
An et al. Cybersecurity (2024) 7:42
https://doi.org/10.1186/s42400-024-00236-6

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Honey password vaults tolerating leakage
of both personally identifiable information
and passwords
Chao An1,2,3, YuTing Xiao1,2*, HaiHang Liu4, Han Wu1,2,3 and Rui Zhang1,2,3 

Abstract 

Honey vaults are useful tools for password management. A vault usually contains usernames for each domain,
and the corresponding passwords, encrypted with a master password chosen by the owner. By generating decoy
vaults for incorrect master password attempts, honey vaults force attackers with the vault’s storage file to engage
in online verification to distinguish the real vaults, thus thwarting offline guessing attacks. However, sophisticated
attackers can acquire additional information, such as personally identifiable information (PII) and partial passwords
contained within the vault from various data breaches. Since many users tend to incorporate PII in their passwords,
attackers may utilize PII to distinguish the real vault. Furthermore, if attackers may learn partial passwords included
in the real vault, it can exclude numerous decoy vaults without the need for online verification. Indeed, both leakages
pose serious threats to the security of the existing honey vault schemes. In this paper, we explore two attack vari-
ants of the inspired attack scenario, where the attacker gains access to the vault’s storage file along with acquiring PII
and partial passwords contained within the real vault, and design a new honey vault scheme. For security assurance,
we prove that our scheme is secure against one of the aforementioned attack variants. Moreover, our experimental
findings suggest enhancements in security against the other attack. In particular, to evaluate the security in multiple
leakage cases where both the vault’s storage file and PII are leaked, we propose several new practical attacks (called
PII-based attacks), building upon the existing practical attacks in the traditional single leakage case where only the
vault’s storage file is compromised. Our experimental results demonstrate that certain PII-based attacks achieve
a 63–70% accuracy in distinguishing the real vault from decoys in the best-performing honey vault scheme (Cheng
et al. in Incrementally updateable honey password vaults, pp 857–874, 2021). Our scheme reduces these metrics
to 41–50%, closely approaching the ideal value of 50%.

Keywords  Honey password vault, Personally identifiable information, Passwords

*Correspondence:
YuTing Xiao
xiaoyuting@iie.ac.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00236-6&domain=pdf

Page 2 of 15An et al. Cybersecurity (2024) 7:42

Introduction
Passwords are the most widely-used authentication
method in practice [1, 2, 8–10, 41] because of their con-
venience. However, users face increasing challenges in
remembering multiple passwords and usernames across
services and applications. To tackle this problem, Pass-
word vaults, also known as wallets or managers, were
proposed, where users’ passwords are encrypted with a
user-selected password, called the master password.

In the real world, it is often necessary to synchronize
the password vault across multiple devices, e.g. iCloud
keychain. Note that synchronization services provided
by the vault applications, such as LastPass and 1Pass-
word, or third-party file sync services (like Dropbox and
iCloud) may suffer from leakage, which leads to password
vault storage (including ciphertext) exposure [23, 24, 39,
40]. Since passwords are usually of low-entropy [7, 49],
attackers can efficiently launch offline guessing attacks.

Honey password vault was proposed to address this
threat [6, 11–13, 18]. By generating decoy vaults for
incorrect master password attempts, honey vaults force
attackers with the vault’s storage file to engage in online
verification to distinguish the real vaults, which is readily
detected and countered [16, 19, 37].

Motivations. The primary challenge for honey vaults
is to prevent attackers from distinguishing the real vault
from decoys. In existing honey vault schemes [6, 11, 13,
18], attackers can obtain the vault’s storage file and public
information such as password policies, website restric-
tions, public datasets, probability models, and HE algo-
rithms including the encoder. As shown in Fig. 1 (with
gray text omitted), attackers attempt to reveal all pass-
words {πi}

n
i=1 in the vault as follows:

Step 1: Compromise the vault’s storage file {Aux,C} ,
where C is the ciphertext of {πi}

n
i=1 and Aux is the

auxiliary information including domains, usernames,
and password positions.
Step 2: For each �∗1∈ D� , where D� is the diction-
ary of master passwords, decrypt C to obtain n pass-
words V∗ in a candidate vault. Assume |D�| = N  , the
attacker will obtain a list of candidates {V∗

i }
N
i=1.

Fig. 1  Attacks variants against honey vault: the original attack [11–13, 18] is the version with all gray text omitted. The attack based on PII
and partial passwords in the real vault includes the gray text

1  To differentiate the real value of a variable (the master password) from
the attacker’s guessing value (which may not necessarily be equal to the real
value), we use X ( � ) to denote the real value (the real master password) and
X∗ ( �∗ ) to denote the guessing value (the guessing master password) or the
value of any other variable derived from the guessing value.

Page 3 of 15An et al. Cybersecurity (2024) 7:42 	

Step 3: Construct an ordered online verification list

V∗
ki

N

i=1
 based on public information and the vault’s

storage file.
Step 4: Test the vaults following the ordered online
verification list by logging in to the authentica-
tion server (e.g., Google) using the corresponding
(Google’s) password obtained from each vault.

However, real attackers may possess more power.
Due to the numerous website password breaches [3, 20,
35] and the insecure storage of passwords (e.g., plain-
text), it is quite likely that attackers may have partial
passwords contained within the real vault. As shown
in Fig. 1 (with gray text), the attacker, possessing cer-
tain passwords (in Step 1), can identify a vault lack-
ing known passwords as a decoy vault, subsequently
eliminating it from the ordered online verification list
(in Step 3). Therefore, the attacker could discern lots of
decoy vaults without online verification. In the extreme
case, the attacker can obtain all passwords except one.

Moreover, the personally identifiable information
(PII) from sources such as social networks [4] and vari-
ous breaches [5, 17, 21, 32, 36] makes the situation
even worse. Many users create passwords using PII [44,
45], enabling attackers with PII (in Step 1) to construct
ordered online verification lists more efficiently (in Step
3), accelerating the discovery of the real vault (Fig. 1 with
gray text). For instance, if the target user’s family name
is “Wang”, the vaults containing the password “Liu123”
would be positioned further back in the ordered online
verification list. Although Cheng et al. [13] acknowl-
edged this threat, they didn’t propose a specific scheme.

Indeed, the leakage of PII and partial passwords poses a
threat to the security of the existing honey vault schemes
[11–13, 18].

Our contributions
In this paper, we explore the vulnerability of existing
honey vault schemes in scenarios involving the leakage of
PII and partial passwords contained within the real vault.
The low entropy of the master password enables attack-
ers to access a group of vaults, including the real one, by
using a dictionary of master passwords. Upon obtaining
partial passwords, attackers can identify numerous decoy
vaults without online verification based on the known
passwords. To mitigate the damage caused by the leakage
of partial passwords, we introduce a random vector. Nat-
urally, partial passwords and the random vector cannot
be leaked simultaneously. To assist user memorization,
our honey vault system model incorporates the use of an
auxiliary device for storing this random vector.

Attack variants. Building upon the above scenarios and
system model, we investigate two attack variants of the
inspired attack scenario, where the attacker gains access
to the vault’s storage file along with acquiring PII and
partial passwords contained within the real vault. Due to
the risk of losing the auxiliary device and the inability to
leak the random vector and partial passwords simultane-
ously, we consider Attack-I (Table 1), where the vault’s
storage file, PII, and the random vector are leaked. In the
scenario where the auxiliary device is secure, thus coun-
tering the damage caused by the leakage of partial pass-
words, we consider Attack-II (Table 1), where the vault’s
storage file, PII, and partial passwords are leaked.

