
Wang et al. Cybersecurity (2024) 7:43
https://doi.org/10.1186/s42400-024-00231-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Key derivable signature and its application
in blockchain stealth address
Ruida Wang1,2 , Ziyi Li1,2, Xianhui Lu1,2*, Zhenfei Zhang3 and Kunpeng Wang1,2

Abstract

Stealth address protocol (SAP) is widely used in blockchain to achieve anonymity. In this paper, we formalize a key
derivable signature scheme (KDS) to capture the functionality and security requirements of SAP. We then propose
a framework to construct key separation KDS, which follows the key separation principle as all existing SAP solutions
to avoid the reuse of the master keys in the derivation and signature component. We also study the joint security
in KDS and construct a key reusing KDS framework, which implies the first compact stealth address protocol using
a single key pair. Finally, we provide instantiations based on the elliptic curve (widely used in cryptocurrencies)
and on the lattice (with quantum resistance), respectively.

Keywords Key derivable signature, Stealth address protocol, Blockchain, Compact stealth address protocol, Joint
security

Introduction
Modern blockchain is a distributed ledger that allows
transactions among different users. Typically, the ledger
is in the form of a key-value storage, where the key is the
user’s address; and the value is the balance of this address.
For engineering simplicity, the address is usually a pub-
lic, efficient encoding of a group element over a certain
elliptic curve. This group element is also used as a pub-
lic key. To spend from this address, one simply needs to
provide a digital signature and post the transaction to the
blockchain. This method has been used by main crypto-
currency platforms (Nakamoto 2008; Wood 2014; Sasson
et al. 2014; Wood 2016; Gilad et al. 2017).

A main drawback of the above design is the lack of pri-
vacy, i.e., everyone can figure out the transactions. Stealth
address protocol (SAP), adopted by Monero, Bytecoin

and Samourai Wallet (Saberhagen 2012; Noether and
Mackenzie 2016), is a common cryptographic approach
to hide the identity of the receiver. To date, those plat-
forms have a combined market cap of 3.1 billion US
dollars. In a nutshell, a stealth address can be seen as a
derived public key from the user’s master public key. In a
Monero-like protocol, for an address bG , where b is a field
element and G is the group generator, its stealth address
is in the form of (r + b)G , where r is randomly chosen by
the sender and shared with the receiver via key exchange
scheme. Early designs adopted this idea and modified the
protocol when suffering from security risks (Saberhagen
2012, 2013; Noether and Mackenzie 2016; Courtois and
Mercer 2017), which lacks a formalized algorithm defi-
nition, and a security model including security/privacy
requirements and capturing adversary capabilities.

In 2019, Liu et al. made the first attempt to define a
crypiographic tool to formalize SAP named publicly
derived public key scheme (PDPKS), and proposed an
instantiation based on pairing friendly curve (Liu et al.
2019b). However, the definition in PDPKS does not allow
for signing with user’s master keys. This may create a dis-
crepancy with the widespread application of SAP. When
deploying SAP in a widely-used blockchain, there are

*Correspondence:
Xianhui Lu
luxianhui@iie.ac.cn
1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, CAS, Beijing, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China
3 Ethereum Foundation, Boston, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00231-x&domain=pdf
http://orcid.org/0009-0002-1276-1299

Page 2 of 24Wang et al. Cybersecurity (2024) 7:43

already numerous transactions in the system that have
been signed by users’ master keys. These transactions
are publicly accessible and permanently recorded on the
blockchain. Therefore, it is important for the SAP to have
a well-defined approach to handling master key signa-
tures and related security measures to ensure the con-
tinued safety and privacy of the system. In addition, the
security model of PDPKS allows the adversary to corrupt
the derived secret keys, which imposes a strong security
requirement that is rarely targeted in subsequent stealth
address protocols (Feng et al. 2020; Yu 2020). There is still
a lack of cryptographic formalization that should match
the SAP usage in blockchain, and a security model cap-
turing the basic security requirements of Monero-like
SAPs and the stronger security proposed in PDPKS,
respectively.

On the other side, current SAPs and PDPKS are all
dual-key schemes, that is, a scan key pair to share and
check the stealth address, and a spend key pair to sign
and verify transactions. This design is for security con-
cern, especially using the principle of key separation (i.e.,
independence of keys, which is essential in cryptogra-
phy) to avoid the reuse of the master key pair. However,
key reusing is also possible with well-defined security.
It implies a compact SAP using single key pair for sim-
pler systems and broader application scenarios. We can
deploy such a compact SAP into popular single-key cryp-
tocurrency systems, especially Bitcoin. There is still a lack
of such design after 10 years of SAP deployment.

In addition, current constructions of SAP and PDPKS
are built on concrete assumptions. For example, Mon-
ero-like protocols use the discrete logarithm problem
on the elliptic curve and the latest PDPKS construction
(Liu et al. 2020) exploits the trapdoor function on the lat-
tice. It is desirable to design a framework based on crypto
primitives that captures multiple instantiations according
to the application. Thus, the motivation of this paper is
to revise a better formal definition to abstract SAP, pro-
pose framework constructions, and support key reusing
for compact schemes.

Our results
This paper analyzes the main existing stealth address
protocols and the concept of publicly derived public key
scheme. We improve this cryptographic tool into the key
derivable signature scheme (KDS), and propose general
frameworks and instantiations. Specifically, our contribu-
tions can be summarized as follow:

KDS Scheme and Security Model.
We first introduce and formalize a KDS scheme and its
security model to capture the functionality and security
requirements of SAP. Compared to the similar concept

PDPKS, KDS allows signing with master keys, which can
better match SAP application scenarios on the block-
chain; secondly, we revise the existential unforgeable
(EUF) and public key unlinkable (UNL) security pro-
posed in PDPKS accordingly, to allow the adversary to
access the signing oracle via the master key and win the
game by forging a master key signature. We enforce the
basic security EUF/UNL of KDS to its strong version
strong-EUF/strong-UNL (SUNF/SUNL), by considering
the derived secret key leakage.

KDS Frameworks and Instantiations.
We give two KDS frameworks. To achieves this, two

barriers should be addressed: the first one is the lack
of a cryptographic primitive to capture the key deriva-
tion; the second one is the key reuse problem in KDS. To
address the first issue, we define a key derivation scheme
(KDV), as well as its re-linkability and leakage-resistance.
Re-linkability of KDV requires that the derived public
key does not leak information about master public key,
whereas leakage-resistance is a stronger security and
requires that the derived secret key does not leak infor-
mation about the master secret key. We then overcome
the second problem with two design approaches:

• Key Separation KDS (KS-KDS) Framework The first
approach is a KS-KDS following key separation prin-
ciple. Our framework is based on a KDV, a public
key encryption (PKE), and a canonical identifica-
tion protocol (CID). Specifically, we use the KDV to
extract the derived key pair from user’s master key
pair, use Fujisaki-Okamoto transformation on PKE to
get a KEM to share and check the stealth addresses,
and use Fiat-Shamir transformation on CID to con-
struct a signature scheme to sign and verify transac-
tions. An EUF and UNL secure KS-KDS requires that
the KDV is re-linkable, the PKE is indistinguishable
under chosen-plaintext attack (IND-CPA) and indis-
tinguishable of keys under chosen-plaintext attack
(IK-CPA); and the CID should be secure against
impersonation under key-only attack (IMP-KOA)
and honest-verifier zero-knowledge (HVZK). Fur-
ther, if the KDV also satisfies leakage-resistance, then
we can obtain a strong KS-KDS satisfying SEUF and
SUNL security. We give a KS-KDS instantiation on
the elliptic curve, and a strong KS-KDS instantiation
on the lattice.

• Key Reusing KDS (KR-KDS) Framework To enable a
KR-KDS, where a single master key pair is reused for
both key derivation and signature, we resort to the
techniques of joint security (Haber and Pinkas 2001).
We construct a jointly secure and key private com-
bined signature and key encapsulation mechanism

Page 3 of 24Wang et al. Cybersecurity (2024) 7:43

(CSK) using CID, PKE and random oracles (RO).
This construction follows an observation that the RO
plays a similar role to key separation in our KS-KDS
framework. We then construct a (strong) KR-KDS
by combining such a CSK scheme with a re-linkable
(and leakage-resistant) KDV scheme. To illustrate the
effectiveness of our result, we give the first compact
stealth address protocol instantiation which can be
deployed in widely used cryptocurrencies such as
Bitcoin to provide privacy protection.

The comparison between our work and other SAP solu-
tions is shown in Table 1.

Related work
There has been a lot of recent work based on Monero-like
stealth address. For example, Yu (2020) proposed a solu-
tion allowing for multiple addresses within one wallet,
Liu et al. (2019a) proposed a lattice-based linkable ring
signature scheme with stealth address, and Wang et al.
(2024) proposed a universally composable (UC) linkable
ring signature supporting stealth address. Motivated by
these works, we present a formalized KDS definition and
a security model to capture the essence of stealth address.

Another line of research on stealth address is based
on publicly derived public key schemes (PDPKS), which
is designed to maintain security even when derived keys
have been corrupted. Liu’s team first proposed this defi-
nition (Liu et al. 2019b), and later extended it to lattice-
based (Liu et al. 2020) and UC (Zhu et al. 2023) settings.
However, they do not consider the key-reusing property,
which is essential to achieve a compact stealth address
protocol that can be deployed into most blockchains,
not just specially designed systems such as Monero.
We revised their model and discuss the joint security in
blockchain stealth address.

Joint security ensures the security of the cryptographic
tools in the case of key reusing, and can significantly
simplify the system and reduce storage in engineering

implementations. Haber and Pinkas (2001) introduced
the concept of the jointly secure combined public key
scheme in 2001, which combines a signature scheme
and an encryption scheme using the same key pair.
Prior works mainly focus on combined signature and
encryption schemes, such as ElGamal-based signature
and encryption (Vasco et al. 2008), Schnorr and ECIES
(Degabriele et al. 2012), and blind Schnorr signature and
Schnorr-signed ElGamal encryption (Fuchsbauer et al.
2020). Adding a derivation algorithm based on such a
combined scheme may lead to novel application scenar-
ios, such as our key derivable signature. Chen et al. (2021)
proposed a hierarchical integrated signature and encryp-
tion (HISE) scheme, in which the encryption component
used a derived key pair from the signature key pair.

