
Yan et al. Cybersecurity (2024) 7:45
https://doi.org/10.1186/s42400-024-00237-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Phishing behavior detection on different
blockchains via adversarial domain adaptation
Chuyi Yan1,2, Xueying Han1,2, Yan Zhu1,2, Dan Du1,2*, Zhigang Lu1,2 and Yuling Liu1,2 

Abstract 

Despite the growing attention on blockchain, phishing activities have surged, particularly on newly established
chains. Acknowledging the challenge of limited intelligence in the early stages of new chains, we propose ADA-Spear-
an automatic phishing detection model utilizing adversarial domain adaptive learning which symbolizes the meth-
od’s ability to penetrate various heterogeneous blockchains for phishing detection. The model effectively identifies
phishing behavior in new chains with limited reliable labels, addressing challenges such as significant distribution
drift, low attribute overlap, and limited inter-chain connections. Our approach includes a subgraph construction strat-
egy to align heterogeneous chains, a layered deep learning encoder capturing both temporal and spatial information,
and integrated adversarial domain adaptive learning in end-to-end model training. Validation in Ethereum, Bitcoin,
and EOSIO environments demonstrates ADA-Spear’s effectiveness, achieving an average F1 score of 77.41 on new
chains after knowledge transfer, surpassing existing detection methods.

Keywords  Blockchain, Phishing detection, Adversarial domain adaptation, Graph/network transfer learning,
Hierarchical graph attention, Network security

Introduction
Since the introduction of Bitcoin (Nakamoto 2008) in
2008, blockchain and cryptocurrencies have flourished.
According to CoinMarketCap (CoinMarketCap), there
are now 25,853 different cryptocurrencies, with a mar-
ket capitalization exceeding one hundred billion dollars.
Typically, a blockchain gives rise to its own cryptocur-
rency, and this financial characteristic has resulted in a
surge of phishing activities. Statistics from Chainalysis
(Chainanalysis) reveal that since 2017, more than 50% of
blockchain security incidents are linked to phishing. By
2022, the proportion of phishing incidents has consist-
ently risen to over 80%. Consequently, there is an urgent

need to research methods for detecting phishing activi-
ties across different cryptocurrencies.

Traditional phishing activities generally involve the
use of fake websites to induce users to provide private
information. Thus, traditional phishing detection focuses
on identifying these counterfeit websites and promptly
warning users against interacting with them (Jain et al.
2017; Zuraiq and Alkasassbeh 2019; Orunsolu et al.
2022). Phishing activities on the blockchain, however,
have developed new patterns. Criminals have shifted
their focus from stealing private information to crypto-
currencies, employing a combination of social engineer-
ing and technical methods. Upon successfully obtaining
cryptocurrencies, they disguise their identities through
multiple transactions, increasing the covert nature of
their activities. Moreover, as different cryptocurrencies
continually emerge, possessing reliable tagged data for
each is extremely valuable. Newly emerged cryptocurren-
cies lack any tagged data, requiring a significant amount
of time to accumulate relevant intelligence databases. At
that point, the damage has already occurred, significantly

*Correspondence:
Dan Du
dudan@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00237-5&domain=pdf

Page 2 of 22Yan et al. Cybersecurity (2024) 7:45

dampening user enthusiasm and hindering the develop-
ment of new chains.

This paper aims to tackle the challenge of detecting
phishing activities in diverse blockchain networks (tar-
get blockchain) by utilizing labeled data from source
blockchains, as illustrated in Fig. 1. We addresses the
issue of ineffective phishing detection on newly emerged
chains during their early stages, characterized by limited
on-chain annotations and differing data distributions
across chains. Current detection methods cannot be
directly generalized to effectively detect phishing activi-
ties on new chains, resulting in delays in halting phish-
ing behavior during the initial stages of chain emergence.
While mature chains like Ethereum possess more abun-
dant data and established detection methods, the lack of
information on target chain samples poses a challenge.
To address this, we propose a adversarial domain adap-
tation-based method (Pan and Yang 2009; Ganin et al.
2016; Shen et al. 2018; Goodfellow et al. 2020) for phish-
ing detection in small-sample public chains with limited
annotations on the target chain named ADA-Spear.

The challenges are as follows: Firstly, current detection
methods heavily depend on manual feature engineering,
require substantial expert knowledge, and are unsuitable
for mining deep patterns on the blockchain. Moreover,
their generalizability is weak, making them challenging
to apply to different chains. Secondly, there exists a sub-
stantial distribution drift (Wiles et al. 2021) between dif-
ferent chains, accompanied by low attribute overlap. This
implies that there are differences in both the data distri-
bution and feature space between the source and target
blockchains. Therefore, the phishing address patterns
on the source blockchain are difficult to directly apply to
the target blockchain, leading to overfitting of the model
to the features of the source chain and a subsequent
decrease in the model’s generalization ability. Addition-
ally, the presence of coin mixing and other anonymity
services prevents the cross-chain transfer of edge infor-
mation from the source to the target chain, hindering
knowledge transfer. Thirdly, in the source chain, trust-
worthy labels are sparse. Even in Ethereum, which has
abundant labels, phishing activity labels still only account

for about 0.2% of total addresses (Etherscan). This scar-
city of usable information in the source chain leads in the
inadequacy of full supervision learning robustness.