Table 1  Security comparison between our scheme and existing schemes

§ We use {πi}i∈I to denote the passwords in a vault, {�i}i∈I to denote the shares of the master password � , and t to denote the threshold of the secret sharing
scheme used in our scheme
§§ The symbol \ indicates that the information in the columns is specifically defined in our scheme, which is not considered in other schemes. The symbol

√
 ( × )

indicates that the respective information is (not) accessible to the considered attacker
† Condition 1 is that L ⊆ I and any password within L ∩ J can be deduced by attackers equipped with the vault’s storage file and {�i}i∈J

Page 4 of 15An et al. Cybersecurity (2024) 7:42

A new honey vault scheme. In particular, we design a
new honey vault scheme (Sect. 4.3). To evaluate security
against Attack-I, we propose PII-based practical attacks
considering multiple leakage cases where both the vault’s
storage file and PII are leaked, building upon existing
practical attacks [13, 18] in the traditional single leakage
case where only the vault’s storage file is compromised.
Our experimental results reveal that our PII-based single
password attack, PII-based hybrid attack, and PII-based
KL divergence attack achieve an accuracy of 63%-70% in
distinguishing the real vault from decoys in the best-per-
forming honey vault scheme [13]. Our scheme reduces
the metric’s value to 41%-50%, closely approaching the
ideal value of 50%. For Attack-II, we formally define secu-
rity against Attack-II and prove that our scheme is secure
against it.

Further discussion. As a further discussion, we con-
sider two supplementary attacks for our scheme. In our
scheme, we first segment the master password into dif-
ferent shares using a (t, n)-threshold secret sharing
scheme (Sect. 2), where n denotes the number of pass-
words in the vault, and t < n . Then, each password in
the vault is encrypted with the corresponding share after
encoding. Therefore, considering the potential leakage of
some shares of the master password during the calcula-
tion processes, we define Supplementary Attack-I and
Supplementary Attack-II (Table 1). We prove that our
scheme provides the same security against Supplemen-
tary Attack-I as against Attack-I, and it is secure against
Supplementary Attack-II.

Related work
Honey encryption (HE). Juels and Ristenpart introduced
honey encryption [22], which can resist brute-force
attacks by generating a seemingly credible message
for any wrong password. HE employs the distribution
transforming encoder (DTE) to encode a message M,
conforming to a distribution M , into a string S indis-
tinguishable from randomness. This string is encrypted
using carefully selected password-based encryption
(PBE) with K, such as AES in CTR mode with PBKDF.
Decryption using incorrect key K ′ produces a random bit
string S′ , decoded back into a decoy message M′ sampled
from M.

Honey password vault. The design of decoy vaults
originates from Kamouflage proposed by Bojinov et al.
[6]. They pre-generated a fixed set of decoy vaults (e.g.,
1000) along with corresponding decoy master passwords.
This method exposes the real master password structure.
In 2015, Chatterjee et al. [11] proved that Kamouflage
reduces overall security compared to traditional PBE.

In 2015, Chatterjee et al. [11] proposed a honey vault
scheme NoCrack based on HE. HE-based honey vault

schemes correlate M and K with the vault and the master
password, respectively. The scheme encodes the vault into
a seemingly random bit string seed via the probabilistic
encoder and further encrypts the seed using PBE. If an
incorrect master password is used to decrypt and decode,
a decoy vault is generated. For the probability model of
the vault, Chatterjee et al. used probabilistic context-free
grammars (PCFG) to describe the probability model of
the single password distribution and sub-grammars to
simulate password similarity. For the encoder, they con-
structed natural language encoders (NLE). NoCrack can
resist basic machine-learning attacks.

Golla et al. [18] utilized the Markov model and
extended it by the reuse-rate approach to construct the
probability model. They proposed the adaptive natural
language encoder (ANLE) adjusting the encoder based
on the vault’s storage file to bring the decoy closer to the
real vault. This honey vault scheme can resist Kullback-
Leibler divergence attacks, unlike NoCrack.

However, both NLE and ANLE remain vulnerable to
encoding attacks. To address the problem, Cheng et al.
[12] proposed a probability model transforming encoder
against encoding attacks.

Cheng et al. [13] designed a generic construction of
honey vaults based on a multi-similar-password model,
the conditional probability model transforming encoder
(CPMTE), and an incremental update mechanism. With
the mechanism, the honey vault can resist intersection
attacks. To evaluate the security when the vault’s storage
file leaks, they proposed the theoretically optimal strat-
egy for online verifications and practical attacks. These
attacks can effectively distinguish the real vault from
decoys for the existing honey vault schemes excluding
their scheme.

Targeted online password guessing. The compromise of
Personally Identifiable Information (PII) and sister pass-
words can enable attackers to conduct targeted online
password guessing, wherein they attempt to guess a spe-
cific victim’s password for a service [15, 28, 33, 43–46,
48]. However, the vulnerability of honey vault security
to the leakage of PII and partial passwords has not been
extensively explored. While Cheng et al. [13] recognized
this threat, they did not propose a specific scheme to
address it.

To effectively utilize Personally Identifiable Informa-
tion (PII) for targeted online password guessing, Wang
et al. [43] classified PII into two types: type-1 and type-
2. Type-1 PII, which includes information such as names
and birthdays, can directly contribute to password gen-
eration. Conversely, type-2 PII, such as gender and edu-
cation [30], may influence password generation behavior
but is typically not directly incorporated into pass-
words. They introduced several PII tags (e.g., N1 ∼ N7

Page 5 of 15An et al. Cybersecurity (2024) 7:42 	

representing name tags, with N1 indicating the usage of
the full name) to extend the original tags as in PCFG [47],
and constructed TarPCFG. Additionally, they employed a
password-reuse-based context-free grammar to conduct
online password guessing for a target user at one service
when provided with a leaked sister password of the same
user from another service.

In subsequent developments, representative models
like Markov [29] and List [42] were transformed into tar-
geted versions, namely TarMarkov and TarList [46], using
a similar methodology.

Preliminary
In this section, we review some useful notations and
notions.

Notations. We use � ∈ N to denote the security param-
eter. We use PPT to denote probabilistic polynomial
time. We use | · | to denote the cardinality of a set or the
bit length of a string. We use “||” to denote the concat-
enation of strings. We use “ ←$ ” to denote a randomized
process, and “ ← ” to denote a deterministic process. For
a deterministic algorithm DAlg, y ← DAlg(x) denotes
running it with x as input, yielding output y. For a proba-
bilistic algorithm PAlg , y←$ PAlg(x) denotes running it
with x as input, yielding output y. A probabilistic algo-
rithm will become deterministic once its internal ran-
domness r is explicitly specified, which is denoted as
y ← PAlg(x, r).

Threshold secret sharing. A (t, n)-threshold secret shar-
ing scheme is a fundamental cryptographic technique
that divides a secret into n shares. Any t or more shares
are sufficient to reconstruct the secret. Shamir [38] con-
structed a simple and elegant threshold scheme that
ensures perfect privacy [31]. The scheme includes the fol-
lowing three algorithms:

•	 Gen(p, t) : this probabilistic algorithm takes
input a random prime p and a threshold t and
returns a random polynomial f (x) of degree
t − 1 : f (x) = a0 + a1x+ · · · + at−1x

t−1(mod p) ,
where a0 is the secret y, ai(1 ≤ i ≤ k − 1) is ran-
domly generated form Zp , and the random vector
−→rt = (a1, . . . , at−1).

•	 SS
(−→rt , y

)

 : this deterministic algorithm takes input
a secret y and −→rt and returns

(

y1, y2, · · · , yn
)

 , where
yi = f (i) denotes the i-th share of y.

•	 Recon
(

p,
{

yj
}

j∈J

)

 : this deterministic algorithm
takes input p and arbitrary t shares

{

yj
}

j∈J
 and

returns the secret y =
∑

j∈J yj�j(mod p) , where �j is
the lagrange interpolation coefficient for j ∈ J and
�j =

∏

l∈J ,l �=j
−l
j−l (mod p).