Paper organization
This paper is organized as follows: “Preliminaries” sec-
tion reviews the crypto primitives; “Key derivable signa-
ture scheme” section presents our key derivable signature
scheme (KDS) definition and security model, and com-
pares it with prior works; “The construction of (strong)
key separation key derivable signature scheme” sec-
tion describes our key derivation scheme (KDV) defini-
tion and the framework to construct (strong) KS-KDS;
“The construction of (strong) key reusing key derivation
scheme” section improves this framework to construct
KR-KDS; “Conclusion” section concludes the paper.

Preliminaries
Canonical identification protocol (CID)

Definition 1 (Canonical Identification Protocol) A
canonical identification (CID) protocol with commit-
ment space COM, challenge space CH, and response
space RSP consists of a triple of PPT algorithms
(CID.Gen,CID.P = (P1,P2), CID.V = (V1,V2)) as
follows:

Table 1 The comparison between our work and other SAP solutions

Here, Signmsk means the construction contains a master key signature algorithm. Framework means the construction is based on crypto primitives rather than
concrete assumptions. Compact means the construction is key reusing rather than key separation

SAP Signmsk EUF/UNL SEUF/SUNL Framework Compact

Monero (Saberhagen 2013) � � × × ×
PDPKS 19 (Liu et al. 2019b) × � � × ×
PDPKS 20 (Liu et al. 2020) × � � × ×
Our KS-KDS � � � � ×
Our KR-KDS � � � � �

Page 4 of 24Wang et al. Cybersecurity (2024) 7:43

• CID.Gen(pp) → (pk , sk) : The key generation takes
the public parameters pp as input and outputs a pub-
lic key pk and a secret key sk.

• CID.P = (P1,P2) : The prover is a two-stage algo-
rithm that takes a secret key sk. P1 takes the secret key
sk as input and outputs a commitment com ∈ COM
and a state st ; P2 takes the secret key sk, a commit-
ment com ∈ COM , a challenge ch ∈ CH and a state
st as input and outputs a response rsp ∈ RSP.

• CID.V = (V1,V2) : The verifier is a two-stage algo-
rithm that takes a public key pk as input. V1 takes
the public key pk as input, chooses a random chal-
lenge ch $←− CH and sends it to the prover. V2 takes
the public key pk and the conversation transcript
(com, ch, rsp) as input and outputs a deterministic
decision, 1 (acceptance) or 0 (rejection).

We denote the conversation transcript (com, ch, rsp)
as P(sk) ↔ V(pk) . Here, (pk, sk) represents the (pub-
lic key, secret key) pair generated by CID.Gen(pp) , and
(com, ch, rsp) := P(sk) ↔ V(pk) denotes the information
exchanged between CID.P and CID.V throughout the
CID protocol interaction under (pk, sk).
Security against impersonation under key-only attacks
(IMP-KOA) serves as a basic security for CID. It guaran-
tees that adversaries cannot impersonate the prover to
deceive an honest verifier without having access to the
secret key.

Definition 2 (IMP-KOA Security) A CID protocol
CID = (CID.Gen,CID.P, CID.V) is IMP-KOA secure,
if there exists a negligible function negl(·) such that the
advantage AdvIMP−KOA

CID,A (pp) ≤ negl(�)1 for any PPT
adversary A . The advantage is defined as follows:

where GIMP−KOA
CID,A (pp) is describe as in Fig. 1.

Honest-verifier zero-knowledge (HVZK) is a formali-
zation of the property where adversaries do not gain any
additional knowledge from honest interactions.

Definition 3 (HVZK) A CID protocol is HVZK if there
exists a PPT algorithm Sim and a negligible function
negl(·) such that the advantage AdvHVZKCID,A(pp) ≤ negl(�)
for any PPT adversary A . The advantage AdvHVZKCID,A(pp) is
defined as follows:

Key privacy of public key encryption
The key privacy of a public key encryption scheme is
effectively captured by the property known as “indis-
tinguishability of keys under chosen-plaintext attack”
(IK-CPA). It ensures that adversaries, under a chosen-
plaintext attack, are unable to distinguish ciphertexts
generated by different encryption keys.

Definition 4 (IK-CPA Security) A PKE scheme
PKE = (PKE.Gen,PKE.Enc, PKE.Dec) is IK-CPA
secure if there exists a negligible function negl(·) such
that the advantage AdvIK−CPA

PKE,A (pp) ≤ negl(�) for any PPT

adversary A . The advantage AdvIK−CPA
PKE,A (pp) is defined as

follows:

where the IK-CPA game GIK−CPA
PKE,A (pp) is described as

Fig. 2.

AdvIMP−KOA
CID,A (pp) = Pr GIMP−KOA

CID,A (pp) → 1 ,

AdvHVZKCID,A(pp) =|Pr [A(pk , com, ch, rsp) → 1|(com, ch, rsp) ← Sim(pk), (pk , sk)

← CID.Gen(pp)]− Pr [A(pk , (com, ch, rsp)) → 1|(com, ch, rsp)

← (P(sk),V(pk)), (pk , sk) ← CID.Gen(pp)]|.

AdvIK−CPA
PKE,A (pp) = |Pr [GIK−CPA

PKE,A (pp) → 1] − 1/2|,

Fig. 1 IMP-KOA game for CID

1 The � , which appears here and later in this paper, is a security parameter.
It is determined by pp.

Page 5 of 24Wang et al. Cybersecurity (2024) 7:43

Key derivable signature scheme
Algorithm definition
In this section, we introduce the key derivable signature
(KDS). This scheme enables the generation of derived
key pairs from the master key pair. Our formal defini-
tion of KDS is as follows:

Definition 5 (Key Derivable Signature) A KDS scheme
with message space M consists of following algorithms:

• KeyGen(pp) → (mpk ,msk) . The key generation
algorithm takes the public parameters pp as input
and outputs a master public key/secret key pair
(mpk, msk).

• DpkDerive(mpk) → dpk . The public key derivation
algorithm takes a master public key mpk and out-
puts a derived public key dpk.

• DpkCheck(mpk ,msk , dpk) → 0/1 . The derived
public key checking algorithm takes a master key
pair (mpk, msk) and a derived public key dpk as
input, and outputs a bit b, where b = 1 means that
dpk is a derived key generated from mpk and b = 0
means not.

• DskDerive(mpk ,msk , dpk) → dsk . The secret
key derivation algorithm takes a master key pair
(mpk, msk) and a derived public key dpk as input,
and outputs a derived secret key dsk.

• Sign(sk ,m) → σ . The signing algorithm takes a
secret key sk (a master secret key msk or a derived
secret key dsk) and a message m ∈ M as input, and
outputs a signature σ.

• Verify(pk ,m, σ) → 0/1 . The verification algorithm
takes as a public key pk (a master public key mpk
or a derived public key dpk), a message m and a sig-
nature σ as input, and outputs a bit b, where b = 1
means that the signature is valid and b = 0 means
not.

Additionally, the above algorithms must satisfy the fol-
lowing correctness properties:

• For any (mpk ,msk) ← KeyGen(pp) , there exists a
negligible function negl(·) such that

• For any (mpk ,msk) ← KeyGen(pp) and m ∈ M ,
there exists a negligible function negl(·) such that

• For (mpk ,msk) ← KeyGen(pp) and m ∈ M ,

KDS is a revised definition of PDPKS, the security
model of PDPKS is detailed in A. The major difference
is that we consider a master key/derived key signature
algorithm, while PDPKS only allows signing with derived
keys. This change is motivated by practical considera-
tions. In most existing blockchain systems, except for
those specifically designed for stealth address schemes
(such as Monero), there is no definition or transac-
tion procedure related to derived keys. Transactions
are signed using master keys, recorded on-chain, and
publicly accessible. When deploying stealth address on
such blockchains, it is necessary to have a well-defined
approach to handling master key signatures and related
security measures to ensure the safety and privacy of
the system. According to our KDS definition, the stealth
address protocol can be deployed as a plug-in. It effec-
tively protects the identity privacy while allowing users
to still utilize master key signatures without affecting

Pr
dpk←DpkDerive(mpk)

[DpkCheck(mpk ,msk , dpk) �= 1] ≤ neg(�).

Pr
σ←Sign(msk ,m)

[Verify(mpk ,m, σ) �= 1] ≤ neg(�).

Pr
dpk←DpkDerive(mpk)

[Verify(dpk ,m, σ) �= 1|dsk

← DskDerive(mpk ,msk ,mpk),

σ ← Sign(dsk ,m)] ≤ neg(�).

Fig. 2 IK-CPA game for PKE

Page 6 of 24Wang et al. Cybersecurity (2024) 7:43

their token balance in permanent addresses. The stealth
address works as follows:

For a sender Alice (A), who wants to send a transaction to
a receiver Bob (B), A first runs DpkDerive(mpkB) → dpkB
to derive a stealth address for B, where mpkB is B’s mas-
ter public key. Then A runs Sign(skA,mA) → σA to
send a transaction, where skA can be either A’s mas-
ter secret key or derived secret key, and mA records the
information such as the amount and receiver address
dpkB . To receive the transaction, B actively monitors the
blocks and runs DpkCheck(mpkB,mskB, dpk

′) → 0/1
to check all potential dpk ′ , until finding his derived
address dpkB and the corresponding transac-
tion. Then he validates the transaction by using
Verify(pkA,m

′
A, σ

′
A) → 0/1 . To spend the coin in dpkB , B

runs DskDerive(mpkB,mskB, dpkB) → dskB to derive the
secret key dskB . Then he can use Sign(dskB,mB) → σB to
sign a transaction spending the coin. Anyone else can vali-
date the transaction by using Verify(dpkB,m′

B, σ
′
B) → 0/1.

Security model
In this section, we provide a formal security model to
capture the security and privacy requirements of KDS.
We need to consider two cases motivated by the secu-
rity risks of cryptocurrencies:

1. The adversary should not be able to forge the receiv-
er’s master/derived key signatures to steal their bal-
ance.

2. The adversary should not be able to trace the receiv-
er’s permanent address from the derived address.

Security We provide basic security properties: existential
unforgeability (EUF) and public key unlinkability (UNL),
as well as the stronger security properties: strong existen-
tial unforgeability (SEUF) and strong public key unlink-
ability (SUNL) of KDS, by distinguishing the adversary’s
capabilities.