Building upon this, we introduce adversarial domain
adaptation techniques from transfer learning and pro-
poses a small-sample phishing detection method for
public chains. Firstly, we propose a subgraph construc-
tion algorithm based on chain structure to transform
heterogeneous graphs from different chains into homo-
geneous graphs, thereby alleviating the problem of signif-
icant data distribution drift between chains structurally.
Secondly, we introduce a hierarchical representation
encoder at both node and subgraph levels to capture spa-
tial and temporal information of node behaviors, obtain-
ing high-dimensional representations of node features.
This encoder is better suited for mining deep patterns
in blockchain data. Thirdly, we apply adversarial domain
adaptation networks to the node representations across
different chains to mitigate the low overlap of attributes
and data distribution drift between the source and target
chains. Simultaneously, the adversarial domain adapta-
tion network effectively enhances knowledge transfer
capability when there is no cross-chain edge for infor-
mation propagation from the source to the target chain,
enabling timely and effective phishing detection on new
target chains with limited labels (Singh 2019; Sayadi et al.
2019; Chen et al. 2020a, b; Wu et al. 2020; Ao etal. 2021;
Xu et al. 2018; Wu et al. 2020; Perozzi et al. 2014; Grover
and Leskovec 2016; Wang et al. 2016, 2017; Ji et al. 2021;
Heimann and Koutra 2017; Hamilton et al. 2017; Kipf
and Welling 2016; Zheng et al. 2023; Yang et al. 2016;
Fang et al. 2013; Ni et al. 2018; Xu et al. 2017; Pan and
Yang 2009; Ganin et al. 2016; Shen et al. 2018; Goodfel-
low et al. 2020).

Specifically, ADA-Spear aims to characterize address
behavior patterns and achieve knowledge transfer of
behavior patterns from the source network to the tar-
get network, thereby facilitating the detection of phish-
ing activities across different chains. The ’ADA’ in
ADA-Spear stands for Adversarial Domain Adaptation,
and ’Spear’ symbolizes the method’s ability to penetrate
various heterogeneous blockchains for phishing detec-
tion. In the subgraph construction method, we treat the
target address as the central node, and after obtaining
its second-order neighbor nodes, propose a reduction
strategy for adapting to the full-sample gradient descent
training in neural networks. Subgraphs are established,
abstracting the phishing detection into a subgraph clas-
sification task (Zhang et al. 2021; Narayanan et al. 2017).
The main idea of the detection model is to learn different
inter-class subgraph representations through a network
encoder with multi-dimensional feature fusion and invar-
iant subgraph representations across different chains

Fig. 1  Cross-blockchain-network phishing detection diagram: known
features and labels of the source network are used to detect nodes
with unknown labels in the target network

Page 3 of 22Yan et al. Cybersecurity (2024) 7:45 	

through adversarial domain adaptation. It should be
noted that multidimensional features refer to time-based
behavioral features, space-based behavioral features, and
source data on blocks.Consequently, ADA-Spear consists
of an encoder module that characterizes address behav-
ior and a domain adaptation module. It should be noted
that multidimensional features refer to temporal-based
behavioral features, spatial-based behavioral features,
and addresses’ source data on blocks.

On one hand, the encoder module primarily aims to
better characterize address behavior and learn class-level
discriminative subgraph representations. It trains an
effective classifier using existing label and considers the
temporal evolution of behavior to characterize node-level
feature representations and subgraph-level behavior pat-
terns (Jiao et al. 2021). On the other hand, the adversarial
domain adaptation module is designed to mitigate the
distribution drift between the source and target networks
so that transfer phishing pattern knowledge between
chains. It employs adversarial learning to learn invariant
subgraph representations across different chains, facili-
tating the transfer of behavior pattern knowledge from
the source network to the target network. The training
process is similar to that of Generative Adversarial Net-
works (GANs) (Goodfellow et al. 2020; Dai et al. 2018;
Pan et al. 2018; Dai et al. 2019), where the encoder learns
inter-chain invariance, and the domain discriminator dis-
tinguishes whether subgraph representations originate
from the source or target domain. By combining these
two parts, ADA-Spear can learn class-level discrimina-
tive subgraph representations and inter-chain invariant
representations, facilitating the transfer of class informa-
tion across different chains.

We choose Ethereum, Bitcoin, and EOSIO as three
blockchain platforms, serving respectively as the source
and target domains, to research cross-blockchain-net-
work phishing behavior detection. In summary, our con-
tributions are:

•	 We propose a novel approach ADA-Spear, a neural
network detection model with adversarial domain
adaptation and multi-dimensional feature fusion,
tackling the challenge of detecting phishing activities
in diverse blockchain networks.

