thus, we can demonstrate the 
KR-KDS scheme is (S)UNL secure in the random oracle 
model.  �
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