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Abstract 

Despite the growing attention on blockchain, phishing activities have surged, particularly on newly established 
chains. Acknowledging the challenge of limited intelligence in the early stages of new chains, we propose ADA-Spear-
an automatic phishing detection model utilizing adversarial domain adaptive learning which symbolizes the meth-
od’s ability to penetrate various heterogeneous blockchains for phishing detection. The model effectively identifies 
phishing behavior in new chains with limited reliable labels, addressing challenges such as significant distribution 
drift, low attribute overlap, and limited inter-chain connections. Our approach includes a subgraph construction strat-
egy to align heterogeneous chains, a layered deep learning encoder capturing both temporal and spatial information, 
and integrated adversarial domain adaptive learning in end-to-end model training. Validation in Ethereum, Bitcoin, 
and EOSIO environments demonstrates ADA-Spear’s effectiveness, achieving an average F1 score of 77.41 on new 
chains after knowledge transfer, surpassing existing detection methods.

Keywords  Blockchain, Phishing detection, Adversarial domain adaptation, Graph/network transfer learning, 
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Introduction
Since the introduction of Bitcoin (Nakamoto 2008) in 
2008, blockchain and cryptocurrencies have flourished. 
According to CoinMarketCap (CoinMarketCap), there 
are now 25,853 different cryptocurrencies, with a mar-
ket capitalization exceeding one hundred billion dollars. 
Typically, a blockchain gives rise to its own cryptocur-
rency, and this financial characteristic has resulted in a 
surge of phishing activities. Statistics from Chainalysis 
(Chainanalysis) reveal that since 2017, more than 50% of 
blockchain security incidents are linked to phishing. By 
2022, the proportion of phishing incidents has consist-
ently risen to over 80%. Consequently, there is an urgent 

need to research methods for detecting phishing activi-
ties across different cryptocurrencies.

Traditional phishing activities generally involve the 
use of fake websites to induce users to provide private 
information. Thus, traditional phishing detection focuses 
on identifying these counterfeit websites and promptly 
warning users against interacting with them (Jain et  al. 
2017; Zuraiq and Alkasassbeh 2019; Orunsolu et  al. 
2022). Phishing activities on the blockchain, however, 
have developed new patterns. Criminals have shifted 
their focus from stealing private information to crypto-
currencies, employing a combination of social engineer-
ing and technical methods. Upon successfully obtaining 
cryptocurrencies, they disguise their identities through 
multiple transactions, increasing the covert nature of 
their activities. Moreover, as different cryptocurrencies 
continually emerge, possessing reliable tagged data for 
each is extremely valuable. Newly emerged cryptocurren-
cies lack any tagged data, requiring a significant amount 
of time to accumulate relevant intelligence databases. At 
that point, the damage has already occurred, significantly 
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dampening user enthusiasm and hindering the develop-
ment of new chains.

This paper aims to tackle the challenge of detecting 
phishing activities in diverse blockchain networks (tar-
get blockchain) by utilizing labeled data from source 
blockchains, as illustrated in Fig.  1. We addresses the 
issue of ineffective phishing detection on newly emerged 
chains during their early stages, characterized by limited 
on-chain annotations and differing data distributions 
across chains. Current detection methods cannot be 
directly generalized to effectively detect phishing activi-
ties on new chains, resulting in delays in halting phish-
ing behavior during the initial stages of chain emergence. 
While mature chains like Ethereum possess more abun-
dant data and established detection methods, the lack of 
information on target chain samples poses a challenge. 
To address this, we propose a adversarial domain adap-
tation-based method (Pan and Yang 2009; Ganin et  al. 
2016; Shen et al. 2018; Goodfellow et al. 2020) for phish-
ing detection in small-sample public chains with limited 
annotations on the target chain named ADA-Spear.

The challenges are as follows: Firstly, current detection 
methods heavily depend on manual feature engineering, 
require substantial expert knowledge, and are unsuitable 
for mining deep patterns on the blockchain. Moreover, 
their generalizability is weak, making them challenging 
to apply to different chains. Secondly, there exists a sub-
stantial distribution drift (Wiles et al. 2021) between dif-
ferent chains, accompanied by low attribute overlap. This 
implies that there are differences in both the data distri-
bution and feature space between the source and target 
blockchains. Therefore, the phishing address patterns 
on the source blockchain are difficult to directly apply to 
the target blockchain, leading to overfitting of the model 
to the features of the source chain and a subsequent 
decrease in the model’s generalization ability. Addition-
ally, the presence of coin mixing and other anonymity 
services prevents the cross-chain transfer of edge infor-
mation from the source to the target chain, hindering 
knowledge transfer. Thirdly, in the source chain, trust-
worthy labels are sparse. Even in Ethereum, which has 
abundant labels, phishing activity labels still only account 

for about 0.2% of total addresses (Etherscan). This scar-
city of usable information in the source chain leads in the 
inadequacy of full supervision learning robustness.

Building upon this, we introduce adversarial domain 
adaptation techniques from transfer learning and pro-
poses a small-sample phishing detection method for 
public chains. Firstly, we propose a subgraph construc-
tion algorithm based on chain structure to transform 
heterogeneous graphs from different chains into homo-
geneous graphs, thereby alleviating the problem of signif-
icant data distribution drift between chains structurally. 
Secondly, we introduce a hierarchical representation 
encoder at both node and subgraph levels to capture spa-
tial and temporal information of node behaviors, obtain-
ing high-dimensional representations of node features. 
This encoder is better suited for mining deep patterns 
in blockchain data. Thirdly, we apply adversarial domain 
adaptation networks to the node representations across 
different chains to mitigate the low overlap of attributes 
and data distribution drift between the source and target 
chains. Simultaneously, the adversarial domain adapta-
tion network effectively enhances knowledge transfer 
capability when there is no cross-chain edge for infor-
mation propagation from the source to the target chain, 
enabling timely and effective phishing detection on new 
target chains with limited labels (Singh 2019; Sayadi et al. 
2019; Chen et al. 2020a, b; Wu et al. 2020; Ao etal. 2021; 
Xu et al. 2018; Wu et al. 2020; Perozzi et al. 2014; Grover 
and Leskovec 2016; Wang et al. 2016, 2017; Ji et al. 2021; 
Heimann and Koutra 2017; Hamilton et  al. 2017; Kipf 
and Welling 2016; Zheng et  al. 2023; Yang et  al. 2016; 
Fang et  al. 2013; Ni et  al. 2018; Xu et  al. 2017; Pan and 
Yang 2009; Ganin et al. 2016; Shen et al. 2018; Goodfel-
low et al. 2020).

Specifically, ADA-Spear aims to characterize address 
behavior patterns and achieve knowledge transfer of 
behavior patterns from the source network to the tar-
get network, thereby facilitating the detection of phish-
ing activities across different chains. The ’ADA’ in 
ADA-Spear stands for Adversarial Domain Adaptation, 
and ’Spear’ symbolizes the method’s ability to penetrate 
various heterogeneous blockchains for phishing detec-
tion. In the subgraph construction method, we treat the 
target address as the central node, and after obtaining 
its second-order neighbor nodes, propose a reduction 
strategy for adapting to the full-sample gradient descent 
training in neural networks. Subgraphs are established, 
abstracting the phishing detection into a subgraph clas-
sification task (Zhang et al. 2021; Narayanan et al. 2017). 
The main idea of the detection model is to learn different 
inter-class subgraph representations through a network 
encoder with multi-dimensional feature fusion and invar-
iant subgraph representations across different chains 

Fig. 1  Cross-blockchain-network phishing detection diagram: known 
features and labels of the source network are used to detect nodes 
with unknown labels in the target network
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through adversarial domain adaptation. It should be 
noted that multidimensional features refer to time-based 
behavioral features, space-based behavioral features, and 
source data on blocks.Consequently, ADA-Spear consists 
of an encoder module that characterizes address behav-
ior and a domain adaptation module. It should be noted 
that multidimensional features refer to temporal-based 
behavioral features, spatial-based behavioral features, 
and addresses’ source data on blocks.

On one hand, the encoder module primarily aims to 
better characterize address behavior and learn class-level 
discriminative subgraph representations. It trains an 
effective classifier using existing label and considers the 
temporal evolution of behavior to characterize node-level 
feature representations and subgraph-level behavior pat-
terns (Jiao et al. 2021). On the other hand, the adversarial 
domain adaptation module is designed to mitigate the 
distribution drift between the source and target networks 
so that transfer phishing pattern knowledge between 
chains. It employs adversarial learning to learn invariant 
subgraph representations across different chains, facili-
tating the transfer of behavior pattern knowledge from 
the source network to the target network. The training 
process is similar to that of Generative Adversarial Net-
works (GANs) (Goodfellow et  al. 2020; Dai et  al. 2018; 
Pan et al. 2018; Dai et al. 2019), where the encoder learns 
inter-chain invariance, and the domain discriminator dis-
tinguishes whether subgraph representations originate 
from the source or target domain. By combining these 
two parts, ADA-Spear can learn class-level discrimina-
tive subgraph representations and inter-chain invariant 
representations, facilitating the transfer of class informa-
tion across different chains.