Our model
In this section, we introduce our system model and the
security model.

The system model
As shown in Fig. 2, our system involves the following
entities:

•	 User U , who wants to store some self-selected2 pass-
words {πi}i∈I and has the master password � selected
from the master password dictionary D� . Moreover,
U has an auxiliary device AuxDec3 to store the ran-
dom vector −→r  . Using a honey vault, U stores {πi}i∈I
and Aux , where Aux is the auxiliary information and
{πi}i∈I is encrypted with � , −→r and Personally Iden-
tifiable Information (PII) to the ciphertext C. In par-
ticular, Aux = {ASi}i∈I , where Auxi includes identity
information ADomi of ASi , username Uni and the
password position for more convenient retrieval πi .
We require � to be independent of the passwords in
the vault, as the existing schemes [11–13, 18], and
PII.

•	 Authentication servers {ASi}i∈I . For each i ∈ I  , U
sets a password πi to authenticate with the respective
authentication server ASi.

•	 Honey vault server HS , who provides the pass-
word management service for U , with support from
AuxDec.

•	 Synchronization server SyncS , who offers the syn-
chronization service and stores the vault’s storage file
PVault = {Aux,C}.

Fig. 2  Our system model

2  Pearman et al. [34] indicates that only a small fraction of users use pass-
word managers with password generators.
3  Users can set other trusted auxiliary devices by securely transferring
secret information ( −→r and PII) from the trusted device to the new one
using methods such as NFC.

Page 6 of 15An et al. Cybersecurity (2024) 7:42

The system encompasses four phases:
Initialization phase: U selects � and initiates the

authentication register protocol with HS . The proto-
col generates −→r for encryption, which is then stored in
AuxDec.

Store phase: Based on −→r  , � , {πi}i∈I , PII, and Aux
offered by U , HS encrypts {πi}i∈I into C and Aux is stored
as plaintext [13]. Then PVault is uploaded to SyncS.

Query phase: When U queries passwords with −→r ∗ ,
PII∗ , and �∗ , HS decrypts C with these inputs. If cor-
rect, the real vault is returned; otherwise, a decoy vault
is returned.

Update phase: HS downloads and updates PVault based
on � and changes provided by U , which include password
changes, auxiliary information changes, and −→r changes.

The security model
We assume that an attacker can obtain the following
information, which is reasonable as discussed in Sect. 1:

•	 All public information includes password policies,
website password restrictions, public datasets, prob-
ability models, and HE algorithms including the
encoder.

•	 Vault ′s storage filePVault = {Aux,C} can be leaked
when using sync services.

•	 Randomvector−→r could be obtained through side-
channel attacks or from lost AuxDec.

•	 PII could be obtained from social networks and vari-
ous data breaches.

•	 Partial passwords can be obtained through shoul-
der surfing attacks, data breaches, or vulnerabilities
in websites. We consider the extreme case where the
attacker can obtain all but one of the passwords in
the vault.

To evaluate the security of our password vault scheme in
multiple leakage scenarios where public information, the
vault’s storage file, PII and partial passwords may leak, we
consider two attacks denoted as Attack-I and Attack-II
(Table 1).

Attack-I. For Attack-I, we allow the attacker to access
the vault’s storage file, public information, PII, and −→r  .
Using the vault’s storage file, PII, and −→r  , the attacker
attempts to decrypt C by employing all master passwords
in D� , generating a list of candidate vaults, where at most
one is the real vault. Utilizing public information and PII,
the attacker constructs an ordered online verification list.
Subsequently, the attacker tests the vaults following the
ordered list to confirm their correction by logging into
the authentication server (e.g., Google) using the respec-
tive (Google’s) password obtained from each vault.

The success of the attack depends on two main factors:
the offline guessing order of master passwords which is
linked to the strength of the master password and the
ordered list dictated by a priority function (i.e. the indis-
tinguishability of real and decoy vaults). We take the
same research direction as existing schemes [11–13, 18],
focusing on the security of encoders.

Attack-II. For Attack-II, we allow the attacker to access
the vault’s storage file, public information, PII, and poten-
tially all passwords except one contained in the vault.
Unlike Attack-I, the attacker in the case of Attack-II is
constrained from attempting all possible −→r values to
obtain all candidate vaults containing the actual vault.
We assume that the attacker’s objective is to compromise
one unknown password in the vault. To define the secu-
rity against Attack-II, we define the following experiment:

Setup Phase: Initialize passwords {πi}i∈I in a vault and
an empty list Lcorr.

Query Phase: In this phase, the attacker is allowed to
adaptively query the following oracles:

•	 Leak(�) : this oracle returns C and PII. This query
models the attacker’s ability to obtain the real cipher-
text and PII.

•	 Corrupt(k) : If k /∈ Lcorr and |Lcorr | < |I| − 1 , return
πk and add k to Lcorr . This query models the attack-
er’s ability to obtain a limited number of passwords.

•	 RePV(C ,�∗, PII,−→r ∗) : this oracle returns {π∗
i }i∈I .

This query models the interaction between the
attacker and HS . If �∗ and −→r ∗ are correct, decrypting
C reveals the real passwords provided to the attacker.
Otherwise, a decoy vault is provided instead.

•	 OnTest(i,π∗) : If π∗ = πi , return 1, otherwise, return
0. This query models the attacker’s online password
verification with ASi . For each i, this oracle can be
queried at most q4 times. If the number of logins
exceeds this limit, the account will be locked.

Challenge Phase: The attacker picks a target i∗ and out-
puts a guess π∗ . If i∗ /∈ Lcorr and π∗ = πi∗ , the A wins the
experiment.

Definition 1  A honey vault scheme is secure against
Attack-II if for any PPT attacker A in the above experi-
ment, there exists a negligible function nelg s.t.:

Pr[A wins] ≤ max {PrG[πi∗],
1

|D�|
} + nelg(�)

4  Considering the target online password guess, Wang et al. [46] recom-
mend that q be set to a small value (e.g. 3).

Page 7 of 15An et al. Cybersecurity (2024) 7:42 	

where the master password � is independently and
uniformly generated from D� and independent of the
passwords contained within the vault and PII, and
PrG[πi∗] = Pr

[

πi∗ | PII, {πi}i∈Lcorr , q
]

 is the probabil-
ity of success in guessing the target password πi∗ online
within q times based on PII and {πi}i∈Lcorr.

Definition 1 indicates that a honey vault scheme is
secure against Attack-II if the attacker in the experiment
doesn’t have an advantage over an attacker who guesses
the target password online based on PII and partial
passwords.

Our honey vault scheme
In this section, we introduce our honey vault scheme.
First, we modify PII tags [43] and construct the PII-
based probability model. Then, we construct our honey
vault scheme based on the PII-based probability model,
Shamir’s secret sharing [38], and the conditional prob-
ability model transforming encoder (CPMTE)5 [13].

PII tags
We denote the passwords in a vault as V , where
V = {πi}

n
i=1 . Inspired by TarPCFG [43], we parse πi to

πT
i with PII tags, which can capture PII semantics. The

number of PII tags and their specific definitions depend
on the nature of the PII to be trained and on the granu-
larity the attacker prefers. Here we define our PII tags for
attacking Chinese users.

Our PII tags retain the PII tags (name: N1,N2, · · · , N7 ,
birthday: B1, B2, · · · , B10 , email prefix: E1, E2, E3 , phone
number: P1, P2 , and Chinese National Identification num-
ber: I1, I2, I3 ) proposed by Wang et al. [43] and add some
new tags including N8 for family name + given name (e.g.,
“wangjianguo”), N9 as the abbr. of N8 (e.g., “wjg”), and N10
for the given name with the first letter capitalized (e.g.,
“Jianguo”). Since we match password datasets by email to
generate our password vault dataset, which indicates that
the username selected by the user for the password vault
is unknown, we do not consider the username here. We
use the above tags to parse the corresponding PII usages
in passwords. For instance, “wangjianguo@123” is parsed
into N8@123.