Fig. 3 EUF security and SEUF security of KDS with differences highlight in bold

Page 7 of 24Wang et al. Cybersecurity (2024) 7:43

The EUF security property states that an adversary,
with access to the signature algorithm and derived public
key checking algorithm, cannot produce a valid forgery.
A more detailed definition is as follows:

Definition 6 (EUF Security) A KDS scheme
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,Sign,

Verify) is EUF secure, if there exists a negligible function
negl(·) such that the advantage AdvEUFKDS,A(pp) ≤ negl(�)
for any PPT adversary A . The advantage is defined as
follows:

where the EUF game GEUF
KDS,A(pp) is described as in Fig. 3.

AdvEUFKDS,A(pp) = Pr
[

GEUF
KDS,A(pp) → 1

]

,

The UNL security states that an adversary, even with
access to the signature algorithm and derived public key
checking algorithm, cannot distinguish which of two
master public keys was used to derive a specific derived
public key. A more detailed definition is as follows:

Definition 7 (UNL Security) A KDS scheme
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,

Sign,Verify) is UNL secure, if there exists a neg-
ligible function negl(·) such that the advantage
AdvUNLKDS,A(pp) ≤ negl(�) for any PPT adversary A . The
advantage AdvUNLKDS,A(pp) is defined as follows:

AdvUNLKDS,A(pp) = |Pr
[

GUNL
KDS,A(pp) → 1

]

− 1/2|,

Fig. 4 UNL security and SUNL security of KDS with differences highlight in bold

Page 8 of 24Wang et al. Cybersecurity (2024) 7:43

where the UNL game GUNL
KDS,A(pp) is described as in

Fig. 4.

The strong-EUF (SEUF) and strong-UNL (SUNL) secu-
rity, which correspond to EUF and UNL security, respec-
tively, provide the adversary with the additional capability
of querying the secret key derivation algorithm. Their
more detailed definitions are as follows:

Definition 8 (SEUF Security) A KDS scheme
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,Sign,Verify)
is SEUF secure, if there exists a negligible negl(·) such
that the advantage AdvSEUFKDS,A(pp) ≤ negl(�) for any PPT
adversary A . The advantage is defined as follows:

where the SEUF game GSEUF
KDS,A(pp) is described as in

Fig. 3.

Definition 9 (SUNL Security) A KDS scheme
KDS = (KeyGen,DpkDerive, DpkCheck,DskDerive,Sign,Verify)
is UNL secure, if there exists a negligible function negl(·)
such that the advantage AdvSUNLKDS,A(pp) ≤ negl(�) for any

PPT adversary A . The advantage AdvSUNLKDS,A(pp) is defined
as follows:

where the SUNL game GUNL
KDS,A(pp) is described as in

Fig. 4.

There are several differences between our security
model and PDPKS’s. First, we allow the adversary to
access OSig with the master key and win the game by
forging the master key signatures. This modification cap-
tures the fact that an adversary can request transactions
or look up transactions signed by a user with his master

AdvSEUFKDS,A(pp) = Pr
[

GSEUF
KDS,A(pp) → 1

]

,

AdvSUNLKDS,A(pp) = |Pr
[

GSUNL
KDS,A(pp) → 1

]

− 1/2|,

key from the blockchain ledger, and steal the balance in
the user’s permanent address by forging his master key
signature. Second, we define security as the basic secu-
rity (EUF/UNL) and the strong security (SEUF/SUNL)
by dividing adversary capabilities. In the basic security,
we limit the adversary can only access ODpk and OSig , as
considered in most SAP works. In the strong security, the
adversary has an additional access to ODsk , which cap-
tures the assumption that user leaks his derived secret
key, as PDPKS considered.

The construction of (strong) key separation key
derivable signature scheme
In this section, we define a key derivation scheme (KDV)
to extract derived keys from a master key pair, and pro-
pose a framework to construct (strong) key separation
KDS (KS-KDS) as illustrated in Fig. 5.

Key derivation scheme

Definition 10 (Key Derivation Scheme) A
KDV scheme consists of a triple PPT algorithms
(KDV.Gen,KDV.Dpk,KDV.Dsk,KDV.Chk) as follows:

• KDV.Gen(pp) → (mpk ,msk ,R):The key genera-
tion algorithm takes the public parameters as input
and outputs a master public key/secret key pair
(mpk, msk) and a deterministic polynomial-time veri-
fiable relationship R.

• KDV.Dpk(mpk ,R) → dpk : The public key deri-
vation generation algorithm takes a master pub-
lic key mpk and a deterministic polynomial-time
verifiable relationship R as input, selects a random
number r $←− R,2 and outputs a derived public key
dpk := DKV.Dpk(mpk ,R; r).

Fig. 5 A Framework to Construct KDS. Rectangles hold the crypto primitives, with security/privacy properties highlight in gray. Diamonds hold
transformation algorithms

2 R is determined by R and mpk.

Page 9 of 24Wang et al. Cybersecurity (2024) 7:43

• KDV.Dsk(mpk ,msk ,R) → dsk : The secret key
derived generation algorithm takes a master public/
secret key pair (mpk, msk) and a deterministic poly-
nomial-time verifiable relationship R , selects a ran-
dom number r $←− R and outputs a derived secret key
dsk := KDV.Dsk(mpk ,msk ,R; r).

• KDV.Chk(pk , sk ,R) → 0/1:The validity checking
algorithm takes a public/secret key pair (pk, sk) and
a deterministic polynomial-time verifiable relation-
ship R and outputs a bit b, where b = 1 means that
(pk , sk) ∈ R and b = 0 means that (pk , sk) /∈ R

Additionally, the above algorithms must satisfy the fol-
lowing correctness:

• For any (mpk ,msk ,R) ← KDV.Gen(pp) ,

• For any (mpk ,msk ,R) ← KDV.Gen(pp) and r ∈ R ,

 where dpk := KDV.Dpk(mpk ,R; r) and
dsk := KDV.Dsk(mpk ,msk ,R; r)

• For any (mpk ,msk ,R) ← KDV.Gen(pp) , if r = r′ ,
then

 where dpk := KDV.Dpk(mpk ,R; r) and
dsk := KDV.Dsk(mpk ,msk ,R; r′).

For a key generation algorithm Gen , if the relationship
R := {(pk , sk)|(pk , sk) ← Gen(pp)} is polynomial-time
verifiable, we can define a KDV for Gen as follows:

KDV.Chk(mpk ,msk ,R) = 1.

KDV.Chk(dpk , dsk ,R) = 1,

KDV.Chk(dpk , dsk ,R) = 0,

• KDV.Gen(pp) → (mpk ,msk ,R) : It runs (mpk ,msk)
← Gen(pp) and extracts a deterministic polyno-
mial-time verifiable relation R := {(pk , sk)|(pk , sk)

← Gen(pp)} . Then outputs (mpk ,msk ,R).

Security. We define the re-linkability and leak-resist-
ance for KDV. Re-linkability states that a derived pub-
lic key dpk := KDV.Dpk(mpk ,R; r) can be relinked to
mpk ′ �= mpk . It ensures that dpk does reveal any infor-
mation about the master public key mpk. Leak-resistance
states that derived public/secret key pairs (dpk, dsk) do
not reveal any information about the master secret key
msk.

Definition 11 (Re-linkability) A KDV scheme
KDV = (KDV.Gen,KDV.Dpk, KDV.Dsk,KDV.Chk)
is re-linkable, if there exists a PPT “re-link” algo-
rithm Rel and a negligible function negl(·) such that
AdvRLinkKDV,A(pp) ≤ negl(�) for any PPT adversary A . The
advantage is defined as follows:

where the game GRLink
KDV,A(pp) is described as Fig. 6.

Definition 12 (Leakage Resistance) A KDV scheme
KDV = (KDV.Gen, KDV.Dpk,KDV.Dsk,KDV.Chk)
is leakage resistant, if there exist a PPT algorithm
Alt = (Alt1,Alt2) and a negligible function negl(·) such
that the advantage AdvLRKDV,A(pp) ≤ negl(�) for any PPT
adversary A . The advantage is defined as follows:

AdvRLinkKDV,A(pp) = |Pr
[

GRLink
KDV,A(pp) → 1

]

− 1/2|,

AdvLRKDV,A(pp) = |Pr[GLR
KDV,A(pp) → 1] − 1/2|,

Fig. 6 The re-linkability and leakage-resistance game for the KDV scheme KDV

Page 10 of 24Wang et al. Cybersecurity (2024) 7:43

where the game GLR
KDV,A(pp) is described as Fig. 6.

A framework to construct (strong) KS‑KDS
We propose a KS-KDS framework that is based on
a canonical identification protocol CID , a public key
encryption PKE , and a key derivation scheme KDV.

Let CID = (CID.Gen,CID.P,CID.V) be a CID protocol
and KDV = (KDV.Gen, KDV.Dpk,KDV.Dsk,KDV.Chk)
be a KDV scheme for CID . Let PKE = (PKE.Gen,
PKE.Enc,PKE.Dec) be a PKE scheme. We compose
them to construct a KS-KDS as shown in Algorithm 1. We
use Fiat-Shamir transformation (FS) on CID to get a signa-
ture scheme, use Fujisaki-Okamoto transformation (FO)
on PKE to get a KEM. This KEM scheme is used to gener-
ated the k which is the randomness used to generated the
derivable key pair. G, H and H1 are random oracles.

Algorithm 1 Key Separation Key Derivation Signature Scheme

Remark. Note that constructing KS-KDS using
SIG, KEM, and KDV is also feasible. However, our
approach prefers to build upon more fundamental
cryptographic primitives, and this method is particu-
larly useful for designing the KR-KDS algorithm in
“The construction of (strong) key reusing key deriva-
tion scheme” section.

Security. We then discuss the security of the above KS-
KDS construction.

Theorem 1 Let CID be an IMP-KOA secure CID proto-
col with HVZK. Let KDV be a re-linkable KDV scheme for
CID . Let PKE be an IND-CPA secure PKE scheme. Let G,
H and H1 are random oracles. Then, the KS-KDS scheme
is EUF secure in the random oracle model.