We choose Ethereum, Bitcoin, and EOSIO as three 
blockchain platforms, serving respectively as the source 
and target domains, to research cross-blockchain-net-
work phishing behavior detection. In summary, our con-
tributions are:

•	 We propose a novel approach ADA-Spear, a neural 
network detection model with adversarial domain 
adaptation and multi-dimensional feature fusion, 
tackling the challenge of detecting phishing activities 
in diverse blockchain networks.

•	 The proposed model ADA-Spear comprises an 
encoder that effectively characterizes on-chain 
phishing activities and an adversarial domain adap-
tation module. It considers the temporal-based of 
behavior features, spatial-based behavioral features 
and addresses’ source data on blocks, effectively 
characterizing phishing activities at both node and 
subgraph levels. By learning high-dimensional behav-
ioral patterns and alleviating the issue of distribution 

drift between different chains, ADA-Spear can detect 
phishing activity effectively on new target chains with 
few or no labels.

•	 We conduct detailed and extensive experiments in 
real Ethereum, Bitcoin, and EOSIO environments 
to demonstrate the effectiveness of ADA-Spear. Our 
method achieves an average F1-score exceeding 76% 
in the target domain with no labels and a label rate of 
5%, surpassing existing advanced detection methods. 
Furthermore, we analyze phishing activities across 
diverse chains, highlighting the model’s exceptional 
performance and scalability. This proves its robust-
ness, even in instances of distribution differences 
between chains.

Related work
The detection of phishing activities on blockchain pri-
marily employs feature engineering and graph analysis 
methods, where graph analysis can further be divided 
into single-network learning, graph-based semi-super-
vised learning, and cross-network learning methods.

Feature engineering based method
Feature engineering methods (Sayadi et  al. 2019; Singh 
2019) rely heavily on expert knowledge of blockchain 
phishing behavior, making it time-consuming and labor-
intensive. Toyoda et al. (2018) use seven types of statisti-
cal information on Bitcoin to perform multi-classification 
of Bitcoin services, including the detection of anoma-
lous services. Chen et al. (2020a) extract 219 features in 
Ethereum to identify phishing activities, representing a 
comprehensive feature extraction work in early feature 
engineering methods. Jourdan et  al. (2018) build repeat 
patterns by extracting features from Bitcoin and use 
LightGBM for subsequent classification. Ostapowicz (?) 
and others directly utilize information recorded on the 
blockchain as features, exploring the performance of 
machine learning methods like Random Forest, Support 
Vector Machine (SVM), and XGBoost in fraud detection.
While feature engineering-based methods can detect 
certain behaviors, with the advancement of blockchain 
technology, anomalous behaviors (including phishing 
activities) are becoming increasingly complex. Simple 
extraction of block features fails to accurately capture 
these more intricate behaviors. Additionally, relying 
on feature engineering methods is highly dependent on 
expert knowledge, making it difficult to obtain higher-
order information about behavioral features. Addition-
ally, the extracted features are limited to the current 
chain, posing challenges in applying them to new chains 
and resulting in low generalizability.
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Graph analysis based method
Single network learning method
This is an unsupervised learning method that can learn 
node representations based on the network’s topologi-
cal structure or other information for subsequent tasks 
like node classification, as seen in algorithms like Deep-
Walk. Generally, these methods use unsupervised learn-
ing to embed network structural information, followed 
by training classifiers for node or subgraph classification 
(Wang et al. 2016, 2017; Ji et al. 2021). Yuan et al. (2020) 
are the first to use DeepWalk (Perozzi et  al. 2014) and 
Node2vec (Grover and Leskovec 2016) on blockchain to 
learn topological representations of addresses, later using 
machine learning for address classification. As Etheruem 
phishing itself also exhibits its own behavioral charac-
teristics, so Wu et  al. (2020) and Lin et  al. (2020) com-
bine Ethereum transaction amounts and timestamps to 
extract node representations through biased walks, using 
single-class SVM and other machine learning meth-
ods for phishing node detection. Ao etal. (2021) refine 
time-based repeat patterns in Ethereum and propose a 
community detection method to extract phishing node 
pattern representations. However, such methods lack 
the ability to generalize to other networks because they 
do not maintain a similarity structure that “brings closer” 
the embeddings of nodes or subgraphs of the same cat-
egory across different networks (Heimann and Koutra 
2017). Additionally, their classification effectiveness is 
not as robust as graph-based semi-supervised learning 
methods. Therefore, these methods are also not applica-
ble for detecting cross-chain phishing behaviors.

Graph‑based semi‑supervised learning method
To further improve the classification of phishing activi-
ties, later methods often use graph-based semi-super-
vised learning (Hamilton et  al. 2017; Kipf and Welling 
2016; Zheng et  al. 2023). Since blockchain’s data struc-
ture and massive transaction data are best modeled as a 
graph structure, they are trained in a supervised man-
ner from a graph perspective. Patel et  al. (2020) use 
graph convolution network (GCN) to extract structural 
information in Ethereum and classify fraud nodes using 
a single-class SVM. This method enhances the accu-
racy of phishing detection on the blockchain. To further 
enhance the extraction of structural information, Chen 
et  al. (2020a) modify the initial features of GCN, effec-
tively improving classification accuracy. Li et  al. (2020) 
consider the topological structural differences between 
fraudulent and benign addresses in the Bitcoin network 
and use XGBoost for address classification. Zhang et al. 
(2021) use a hierarchical approach to extract Ethere-
um’s topological structure for subgraph representation, 

training neural networks end-to-end for phishing sub-
graph identification. This method extends the dimen-
sionality of address analysis. Subsequent studies further 
consider temporal behavior, with Li et  al. (2022) con-
structing Ethereum as a multi-graph, transforming mul-
tiple edges into sequences, and embedding them into 
LSTM to obtain temporal representations of phishing 
nodes, effectively improving detection accuracy. Graph-
based semi-supervised learning methods adopt an end-
to-end approach, integrating network structure, node 
attributes, and labels, demonstrating effective classifica-
tion results in single networks. However, these methods 
face challenges in generalizing to other networks experi-
encing significant distribution drift (Yang et al. 2016).

Cross‑network learning method
Currently, blockchain phishing detection methods 
lack generalizability and do not employ cross-block-
chain-networklearning models. However, to promptly 
detect phishing activities on new chains, research on 
cross-blockchain-network phishing detection meth-
ods is necessary. Existing methods utilizing source net-
work information to assist in identifying target network 
behavior include: Fang et  al. (2013) propose the NetTr 
method, which only transfers topological information in 
networked data, but it is computationally expensive and 
transfers limited information. Shen et al. (2020) propose 
CDNE, learning representations of nodes within multiple 
networks and minimizing the Maximum Mean Discrep-
ancy (MMD) loss function to mitigate distribution drift 
between nodes in different networks. To further allevi-
ate domain drift during knowledge transfer, Ganin et al. 
propose the domain adaptation method DANN (Ganin 
and Lempitsky 2015), learning inter-domain invariance 
through a min-max game approach. Building on DANN, 
Shen et  al. (2018) use Wasserstein distance to quantify 
inter-domain differences for better gradient properties, 
thereby improving transfer effectiveness. Current meth-
ods that leverage edge information across networks to 
improve classification typically involve learning embed-
dings across multiple networks, but heavily rely on inter-
network connections. Although cross-chain transactions 
can occur between different blockchains, establishing 
inter-network edges becomes challenging after passing 
through cross-chain bridges or mixing services, render-
ing such methods unsuitable for the problem addressed 
in our study. For the issue addressed in this paper, which 
involves phishing detection on new chains with limited 
annotations, cross-network transfer learning algorithms 
are appropriate. These algorithms primarily address the 
adverse effects on models caused by domain shift dur-
ing knowledge transfer from the source domain to the 
target domain. This paper will use adversarial domain 
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adaptation based on graph networks to generalize the 
model to different chains and promptly detect phishing 
activities.

Preliminaries
This section mainly introduces the definition and feature 
construction of on-chain interaction graphs and the defi-
nition of the issues studied in this paper. Table 1 shows 
the main symbols used in our framework.