PII‑based probability model
We drew on the password generation methods in
Cheng et al.’s work [13]: “reusing” parsed old passwords
πT
1 , · · · ,πT

i and generating a new one. Then we construct
a PII-based probability model PrPII . Then, the probability

PrPII[V | PII] for the passwords V = {πi}
n
i=1 in a vault can

be expanded as

where

where Prpss , Prps , and f (i) represent the PII-based single-
similar password model, the PII-based single password
model, and the reused probability function. The new gen-
eration and the reusing are captured by Prps and Prpss .
And f (i) captures the probability of reusing the first i
parsed old passwords to generate πT

i+1 . Considering that
a PII tag may represent more than two normal charac-
ters (ASCII codes), we define that two parsed passwords
are reused if the longest common substring distance
(LCSStrD) [13] is at least 15 , where LCSStrD is equal to
the length of their longest common substring divided by
their maximum length.

PII-based single-similar password model. We use
{πT

A ,πT
B } to denote a reused parsed password pair of a user

for different authentications. We match passwords in dif-
ferent password datasets (Table 2) by email to construct
a list of reused password pairs. We assume that πT

A can
be generated by reusing πT

B through tail deletion ( td ), tail
insertion ( ti ), head deletion ( hd ), and head insertion ( hi ),
which are the most common reuse habits of users [14].

During the training phase, the first step is to use
LCSStrD [13], Manhattan-distance (MD) [25], and Lev-
enshtein-distance (LD) [27] to measure the similarity
score d1D = D

(

πT
A ,πT

B

)

.
We then employ an operation, denoted as OP , follow-

ing the order of hd, td, ti, hi to generate πT
A1 by reusing

πT
B  . This implies that we resort to tail deletion only if the

similarity score does not increase through head deletion.
The path is considered effective if d2D = D

(

πT
A ,πT

A1

)

 ful-
fills the following conditions:

•	 For delete operation (hd or td) in the path, the dis-
tance needs to satisfy (1) d2LD < d1LD or (2) d2LD ≤ d1LD
and d2MD < d1MD.

•	 For delete operation (hi or ti) in the path, d2LD < d1LD
and d2LCSStrD d1LCSStrD.

PrPII[V | PII] =

n−1
∏

i=0

PrPII

[

πi+1 | {πi′ }
i
i′=1, PII

]

=

n−1
∏

i=0

PrPII

[

πT
i+1 | {π

T
i′ }

i
i′=1

]

,

PrPII

[

πT
i+1 | {π

T
i′ }

i
i′=1

]

=

(

f (i)

i

i
∑

i′=1

Prpss

[

πT
i+1 | π

T
i′

]

+
(

1− f (i)
)

Prps

[

πT
i+1

]

)

,

5  Naturally, our scheme inherits the traits of resistance to encoding attacks,
intersection attacks, and attacks on adaptive encoders.

Page 8 of 15An et al. Cybersecurity (2024) 7:42

If the validity of paths is determined by a single method,
we may miss some effective paths. Subsequently, πT

A is
updated to πT

A1 . The process is repeated until πT
Ak = πT

B .
Based on all effective paths for all parsed password

pairs, we compute the probability of the existence of
the insert operation, the probability of the existence of
the delete operation, the probability of the number of
operations, and the probability of adding the operation
character including PII tags and normal characters in
95 printable ASCII code. Let lOP be the number of the
operation OP . Since over 99% of passwords are less than
17 characters long [29], and very few are shorter than 4
characters, then lhd + lt td < min { 45 ×

∣

∣πT
A

∣

∣,
∣

∣πT
A

∣

∣− 4}
and lhi + lti < min {4 × (

∣

∣πT
A

∣

∣− lhd − ltd), 16−
∣

∣πT
A

∣

∣− lhd − ltd}.
Then, Pr[wjgwords | 5words67, PII] = PrPII[N8words |

5words67] = PrI [1]× PrD[1]××Prhdn[1]× Prtdn[2]

×Prhin[1]× Prhic[N8] . Here, PrI [1] ( PrD[1] ) is the
probabilities that insertion (deletion) exists; Prhdn[1] ,
Prtdn[2] and Prhin[1] are the probabilities of deleting 1
head character, deleting 2 tail characters, and adding 1
head character, respectively; Prhic[N8] is the probabilities
of adding the character “ N8 ” to the head, respectively.

PII-based single password model. Taking into account
the rarity of passwords shorter than 4 characters, we
presume that a parsed password with a length of less
than 4 includes at least one PII tag. To conveniently
meet this condition, we utilize the TarList model [46]
with add-ks = 10−8 smoothing as the probability model.
However, considering the limitations and small sizes of
password datasets with PII, we can’t rely solely on list-
based methods.

Therefore, we use the TarList model for parsed
passwords with lengths of less than 4 and opt for a
1-order TarMarkov model [46] with Laplace smooth-
ing for parsed passwords with lengths of more than 3.
It’s worth noting when using the TarMarkov model to
calculate probabilities: since every parsed password in
Chin contains 3 or fewer PII tags, we impose a limit to
avoid excessive length post-restoration-parsed pass-
words cannot contain 4 or more PII tags. This neces-
sitates us to calculate probabilities under multiple
conditions. Furthermore, the probability of a parsed
password with a length greater than 3 is the product
of the parsed password probability based on the above
method and the initial coefficient. The initial coefficient
is the sum of the probabilities of parsed passwords with
lengths greater than 3.

Reused function. We train f (i) based on Chin as Cheng
et al. [13]. As shown in Fig. 3, we use 1

1+e−3.134i+4.033 to sim-
ulate fChin(i).

Our scheme
Our honey vault scheme consists of the following ingre-
dients: PII-based password probability model (Sect. 4.2),
Shamir’s secret sharing [38], AES in CTR mode with
PBKDF as the PBE scheme, the incremental update
mechanism [13], and CPMTE [13].

Initialization phase. The honey vault scheme is initial-
ized as follows:

1.	 p←$ Init(�,Max) : Given � and the maximum capac-
ity Max of the honey vault, this algorithm outputs a
prime number p > Max.

2.	 −→rt ←$Gen(p, t) : This algorithm is the same as the
Gen algorithm in Sect. 2 and the random vector −→rt
will be stored in AuxDec.

Store phase. When U wants to store the passwords
{πi}i∈I , based on −→rt  , the master password � , PII , and the
auxiliary information Aux offered by U , HS follows the
steps below:

1.	 {Si}i∈I←$ Encode
(

{πi}i∈I , PII
)

 : Based on PII, {πi}i∈I
is parsed into

{

πT
i

}

i∈I
 . With CPMTE,

(

πi | {πi′ }
i−1
i′=1, PII

)

 is encoded to Si for each i ∈ I .

2.	 {�i}i∈I ← SS
(

�,−→rt
)

 : Using the SS algorithm in
Sect. 2 taking input a secret H(�) ∈ Zp

6 and −→rt  , HS
obtains the i-th share of H(�) as �i.

3.	 C←$ Enc
(

{�i}i∈I , {Si}i∈I
)

 : For each i ∈ I  , HS uses
the PBE scheme to encrypt Si with �i and gets Ci . The
ciphertext C is C1|| · · · ||C|I| and the password file
PVault = {Aux,C} is updated to SyncS.

Fig. 3  Reuse function fChin(i)

6  Note that any password dictionary can be hashed into Zp using a collision-
resistant hash H(∗).

Page 9 of 15An et al. Cybersecurity (2024) 7:42 	

Query phase. When U wants to query a password, HS
follows the steps below:

1.	
{

�∗
i

}

i∈I
← SS

(

�∗,−→rt
∗
)

 : Using SS algorithm taking
input �∗ and −→rt ∗ , HS obtains {�∗

i }i∈I.
2.	