Page 11 of 24Wang et al. Cybersecurity (2024) 7:43

Proof Assume toward contradiction that there exists a
PPT adversary A that breaks the EUF security of the KS-
KDS scheme with noticeable probability. That is, the fol-
lowing advantage is noticeable:

We consider two different cases and construct PPT
adversary B or C against the IMP-POA security of CID ,
respectively:

Case 1 (pk∗ = mpk). A generate the valid forge signature
for mpk. We then construct B to attack CID as follows:

• Setup Phase The IMP-KOA challenger generates a pair
of public/secret keys (spk , ssk) ← CID.Gen(pp) . The
IMP-KOA adversary B receives spk and public param-
eters pp. It runs (epk , esk) ← PKE.Gen(pp) and
extracts a deterministic polynomial time verifiable rela-
tionship R := {(pk , sk)|(pk , sk) ← CID.Gen(pp)} .
Let mpk := spk||epk||R and msk := ssk||esk . It sends
mpk to A and initializes three query lists LH1

 , LDpk and
LSig as empty sets. Let Sim be a PPT algorithm defined
as in the Definition 3.

• Challenge Phase The challenger picks a challenge
ch∗

$←− CH and sends it to B.
• Query Phase For each A ’s query m and (m, c), OG and

OH return H(m) and H(m, c), respectively. Addition-
ally, OH1

 , ODpk and OSig are simulated by the adver-
sary B as follows:

• OH1
(com,m) : At beginning, the adversary B picks

i∗
$←− [1, qH1

] . For A ’s i-th (i = i∗) query (com, m),
if there exists (com||m, ch) ∈ LH1

 , it returns
ch. Otherwise, it randomly selects ch and lets
LH1

= LH1
∪ {(com||m, ch)} ; then returns h1 . Spe-

cially, for A ’s i∗-th query (com, m),3 it returns ch∗
and lets LH1

= LH1
∪ {(com||m, ch∗)}.

• ODpk(dpk) : For each A ’s query dpk = (c, sdpk) to ODpk ,
the adversary B calculates m := PKE.Dec(esk , c) .
If m = ⊥ or PKE.Enc(esk ,m;G(m)) �= c ,
it returns 0. It calculates k := H(m, c) , if
sdpk = KDV.Dpk(spk ,R; k) , it returns 1 and lets
LDpk := LDpk ∪ {dpk} . Otherwise,it returns 0.

• OSig (pk ,m) : For each A ’s query (pk, m) to
OSig , if pk = (c, sdpk) ∈ LDpk or pk = mpk ,

AdvEUFKS−KDS,A(pp) = Pr[GEUF
KS−KDS,A(pp) → 1]

= Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk] + Pr[GEUF

KS−KDS,A(pp) → 1, pk∗ ∈ LDpk].

B keeps running (com, ch, rsp) ← Sim(sdpk)
or (com, ch, rsp) ← Sim(spk) respectively
until there does not exist com′ �= com and
ch′ �= ch such that (com′||m, ch) ∈ LH1

 and

(com||m, ch′) ∈ LH1
 . It returns σ := (com, ch, rsp)

and sets LH1
= LH1

∪ {(com||m, ch)} and
LSig = LSig ∪ {(pk ,m)} . Otherwise, it returns ⊥.

• Output Phase When A outputs (pk∗,m∗, σ ∗) ,
B parses σ ∗ as (com∗, ch′∗, rsp∗) and outputs
(com∗, rsp∗).

Since the adversary B has the secret key esk of the PKE ,
the simulation of ODpk is perfect. Since H1 is a random
oracle, the simulation of OH1

 is perfect. Additionally, B
simulates the oracle OSig without using of ssk. Because
CID is HVZK, the probability that the simulation of
OSig can be distinguished by the adversary A is at most
qSig · AdvHVZKCID,A . Then for Case 1, we have (detailed deri-
vation can be found in E):

where qH1
 , qSig are the numbers of A’queries to OH1

 and
OSig , respectively.

Case 2 (pk∗ ∈ LDpk). A generate the valid forge signa-
ture for a dpk ∈ LDpk . We then construct C to attack
CID . Naturally, the challenge public key for C is a derived
key which belongs to LDpk . Therefore C needs to gener-
ate related master public key of the challenge public key
by using the re-linkability of KDV . The details of C are as
follows:

• Setup Phase The IMP-KOA challenger generates a
key pair (dspk , dssk) ← CID.Gen(pp′) . The IMP-
KOA adversary C receives dspk and public param-
eters pp. It runs (epk , esk) ← PKE.Gen(pp) and
extracts a deterministic polynomial-time verifi-
able relationship R := {(pk , sk)|(pk , sk) ← CID.Gen(pp)} .
It runs (spk , k∗) ← Rel(dspk ,R) and lets
mpk := spk||epk||R . Then, it sends mpk and pp to
A and initializes query lists LH , LH1

 , LDpk and LSig as
empty sets. Let Sim be a PPT algorithm defined as in
the Definition 3.

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk] ≤ qH1

· AdvIMP−POA
CID,B (pp)+

qSig · AdvHVZKCID,A(pp)+
1

|CH |
,

3 Without loss of generality, we assume that (com, m) has not been queried.

Page 12 of 24Wang et al. Cybersecurity (2024) 7:43

• Challenge Phase The challenger generates a challenge
ch∗ and sends it to C.

• Query Phase For each A ’ query m to OG , it returns
r = G(m) . OH1

 , ODpk and OSig are simulated as in the
construction of B . Additionally, OH is simulates by
the adversary C as follows:

• OH (m, c) : The adversary C picks j∗ $←− [1, qH] . For
A ’s j-th (j = j∗) query (m, c) to OH , if there exists
(m||c, k) ∈ LH1

 , it returns k. Otherwise, it randomly
selects k and lets LH = LH ∪ {(m||c, k)} ; then
returns h1 . Specially, for A ’s j∗-th query (m, c),4 it
returns k∗ and lets LH = LH ∪ {(m||c, k∗)}.

• Output Phase When A outputs (pk∗,m∗, σ ∗) , C parse
σ ∗ as (com∗, ch′∗, rsp∗) and outputs (com∗, σ ∗).

Applying the same reasoning as in Case 1, the simula-
tion of ODpk and OH1

 is perfect and the simulation of OSig
can be distinguished by the adversary A with probabil-
ity at most qSig · AdvHVZKCID,A(pp) . Since the re-linkability of
KDV and OH is also a random oracle, the (mpk , dspk , k∗)
and the simulation of OH can be distinguished by A with
probability at most AdvRLinkCID,A(pp) . Then for Case 2, we
have (detailed derivation can be found in E):

Put these results together,

Thus, the KS-KDS scheme is EUF secure in the random
oracle model. �

Theorem 2 Let CID be an IMP-KOA secure CID pro-
tocol with HVZK. Let KDV be a re-linkable and leakage-
resistant KDV scheme for CID . Let PKE be an IND-CPA
secure PKE scheme. Let G, H and H1 are random oracles.
Then, the KS-KDS scheme is SEUF secure in the random
oracle model.

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ ∈ LDpk] ≤ qH1

qH · AdvIMP−POA
CID,C (pp)+

qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
1

|CH |
,

Pr[GEUF
KS−KDS,A(pp) → 1] ≤ qH1

· AdvIMP−POA
CID,B (pp)+ qH1

qH · AdvIMP−POA
CID,C (pp)+

2qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
2

|CH |
.

Proof This theorem can be proved using the same proof
strategy for Theorem 1. We put the full proof in E for self-
completeness. �

Theorem 3 Let CID be an IMP-KOA secure CID proto-
col with HVZK. Let KDV be a re-linkable KDV scheme for
CID . Let PKE be an IND-CPA secure and IK-CPA secure
PKE scheme. Let G, H and H1 are random oracles. Then,
the KS-KDS scheme is UNL secure in the random oracle
model.

Proof Assume toward contradiction that there exists
a PPT adversary A that breaks the UNL security of the
KS-KDS scheme. We can construct a PPT adversary B ,
breaking the IK-CPA security of the PKE scheme, we put
the full proof in E for self-completeness. �
Theorem 4 Let CID be an IMP-KOA secure protocol
with HVZK. Let KDV be a re-linkable and leakage-resist-
ant KDV scheme for CID . Let PKE be an IND-CPA secure
and IK-CPA secure PKE scheme. Let G, H and H1 are ran-
dom oracles. Then, the KS-KDS scheme is SUNL secure in
the random oracle model.

Proof One can use the same proof strategy for Theo-
rems 2 and 3 to prove this theorem. We give the full proof
in E for self-completeness. �

Instantiation
Finally, we give two instantiations of our KS-KDS frame-
work with EUF/UNL security and SEUF/SUNL security,
respectively.

A KS‑KDS instantiation on the elliptic curve
We instantiate the CID in Algorithm 1 to the Schnorr
underlying identification protocol, which is HVZK and

4 Without loss of generality, we assume that (m, c) has not been queried.

Page 13 of 24Wang et al. Cybersecurity (2024) 7:43

IMP-KOA secure, the full proof could be derived from
Pointcheval and Stern (1996); we instantiate the PKE to
EC-Elgamal, which is IND-CPA secure and IK-CPA pri-
vate (this is noted in Naor and Reingold 1997; Cramer
and Shoup 1998 and fully treated in Tsiounis and Yung
1998). Let pp = (E,G, q) be system parameters specifying
a secure elliptic curve E with a generator G that gener-
ates a secure cyclic subgroup G with prime order q. Then
we propose a KDV instantiation on the elliptic curve as
follows:

• KDV.Dpk(pp) → (B, b,R) : It randomly
chooses b ∈ Zq and calculates B = b · G . Let
R := {(pk , sk)|pk = sk · G, sk ∈ Zq} . Then, it out-
puts (B, b,R).

• KDV.Dpk(B,R) → B̃ : It randomly chooses r ∈ Zq
and outputs B̃ := r · B

• KDV.Dsk(B, b,R) → b̃ : It randomly chooses r ∈ Zq
and outputs b̃ := r · b mod q.

• KDV.Chk(pk , sk ,R) → b̃ : It checks whether
(pk , sk) ∈ R . If (pk , sk) ∈ R , it outputs 1. Other-
wise, outputs 0.