On‑chain interaction graph
This subsection defines the Ethereum, Bitcoin and 
EOSIO networks modeled as graph structures and gives 
the Graph definition after subtraction.

Ethereum Attribution Graph (E-AIG)  A 
directed, weighted, homogeneous multigraph 
G = (V e,Ee,Ae,Fev ,F

e
e ,Y

e) , where V e , Ee , and Ae respec-
tively represent the sets of nodes, directed edges, and 
the adjacency matrix. The edge set Ee is defined as 
Ee = {(vi, vj ,F

e
e)|vi, vj ∈ V e} . Fev and Fee respectively repre-

sent the feature matrices for Ethereum nodes and edges, 
as detailed in Sect.  3.2. Some nodes in the E-AIG are 
labeled with yi ∈ Y e , where Y e = {(vi, yi)|vi ∈ V e}.

EOSIO Address Interaction Graph (EO-AIG) The 
definition is the same as for the E-AIG and will not be 
repeated.

Bitcoin Address-Transaction Interaction Graph 
(B-ATIG) A directed, weighted, heterogeneous multi-
graph G = (Vb

a ,V
b
t ,E

b,Fb
v ,F

b
e ,Y

b) , where Vb
a  and Vb

t  
respectively represent the sets of address nodes and 
transaction nodes, Eb represents the set of edges, defined 
as Eb = {(vi, vj ,F

b
e )|vi ∈ Vb

a ∪ Vb
t , vj ∈ Vb

a ∪ Vb
t } . Fb

v and 

Fb
e respectively represent the feature matrices for Bitcoin 

address nodes and edges, as detailed in Sect.  3.2. Some 
address nodes in the B-ATIG are labeled with yi ∈ Y b , 
where Y b = {(vi, yi)|vi ∈ Vb

a }.
As the original B-ATIG is a heterogeneous graph, to 

align with the graph network of E-AIG and reduce com-
putational complexity, the strategy proposed in Sect. 4.1 
is used to remove transaction nodes from B-ATIG, con-
verting it into a homogeneous graph B-AIG.

Bitcoin Address Interaction Graph (B-AIG) A 
directed, weighted, homogeneous multigraph 
G = (Vb,Eb,A

b
,Fb

v ,F
b

e ,Y
b) , where Vb , Ẽb , and Ab are the sets 

of address nodes, transformed set of directed edges, and 
adjacency matrix, respectively. The transformed edge set 
Ẽb is defined as Ẽb = {(vi, vj , F̃

b

e )|vi, vj ∈ Vb
a } , and F̃

b

e is 
the edge feature matrix after the removal of transaction 
nodes.

E-AIG, EO-AIG, and B-AIG are all dense connected 
homogeneous multigraphs, which increases the complex-
ity during subsequent knowledge transfer. Thus, through 
feature reconstruction, interaction aggregation, and node 
reduction as described in Sect.  4.1, the directed graphs 
r-AIG (E-AIG→rE-AIG, EO-AIG→rEO-AIG, B-AIG→

rB-AIG) are obtained.
Reduced Address Interaction Graph (r-AIG) 

A directed, weighted, homogeneous graph 
G = (V r ,Er ,Ar ,F r

v ,F
r
e ,Y

r) , where V r is the set of 
nodes after the TopK reduction described in Sect.  4.1, 
Er = {(vi, vj ,F

r
e)|vi, vj ∈ V r} is the remaining set of edges, 

and Ar is the adjacency matrix. F r
v and F r

e are the feature 
matrices for the nodes V r and edges Er , respectively. 

Table 1  Main symbols used in our framework

Symbols Expression

Gs ,Gt Graph in the source and target domain

Vs , V t Nodes in the source and target domain

Es , Et Edges in the source and target domain

As , At Adjacency matrix in the source and target domain

Fv
s , Fv

t Nodes’ feature set in the source and target domain

Fe
s , Fe

t Edges’ feature set in the source and target domain

Ys Source domain label set

sdisc Domain discriminator training set

γ , � Coeffeicients in the loss function

αdisc ,αencod Learning rates of discriminator and encoder

Ns ,Nt The number of subgraphs in the source and target domian

fencod , fpred , fdisc Optimal encoder, semi-supervised learning classifier and domain discriminator

θencod , θpred , θdisc Parameters for encoder, clssifier and discriminator

Hs ,Ht Addresses representation in the source and target domian

Lpred ,Ldisc ,Lpenal The loss function of classifier, domain discriminator and penalty factor
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Some nodes in r-AIG are labeled with yi ∈ Y r , where 
Y r = {(vi, yi)|vi ∈ V r}.

Feature construction
Node features and edge features in Ethereum, Bitcoin, 
and EOSIO are categorized into three types: transac-
tion time, transaction amount, and transaction count. 
Each type is differentiated by direction and further clas-
sified into incoming and outgoing transactions. In multi-
graphs, node features primarily include overall subgraph 
information like lifespan, total amount, degree, and the 
number of active nodes. Edge features mainly encom-
pass information for each transaction, including block 
number, timestamp, transaction amount, and transac-
tion fees. For transaction amount-type features, the 
maximum, minimum, and average functions will be used. 
Transaction amount-type features will utilize the maxi-
mum, minimum, and average functions. Similarly, trans-
action count-type features, based on the same approach, 
are combined with transaction amount-type features to 
derive per-transaction average features.

Problem definition
The primary focus of this paper is on detecting cross-
blockchain-network phishing behavior through domain 
adaptation. Specifically, it leverages knowledge of phish-
ing behavior in the source domain to assist in recognizing 
phishing behavior in a new target domain. This process 
transforms the phishing behavior recognition challenge 
into a graph classification problem.

The source network is denoted as 
G

s
= (V s ,Es ,A

s
,F s

v ,F
s
e ,Y

s) , where V s = {v1, v2, . . . , vns} rep-
resents the set of address nodes, Es ⊆ {(vi, vj)|vi, vj ∈ V s} 
represents the set of interaction edges, As ∈ R

ns×ns rep-
resents the adjacency matrix, F s

v ∈ R
ns×csn represents the 

node feature matrix, with csn being the number of features 

for each node, F s
e ∈ R

ms×cse represents the edge feature 
matrix, with ms = |Es| and cse being the number of fea-
tures for each edge, Y s = {(vi, yi)|vi ∈ V s} represents the 
label set for some labeled address nodes, where if yi = 1 , 
the node is a phishing node, otherwise yi = 0 . Similarly, 
the target network is denoted as Gt = (V t ,Et ,At ,F t

v ,F
t
e) . 

In this approach, r-AIG is used as both the source and 
target networks.

A subgraph centered around vr is defined as gvr ⊂ Gr , 
where r ∈ {s, t} , the source domain is Ds = (Gs, f (gsvr )) , 
and the target domain is Dt = (Gt , f (gtvr )) , with Ds  = Dt , 
and f (g) being the subgraph classification task. The prob-
lem studied in this paper is, given a distributional differ-
ence but identical label sets between source and target 
domains, to learn a classification function f (g)  → yi with 
the aid of source domain information, in order to accu-
rately identify the category of gtvr in the target domain.

Cross‑blockchain‑network phishing behavior 
detection method
In this section, we offer a comprehensive overview of 
the ADA-Spear phishing detection method’s structure, 
as illustrated in Fig. 2. ADA-Spear is applicable both for 
phishing behavior recognition and mining within the 
same blockchain, as well as for cross-blockchain-network 
phishing detection. When examining a node v, ADA-
Spear takes the r-AIG gv centered around v as input and 
outputs the node’s label. A label of 1 indicates a phish-
ing node, while 0 represents a benign node. ADA-Spear 
comprises the following components: Firstly, to charac-
terize on-chain interaction behavior, an r-AIG centered 
around v is constructed. Secondly, to depict the complex 
behavior of node v, an r-AIG encoder is designed, incor-
porating temporal feature analysis and attention mecha-
nisms. Thirdly, an adversarial domain adaptation transfer 

Fig. 2  The framework of cross-blockchain-network phishing behavior detection method
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learning module is developed, adapting the encoder to 
the address behavior representation on the target chain 
and identifying phishing behavior on the target chain. 
Finally, a training module is designed, integrating domain 
adaptive transfer learning with binary classification tasks 
for training.

Subgraph construction
Ethereum and Bitcoin data both reach million-level 
scales, resulting in excessively large graph data for their 
respective AIGs. This poses a challenge for full-batch 
training in graph nerual network (GNN)-based neural 
networks. Furthermore, an abundance of redundant data 
hinders effective transfer learning, making the migration 
of source domain features to the target domain challeng-
ing. This may result in issues like overfitting, impacting 
the effectiveness of phishing detection. Consequently, 
this subsection aligns and simplifies E-AIG/EO-AIG and 
B-ATIG, creating a unified r-AIG. The subgraph con-
struction process is illustrated in Fig. 3.