{

S∗i
}

i∈I
← Dec

({

�∗
i

}

i∈I
,C

)

 : After splitting C to
{Ci}i∈I , HS uses the PBE scheme to decrypt Ci using
�∗

i and gets S∗i .
3.	

{

π∗
i

}

i∈I
← Decode

({

S∗i
}

i∈I
, PII

)

 : With CPMTE,
(

S∗i | {πT∗
i′ }i−1

i′=1, PII
)

 is decoded in sequential order

from i = 1 to |I| and obtains
{

πT∗
i

}

i∈I
 , which can

convert to
{

π∗
i

}

i∈I
 using PII. And

{

π∗
i

}

i∈I
 is

returned to U.

Update phase. When U wants to update a password, HS
choose one step below:

•	 Adding a new password: when U adds a new pass-
word to the vault, U has the option to increase the
threshold t . If U increases the threshold, Init algo-
rithm will be executed to generate −−→rt+1 and I is
updated to I ∪ {|I| + 1} . Then HS re-executes the
algorithms in the other phases.

•	 Deleting an old password: mark the password as
deleted (in Aux ) without changing C.

•	 Changing an old password: delete the old password
and add a new password as in the previous two
steps. Then update the password position for the
corresponding account.

Security analysis
We compare the security of our scheme with the exist-
ing schemes in Table 1. The experimental results show
that our scheme enhances resistance against Attack-
I. Further analysis reveals that our scheme is secure
against Attack-II.

Security against Attack‑I
Cheng et al.’s [13] proposed the theoretically optimal
strategy and practical attacks to evaluate the security of
existing honey vault schemes in the traditional single
leakage case where only the vault’s storage file is com-
promised. To evaluate the security of our honey vault
scheme against Attack-I, we propose a new theoretically
optimal strategy to launch Attack-I and several new prac-
tical attacks (called PII-based practical attacks), building
upon the existing attacks.

Theoretical optimal strategy
To reveal passwords from the vault’s storage file, the
attacker decrypts C with D� =

{

�j∗
}N

j=1
 , where D� is

the dictionary of master passwords, and obtains a group
of vaults. We use V∗

j to denote the set of the passwords
obtained by decrypting C with �j∗ , where 1 ≤ j ≤ N  .
Assuming the attacker tests vaults in a descending order
defined by a priority function fprio , we apply the Bayesian
theorem to derive the following theorem. The proof of
Theorem 1 is postponed to Appendix A.

Theorem 1  If the encoder is seed-uniform and the mas-
ter password � is independent of the passwords contained
in the vault and PII, then

where 1 ≤ j ≤ N and k is a constant.

According to Theorem 1, without considering Pr
[

�j∗
]

[13], the theoretically optimal online verification order is the

descending order of
Prreal

[

V∗
j |PII

]

Prdecoy

[

V∗
j |PII

] . We parse the passwords

in V∗
j and use VT∗

j to denote the set of parsed passwords.

The priority function fprio is estimated as
Prreal

[

VT∗
j

]

Prdecoy

[

VT∗
j

].

PII‑based practical attacks
Based on the PII-based strategy, we extend Cheng et al.’s
practical attacks [13] to several PII-based attacks natu-
rally. Furthermore, we consider other existing attacks and
extend the Kullback–Leibler (KL) divergence attack [18]
to the PII-based KL divergence attack. We instantiate the
attacks according to the particularity of PII.

PII-based single-password attack. The attack captures the
differences between real and decoy conditional single-pass-
word distributions, denoted as Prreal

[

πT
]

 and Prdecoy
[

πT
]

 .
Assuming passwords in V∗

j are independent, the priority

function is estimated as f CSprio

(

V∗
j

)

=
∏

πT∗∈VT∗
j

Prreal[πT∗]
Prdecoy[πT∗]

.

To estimate Prdecoy
[

πT∗
]

 , we utilize the PII-based
single password model (Sect. 4.2). For Prreal

[

πT∗
]

 , the
TarList model with add-ks = 10−8 smoothing is preferred
since the list-based attacks are the most effective in tar-
geted online password guessing [46].

PII-based password-similarity attack. The attack captures
the difference in similarity distribution between real and

Pr
[

�j∗ |
−→rt ,C , PII

]

= k×Pr
[

�j∗
]

×
Prreal

[

V∗
j | PII

]

Prdecoy

[

V∗
j | PII

] ,

Page 10 of 15An et al. Cybersecurity (2024) 7:42

decoy vaults based on two features: feature M and feature I.
We define that a vault has feature M, if there exist two pass-
words

(

πT
1 ,πT

2

)

 in the vault that LCSStrD of the passwords
is at least 15 . A vault has a feature I if there exist two pass-
words

(

πT
1 ,πT

2

)

 meet at least one of the following condi-
tions: MD is at most 15 ; at least one of the similarity scores
defined by LD and longest common subsequence (LCS)
[14] is at least 15 ; the similarity scores defined by Overlap
[26] at least 14.

7 We define that M\I
(

VT∗
i

)

= 1 , if VT∗
i has

feature M but no feature I. The definition of I\M is similar
to the above. The priority function is estimated as

f Sprio =
Prreal

[

M\I
(

VT∗
j

)]

Prdecoy

[

M\I
(

VT∗
j

)] ×
Prreal

[

I\M
(

VT∗
j

)]

Prdecoy

[

I\M
(

VT∗
j

)].

PII-based hybrid attack. The attack combines the
above two attacks. The priority function is estimated as
f Hprio = f

csp
prio × f

ps
prio.

PII-based KL divergence attack. KL divergence attack
[18] outperforms the support vector machine (SVM)
attack [13]. So we only extend the KL divergence attack.
The priority function of the PII-based KL divergence
attack is estimated as f KLprio =

∑s
i=1 fi log

fi
Prdecoy[πT∗

i]
 ,

where {πT∗
i }si=1 are the unique passwords of the vault and

fi the frequency of πT∗
i in the vault.

Experimental settings
Datasets containing passwords and PII as shown in
Table 2 were obtained through hacking incidents or
insider exposure, leading to their public availability on the
internet. By matching these datasets via email, we gener-
ated the Chinese vault dataset, denoted as Chin (Table 2).
The sizes of the vaults in Chin range from 2 to 6.

To train the PII-based single password model, the
PII-based single-password attack, and the PII-based KL
divergence attack, we randomly select 80% of data (pass-
words and PII) from the 12306 datasets in Chin as the
training set for passwords. We use LEmail to denote the
set of emails in the training set for passwords.

To train the PII-based single-similar password model
for Chinese passwords, we select the data (password
pairs and PII) associated with emails in LEmail from the
12306 and Email datasets in Chin . Because Email and
12306 exhibited the highest number of matches among
the datasets (Table 2).

To train the reused probability function and the PII-
based password-similarity attack, we select the vaults
associated with emails in LEmail in Chin as the training
set, while the remaining portion served as the testing set.
The vaults in the testing set will be treated as real vaults.

Regarding the probabilities related to decoy vaults
required for attacks in Sect. 5.1.2, attackers could com-
pute these probabilities using stolen encoders, spe-
cifically by leveraging the decoy vaults generated by the
stolen encoders.

For a fair and comprehensive comparison, we utilized
the same datasets in Cheng et al.’s scheme [13], with
12306 as the password dataset and Chin as the password
vault dataset.

In this setting, we employ honey vault schemes to gen-
erate decoys and execute attacks to determine the rank of
each vault in the testing set.

Security metrics. We employ the average rank r̄ and
accuracy α to indicate the security of a honey vault
scheme against attacks, as in [13]. The rank is defined
as the ratio of the position in the order to the number of
decoys, where the number is 999. Then r̄ and α are esti-
mated as

where F(x) is the cumulative distribution function of the
ranks. As discussed in [13], a perfectly secure honey vault
scheme guarantees that FU (x) = x and α = r̄ = 0.5 . So
we use FU (x) as the baseline for comparison.