This KDV is re-linkable since we can construct Rel
as follow: It takes as input B̃ , and randomly chooses
a ∈ Zq . It calculates B′ = a · B̃ and r′ = a−1 , then out-
puts (B′, r′).

A strong KS‑KDS instantiation on the lattice
We first propose a CID instantiation on the lattice using
trapdoor generation algorithm TrapGen defined in
Alwen and Peikert (2009), Boyen (2010) and pre-image
sample algorithm SamplePre proposed in Gentry et al.
(2008):

• CID.Gen(pp). The algorithm runs (A,TA) ← TrapGen(pp) ,
then outputs the public key A and the secret key TA.

• CID.P1(A) → (com, st) . CID.P1 randomly chooses
t ← Z

n
q , computes com = At and generates the

state st . It sends com to verifier V.
• CID.V1(A, com) → ch . On receiving com = At from

P , CID.V1 randomly chooses r ∈ Zq and x ∈ Z
n
q .

Calculates u = Ax and returns ch := (r,u).
• CID.P2(st,A,TA, com, ch) → rsp . On receiv-

ing ch := (r,u) , CID.P2 runs x
′ ← SamplePre

(A,TA,u) , and computes and returns rsp = t + rx′.
• CID.V2(A, com, ch, rsp) → 1/0 . On receiv-

ing rsp = t + rx′ , CID.V2 computes and checks
com+ r · u = A · rsp . It accepts the proof when the
check passes.

This CID is HVZK and IMP-KOA secure, the full proof
could be derived from Lyubashevsky (2012). We then
instantiate the PKE in Algorithm 1 to LWEPKE, which is
IND-

CPA secure and IK-CPA private (Regev 2009); and pro-
pose a re-linkable and leakage-resistant KDV inspired by
the lattice-based PDPKS scheme (Liu et al. 2020):

• KDV.Gen(pp) → (A,TA,R) : It runs
(A,TA) ← TrapGen(pp) , then outputs the master
public key A , the master secret key TA , and a relation
R := {(pk , sk)|pk · sk = 0}.

• KDV.Dpk(A,R) → F : It randomly chooses
B ∈ Z

n×m
q and R ∈ {−1, 1}m×m and calculates

F = [B|BR + A] . Returns F.
• KDV.Dsk(A,TA,R) → TF : It randomly chooses

B ∈ Z
n×m
q and R ∈ {−1, 1}m×m and calculates

TF ← DeleRight(A,TA,B,R,GP) . Returns TF.
• KDV.Chk(F′,TF

′,R) → 0/1 : it returns 1 if
(F′,TF

′) ∈ R , and returns 0 otherwise.

DeleRight is a trapdoor delegation algorithm defined
by Liu et al. (2020). This KDV is re-linkable and leakage-
resistant, we give the proof sketch in D.

Fig. 7 A Framework to Construct KR-KDS. Rectangles hold the crypto primitives, with security/privacy properties highlight in gray. Diamonds hold
transformation algorithms

Page 14 of 24Wang et al. Cybersecurity (2024) 7:43

The construction of (strong) key reusing key
derivation scheme
In “The construction of (strong) key separation key deriv-
able signature scheme” section we propose a framework
to construct KS-KDS. It is a dual-key framework that fol-
lows the key separation principle. We observe that the
random oracles in our framework play a similar sepa-
ration role. Therefore, in this section we revise the key
generation part to obtain a key reusing KDS (KR-KDS)
framework as shown in Fig. 7.

A framework to construct (strong) KR‑KDS
We construct a KR-KDS based on a canonical identifica-
tion protocol CID and a public key encryption PKE shar-
ing the same key generation algorithm Gen , and a key
derivation scheme KDV.

Let the CID = (Gen,CID.P,CID.V) is IMP-KOA secure
and HVZK, the PKE = (Gen,PKE.Enc,PKE.Dec) is
IND-CPA and IK-CPA secure, and KDV = (Gen,KDV.Dpk,

KDV.Dsk,KDV.Chk) is a KDV scheme for CID . Then
we can construct a KR-KDS by simply replacing
(epk , esk) = (spk , ssk) → (pk , sk) in Algorithm 1. The
KeyGen algorithm of the KR-KDS scheme is as follows:

• KeyGen(GP) → (pk , sk) : It runs Gen(pp) to gets
(pk, sk) and returns them.

We put the full algorithm in B for self-completeness.
Remark We remark that our KR-KDS framework

contains a combined signature and KEM scheme
(CSK): let SIG = FS(CID,H1) = (Gen,Sign,Verify) ,
KEM = FO(PKE,H) = (Gen,KEM.Enc,KEM.Dec) ,
then we obtain a CSK scheme CSK = (Gen,Sign,Verify,

KEM.Enc,KEM.Dec) . This is a novel framework to con-
struct CSK that is jointly secure. It has independent inter-
ests outside of stealth address, which we present further
discussion in C.

Security Our KR-KDS construction has EUF/UNL
security when KDV is UNL secure, and SEUF/SUNL
security when KDV is UNL and IND secure.

Theorem 5 Let CID be and IMP-KOA secure CID proto-
col with HVZK. Let PKE be an IND-CPA secure and IK-
CPA secure PKE scheme. Let KDV be a re-linkable KDV
scheme for CID and PKE . Let G, H and H1 be random ora-
cles. Then the KR-KDS scheme is EUF and UNL secure in
the random oracle model.

Proof The proof is similar to Theorems 1 and 3. We put
the proof sketch in E. �

Theorem 6 Let CID be and IMP-KOA secure CID pro-
tocol with HVZK. Let PKE be an IND-CPA secure and
IK-CPA secure PKE scheme. Let KDV be a re-linkable and
leakage-resistant KDV scheme for CID and PKE . Let G, H
and H1 be random oracles. Then the KR-KDS scheme is
SEUF and SUNL secure in the random oracle model.

Proof The proof is similar to Theorems 2 and 4. We put
the proof sketch in E. �

Instantiation
We then improve the two KS-KDS instantiations in
“Instantiation” section to KR-KDS schemes.

The KR‑KDS instantiation on the elliptic curve
We still use the Schnorr CID , EC-Elgamal encryption
and our elliptic curve KDV in “Instantiation” section to
instantiate KR-KDS, since their key pair have the same
relation. It implies a Schnorr-based compact stealth
address protocol that can be used in the single-key
cryptocurrency systems that support Schnorr signature
such as Bitcoin (support from 2021.11), BCH and Pol-
kadot Wuille et al. (2021). The full algorithm in shown
follows:

Let pp = (E,G, q) be system parameters specifying a
secure elliptic curve E with a generator point G that gen-
erates a secure cyclic subgroup G with prime order q.
Then the CKDS scheme can be described as follows:

• KeyGen(E,G, q) → ((E,G, q,B), b) : It picks b $←− Zq , cal-
culates B = b · G mod p and lets pk := (E,G, q,B)
and sk := (b, pk) . Then, it returns (pk, sk).

• DpkDerive(pk) → (c, (E,G, q, B̃)) : It picks r $←− Zq
and calculates c := (c1, c2) , where c1 = G(r) · G and
c2 = rG(r) · B . Lets k = H(r||c) and B̃ := k · B .
Then, it returns (c, B̃).

• DpkCheck(pk , sk , (c, B̃)) → 1/0 : It calculates
r = c2/(b · c1) mod q . If c1 = G(r) · G , c2 = rG(r) · B
and B̃ = H(r||c) · B , returns 1. Otherwise 0.

Page 15 of 24Wang et al. Cybersecurity (2024) 7:43

• DskDerive(pk , sk , (c, B̃)) → dsk/⊥ : If DpkCheck

(pk , sk , (c, ˜B)) = 1 , it calculates r = c2/(b · c1)

mod q and lets b̃ = H(r, c) · b . Then, it returns
dsk := (b̃, pk) . Otherwise, it returns ⊥.

• Sign(sk/dsk ,m) → σ : It parse sk (or dsk) as b′ and

pk. It picks z $←− Zq and calculates com := z · G .
Lets ch := H1(f (comx)||f (comy)||m) where comx/y
denotes the x/y-coordinate of com and f (·) is a con-
version function that converts a field element into a
bit-string. It computes rsp := z + hb′ mod q and
returns (ch, rsp) unless rsp = 0 or ch = 0 . In this lat-
ter case the whole procedure is repeated.

• Verify((E,G, q,B′),m, σ) → 1/0 : If ch = 0 and
rsp ∈ Zq , it computes com′ = rsp · G − ch · B′ and
ch′ = H1(f (com

′
x)||f (com′

y)||m) . If ch′ = ch , it
returns 1. Otherwise, it returns 0.

Remark. Our solution is a framework that can have
multiple instantiations, such as using EC-IES instead of
EC-Elgamal. EC-IES satisfies the requirements set forth
in “The construction of (strong) key reusing key deriva-
tion scheme” section and is jointly secure with Schnorr
(Degabriele et al. 2012):

Lemma 1 (Degabriele et al. 2012) ECIES-KEM and EC-
Schnorr are jointly secure in the random oracle model,
if the gap-DLP problem and gap-DH problem are both
hard.

The strong KR‑KDS instantiation on the lattice
Unlike the KR-KDS implementation on the elliptic curve,
we cannot use the same components as in the lattice
instantiation in “Instantiation” section to construct the
KR-KDS scheme. This is because our CID and KDV use
a lattice basis and its trapdoor as a public and secret key
pair, while LWEPKE use a different relation. We then
propose a trapdoor encryption algorithm instead of
LWEPKE:

According to the parameters of learning with errors
problem (LWE) and the chosen ciphertext-secure encryp-
tion scheme constructed by Micciancio and Peikert (2012),
let D := Dm̄×nk

Z,ω(
√

logn)
 , G ∈ Z

n×nk
q is a gadget matrix for large

enough prime power q = pe and k = O(logn) = O(logq) .
A
⊥ denotes the transpose of A . We give a PKE scheme

PKE = (PKE.Gen,PKE.Enc,PKE.Dec) as follows:

• PKE.Gen(pp) → (A,TA) : it randomly chooses
A1 ∈ Z

n×m̄
q and R ← D . Then lets A2 = −A1R

mod q , A = [A1|A2] and TA = [R⊥|I]⊥ . Returns
(A,TA).