Sampling original data into multigraphs
In this subsection, the second-order nodes of the tar-
get address are sampled from the original block data 
of Ethereum and EOSIO to create the subgraph repre-
senting the target address, resulting in the multigraph 
E-AIG. Given Bitcoin’s distinct organizational struc-
ture from Ethereum, the original block data for Bitcoin 
involves sampling the second-order transaction nodes 

of the target address and the next-order addresses cor-
responding to these transactions. This process results in 
the creation of a heterogeneous graph containing trans-
action nodes and address nodes, forming the multigraph 
B-ATIG.

The design of the sampling method outlined above is 
driven by two key considerations: a. Phishing and benign 
nodes exhibit distinct behavioral patterns, manifested 
in their interactions with neighboring nodes, i.e., local 
structural features on the graph; b. Subgraphs, in com-
parison to the full graph, undergo a significant reduction 
in scale and are adaptable to the training method of the 
model network.

To facilitate adaptation to the later-designed encoder 
and adversarial domain adaptive learning, aligning EAIG/
EO-AIG with B-ATIG is essential. This involves trans-
forming B-ATIG into B-AIG. The transformation process 
is shown in Fig. 4. In the heterogeneous graph B-ATIG, 
all nodes of type “transaction” ntx ∈ Ntx and their corre-
sponding edge pairs (ntxpre , ntx), (ntx, ntxnext ) are extracted. 
By removing ntx , the edge (ntxpre , ntxnext ) is formed. The 
attributes of the edge (ntx, ntxnext ) are retained as new 
edge attributes. This process concludes with the con-
struction of the homogeneous multigraph B-AIG.

Node and edge feature construction
Following the analysis of phishing behaviors, fea-
tures exhibit strong correlations with amount, time, 
frequency, and degrees. The feature construction 

Fig. 3  ADA-Spear subgraph construction flowchart



Page 8 of 22Yan et al. Cybersecurity            (2024) 7:45 

schematic is shown in Fig. 4a, b. In the AIGs formed by 
the three chains, node attributes are denoted fv ∈ Fv . 
Specifically, fv = (in, out), fe = (t, a) where in and 
out represent the in-degree and out-degree of the 
node, respectively. Edge attributes are represented as 
fe = (t, a), fe ∈ Fe , where t indicates the order of the 
transaction occurrence in the subgraph. Specifically, 
t = rank(time, gi), i ∈ {1, 2, . . . , count} , with time being 
the transaction timestamp, gi being the subgraph con-
taining the target node, and count being the total num-
ber of nodes. Additionally, a represents the transaction 
amount type attribute.

Merging interactions into a directed graph
To transform multigraphs into directed graphs, edge 
aggregation is employed, as shown in Fig. 4b, c. For clar-
ity, the figure only displays the aggregation method for 
the sum of amounts. Given the temporal characteristics 
of phishing behaviors, the graph preserves crucial tempo-
ral information of transactions to the fullest extent. Mul-
tiple parallel edges between two nodes are aggregated 
into a single edge, and the attributes on the edge (vi, vj) 
are ((�at1,Max(at1),Min(at1),Mean(at1)), . . . , (�atM ,Max(atM ),

Min(atM ),Mean(atM ))) where �atM , Max(atM) , 
Min(atM) , Mean(atM) , m ∈ M respectively represent 
the sum, maximum, minimum, and mean of all transac-
tion amounts at the mth moment, and M indicates the 
maximum occurrence sequence of transactions in the 
subgraph.

It should be noted that different target nodes will 
form different subgraphs, and the number of transac-
tions within different subgraphs may vary. Therefore, the 
dimensions of the edges in different subgraphs may differ 
after aggregation. Subsequently, the issue of dimension 
alignment will be addressed by using a variable-length 
long short-term memory (LSTM).

Graph reduction with directed edges
Although sampling second-order nodes reduces the 
data volume compared to the full blockchain interac-
tion graph, the data volume remains significant. There-
fore, further reduction of the directed AIG, as shown 
in Fig. 5, occurs while retaining information relevant to 
phishing detection. In this subsection, the TopK tech-
nique is utilized to sample nodes at each order. The 

strategy is based on the following considerations: When 
comparing nodes of the same order, nodes with fewer zeros 
in the feature vector of the edges they belong to (i.e., fewer 
zeros), a larger sum of all amounts in the vector (i.e., larger 
sum), and higher degrees (i.e., higher degree) are more 
important and have a higher probability of being retained. 
In each order, the weight at which each node is retained, 
denoted as w, can be expressed as:

where each node utilizes the sum of all incoming edges 
and outgoing edges czero + aall + d , hopvi denotes the 
current order of node vi , gvi represents the subgraph 
where vi belongs. After the final iteration and reduction, 
the resulting node set can be represented as:

In conclusion, a reduced sub-directed graph is obtained. 
For the reduction process in this paper, we choose 
K = 25.

Encoder network
This section presents a comprehensive over-
view of the ADA-Spear model’s feature extractor 
fencod(A,F v ,F e; θ encod) . It employs a hierarchical atten-
tion mechanism based on LSTM to map the behavioral 
features of target nodes into representation vectors for 
subsequent transfer learning. The schematic diagram 
is illustrated in Fig.  6. Additionally, the encoder, in 
conjunction with the prediction head described in the 
next section, can also be applied for phishing detection 
within the same blockchain domain. In the following, 
the specific details of the encoder will be presented.

(1)w(vi) = rank((czero + aall + d), hopvi , gvi)

(2)
V r = ∪vi∈V r TopK (G = gvi ,K ,w(vi), hop),

hop ∈ {0, 1, 2}

Fig. 4  ADA-Spear directed graph construction flow chart

Fig. 5  ADA-Spear directed graph reduction flow chart
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Node level addreses representation based on temporal 
and spatial behavior
Node Level Address Representation Based on Temporal 
Behavior In the previously discussed r-AIG, nodes are 
encoded considering transaction flow and frequency, while 
edges are encoded based on transaction occurrence order. 
Since AIG is a graph centered around addresses, and each 
node has both incoming and outgoing transactions with its 
neighboring nodes, it is essential to preserve the tempo-
ral characteristics of transaction information. Therefore, 
in this subsection, the edge features between the central 
node vi and its neighboring nodes are aggregated into node 
vi . The input vector of the central node vi is represented 
as f

′

vi
= [(f

t1
e_in, f

t1
e_out), (f

t2
e_in, f

t2
e_out), . . . (f

tm
e_in, f

tm
e_out)] . f

′

vi
 

serves as the input for a variable-length LSTM, resulting in 
embedded vectors htvi . This operation is performed for all 
nodes on the graph, resulting in htvi , where vj represents the 
neighbors of vi . Since the total number of time steps m may 
vary between different subgraphs, a variable-length LSTM 

is employed to adapt to m . Figure 6a presents a visualiza-
tion of this process.

Specifically, for any node vk , k ∈ {i, j} , f
′

vk
 is used as the 

LSTM input, and the forgetting gate and input gate are cal-
culated as follows:

Then, we calculate the current candidate cell state:

Combine the forget gate and input gate to update the 
current cell state as follows:

(3)fg tvk =σ(W
fg
vk [h

th−1
vk , (f thevk _in

, f thevk _out
)] + b

fg
vk )

(4)i
th
vk =σ(W i

vk
[h

th−1
vk , (f thevk _in

, f thevk _out
)] + bivk )

(5)C̃
th
vk

= tanh(W C
vk
[h

th−1
vk , (f thevk _in

, f thevk _out
)] + bCvk )

(6)C
th
vk = fg

th
vkC

th−1
vk + i

th
vk C̃

th
vk

Fig. 6  The architecture of ADA-Spear encoder network
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At time step t, the current cell’s output hidden layer is 
expressed as:

Here, σ represents the sigmoid activation function, and t 
takes values from the set {t1, t2, . . . , tm}.

Node Level Address Representation Based on Address 
Source Data on Blocks Subsequently, the node features f vk 
are concatenated with hTvk = (ht1vk ,h

t2
vk
,ht3vk , . . . ,h

tm
vk
) , result-

ing in h̃vk = [f vk�h
T
vk
] . The same process is applied to other 

neighboring nodes. At this point, each node has aggregated 
edge features into the node and has fused them with the 
original node features, preserving transaction information 
based on time sequences.