Experimental results

From Fig. 4 and Table 3, we observed that PII-based single
password attacks, PII-based hybrid attacks, and PII-based
KL divergence attacks achieve an accuracy range of 63%
to 70% when distinguishing the real vault from decoys in
Cheng et al.’s honey vault scheme [13], which is the existing
best-performing scheme. In our scheme, these values are
reduced to 41% to 50%, closely approaching the ideal value
of 50%. Our experimental results showcase that attackers

r̄ = 1−

∫ 1

0
F(x)dx,α − 1− r̄,

Table 2  Datasets with PII

a The passwords in Email are mainly from 163, QQ, and Hotmail

Dataset Type of datasets Size Types of PII

12306 Passwords 127,779 Name, Birthday,
Phone Number,
NID, Email, User-
name

Emaila Passwords 201,017,211 Email

CSDN Passwords 6,378,780 Email, Username

178 Passwords 2,632,422 Email

DODONEW Passwords 16,214,712 Email, Username

renren Passwords 4,130,129 Email

Chin Vaults 117,917 Name, Birthday,
Phone Number,
NID, Email

7  To ensure the effectiveness of M\I , the limit value of similarity score under
LCSStr is less than LCS.

Page 11 of 15An et al. Cybersecurity (2024) 7:42 	

would need approximately 1.6 times more online verifica-
tions to compromise our scheme. PII-based password-
similarity attack achieves 49% accuracy in both our scheme
and Cheng et al.’s scheme [13]. This suggests that using PII
to prase passwords has minimal to no effect on the prob-
ability of features M\I and I\M . Consequently, these exper-
imental results indicate an improvement in our scheme’s
resilience against Attack-I.

Security against Attack‑II
We have the following theorem per Theorem 1. The proof
of Theorem 2 is postponed to Appendix B.

Theorem 2  Our honey vault scheme (“Our scheme”
section) is secure against Attack-II, assuming the master
password � is independently and uniformly selected from
D� and independent of the passwords in the vault.

Discussions and extensions
In this section, we present extended attacks to assess
the security of our scheme (Sect. 4.3) under the poten-
tial leakage case where some shares of the master pass-
word are exposed during the calculation processes.

Furthermore, we introduce a simplified version of our
scheme that does not rely on an auxiliary device.

Supplementary attacks
In practice, attackers can launch side-channel attacks
during the calculation processes to obtain crucial infor-
mation in our scheme, such as some shares of the master
password � . And their compromise has not been con-
sidered in previous attacks. In this section, we explore
a potential leakage case where attackers can obtain
some shares {�i}i∈J (J ⊆ I) . We present two extended
attacks, denoted as Supplementary Attack-I and Supple-
mentary Attack-II (refer to Table 1), to assess the security
of our scheme under such compromises.

We assume that the attacker’s goal is to obtain the
unknown target password πi∗ ( i∗ /∈ J).

Supplementary Attack-I. For Supplementary Attack-
I, the attacker can obtain the vault’s storage file, public
information, PII, and at most t − 1 shares. This limitation
is imposed to prevent the attacker from deducing � , −→rt  ,
and consequently all passwords.

The correctness of a (t, n)-threshold secret sharing
scheme implies that {�i}i∈J ,|J |=t−1 and −→rt correspond
one-to-one for any � . Therefore, the security achieved by
our scheme against Supplementary Attack-I is the same
as against Attack-I.

Supplementary Attack-II. For Supplementary Attack-
II, the attacker can obtain the vault’s storage file, public
information, PII, at most t − 2 shares {�i}i∈J  , and the
partial passwords {πi}i∈L (L ⊆ I) , where L fulfills con-
dition that any password within L ∩ J can be deduced
by attackers equipped with the vault’s storage file and

Fig. 4  RCDFs for honey vault schemes under PII-based attacks

Table 3  r̄ of real vaults under attacks

Attack scheme Cheng et al.’s [13] Ours

PII-based single-password attack 30% 49%

PII-based password-similarity attack 49% 49%

PII-based hybrid attack 31% 50%

PII-based KL divergence attack 37% 59%

Page 12 of 15An et al. Cybersecurity (2024) 7:42

{�i}i∈J  . This limitation is imposed to prevent the
attacker from guessing πi∗ ( i∗ /∈ J ∪ L ) when the attacker
obtains πi and �i , and πi is generated by reusing πi∗.

According to the security of the (t, n)-threshold secret
sharing scheme:

The successful probability for the attacker to guess πi∗ is
estimated as

Accordingly, our scheme resists Supplementary Attack-II.

A simplified version
In this section, we delve into scenarios where users
either lack auxiliary devices or prefer not to use them.
For instance, when users need to access the honey vault
on different devices at any time, requiring an additional
device as an auxiliary tool would entail users to carry
the device with them at all times. This could increase
the difficulty of use for users, leading them to prefer not
to use auxiliary devices. In such situations, our scheme
can revert to a simpler version. This simplified version
incorporates the PII-based password probability model
(Sect. 4.2), AES in CTR mode with PBKDF serving as
the PBE scheme, the incremental update mechanism
[13], and CPMTE [13]. Notably, in contrast to our main
scheme (Sect. 4.3), it omits the need for a secret sharing
scheme and an auxiliary device to store −→r  . Despite these
simplifications, this version still exhibits strong security
performance against attackers who gain access to the
vault’s storage file, public information, and PII. However,
it lacks resilience against attacks where the vault’s stor-
age file, public information, PII, and partial passwords are
leaked.

The store and query phases are outlined below:
Store phase

•	 Encode the passwords {πi}i∈I in the password vault
into {Si}i∈I.

•	 Utilize the master password � to encrypt the
seed S into the ciphertext C, where the seed
S = S1|| · · · ||S|I|.

Pr
[

� | {�i}i∈J ,|J |=t−2

]

=
1

p
.

Pr[πi∗ | C , PII, {πi}i=L, {�i}i∈J]

≤max{
1

p× |D�|
,

q
∣

∣Dπi∗

∣

∣

} ≤
q

∣

∣Dπi∗

∣

∣

+ nelg(�)

Query phase

•	 Decrypt C into S∗ using �∗.
•	 Split S∗ into

{

S∗i
}

i∈I
 , which is decoded to {π∗

i }i∈I
with CPMTE.

The update phase remains the same as in [13].
The security of the simplified version against attackers

who gain access to the vault’s storage file, public informa-
tion, and PII mirrors the security of our original scheme
(Sect. 4.3) against attackers with −→r in the case of Attack-
I. This is because both attackers can obtain candidate
vaults by decrypting C with D� , and the same encoder is
employed in both schemes.

Conclusion
Our study is the first exploration of honey vault security
in multiple leakage scenarios including the leak of PII and
partial passwords contained within the real vault, apart
from the compromise of the vault’s storage file in the
traditional single leakage scenarios. We propose various
attack variants catering to multiple leakage scenarios. We
construct a honey vault scheme and demonstrate its effi-
cacy in thwarting these diverse attacks.