• PKE.Enc(A = [A1|A2], s) → c : it samples e1 ← Dm̄
Z,αq

and e2 ← Dnk
Z,αq . And calculates c1 := sA1 + e1 and

c1 := sG+ sA2 + e2.
• PKE.Dec(TA = [R|I], c = (c1, c2)) → s/⊥ :

it calculates sG+ e1R + e2 = c2 + c1 · R and
s ← sG+ e1R + e2.

Conclusion
Stealth address protocol, a cryptographic technique
widely used in blockchain systems, lacks formalized defi-
nition, theoretical analysis and frameworks. Addition-
ally, there is no existing work that studies the key reuse
in such a crypto primitive that contains both a derivation
scheme and a signature scheme. In this paper, we fill all
these gaps.

We proposed a key derivable signature scheme (KDS)
to formalize the stealth address protocol, and propose
frameworks and the first compact scheme by construct-
ing a jointly secure and key private CSK. Our construc-
tion can not only effectively simplify the stealth address
protocol and privacy-preserving blockchain systems,
but it also has the potential to be deployed into existing
widely used cryptocurrency systems to provide privacy
protection.

Appendix A: Security models of PDPKS
Definition 13 (PDPKS Liu et al. 2019b) A PDPKS
scheme with message space M consists of following
algorithms:

• Setup(1�) → pp . The setup algorithm takes the
security parameters 1� as input and outputs public
parameters pp.

• KeyGen(pp) → (mpk ,msk) . The key generation
algorithm takes the public parameters pp as input
and outputs a master public key/secret key pair
(mpk, msk).

• DpkDerive(mpk) → dpk . The public key derivation
algorithm takes a master public key mpk and out-
puts a derived public key dpk.

Page 16 of 24Wang et al. Cybersecurity (2024) 7:43

• DpkCheck(mpk ,msk , dpk) → 0/1 . The derived
public key checking algorithm takes a master key
pair (mpk, msk) and a derived public key dpk as
input, and outputs a bit b, where b = 1 means that
dpk is a derived key generated from mpk and b = 0
means not.

• DskDerive(mpk ,msk , dpk) → dsk . The secret
key derivation algorithm takes a master key pair
(mpk, msk) and a derived public key dpk as input,
and outputs a derived secret key dsk.

• Sign(sk ,m) → σ . The signing algorithm takes a
secret key sk (a derived secret key dsk) and a mes-
sage m ∈ M as input, and outputs a signature σ.

• Verify(pk ,m, σ) → 0/1 . The verification algorithm
takes as a public key pk (a derived public key dpk),

a message m and a signature σ as input, and out-
puts a bit b, where b = 1 means that the signature is
valid and b = 0 means not.

Definition 14 (EUF Security of PDPKS Liu et al.
2019b) A PDPKS scheme PDPKS = (Setup,
KeyGen,DpkDerive,DpkCheck,DskDerive,Sign,Verify) is EUF
secure, if there exists a negligible function negl(·) such
that the advantage AdvEUFPDPKS,A(1

�) ≤ negl(�) for any
PPT adversary A . The advantage is defined as follows:

AdvEUFPDPKS,A(1
�) = Pr

[

GEUF
PDPKS,A(1

�) → 1
]

,

Fig. 8 EUF security of PDPKS

Page 17 of 24Wang et al. Cybersecurity (2024) 7:43

where the EUF game GEUF
PDPKS,A(1

�) is described as in
Fig. 8.

Definition 15 (MPK-UNL Security of PDPKS Liu et al.
2019b) A PDPKS scheme PDPKS = (Setup,KeyGen,

DpkDerive,DpkCheck,DskDerive,Sign,Verify) is MPK-
UNL secure, if there exists a negligible function negl(·)
such that the advantage AdvMPK−UNL

PDPKS,A (1�) ≤ negl(�) for

any PPT adversary A . The advantage AdvMPK−UNL
PDPKS,A (1�) is

defined as follows:

where the UNL game GMPK−UNL
PDPKS,A (1�) is described as in

Fig. 9.

AdvMPK−UNL
PDPKS,A (1�) = |Pr

[

GMPK−UNL
PDPKS,A (1�) → 1

]

− 1/2|,

Fig. 9 MPK-UNL Security of PDPKS

Page 18 of 24Wang et al. Cybersecurity (2024) 7:43

Appendix B: Key reusing key derivable signature

Algorithm 2 Key Reusing Key Derivation Signature Scheme

Appendix C: Combined signature and key
encapsulation scheme
A combined signature and key encapsulation scheme
(CSK) consists of the following PPT algorithms:

• CSK.Gen(pp) → (pk , sk) : The key generation algo-
rithm takes the public parameters pp as input and
outputs a pair of public/secret keys (pk, sk).

• CSK.Enc(pk) → (c, k) : The encapsulation algo-
rithm takes a public key pk as input and outputs a
ciphertext c ∈ C and a key k ∈ K .

• CSK.Dec(sk , c) → k/⊥ : The decapsulation algo-
rithm takes a secret key sk and a ciphertext c as
input, and outputs a key k or a rejection symbol ⊥.

• CSK.Sig(sk ,m) → σ : The signing algorithm takes
a secret key sk and a message m as input, and out-
puts a signature σ.

• CSK.Ver(pk ,m, σ) → 0/1 : The verification algo-
rithm takes a public key pk, a message m and a sig-
nature σ as input, and outputs 1 or 0.

Appendix C.1: Security
We say that a CSK scheme is jointly secure if it is both
IND-CCA &CMA and EUF-CMA &CCA secure. The
IND-CCA &CMA denotes indistinguishability of the
KEM component under an adaptive chosen ciphertext
attack in the presence of an additional signing oracle.
The EUF-CMA &CCA denotes existential unforgeability
of the signature component under an adaptive chosen
message attack in the presence of an additional decapsu-
lation oracle (Paterson et al. 2011).

Page 19 of 24Wang et al. Cybersecurity (2024) 7:43

Appendix C.2: Key‑privacy of CSK
There is no explicit definition of key-privacy of CSK has
been proposed in prior work, we denote it by IK-CCA
&CMA property, capture the indistinguishability of
keys under chosen-ciphertext attack in the presence of
an additional signature oracle.

Appendix C.3: A framework to construct CSK
We construct a jointly secure and key private CSK from
a canonical identification protocol CID with IMP-KOA
security and HVZK, and an encryption scheme PKE with
IND-CPA security and IK-CPA privacy that shares the
same key generation algorithm KeyGen.

Let CID = (CID.Gen,CID.P,CID.V) , PKE = (PKE.Gen,
PKE.Enc,PKE.Dec) , then a CSK scheme CSK = (CSK.Gen,

CSK.Enc,CSK.Dec,CSK.Sig,CSK.Ver) is constructed
as Algorithm 3.

Algorithm 3 CSK

Claim 1 Let CID be an IMP-POA secure CID protocol
with HVZK. Let PKE be an IND-CPA and IK-CPA secure
PKE scheme. Let G, H, and H1 be random oracle. Then the
CSK scheme CSK is IND-CCA & CMA and IK-CCA &
CMA secure in the random oracle model.

Proof Based on existing results, the KEM part of the
CSK scheme is IND-CCA and IK-CCA secure in the ran-
dom oracle model. Assume toward contradiction that
there exists a PPT adversary A breaking the IND-CCA
& CMA and IK-CCA & CMA security of the KR-KDS
scheme. Then one can construct a PPT adversary B ,
breaking the IND-CCA security of the KEM scheme. B
can simulate OSig with lazy sampling of OH1

 and the algo-
rithm Sim in the Definition 3. Since the CID is HVZK, the
simulation can only be distinguished by A with negligible
probability. Thus, we prove the Claim. �

Claim 2 Let CID be an IMP-POA secure CID protocol
with HVZK. Let PKE be a OW-CPA secure PKE scheme.
Let G, H, and H1 be random oracle. Then the CSK scheme
CSK is EUF & CMA secure in the random oracle model.

Proof Based on existing results, the SIG part of the CSK
scheme is EUF-CMA secure. Assume toward contradic-
tion that there exists a PPT adversary A breaking the EUF
& CMA security of the KR-KDS scheme. Then one can
construct a PPT adversary B , breaking the EUF-CMA

Page 20 of 24Wang et al. Cybersecurity (2024) 7:43

security of the SIG scheme. B can simulate ODec with lazy
sampling of OG and Oh in the Definition 3. Since the PKE
is OW-CPA secure, the simulation can only be distin-
guished by A with negligible probability. Thus, we prove
the Claim. �

Appendix D: The KS‑KDS instantiation
on the lattice
We prove our lattice-based KDV is re-linkable and
leakage-resistant based on the properties of algorithms
TrapGen , DeleRight , and DeleLeft (Gentry et al. 2008).

For any dpk = F , we construct the Rel algorithm as
follow: it takes as input F = [F1|F2] , randomly chooses
R ∈ {−1, 1}m×m , lets B = F1 and A = F2 − BR , then
returns (A,B||R) . In addition, let DeleRight and DeleLeft
are trapdoor delegation algorithms which are defined
by Liu et al. (2020). We can construct a PPT algorithm
Alt = (Alt1,Alt2) as follows:

• Alt1(pp,A) → (B||R,TB) : it takes as inputs the
public parameters pp and a public key A . It runs
(B,TB) ← TrapGen(pp) and randomly chooses
R ∈ {−1, 1}m×m . Then returns (B||R,TB).

• Alt2(pp,A,B||R,TB) → (F,TF) : it takes as input
(B||R,TB) and calculates F = [B|BR + A] and
TF ← DeleLeft(B,A,TB,BR + A, pp) and returns
TF.