Node Level Address Representation Based on Spatial 
Behavior After obtaining the features of each node, this 
step aims to retain the most relevant neighbor interac-
tion information between nodes. In phishing behavior, 
each neighboring node contributes differently to phishing 
detection. For example, a phishing address may engage in 
small transactions with benign addresses to obfuscate its 
malicious behavior, which can interfere with the detection 
process and should be excluded. Leveraging this insight, 
the paper utilizes the graph attention mechanism (GAT) 
mechanism to understand the distinct contributions of 
each neighbor node to phishing behavior detection and 
learn the hidden layer representation between each pair of 
nodes. The process is shown in Fig. 6a.

Specifically, for any node vi in the subgraph, the attention 
score between it and its neighbor node vj is calculated as 
follows:

where W a represents the weight to be learned in a single-
layer feedforward network, and LeakyRelu is used as a 
non-linear activation layer for subsequent normalization 
operations.

To ensure that the attention scores between nodes are 
comparable, a normalization operation is performed:

where N (i) represents all neighboring nodes of node vi.
Neighboring nodes are aggregated based on their atten-

tion scores to obtain the representation of node vi:

(7)o
th
vk =σ(W o

vk
[h

th−1
vk , (f thevk _in

, f thevk _out
)] + bovk )

(8)h
th
vk =o

th
vk tanh(C

th
vk )

(9)ai,j = LeakyRelu(W ah̃vi ,W ah̃vj )

(10)αi,j = softmax(ai,j) =
eai,j

∑

k∈N (i) e
ai,k

(11)ĥvi = σ

(

αi,iW αh̃vi +
∑

αi,jW αh̃vj

)

where W α represents the weight of the linear layer to be 
learned, and σ is a non-linear activation function, with 
ReLU chosen in this case. After iteration, the node-level 
embedding ĥvi is obtained for each node.

The specific iteration process is shown in Fig.  7. Itera-
tion is performed using the graph attention layer at the 
hop level, which involves propagating, transforming, and 
aggregating the representations between nodes in each 
subgraph. This process allows the interaction behavior 
of nodes at each level to be fully embedded into vectors, 
where hop represents the order of each subgraph. The 
initial input to the iteration layer is the node-level repre-
sentations obtained from the temporal feature extraction, 
denoted as ĥ0vi = ĥvi , where the neighboring nodes include 
all first-order nodes in the subgraph. After hop iterations, 
the final node-level representations for all nodes in a sub-
graph, denoted as Ĥhop

g = {ĥvi}vi∈Vg , contain all the infor-
mation about second-order nodes in that subgraph.

Subgraph‑level behavior pattern representation
This module aims to characterize the behavior patterns 
of each target subgraph. The identity and methods of the 
phisher can lead to varied subgraph differences in phishing 
behavior on Ethereum. Therefore, it is necessary to design 
subgraph-level feature characterization. To overcome the 
limitations of flat GNNs), this subsection combines Diff-
Pool technology (Ying et al. 2018) hierarchically to aggre-
gate subgraph information, as shown in Fig. 6c.

Specifically, the representation H (0)
g = Ĥ

hop

g  and the sub-
graph adjacency matrix A(l)

g  are used as inputs to the Diff-
Pool layer, which calculates the representation matrix Z(l)

g  
and the assignment matrix S(l)g ∈ R

nl×nl+1 , where nl is the 
number of nodes in the l th DiffPool layer:

where Ã
(l)

g = A(l)
g + I , D̃

(l)

g =
∑

j Ãij , and W (l−1)
GNN are 

learnable parameters.

(12)
Z(l)
g = GNNrepresent(A

(l)
g ,H (l)

g )

= ReLU(D̃
(l)

− 1
2

g Ã
(l)

g D̃
(l)

− 1
2

g H (l−1)
g W

(l−1)
GNN )

(13)S(l)g = softmax(GNNpool(A
(l)
g ,H (l)

g ))

Fig. 7  The process of encoder iteration
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After obtaining Z(l)
g  and S(l)g  , we can calculate the repre-

sentation H (l+1)
g  and the adjacency matrix A(l+1)

g  for the 
(l + 1) th layer as follows:

where d is the number of columns in Z(l)
g  , which is the 

feature dimension of nodes in the l th layer.

We use two layers of DiffPool to characterize subgraph 
behavior and finally obtain the subgraph-level behavior 
pattern representation H g , which serves as the output of 
the encoder.

Label prediction
Both the source domain and target domain use the meth-
ods mentioned in Sect.  4.2 to represent subgraphs as 
H r

g , r ∈ {s, t} . The semi-supervised learning classification 
module is designed to perform binary classification sep-
arately on the source and target domains, preparing for 
the subsequent domain adaptation module.

Specifically, we employ a multi-layer perceptron 
fpred(H; θpred) , where H is the representations of all sub-
graphs, and θpred represents the trainable parameters of 
the classifier. The predicted labels can be expressed as:

Subsequently, we use the cross-entropy loss function for 
the training of the classifier fpred:

Similarly, this loss function can also be computed on the 
target domain.

The specific iterative process of the address encoding 
encoder is as Fig. 7. Subgraphs’ A , F v and F e serve as inputs 
to the LSTM, resulting in the representation h̃ . After pass-
ing through two layers of GAT and two layers of DiffPool, 
the address representation H g is obtained. Multi-layer per-
ceptron (MLP) is employed for address representation clas-
sification. The original label set Y  is used as the input to the 
loss function, which is then compared with the labels pre-
dicted by MLP to update the encoder’s parameters.

Adversarial domain adaptation
We use a adversarial domain adaptation module to elimi-
nate the divergence between the Ethereum, Bitcoin, and 
EOSIO networks, facilitating knowledge transfer between 
these networks. For each subgraph in each network, we 

(14)H (l+1)
g = S(l)g

T
Zg

(l),H (l+1)
g ∈ R

nl+1×d

(15)A(l+1)
g = S(l)g

T
A(l)
g S(l)g ,A(l+1)

g ∈ R
nl+1×nl+1

(16)ŷr = fpred(H
r
g ; θpred), r ∈ {s, t}

(17)Lpred = −
1

ns

ns∑

i=1

ysi logŷ
s
i

obtain subgraph representations H r
g , r ∈ {s, t} through 

the encoder. To generate similar representations in the 
source and target domains, we use a fully connected layer 
as the domain discriminator, denoted as fdisc(H r

g ; θdisc) , 
with input H r

g = fencod[(A
r ,F r

v ,F
r
e; θ encod)]g , represent-

ing the representation of subgraph g, and θ encod as train-
able parameters. The output is a real number indicating 
the similarity between the source and target domains.

Next, we let the generator fencod and domain discrimi-
nator fdisc play against each other, making it impossible 
for the domain discriminator to distinguish the domain 
of the samples. Specifically, we first compute the optimal 
transportation distance also named Wasserstein distance 
(Arjovsky et al. 2017; Gulrajani et al. 2017) between the 
source and target domain distributions:

where �fdisc�Lc ≤ 1 enforces the Lipschitz continuity 
condition on the domain discriminator to prevent gradi-
ent explosions or vanishing between the generator and 
domain discriminator, and sup represents the supremum. 
Furthermore, the optimal transportation distance maxi-
mizes the domain discriminator loss function under this 
condition, where the domain discriminator loss function 
is given by:

This loss encourages the domain discriminator to 
correctly classify the source and target domain rep-
resentations while the generator aims to generate 
domain-invariant representations. The overall objective is 
to minimize Ldisc while maximizing W1(PH s ,PH t ) , which 
promotes domain adaptation and similarity between the 
source and target domain representations.

To ensure the Lipschitz continuity condition, a gradient 
penalty factor Lpenal is introduced to θdisc:

where the representation Ĥ refers to a random point 
along the line between the representations of the source 
and target domains, or the source or target domain itself.

(18)
W1(PH s ,PH t ) = sup

�fdisc�Lc≤1

EPHs [fdisc(H; θdisc)]

− EPH t [fdisc(H; θdisc)]

(19)
Ldisc = −EPHs [fdisc(H; θdisc)] + EPHt [fdisc(H; θdisc)]

(20)

Ldisc =
1

ns

ns∑

i=1

fdisc([fencod(A
s,F s

v ,F
s
e; θ encod)]i; θdisc)

−
1

nt

nt∑

i=1

fdisc([fencod(A
t ,F t

v ,F
t
e; θ encod)]i; θdisc)

(21)Lpenal(Ĥ) = (�∇
Ĥ
fdisc(Ĥ; θdisc)�2 − 1)2
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Therefore, the subgraph representation is maintained 
constant by minimizing and maximizing the following:

where γ is the gradient penalty coefficient, set to zero 
during the training of the generator. Generally, the 
parameters in the domain discriminator fdisc(·) are 
trained to optimality before updating the generator 
fencod(·) parameters to minimize the optimal transport 
distance.