Appendix A: Proof of Theorem 1
Proof of Theorem 1  According to Theorem 3 in [12],
Pr
[

S | V∗
j , PII

]

= k1

Prdecoy

[

V∗
j |PII

] . Then, we have

where

Pr(�j∗ |
−→rt , C, PII)

=
Pr
[

�j∗,−→rt ,C , PII
]

Pr
[−→rt ,C , PII

]

=
Pr
[

�j∗,V∗
j ,
−→rt ,C , PII

]

Pr
[−→rt ,C , PII

]

=
Pr
[

C | �j∗,V∗
j ,
−→rt , PII

]

Pr
[−→rt ,C , PII

] × Pr
[

�j∗,V∗
j ,
−→rt , PII

]

,

Pr
[

C | �j∗,V∗
j ,
−→rt , PII

]

= Pr
[

S | V∗
j , PII,

]

× Pr
[

C | S,�j∗,−→rt

]

,

Page 13 of 15An et al. Cybersecurity (2024) 7:42 	

where Pr
[

C | S,�j∗,−→rt
]

 , Pr
[−→rt ,C , PII

]

 , and Pr[PII]
are constants. The events

(−→rt ,C , PII
)

 and PII are known
and fixed facts when we attack. And Pr

[

C | S,�j∗,−→rt
]

depends on the PBE scheme and the secret sharing
scheme. Then

� �

Appendix B: Proof of Theorem 2
Proof of Theorem 2  Based on Theorem 3 presented in
[12], the probability of encode πi to Si is estimated as

where l is the storage overhead parameter, and nmax is
the maximum length of generating sequences of πi in the
condition of {πi′ }

i−1
i′=1 and PII for i ∈ I .

The attacker picks and guesses a target πi∗ . Let
I∗ = I\{i∗} , then

Pr
[

�j∗,V∗
j ,
−→rt , PII

]

= Pr
[

�j∗,V∗
j | PII

]

× Pr[PII]

= Pr
[

�j∗ | PII
]

× Pr
[

V∗
j | PII

]

× Pr[PII]

= Pr
[

�j∗
]

× Pr
[

V∗
j | PII

]

× Pr[PII],

Pr(�j∗ |
−→rt , C, PII)

= k × Pr
[

�j∗
]

×
Pr
[

V∗
j | PII

]

PrPII

[

V∗
j | PII

]

= k × Pr
[

�j∗
]

×
Prreal

[

V∗
j | PII

]

Prdecoy

[

V∗
j | PII

] .

Prencode

[

Si | {πi′ }
i
i′=1, PII

]

=
1

2lnmaxPrPII

[

πi | {πi′ }
i−1
i′=1, PII

] ,

where 1
2l

≪ min{PrOP[∗]} and {PrOP[∗]} is a set of all
probabilities concluding the probability of the existence of
the insert operation, the existence of the delete operation,
the number of operations, and the operation character.

Then

� �

Acknowledgements
The authors would like to thank the reviewers for their valuable time.

Author contributions
Chao An and YuTing Xiao proposed the new honey vault scheme and drafted
the manuscript. Rui Zhang participated in problem discussions and improve-
ments of the manuscript. HaiHang Liu, Han Wu, and Chao An implemented
the proposed scheme and attacks. All authors read and approved the
manuscript.

Pr[� | V, PII,C]

= max
B ⊂ I∗

|B| = t

(

Pr[(�i)i∈B | {πi}i∈I , PII,C]
)

= max
B ⊂ I∗

|B| = t

(

Pr[(Si)i∈B | {πi}i∈I , PII]
)

≤
∑

B ⊂ I∗

|B| = t

(

Ct
n−1

)−1∏

i∈B

Prencode

[

Si | {πi′ }
i
i′=1, PII

]

≤ max
i∈I∗

(

Prencode

[

Si | {πi′ }
i
i′=1, PII

])t

= max
i∈I∗

(

2lnmaxPr
[

πi | {πi′ }
i−1
i′=1, PII

])−t

=

(

2lnmaxPrmin
i∈I∗

[

πi | {πi′ }
i−1
i′=1, PII

]

)−t

=

(

2l min{PrOP[∗]}
)−nmaxt

,

Pr[Awins]

≤max{PrG[πi∗], Pr[� | V, PII,C],
1

pt−2 × |D�|
}

≤max {PrG[πi∗],
1

|D�|
} + nelg(�).

Page 14 of 15An et al. Cybersecurity (2024) 7:42

Funding
This work was supported by the National Natural Science Foundation of China
(Nos. 62172404, 62172411, 61972094, 62202458).

Availability of data and materials
Due to ethical restrictions, supporting data is not available.

Declarations

Competing interest
The authors declare that they have no competing interest.

Author details
1 Key Laboratory of Cyberspace Security Defense, No.19 Shucun Road, Haidian
District, Beijing 100084, China. 2 Institute of Information Engineering, Chinese
Academy of Sciences, No. 19 Shucun Road, Haidian District, Beijing 100084,
China. 3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China. 4 Independent, Hefei, China.

Received: 18 January 2024 Accepted: 21 March 2024

References
	1.	 (2016) The password is dead, long live the password! https://​www.​nccgr​

oup.​trust/​uk/​about-​us/​newsr​oom-​and-​events/​blogs/​2016/​octob​er/​the-​
passw​ord-​is-​dead-​long-​live-​the-​passw​ord/

	2.	 (2017) Passwords are not lame and they’re not dead. https://​it.​
toolb​ox.​com/​blogs/​itman​ageme​nt/​passw​ords-​are-​not-​lamea​
nd-​theyre-​not-​dead-​heres-​why-​072417

	3.	 (2018) All data breach sources. https://​breac​halarm.​com/​allso​urces
	4.	 Abdelberi C, Ács G, Kâafar MA (2012) You are what you like! Information

leakage through users’ interests
	5.	 Adowsett F (2016) What has been leaked: impacts of the big data

breaches. https://​rantf​oundry.​wordp​ress.​com/​2016/​04/​19/​what-​hasbe​
en-​leaked-​impac​ts-​of-​the-​big-​data-​breac​hes/

	6.	 Bojinov H, Bursztein E, Boyen X et al (2010) Kamouflage: loss-resistant
password management, pp 286–302

	7.	 Bonneau J, Schechter SE (2014) Towards reliable storage of 56-bit secrets
in human memory, pp 607–623

	8.	 Bonneau J, Herley C, van Oorschot PC et al (2012) The quest to replace
passwords: a framework for comparative evaluation of web authentica-
tion schemes, pp 553–567

	9.	 Bonneau J, Herley C, van Oorschot PC et al (2015) Passwords and the
evolution of imperfect authentication. Commun ACM 58(7):78–87

	10.	 Burnett M (2016) Is there life after passwords? https://​medium.​com/​un-​
hacka​ble/​is-​there-​life-​after-​passw​ords-​290d5​0fc6f​7d

	11.	 Chatterjee R, Bonneau J, Juels A et al (2015) Cracking-resistant password
vaults using natural language encoders, pp 481–498

	12.	 Cheng H, Zheng Z, Li W et al (2019) Probability model transforming
encoders against encoding attacks, pp 1573–1590

	13.	 Cheng H, Li W, Wang P et al (2021) Incrementally updateable honey
password vaults, pp 857–874

	14.	 Das A, Bonneau J, Caesar M et al (2014) The tangled web of password
reuse

	15.	 Dong Q, Wang D, Shen Y et al (2022) Pii-psm: a new targeted password
strength meter using personally identifiable information. In: International
conference on security and privacy in communication systems. Springer,
pp 648–669

	16.	 Freeman D, Jain S, Dürmuth M et al (2016) Who are you? A statistical
approach to measuring user authenticity

	17.	 Goldman J (2013) Chinese hackers publish 20 million hotel reservations.
http://​www.​esecu​rityp​lanet.​com/​hacke​rs/​chine​se-​hacke​rspub​lish-​20-​
milli​on-​hotel-​reser​vatio​ns.​html

	18.	 Golla M, Beuscher B, Dürmuth M (2016) On the security of cracking-
resistant password vaults, pp 1230–1241

	19.	 Grassi PA, Fenton JL, Newton EM et al (2017) Digital identity guidelines:
authentication and lifecycle management. Technical report

	20.	 Hackett R (2017) Yahoo raises breach estimate to full 3 billion
accounts, by far biggest known. http://​fortu​ne.​com/​2017/​10/​03/​
yahoo-​breach-​mail/