Appendix E: Proofs
Appendix E.1: Theorem.1
Case 1 According to the definitions of EUF and IMP-
KOA, we have

AdvIMP−KOA
CID,B (pp)

= Pr[V2(spk , com
∗, ch∗, rsp∗) = 1]

≥ Pr[Verify(mpk ,m∗, σ ∗) = 1, ch′∗ = ch∗]
≥ Pr[Verify(mpk ,m∗, σ ∗) = 1, ch′∗ = ch∗, (com∗||m∗, ch′∗) ∈ LH1

]
= Pr[ch′∗ = ch∗|Verify(mpk ,m∗, σ ∗) = 1, (com∗||m∗, ch′∗) ∈ LH1

]·
Pr[Verify(mpk ,m∗, σ ∗) = 1, (com∗||m∗, ch′∗) ∈ LH1

],

and

where qSig is the number of A queries to OSig . If
Verify(mpk ,m∗, σ ∗) = 1 , ch′∗ = H1(com

∗,m∗) . Moreover,

Due to the randomness of OH1
,

where |CH| is the size of H1 ’s range. Since OH1
 is simu-

lated by B as above,

where qH1
 is the number of A ’s queries to OH1

.
Combining these results, we have:

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk]

≤ Pr[Verify(mpk ,m∗, σ ∗) = 1] + qSig · AdvHVZKCID,A(pp),

Pr[Verify(mpk ,m∗, σ ∗) = 1] =Pr[Verify(mpk ,m∗, σ ∗) = 1,

(com∗||m∗, ch′∗) ∈ LH1
]

+ Pr[Verify(mpk ,m∗, σ ∗) = 1,

(com∗||m∗, ch′∗) /∈ LH1
].

Pr[Verify(mpk ,m∗, σ ∗) = 1, (com∗||m∗, ch′∗) /∈ LH1
]

= Pr[Verify(mpk ,m∗, σ ∗) = 1,H1(com
∗||m∗)

= ch′∗, (com∗||m∗, ch′∗) /∈ LH1
]

≤ Pr[H1(com
∗||m∗)

= ch′∗, (com∗||m∗, ch′∗) /∈ LH1
] =

1

|CH |
,

Pr[ch = ch∗|Verify(mpk ,m∗, σ ∗) =1, (com∗||m∗, ch)

∈ LH1
] ≥

1

qH1

,

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ = mpk] ≤ qH1

· AdvIMP−POA
CID,B (pp)+

qSig · AdvHVZKCID,A(pp)+
1

|CH |
.

Case 2 According to the definitions of EUF and IMP-
KOA, we have

AdvIMP−KOA
CID,C (pp) = Pr[V2(dspk , com

∗, ch∗, rsp∗) = 1]
≥ Pr[Verify(pk∗,m∗, (com∗, ch′∗, rsp∗))) = 1, pk∗ = (c∗, dspk), ch′∗ = ch∗],

Page 21 of 24Wang et al. Cybersecurity (2024) 7:43

and

If pk∗ = (c∗, dspk) ∈ LDpk , there exists (m∗||c∗, k∗) ∈ LH
such that dpk∗ = KDV.Dpk(spk ,R; k∗) and c∗ := PKE.Enc

(epk ,m∗;G(m∗)) . Therefore,

In addition,

where qH is the number of A ’s queries to OH and qH1
 is

the number of A ’s queries to OH1
.

Similar to the analysis in Case 1, we can get

Put these results together,

Appendix E.2: Theorem.2

Proof Assume toward contradiction that there exists
a PPT adversary A breaking the SEUF security of the
KS-KDS scheme. Then one can construct a PPT adver-
sary B (or C), breaking the IMP-KOA security of the CID
scheme, in the same way as Theorem 1 except that OH
and ODsk are simulated as follows:

• OH (m, c):

– For each A ’s query (m, c) to OH , if
c = PKE.Enc(epk ,m;G(m)) , B runs (k , aux) ←
Alt1(spk ,R) and (sdpk , dsk) = Alt2(spk ,R, k , aux) .
Let dpk := (c, sdpk) , LH = LH ∪ {(m||c, k)}
and LDsk ′ = LDsk ′ ∪ {(dpk , dsk)} , where LDsk ′
is initialized as a empty set at beginning. If
c = PKE.Enc(epk ,m;G(m)) and there exists
(m||c, k) ∈ LH , it returns k. Otherwise, it randomly

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ ∈ LDpk]

≤ Pr[Verify(pk∗,m∗, σ ∗) = 1, pk∗ ∈ LDpk] + qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp).

Pr[pk∗ = (c∗, dspk)|pk∗ ∈ LDpk] ≥
1

qH
.

Pr[ch = ch∗|Verify(pk∗,m∗, σ ∗) = 1, (com∗||m∗, ch) ∈ LH1
] ≥

1

qH1

,

Pr[GEUF
KS−KDS,A(pp) → 1, pk∗ ∈ LDpk] ≤ qH1

qH · AdvIMP−POA
CID,C (pp)+

qSig · AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
1

|CH |
,

Pr[GEUF
KS−KDS,A(pp) → 1] ≤ qH1

· AdvIMP−POA
CID,B (pp)+ qH1

qH · AdvIMP−POA
CID,C (pp)+

2qSig · ·AdvHVZKCID,A(pp)+ AdvRLinkCID,A(pp)+
2

|CH |
.

picks k and sets LH = LH ∪ {(m||c, k)} . Then, it
returns k

– C picks i∗ $←− [1, qH] . For each A ’s i-th (i = i∗)
query (m, c) to OH , C simulates OH like B . If i = i∗ ,
OH is simulated by C in the same way as in the pre-
vious proof of Theorem 1.

• ODsk(dpk) : For each query dpk, if dpk = (c, sdpk)

∈ LDpk , B/C checks the query list LH . If there exists
(m||c, k) ∈ LH such that c = PKE.Enc(pk ,m;G(m))
and sdpk = KDV.Dpk(spk ,R; k) , it finds (sdpk , dsk)
∈ LDsk ′ and lets LDsk = LDsk ∪ {dsk} , where LDsk is
initialized as ∅ . It returns dsk. Otherwise, it returns ⊥.

In the above simulation, B and C use the algorithm Alt
to generate valid derived key pairs in advance. Thus,
they can simulates ODsk without using ssk. According to
the leakage-resistance of KDV , the simulation of ODsk
can be distinguished by the adversary A with negligible
probability. Then, similar to the analysis in the previous
proof of Theorem 1, we can demonstrate the the KS-KDS
scheme is SEUF security in the random oracle model. �

Appendix E.3: Theorem.3

Proof Assume toward contradiction that there exists a
PPT adversary A that breaks the UNL security of the KS-
KDS scheme. We can construct a PPT adversary B , break-
ing the IK-CPA security of the PKE scheme, as follows:

• Setup Phase The IK-CPA challenger generates
(epk0, esk0) ← PKE.Gen(pp) and (epk1, esk1)

Page 22 of 24Wang et al. Cybersecurity (2024) 7:43

← PKE.Gen(pp) . B receives (epk0, epk1) and
public parameters pp. B extracts a deter-
ministic polynomial-time verifiable relation
R := {(pk , sk)|(pk , sk) ← CID.Gen(pp)} and cal-
culates a derived key pair (sdpk∗, sdsk∗) . It runs
Rel(sdpk∗,R) to generate (spk0, k∗0) and (spk1, k∗1) ,
where spk0 = spk1 . Let mpk0 = spk0||epk0||R ,
mpk1 = spk1||epk1||R . It sends mpk0 and mpk1 to A .
The query lists LH,LG,LH1

,LDpk ,i and LSig ,i are initial-
ized as empty sets, where i ∈ {0, 1}.

• Challenge Phase The challenger picks b $←− {0, 1} and
B randomly chooses m∗ ∈ M.The challenge cipher-
text c∗ ← PKE.Enc(epkb,m

∗) is sent to B . Let
dpk∗ := (c∗, sdpk∗) . B sends dpk∗ to A.

• Query Phase OG , OH , OH1
 ODpk and OSig are simu-

lated as follows:

• OG(m) : For each A ’s query m to OG , if there exist
(m, r) ∈ LG , it returns r. Otherwise, it randomly
picks r and sets LG = LG ∪ {(m, r)} ; then, returns r.

• OH (m, c) : For each A ’s query (m, c) to OH , if there
exist (m||c, k) ∈ LH , it returns k. Otherwise, it
randomly picks k and sets LH = LH ∪ {(m||c, k)} ;
then, returns r.

• OH1
(com,m) : For each A ’s query (com, m) to

OH1
 , if there exist (com||m, ch) ∈ LH , it returns

ch. Otherwise, it randomly picks ch and sets
LH1

= LH1
∪ {(com,m)} ; then, returns ch.

• ODpk(dpk = dpk∗, i) : B parse dpk as c and
sdpk. If there exists (m||c, k) ∈ LH such that
PKE.Enc(epki,m;G(m)) = c and KDV.Dpk

(spki,R; k) = dpk , it sets LDpk ,i := LDpk ∪ {dpk}
and returns 1. Otherwise, return 0.

• OSig (pk ,m, i) : If pk = (c, sdpk) ∈ LDpk ,i or
pk = mpki , B keeps running (com, ch, rsp)

← Sim(sdpki) or (com, ch, rsp) ← Sim(spki)
respectively until there does not exist com′ �= com
and ch′ �= ch such that (com′||m, ch) ∈ LH1

 and
(com||m, ch′) ∈ LH1

 . It returns σ := (com, ch, rsp)
and lets LH1

= LH1
∪ {(com||m, ch)} and

LSig = LSig ,i ∪ {(pk ,m)} . Otherwise, it returns ⊥.

• Output Phase. When A outputs a bit b′ , B outputs b′.

Due to the re-linkability of KDV , spki and spk can be dis-
tinguished by A with probability at most AdvRLinkCID,A(pp) ,
where (spk , ssk) ← CID.Gen(pp) . The simulation in Chal-
lenge Phase is perfect if A does not query m∗ to OG and
m∗||c∗ to OH . We define that A query m∗ to OG or m∗||c∗
to OH as the event Event . Then we can construct a PPT
adversary C attacking OW-CPA security of PKE such that

where qH is the number of A ’s queries to OH and qG is the
number of queries to OG . Using the same proof strategy
for Theorem 1, we can get

where qSig is the number of A ’s queries to OSig . �

Appendix E.4: Theorem.4

Proof Assume toward contradiction that there exists a
PPT adversary A breaking the SUNL security of the KS-
KDS scheme. Then one can construct a PPT adversary B ,
breaking the IK-CPA security of the CID scheme, in the
same way as Theorem 3 except that OH and ODsk are sim-
ulated as follows:

• OH (m, c) : For each A ’s query (m, c) to OH , if
c = PKE.Enc(epki,m;G(m)) , B runs (k , aux)
← Alt1(spki,R) and (sdpk , dsk) = Alt2(spki,

R, k , aux) . Let dpk := (c, sdpk) , LH = LH
∪{(m||c, k)} and LDsk ′,i = LDsk ′,i ∪ {(dpk , dsk)} , where
LDsk ′,i (i ∈ {0, 1}) is initialized as a empty set at begin-
ning.