Model training
Expanding formula (22) and integrating it into the semi-
supervised learning prediction loss function yields the 
final loss function:

where � is the balancing coefficient between semi-super-
vised learning and domain adaptation.

The training process is depicted in Algorithm 1.

Algorithm 1  Training algorithm for ADA-Spear

Input: Gs = (V s, Es, As, F s
v , F

s
e ), Ys), Y s: source do-

main data; Gt = (V t, Et, At, F t
v , F

t
e)): target do-

main data; sdisc: domain discriminator train-
ing step; γ, λ: coefficients in the loss function;
αdisc, αencod: learning rates of discriminator and
encoder; Ns, N t: number of subgraphs in the
source and target domain; ε: a real number ran-
domly drawing from the interval [0,1].

Output: The optimal encoder fencod, semi-supervised
learning classifier fpred and domain discriminator
fdisc.

1: Initialize parameters θencod for encoder fencod;
2: Initialize parameters θpred for classifier fpred;
3: Initialize parameters θdisc for discriminator fdisc;
4: while not converge do
5: // training discriminator;
6: for t = 1, . . . , sdisc do
7: Hs ← fencod(As, F s

v , F
s
e ; θencod);

8: Ht ← fencod(At, F t
v , F

t
e ; θencod);

9: N ← min{Ns, N t};
10: hs ← Hs,ht ← Ht, ε ← [0, 1];
11: hi ← εhs + (1− ε)ht;
12: H = {hi}Ni=1;
13: Ĥ ← {Hs, Ht, H};
14: θdisc ← θdisc+αdisc·∇θdisc{Ldisc−λLpenal(Ĥ)};
15: end for
16: // training encoder and classifier;
17: θ ← {θencod, θpred};
18: θ ← θ − αencod · ∇θ{Lpred + λLdisc};
19: end while
20: return fencod, fpred, fdisc;

(22)min
θ encod

max
θdisc

{Ldisc − γLpenal}

(23)min
θ encod ,θpred

{Lpred + �max
θdisc

[Ldisc − γLpenal]}

Experiments
In this section, the performance of the proposed method 
is assessed in comparison to current advanced methods 
through experiments. The analysis includes evaluating 
the efficiency and scalability of the method. Following 
that, it investigates diverse cross-blockchain-network 
phishing behavior patterns. Additionally, it assesses 
the effectiveness of different modules in the adversarial 
domain adaptation architecture and explores the impact 
of inter-chain distribution differences on the model.

Data preparation
In this subsection, the most popular two blockchain 
platforms and the largest Initial Coin Offering (ICO) 
platform are selected as the subjects of the experiment: 
Ethereum (Etherscan)(ETH), Bitcoin (Nakamoto 2008) 
(BTC), and EOSIO (EOSIO)(EOS). Transaction data 
from the Ethereum blockchain for the years 2019–2021, 
Bitcoin for 2019–2021, and EOSIO for 2018–2019 are 
extracted. From each chain, 1000 phishing nodes are 
randomly sampled, and to balance the training samples, 
the same number of benign nodes are also obtained. 
Subgraphs are constructed for each using the method 
described in Sect.  4.1. Detailed statistics of the dataset 
are shown in Table 2.

For the three datasets, the reduced second-order sub-
graphs of phishing and benign nodes are used as the 
experimental input. The Ethereum dataset contains a 
total of 1,765,559 nodes and 4,319,271 edges, with the 
phishing nodes accounting for 0.06% of the total; the Bit-
coin dataset includes 983,176 nodes and 4,859,188 edges, 
with phishing nodes making up 0.10%; the EOSIO data-
set consists of 746,688 nodes and 9,727,013 edges, with 
phishing nodes comprising 0.13%. Due to EOSIO’s char-
acteristic of rapidly recording interaction information, it 
presents the highest total number of edges and average 
degree despite having the fewest total nodes. However, 
the proportion of phishing nodes in EOSIO is compara-
ble to the other datasets, which does not affect the subse-
quent experimental analysis.

To further assess the performance of ADA-Spear across 
these three domains, it is divided into six transfer learn-
ing tasks, which include: ETH → BTC, EOS → BTC, ETH 
→ EOS, BTC → EOS, BTC → ETH, and EOS → ETH, 
where ETH, BTC, and EOS respectively represent the 
Ethereum dataset, the Bitcoin dataset, and the EOSIO 
dataset.

Experiment setup
This subsection primarily describes the baseline methods 
and implementation details.
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Baselines
We select methods from different research approaches 
for comparative experiments, mainly divided into feature 
engineering, single-network learning, graph-based semi-
supervised learning, and cross-network learning. The 
specifics are as follows:

Feature Engineering Inspired by Chen et al. (2020a), we 
select 219-dimensional features to characterize subgraph 
behavior for phishing behavior detection.

Single Network Learning We use DeepWalk (Perozzi 
et  al. 2014), Graph2vec (Narayanan et  al. 2017), Trans-
2vec (Wu et  al. 2020), and T-Edge (Lin et  al. 2020) as 
comparative methods for extracting subgraph repre-
sentations. DeepWalk and Graph2vec can extract the 
structural information of subgraphs, while Trans2vec 
and T-Edge incorporate additional information such 
as transaction amounts and timing on top of structural 
information.

After obtaining subgraph (feature) representations 
using feature engineering and single network learning 
methods, logistic regression, random forests, and sup-
port vector machines are used for the subgraph classifi-
cation task.

Graph-based Semi-supervised Learning We employ 
GCN (Kipf and Welling 2016), GraphSage (Hamilton 
et  al. 2017), and MCGC (Zhang et  al. 2021) as three 
deep learning methods, detecting phishing behavior in 
an end-to-end learning manner. GCN can integrate net-
work structure and attribute information. GraphSAGE is 
derived from a variant of the GCN aggregation function. 
MCGC is a deep learning method that extracts subgraph 
information hierarchically. The attributes required for 
this class of methods are consistent with those proposed 
in this subsection.

Cross-Network Learning We use NetTr (Fang et  al. 
2013) and CDNE (Shen et al. 2020) as two transfer learn-
ing methods. NetTr transfers only network structural 
information. CDNE introduces a MMD loss function to 
perform domain adaptation learning in an autoencoder 
fashion. The attributes required for this class of methods 
are consistent with those proposed in this subsection.

Implementation details
This subsection conducts experiments on a Linux oper-
ating system with 128 GB of memory. NetworkX (2020) 

is used for graph data processing, PyTorch (Paszke 
et  al. 2019) for model construction, and Scikit-learn 
(Pedregosa et al. 2011) for handling evaluation metrics.

To better compare the effectiveness of the methods, 
the dimensions of the subgraph representations used in 
this subsection are all the same, each with 128 dimen-
sions. The encoder of the method proposed in the paper 
consists of 1 layer of LSTM, 2 layers of GAT, 2 layers of 
DiffPool, and 2 layers of MLP, with each layer using a 
128-dimensional output for hidden layers. The dropout 
rate for hidden neurons is set to 0.4. The function fpred(·) 
is a multilayer perceptron, using a 128-dimensional out-
put layer for label prediction. The domain discrimina-
tor fdisc(·) has 2 layers with 128 neurons each, and the 
balance coefficient � , the gradient penalty coefficient 
γ , and the number of training steps for the domain dis-
criminator sdisc are set to 0.8, 10, and 15, respectively. The 
learning rates for the encoder and domain discrimina-
tor, αencod and αdisc , are both set to 0.001. The model is 
trained for 30 epochs.

For all non-cross-network learning methods, we merge 
the source and target networks into one network for 
experimentation. In the merged network, there are no 
edges between the source and target networks. Therefore, 
an 8:2 split is used as the training and test sets within 
each merged network, with fivefold cross validation used 
for experimentation. For single network learning meth-
ods, the walking length for DeepWalk, Trans2vec, and 
T-Edge is set to 10, and the context size is set to 4. The 
shift parameter α in Trans2vec and T-Edge is set to 0.5. 
In Graph2vec, the number of training epochs is set to 30, 
with a learning rate of 0.001. For subsequent classifiers, 
the maximum number of iterations is set to 100 in logis-
tic regression. The support vector machine uses an RBF 
kernel with hyperparameter γ set to 1000. In the random 
forest, the maximum depth is set to 7, with the number of 
base decision trees set to 100.