	21.	 Holmes A (2021) 533 million facebook users’ phone numbers and per-
sonal data have been leaked online. https://​www.​busin​essin​sider.​com/​
stolen-​data-​of-​533-​milli​on-​faceb​ook-​users-​leaked-​online-​2021-4

	22.	 Juels A, Ristenpart T (2014) Honey encryption: security beyond the brute-
force bound, pp 293–310

	23.	 Kincaid J (2011) Dropbox security bug made passwords optional for four
hours. https://​techc​runch.​com/​2011/​06/​20/​dropb​ox-​secur​ity-​bug-​made-​
passw​ords-​optio​nal-​for-​four-​hours/

	24.	 Kincaid J (2014) iCloud data breach: hacking and celebrity photos.
https://​www.​forbes.​com/​sites/​davel​ewis/​2014/​09/​02/​icloud-​data-​
breach-​hacki​ng-​and-​nude-​celeb​rity-​photos/

	25.	 Krause EF (1986) Taxicab geometry: an adventure in non-Euclidean
geometry. Courier Corporation

	26.	 Levandowsky M, Winter D (1971) Distance between sets. Nature
234(5323):34–35

	27.	 Levenshtein VI et al (1966) Binary codes capable of correcting deletions,
insertions, and reversals. In: Soviet physics doklady, Soviet Union, pp
707–710

	28.	 Li Y, Li Y, Chen X et al (2022) Pg-pass: targeted online password guessing
model based on pointer generator network. In: 2022 IEEE 25th interna-
tional conference on computer supported cooperative work in design
(CSCWD). IEEE, pp 507–512

	29.	 Ma J, Yang W, Luo M et al (2014) A study of probabilistic password mod-
els, pp 689–704

	30.	 Mazurek ML, Komanduri S, Vidas T et al (2013) Measuring password
guessability for an entire university, pp 173–186

	31.	 Mignotte M (1983) How to share a secret? pp 371–375
	32.	 Morris C (2021) Massive data leak exposes 700 million linkedin users infor-

mation. https://​fortu​ne.​com/​2021/​06/​30/​linke​din-​data-​theft-​700-​milli​
on-​users-​perso​nal-​infor​mation-​cyber​secur​ity/

	33.	 Pal B, Daniel T, Chatterjee R et al (2019) Beyond credential stuffing: pass-
word similarity models using neural networks, pp 417–434

	34.	 Pearman S, Zhang SA, Bauer L et al (2019) Why people (don’t) use pass-
word managers effectively. In: Fifteenth symposium on usable privacy
and security (SOUPS 2019), pp 319–338

	35.	 Pham T (2015a) Anthem breached again:hackers stole credentials. http://​
duo.​sc/​2ene0​Pr

	36.	 Pham T (2015b) Four years later, anthem breached again: Hackers stole
credentials. http://​duo.​sc/​2ene0​Pr

	37.	 Pinkas B, Sander T (2002) Securing passwords against dictionary attacks,
pp 161–170

	38.	 Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613
	39.	 Siegrist J (2015) LastPass hacked C identified early & resolved. https://​

blog.​lastp​ass.​com/​2015/​06/​lastp​ass-​secur​ity-​notice.​html/
	40.	 Turner K (2016) Hacked dropbox login data of 68 million users is

now for sale on the dark web. https://​www.​washi​ngton​post.​com/​
news/​the-​switch/​wp/​2016/​09/​07/​hacked-​dropb​ox-​data-​of68-​milli​
on-​users-​is-​now-​or-​sale-​on-​the-​dark-​web/

	41.	 Ur B (2016) Supporting password-security decisions with data
	42.	 Wang D, Jian G, Huang X et al (2014) Zipf’s law in passwords. Cryptology

ePrint Archive, Report 2014/631. https://​eprint.​iacr.​org/​2014/​631
	43.	 Wang D, Zhang Z, Wang P et al (2016) Targeted online password guess-

ing: an underestimated threat, pp 1242–1254
	44.	 Wang D, Cheng H, Wang P et al (2018) A security analysis of honeywords
	45.	 Wang D, Wang P, He D et al (2019) Birthday, name and bifacial-security:

understanding passwords of Chinese web users, pp 1537–1555
	46.	 Wang D, Zou Y, Dong Q et al (2022) How to attack and generate honey-

words, pp 966–983
	47.	 Weir M, Aggarwal S, de Medeiros B et al (2009) Password cracking using

probabilistic context-free grammars, pp 391–405
	48.	 Xie Z, Zhang M, Yin A et al (2020) A new targeted password guessing

model, pp 350–368
	49.	 Yan J, Blackwell A, Anderson R et al (2004) Password memorability and

security: empirical results. IEEE Secur Privacy Mag 2(5):25–31

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/october/the-password-is-dead-long-live-the-password/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/october/the-password-is-dead-long-live-the-password/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2016/october/the-password-is-dead-long-live-the-password/
https://it.toolbox.com/blogs/itmanagement/passwords-are-not-lameand-theyre-not-dead-heres-why-072417
https://it.toolbox.com/blogs/itmanagement/passwords-are-not-lameand-theyre-not-dead-heres-why-072417
https://it.toolbox.com/blogs/itmanagement/passwords-are-not-lameand-theyre-not-dead-heres-why-072417
https://breachalarm.com/allsources
https://rantfoundry.wordpress.com/2016/04/19/what-hasbeen-leaked-impacts-of-the-big-data-breaches/
https://rantfoundry.wordpress.com/2016/04/19/what-hasbeen-leaked-impacts-of-the-big-data-breaches/
https://medium.com/un-hackable/is-there-life-after-passwords-290d50fc6f7d
https://medium.com/un-hackable/is-there-life-after-passwords-290d50fc6f7d
http://www.esecurityplanet.com/hackers/chinese-hackerspublish-20-million-hotel-reservations.html
http://www.esecurityplanet.com/hackers/chinese-hackerspublish-20-million-hotel-reservations.html
http://fortune.com/2017/10/03/yahoo-breach-mail/
http://fortune.com/2017/10/03/yahoo-breach-mail/
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4
https://www.businessinsider.com/stolen-data-of-533-million-facebook-users-leaked-online-2021-4
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://techcrunch.com/2011/06/20/dropbox-security-bug-made-passwords-optional-for-four-hours/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
https://fortune.com/2021/06/30/linkedin-data-theft-700-million-users-personal-information-cybersecurity/
http://duo.sc/2ene0Pr
http://duo.sc/2ene0Pr
http://duo.sc/2ene0Pr
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of68-million-users-is-now-or-sale-on-the-dark-web/
https://www.washingtonpost.com/news/the-switch/wp/2016/09/07/hacked-dropbox-data-of68-million-users-is-now-or-sale-on-the-dark-web/
https://eprint.iacr.org/2014/631

Page 15 of 15An et al. Cybersecurity (2024) 7:42 	

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Yuting Xiao  is the corresponding author of this paper. She is an
assistant researcher in the Key Laboratory of Cyberspace Security
Defense, Beijing, China, and the Institute of Information Engineering,
Chinese Academy of Sciences, China. She obtained her PhD from the
Institute of Information Engineering, Chinese Academy of Sciences.
Her main research interests include authenticated key exchange and
multi-party computing.

	Honey password vaults tolerating leakage of both personally identifiable information and passwords
	Abstract
	Introduction
	Our contributions
	Related work

	Preliminary
	Our model
	The system model
	The security model

	Our honey vault scheme
	PII tags
	PII-based probability model
	Our scheme

	Security analysis
	Security against Attack-I
	Theoretical optimal strategy
	PII-based practical attacks
	Experimental settings
	Experimental results

	Security against Attack-II

	Discussions and extensions
	Supplementary attacks
	A simplified version

	Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 2
	Acknowledgements
	References