• ODsk(dpk , i) : For each query (dpk, i), if dpk = (c, sdpk)

∈ LDpk ,i , B checks the query list LH . If there exists
(m||c, k) ∈ LH such that c = PKE.Enc(epki,m;G(m))
and sdpk = KDV.Dpk(spki,R; k) , it finds (sdpk , dsk)
∈ LDsk ′,i and lets LDsk ,i = LDsk ,i ∪ {dsk} , where LDsk ,i
is initialized as ∅ . It returns dsk. Otherwise, it returns
⊥.

In the above simulation, B uses the algorithm Alt to gen-
erate valid derived key pairs in advance. Thus, it can
simulates ODsk ,i without using sski . Then, similar to the
analysis in the previous proofs of Theorems 2 and 3, we
can demonstrate the the KS-KDS scheme is SUNL in the
random oracle model. �

Appendix E.5: Theorem.5

Proof Sketch: assume toward contradiction that there
exists a PPT adversary A breaking the (S)EUF security
of the KR-KDS scheme. Then one can construct a PPT
adversary B or C , breaking the IMP-KOA security of the
CID scheme. The simulations of oracles are similar to the
proof of Theorem 1 (Theorem 2). Additionally, OG and

(qG + qH) · AdvOW−CPA
PKE,C (pp) ≥ Pr[Event],

AdvUNLKS−KDS,A(GP) ≤ (qG + qH) · AdvOW−CPA
PKE,C (GP)

+ AdvIK−CPA
PKE,B + qSig · AdvHVZKCID,A + 2AdvRLinkCID,A(pp),

Page 23 of 24Wang et al. Cybersecurity (2024) 7:43

OH both are simulated by lazy sampling because B does
not have the secret key of PKE . B also simulates ODpk in
the same way as in the proof of Theorem 3. Thus, it simu-
lates ODpk without using the secret key of PKE . Since G,
H and H1 are different random oracles, these simulations
can only be distinguished with negligible probability by
A even in the case of key reusing. Thus, we can demon-
strate the KR-KDS scheme is (S)EUF secure in the ran-
dom oracle model. �

Appendix E.6: Theorem.6

Proof Sketch: assume toward contradiction that there
exists a PPT adversary A breaking the (S)UNL security
of the KR-KDS scheme. Then one can construct a PPT
adversary B or C , breaking the IK-CPA security of the
PKE scheme. The simulations of oracles are similar to
the proof of Theorem 3 (Theorem 4). Since G, H and H1
are different random oracles, these simulations can only
be distinguished with negligible probability by A even
in the case of key reusing. Thus, we can demonstrate the
KR-KDS scheme is (S)UNL secure in the random oracle
model. �

Acknowledgements
We would like to thank the anonymous reviewers and editors for detailed
comments and useful feedback. This work was supported by the National Key
Research and Development Program of China (Grant No. 2022YFB2702701).

Author Contributions
WRD, LZY and LXH completed the drafted manuscripts of the paper. ZZF and
WKP participated in problem discussions. All authors read and approved the
final manuscripts.

Funding
National Key Research and Development Program of China (Grant No.
2022YFB2702701).

Declarations

Competing interests
The authors declare no competing interests.

Received: 29 December 2023 Accepted: 11 March 2024

References
Alwen J, Peikert C (2009) Generating shorter bases for hard random lattices. In:

STACS. LIPIcs, vol 3, pp 75–86
Boyen X (2010) Lattice mixing and vanishing trapdoors: a framework for fully

secure short signatures and more. In: Proceedings of the 13th international
conference on practice and theory in public key cryptography—PKC’10.
LNCS 6056, pp 499–517

Chen Y, Tang Q, Wang Y (2021) Hierarchical integrated signature and
encryption:(or: Key separation vs. key reuse: enjoy the best of both worlds).

In: 27th international conference on theory and application of cryptology
and information security, ASIACRYPT 2021. Springer Science and Business
Media Deutschland GmbH, pp 514–543

Courtois NT, Mercer R (2017) Stealth address and key management techniques in
blockchain systems. In: Proceedings of the 3rd international conference on
information systems security and privacy—volume 1: ICISSP, pp 559–566

Cramer R, Shoup V (1998) A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack

Degabriele JP, Lehmann A, Paterson KG, Smart NP, Strefler M (2012) On the joint
security of encryption and signature in EMV. In: Cryptographers’ track at the
RSA conference. Springer, pp 116–135

Feng C, Tan L, Xiao H, Yu K, Qi X, Wen Z, Jiang Y (2020) PDKSAP: perfected double-
key stealth address protocol without temporary key leakage in blockchain.
In: 2020 IEEE/CIC international conference on communications in China
(ICCC Workshops). IEEE, pp 151–155

Fuchsbauer G, Plouviez A, Seurin Y (2020) Blind Schnorr signatures and signed
ElGamal encryption in the algebraic group model. In: Annual international
conference on the theory and applications of cryptographic techniques.
Springer, pp 63–95

Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the fortieth annual ACM
symposium on theory of computing, pp 197–206

Gilad Y, Hemo R, Micali S, Vlachos G, Zeldovich N (2017) Algorand: scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th
symposium on operating systems principles, pp 51–68

Haber S, Pinkas B (2001) Securely combining public-key cryptosystems. In:
Proceedings of the 8th ACM conference on computer and communications
security, pp 215–224

Liu Z, Nguyen K, Yang G, Wang H, Wong DS (2019a) A lattice-based linkable
ring signature supporting stealth addresses. In: European symposium on
research in computer security. Springer, pp 726–746

Liu Z, Yang G, Wong DS, Nguyen K, Wang H (2019b) Key-insulated and privacy-
preserving signature scheme with publicly derived public key. In: 2019 IEEE
European symposium on security and privacy (EuroS &P). IEEE, pp 215–230

Liu W, Liu Z, Nguyen K, Yang G, Yu Y (2020) A lattice-based key-insulated and
privacy-preserving signature scheme with publicly derived public key.
In: European symposium on research in computer security. Springer, pp
357–377

Lyubashevsky V (2012) Lattice signatures without trapdoors. In: EUROCRYPT.
Lecture notes in computer science, vol 7237, pp 738–755

Micciancio D, Peikert C (2012) Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Advances in cryptology—EUROCRYPT’12. LNCS 7237. Springer, pp
700–718

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. Consulted
Naor M, Reingold O (1997) Number-theoretic constructions of efficient pseudo-

random functions. In: 38th Annual symposium on foundations of computer
science. Proceedings

Noether S, Mackenzie A (2016) Ring confidential transactions. Ledger 1:1–18
Paterson KG, Schuldt JC, Stam M, Thomson S (2011) On the joint security of

encryption and signature, revisited. In: International conference on the
theory and application of cryptology and information security. Springer, pp
161–178

Pointcheval D, Stern J (1996) Security proofs for signature schemes. In: EURO-
CRYPT 96, pp 387–398

Regev O (2009) On lattices, learning with errors, random linear codes, and cryp-
tography. J ACM (JACM) 56(6):1–40

Saberhagen NV (2012) CryptoNote v 1.0
Saberhagen NV (2013) CryptoNote v 2.0
Sasson EB, Chiesa A, Garman C, Green M, Miers I, Tromer E, Virza M (2014)

Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
symposium on security and privacy. IEEE, pp 459–474

Tsiounis Y, Yung M (1998) On the security of ElGamal based encryption
Vasco MIG, Hess F, Steinwandt R (2008) Combined (identity-based) public key

schemes. IACR Cryptol. ePrint Arch. 2008:466
Wang X, Zhu C, Liu Z (2024) A universally composable linkable ring signature

supporting stealth addresses. Mathematics 12(3):491
Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Proj Yellow Pap 151(2014):1–32
Wood G (2016) Polkadot: vision for a heterogeneous multi-chain framework.

White Pap 21(2327):4662

Page 24 of 24Wang et al. Cybersecurity (2024) 7:43

Wuille P, Nick J, Ruffing T (2021) BIP 340: Schnorr signatures for secp256k1. https://
github. com/ bitco in/ bips/ blob/ master/ bip- 0340. media wiki

Yu G (2020) Blockchain stealth address schemes. IACR Cryptol. ePrint Arch.
2020:548

Zhu C, Wang X, Liu Z (2023) Universally composable key-insulated and
privacy-preserving signature scheme with publicly derived public key. In:
Inscrypt’23

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

	Key derivable signature and its application in blockchain stealth address
	Abstract
	Introduction
	Our results
	Related work
	Paper organization

	Preliminaries
	Canonical identification protocol (CID)
	Key privacy of public key encryption

	Key derivable signature scheme
	Algorithm definition
	Security model

	The construction of (strong) key separation key derivable signature scheme
	Key derivation scheme
	A framework to construct (strong) KS-KDS
	Instantiation
	A KS-KDS instantiation on the elliptic curve
	A strong KS-KDS instantiation on the lattice

	The construction of (strong) key reusing key derivation scheme
	A framework to construct (strong) KR-KDS
	Instantiation
	The KR-KDS instantiation on the elliptic curve
	The strong KR-KDS instantiation on the lattice

	Conclusion
	Appendix A: Security models of PDPKS
	Appendix B: Key reusing key derivable signature
	Appendix C: Combined signature and key encapsulation scheme
	Appendix C.1: Security
	Appendix C.2: Key-privacy of CSK
	Appendix C.3: A framework to construct CSK

	Appendix D: The KS-KDS instantiation on the lattice
	Appendix E: Proofs
	Appendix E.1: Theorem.1
	Appendix E.2: Theorem.2
	Appendix E.3: Theorem.3
	Appendix E.4: Theorem.4
	Appendix E.5: Theorem.5
	Appendix E.6: Theorem.6

	Acknowledgements
	References