For graph-based semi-supervised learning methods, 
the GCN layers in GCN, GraphSage, and MCGC are set 
to 128 dimensions. The number of training epochs is set 
to 30, with a learning rate of 0.001. For MCGC, the num-
ber of aggregation layers is set to 3 layers.

For cross-network learning methods, NetTr and 
CDNE adopt the hyperparameters recommended in the 
literature.

Table 2  Dataset statistics

Dataset Total nodes Phishing nodes Proportion (%) Total edges Average degree

ETH 1,765,559 1000 0.06 4,319,271 4.87

BTC 983,176 1000 0.10 4,859,188 9.88

EOS 746,688 1000 0.13 9,727,013 26.05
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Experimental results
This section primarily investigates the comparative 
effectiveness of the proposed method against current 
advanced methods. To ensure that the behavior pat-
terns of the three blockchains are sufficiently similar 
to warrant transfer learning, the target domains in the 
experiments are divided into fully unlabeled and partially 
labeled (with a label rate of 5%). In this section, ADA-
Spear’s detection effectiveness is verified to surpass cur-
rent advanced methods across these three datasets and 
six transfer learning tasks. The main results are presented 
in terms of F1 scores, as shown in Table 3.

Firstly, from the table for the target domain with no 
labels, it can be seen that the proposed method ADA-
Spear outperforms all comparison methods, demon-
strating its effectiveness in cross-blockchain-network 
phishing behavior detection. Under the six cross-block-
chain-network detection tasks, ADA-Spear’s F1 score 
is, on average, 7.1% higher than the best comparison 
method.

The F1 scores of feature engineering and single net-
work learning methods are comparatively low, which 
aligns with expectations. Feature engineering methods 
can only depict certain types of phishing behaviors on a 
specific chain and struggle to comprehensively character-
ize phishing behaviors across different chains.

Within single network learning methods, it’s evident 
that DeepWalk and Graph2vec, which only consider net-
work structure, perform very poorly, even comparable 
to feature engineering methods. This can be attributed 
to the lack of interconnectivity between ETH, BTC, and 
EOS networks, resulting in incomparable representa-
tion vectors trained from the source and target domains. 
This is the reason for the subpar detection effectiveness. 
Moreover, because they do not incorporate any seman-
tic characterization of on-chain phishing behavior, they 
cannot compare with Trans2vec and T-Edge, which 
introduce semantics. Semantic-aware detection methods 
outperform those considering only network structure by 
an average of 7.25% in F1 score, suggesting that phish-
ing behaviors across heterogeneous chains share certain 
semantic similarities.

Graph-based semi-supervised learning methods show 
significant improvement over the previous two catego-
ries, with the MCGC method achieving the best results 
among them. These methods are, on average, 10.04% 
higher in F1 score compared to single network learn-
ing methods. This improvement can be attributed to the 
end-to-end learning mode of semi-supervised methods, 
which allows for the adjustment of subgraph behavior 
representation while classifying, rather than post-repre-
sentation classification as with the previous two unsu-
pervised learning approaches. MCGC achieves the best 

results because it overcomes the flattening issue of GCN-
based methods, considering subgraph representation 
from a hierarchical perspective, and portraying behaviors 
more completely and accurately at the subgraph level.

The cross-network learning methods NetTr and CDNE 
are the most effective among all comparison methods 
but still have a significant gap compared to the detec-
tion effectiveness of the proposed method in this paper. 
ADA-Spear’s F1 score exceeds the average of cross-net-
work learning methods by 7.1%. Especially NetTr did not 
achieve the expected detection performance. This may 
be due to NetTr only transferring the topological struc-
ture between the source and target domains, not consid-
ering the semantic information of behaviors, which also 
indirectly proves that phishing behaviors on the three 
different chains have significant topological drift. The 
substantial improvement in the detection effectiveness 
of ADA-Spear is mainly due to the integration of more 
semantic information on phishing behavior, hierarchical 
stereoscopic behavior characterization, and the loss func-
tion in adversarial domain adaptation being more effec-
tive than the MMD loss function.

From these six transfer learning tasks, it is observed 
that transfers to EOS are more challenging, which indi-
rectly suggests that the behavior patterns of nodes on 
EOS differ significantly from those on other chains. How-
ever, the detection results are still at a high level, which 
indicates that although there are distribution differences 
in behavior, the method proposed in this paper can still 
mitigate distribution drift and achieve good detection 
results.

Comparing the tables for target domains with and 
without labels shows that introducing target domain 
labels improves the detection performance of all models, 
with many phenomena similar to those observed in the 
absence of labels. While detection performance improves 
with the introduction of labels, the increase is not sub-
stantial, which also demonstrates the robustness of the 
model. Furthermore, it indicates that phishing behaviors 
across these three chains possess certain similarities and 
that the distributions have consistency. This validates the 
meaningfulness of using domain adaptation methods.

Efficiency analysis
This section conducts an efficiency analysis. Firstly, an 
analysis of the relationship between time and cost across 
different sampling ranges was carried out, with the 
results shown in Fig. 8. This subsection uses the ratio of 
the number of nodes and edges to the total number of 
nodes and edges as a cost indicator for analysis. Since the 
task duration remains the same when the datasets used 
in the source and target domains of transfer learning are 
swapped, so nodes and edges increasing are showing 
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the same trend in the tasks such as ETH-BTC: ETH → 
BTC and BTC → ETH but time cost between the tasks 
have slight fluctuation. It can be observed from the fig-
ure that the time increases with the number of sampled 
nodes, and the increase tends to be linear. Since graph 
data needs to be read, the ratio of nodes and edges repre-
sents the memory usage rate, which, as shown in the fig-
ure, increases linearly with the number of sampled nodes. 
Therefore, the method proposed in this paper tends 
towards linearity in both time and cost aspects, indicat-
ing that ADA-Spear is suitable for large-scale networks 
and has good scalability.

Secondly, this section also compares the impact of the 
sampling range on the F1 score for ADA-Spear with two 
other methods, with results shown in Fig.  9. The other 
two methods selected, GCN and CDNE, were chosen 
because they achieved the optimal F1 scores among the 
comparison methods. As can be seen from the figure, the 
F1 scores for all six tasks are generally optimized when 
K = 25; therefore, K = 25 was chosen for experimenta-
tion. Additionally, it is evident from the figure that the 
F1 score for ADA-Spear consistently outperforms that of 
GCN and CDNE. The detection effect is not ideal before 
K reaches 20, but there is a significant improvement after 
K exceeds 20. However, there is a slight decline when K 
reaches 30. This indicates that the neighboring nodes 
have the maximum amount of information when K is 
between 20 and 25, and beyond 30, the redundant infor-
mation becomes detrimental to the model’s learning.

In summary, the method proposed in this section has 
the best efficiency in balancing time and detection effec-
tiveness, surpassing the other methods.

Ablation experiment
This section investigates the impact of the adversarial 
domain adaptation module and the encoder module on 
the overall model’s detection performance and conducts 
a visual analysis.

Impact of the adversarial domain adaptation module
To explore the effect of this module on the overall detec-
tion performance, the subsection conducts experiments 
without this module, and the comparative results are 
presented in Table 4. As can be seen from the table, the 
adversarial domain adaptation module mitigates domain 
discrepancies and enhances detection performance. 
The absence of this module would lead to a significant 
distributional shift, whereas ADA-Spear can make the 
subgraph representations have clearer class boundaries. 
This demonstrates that the adversarial domain adapta-
tion module can effectively alleviate the distribution drift 
between chains, making a substantial contribution to the 
detection of phishing activities on new blockchains.

Impact of the encoder network
To explore whether the encoder network proposed in 
this paper accurately captures the distinctive charac-
teristics of phishing and benign behaviors, this section 

Fig. 8  Impact of sampling range on time and cost (training time, node-to-edge ratio): a ETH → BTC task; b BTC → ETH task; c EOS → BTC task; d 
BTC → EOS task; e ETH → EOS task; f EOS → ETH task
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replaces the proposed encoder network with a mul-
tilayer perceptron. This perceptron utilizes a fully 
connected approach for feature extraction. The com-
parative results are shown in Table  5. As can be seen 

from the table, the implementation of the encoder 
designed in this paper leads to improvements in all six 
cross-blockchain-network phishing detection tasks. 
The averages of Rc, Pr, and F1 increased by 2.85%, 

Fig. 9  Impact of sampling range on detection results: a ETH → BTC task; b BTC → ETH task; c EOS → BTC task; d BTC → EOS task; e ETH → EOS task; 
f EOS → ETH task

Table 4  Impact of the adversarial domain adaptation module on detection performance

Task Method Rc (recall) (%) Pr (precision) (%) F1 score (%)

ETH → BTC  ADA-Spear/ADA 73.54± 0.042 69.49± 0.015 71.46± 0.012

 ADA-Spear 79.79 ± 0.051 75.39 ± 0.024 77.53 ± 0.011

 Improvement 6.25 5.90 6.07

 EOS → BTC  ADA-Spear/ADA 72.71 ± 0.029 68.56 ± 0.010 70.58 ± 0.008

 ADA-Spear 78.12 ± 0.051 73.53 ± 0.023 75.76 ± 0.012

 Improvement 5.41 4.97 5.18

 ETH → EOS  ADA-Spear/ADA 71.66 ± 0.036 67.98 ± 0.012 69.78 ± 0.011

 ADA-Spear 76.25 ± 0.047 72.19 ± 0.020 74.16 ± 0.012

 Improvement 4.59 4.21 4.38

 BTC → EOS  ADA-Spear/ADA 70.62 ± 0.042 67.80 ± 0.014 69.18 ± 0.013

ADA-Spear 75.22 ± 0.050 71.34 ± 0.020 73.23 ± 0.013

 Improvement 4.60 3.54 4.05

 EOS → ETH  ADA-Spear/ADA 73.75 ± 0.041 70.38 ± 0.016 72.03 ± 0.011

 ADA-Spear 81.04 ± 0.051 77.03 ± 0.026 78.98 ± 0.010

 Improvement 7.29 6.65 6.95

 BTC → ETH  ADA-Spear/ADA 74.59 ± 0.058 70.89 ± 0.023 72.69 ± 0.016

 ADA-Spear 82.29 ± 0.055 79.48 ± 0.031 80.86 ± 0.010

 Improvement 7.70 8.59 8.17

 Average  Improvement 5.97 5.64 5.80
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2.81%, and 2.83%, respectively. This demonstrates that 
the encoder can effectively delineate the distinctive fea-
tures between phishing and benign behaviors, making 
it an indispensable part of the model.

Distribution difference analysis
This section discusses the differences in distributions 
between the source chain and the target chain. Under six 
cross-blockchain-network phishing detection tasks, the 
impact of changes in the distribution differences on the 
detection results is explored by varying the feature over-
lap degree between the source and target domains. The 
feature overlap degree is defined as C =

|Fs∩Ft |

|Fs∪Ft |
 , where Fr 

(with r ∈ {s, t} ) represents the features in domain r . This 
is achieved by randomly removing certain attributes, 
causing C to vary from 10% to 50%. The final results are 
shown in Fig.  10. The best methods of semi-supervised 
learning and cross-network learning are selected for 
comparison with the proposed method. As seen in the 
figure, ADA-Spear consistently outperforms GCN and 
CDNE across all label rates in all tasks. This also indicates 
that, even with only a small portion of overlapping attrib-
utes between two domains, adversarial domain adapta-
tion techniques still make a significant contribution to 
the model. This adequately demonstrates the robustness 
of the method proposed in this paper, making it capable 

of detecting phishing behaviors across an even wider 
range of new chains.

Sensitivity analysis
This section conducts a parameter sensitivity analysis of 
ADA-Spear to explore the impact of hyperparameters 
on the model. The sensitivity of the LSTM length m , the 
training steps of the domain discriminator sdisc , the pen-
alty factor γ , and the balance coefficient � are analyzed. 
Since the trends in hyperparameter changes are similar 
across various tasks, this section presents the F1 values 
only for the ETH → BTC task to avoid repetition. The 
method of controlling variables is used here; when study-
ing a single hyperparameter, the others are kept constant 
as described in Sect. 5.2.

LSTM Length m The length of LSTM is used to receive 
subgraph feature inputs of different total time steps. As 
shown in Fig.  11a, subgraphs with a time span of more 
than 30 days have achieved good and stable detection 
results. The detection results show stability when LSTM 
encompasses information over more days, demonstrating 
the robustness of the model. When the length is 10, the 
detection performance is lower, indicating that subgraphs 
should ideally not be chosen with less than 10 steps. The 
stable performance in the graph also proves that using 
LSTM of variable lengths for detection is feasible.

Table 5  Impact of the encoder network on detection performance

Task Method Rc (recall) (%) Pr (precision) (%) F1 score (%)

ETH → BTC ADA-Spear/encoder 76.67 ± 0.059 72.44 ± 0.025 74.49 ± 0.015

ADA-Spear 79.79 ± 0.051 75.39 ± 0.024 77.53 ± 0.011

Improvement 3.12 2.95 3.04

EOS → BTC  ADA-Spear/encoder 76.67 ± 0.059 72.44 ± 0.025 74.49 ± 0.015

ADA-Spear 78.12 ± 0.051 73.53 ± 0.023 75.76 ± 0.012

Improvement 1.45 1.09 1.27

ETH → EOS ADA-Spear/encoder 72.71 ± 0.041 68.83 ± 0.015 70.72 ± 0.012

ADA-Spear 76.25 ± 0.047 72.19 ± 0.020 74.16 ± 0.012

Improvement 3.54 3.36 3.44

BTC → EOS ADA-Spear/encoder 72.08 ± 0.051 68.38 ± 0.018 70.18 ± 0.015

ADA-Spear 75.22 ± 0.050 71.34 ± 0.020 73.23 ± 0.013

Improvement 3.14 2.96 3.05

EOS → ETH ADA-Spear/encoder 78.32 ± 0.041 74.17 ± 0.019 76.19 ± 0.009

ADA-Spear 81.04 ± 0.051 77.03 ± 0.026 78.98 ± 0.010

Improvement 2.72 2.86 2.79

BTC → ETH  ADA-Spear/encoder 79.17 ± 0.047 75.85 ± 0.023 77.47 ± 0.010

ADA-Spear 82.29 ± 0.055 79.48 ± 0.031 80.86 ± 0.010

Improvement 3.12 3.63 3.39

Average Improvement 2.85 2.81 2.83
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Domain Discriminator Training Steps sdisc As observed 
in Fig. 11b, there is a clear increase in the F1 value when 
sdisc changes from 5 to 10, followed by a tendency to 
stabilize. This confirms the optimization theory of the 
domain discriminator. Since the parameters of other 
components in the model remain unchanged during the 
training of the domain discriminator, as long as the num-
ber of training steps for the domain discriminator is suf-
ficiently large, it can reach the optimal solution.

Penalty Factor γ The penalty factor is used to adjust 
various hyperparameters of the domain discriminator. 
As can be seen from Fig. 11c, the optimal detection per-
formance is achieved when γ = 10 . Both excessively high 
and low values lead to model degradation. Therefore, this 
paper adopts a penalty factor of 10 for the experiments.

Balance Coefficient � The balance coefficient is used 
to adjust the balance between adversarial domain adap-
tation learning and semi-supervised learning. As shown 
in Fig. 11d, the detection results improve when � varies 
between 0.4 and 1.0. There is a sharp decline in detection 
performance after � = 1.0 . Therefore, the chosen � for 
the model should be between 0.4 and 1.0 to balance the 
learning of distinguishability between different categories 
and the similarity between domains.

Conclusion
This paper addresses the detection of cross-blockchain-
network phishing activities by combining an encoder 
that effectively characterizes phishing behaviors with 
ADA-Spear’s adversarial domain adaptation module. 

Fig. 10  Comparison chart of detection efficacy with different overlap rates of attributes between source and target domains: a ETH → BTC; b EOS 
→ BTC; c ETH → EOS; d BTC → EOS; e EOS → ETH; f BTC → ETH

Fig. 11  ADA-Spear parameter sensitivity analysis: a LSTM sequence 
length; b training steps; c penalty factor; d balance coefficient
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The encoder module combines temporal and topological 
information to create a hierarchical subgraph representa-
tion. Simultaneously, the adversarial domain adaptation 
module facilitates knowledge transfer from the source 
domain to the target domain. This combination enables 
ADA-Spear to be effectively applied to new chains for 
recognizing phishing behavior. Detailed experiments, 
using Ethereum, Bitcoin, and EOSIO as examples, further 
demonstrate ADA-Spear’s advantages in accuracy and 
robustness. Meanwhile, ADA-Spear exhibits certain limi-
tations.The precision of ADA-Spear demonstrates a con-
siderable improvement over existing methods; however, 
there is still room for further enhancement until it can 
rival the detection performance achieved solely within 
a single chain. Additionally, ADA-Spear may encounter 
limitations in knowledge transfer in cases where there is 
significant disparity between the two chains. Research on 
generalizable phishing recognition methods across differ-
ent chains is still in its early stages. This paper introduces 
one potential approach, offering a new research perspec-
tive to the community.
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