•	 The proposed model ADA-Spear comprises an
encoder that effectively characterizes on-chain
phishing activities and an adversarial domain adap-
tation module. It considers the temporal-based of
behavior features, spatial-based behavioral features
and addresses’ source data on blocks, effectively
characterizing phishing activities at both node and
subgraph levels. By learning high-dimensional behav-
ioral patterns and alleviating the issue of distribution

drift between different chains, ADA-Spear can detect
phishing activity effectively on new target chains with
few or no labels.

•	 We conduct detailed and extensive experiments in
real Ethereum, Bitcoin, and EOSIO environments
to demonstrate the effectiveness of ADA-Spear. Our
method achieves an average F1-score exceeding 76%
in the target domain with no labels and a label rate of
5%, surpassing existing advanced detection methods.
Furthermore, we analyze phishing activities across
diverse chains, highlighting the model’s exceptional
performance and scalability. This proves its robust-
ness, even in instances of distribution differences
between chains.

Related work
The detection of phishing activities on blockchain pri-
marily employs feature engineering and graph analysis
methods, where graph analysis can further be divided
into single-network learning, graph-based semi-super-
vised learning, and cross-network learning methods.

Feature engineering based method
Feature engineering methods (Sayadi et al. 2019; Singh
2019) rely heavily on expert knowledge of blockchain
phishing behavior, making it time-consuming and labor-
intensive. Toyoda et al. (2018) use seven types of statisti-
cal information on Bitcoin to perform multi-classification
of Bitcoin services, including the detection of anoma-
lous services. Chen et al. (2020a) extract 219 features in
Ethereum to identify phishing activities, representing a
comprehensive feature extraction work in early feature
engineering methods. Jourdan et al. (2018) build repeat
patterns by extracting features from Bitcoin and use
LightGBM for subsequent classification. Ostapowicz (?)
and others directly utilize information recorded on the
blockchain as features, exploring the performance of
machine learning methods like Random Forest, Support
Vector Machine (SVM), and XGBoost in fraud detection.
While feature engineering-based methods can detect
certain behaviors, with the advancement of blockchain
technology, anomalous behaviors (including phishing
activities) are becoming increasingly complex. Simple
extraction of block features fails to accurately capture
these more intricate behaviors. Additionally, relying
on feature engineering methods is highly dependent on
expert knowledge, making it difficult to obtain higher-
order information about behavioral features. Addition-
ally, the extracted features are limited to the current
chain, posing challenges in applying them to new chains
and resulting in low generalizability.

Page 4 of 22Yan et al. Cybersecurity (2024) 7:45

Graph analysis based method
Single network learning method
This is an unsupervised learning method that can learn
node representations based on the network’s topologi-
cal structure or other information for subsequent tasks
like node classification, as seen in algorithms like Deep-
Walk. Generally, these methods use unsupervised learn-
ing to embed network structural information, followed
by training classifiers for node or subgraph classification
(Wang et al. 2016, 2017; Ji et al. 2021). Yuan et al. (2020)
are the first to use DeepWalk (Perozzi et al. 2014) and
Node2vec (Grover and Leskovec 2016) on blockchain to
learn topological representations of addresses, later using
machine learning for address classification. As Etheruem
phishing itself also exhibits its own behavioral charac-
teristics, so Wu et al. (2020) and Lin et al. (2020) com-
bine Ethereum transaction amounts and timestamps to
extract node representations through biased walks, using
single-class SVM and other machine learning meth-
ods for phishing node detection. Ao etal. (2021) refine
time-based repeat patterns in Ethereum and propose a
community detection method to extract phishing node
pattern representations. However, such methods lack
the ability to generalize to other networks because they
do not maintain a similarity structure that “brings closer”
the embeddings of nodes or subgraphs of the same cat-
egory across different networks (Heimann and Koutra
2017). Additionally, their classification effectiveness is
not as robust as graph-based semi-supervised learning
methods. Therefore, these methods are also not applica-
ble for detecting cross-chain phishing behaviors.

Graph‑based semi‑supervised learning method
To further improve the classification of phishing activi-
ties, later methods often use graph-based semi-super-
vised learning (Hamilton et al. 2017; Kipf and Welling
2016; Zheng et al. 2023). Since blockchain’s data struc-
ture and massive transaction data are best modeled as a
graph structure, they are trained in a supervised man-
ner from a graph perspective. Patel et al. (2020) use
graph convolution network (GCN) to extract structural
information in Ethereum and classify fraud nodes using
a single-class SVM. This method enhances the accu-
racy of phishing detection on the blockchain. To further
enhance the extraction of structural information, Chen
et al. (2020a) modify the initial features of GCN, effec-
tively improving classification accuracy. Li et al. (2020)
consider the topological structural differences between
fraudulent and benign addresses in the Bitcoin network
and use XGBoost for address classification. Zhang et al.
(2021) use a hierarchical approach to extract Ethere-
um’s topological structure for subgraph representation,

training neural networks end-to-end for phishing sub-
graph identification. This method extends the dimen-
sionality of address analysis. Subsequent studies further
consider temporal behavior, with Li et al. (2022) con-
structing Ethereum as a multi-graph, transforming mul-
tiple edges into sequences, and embedding them into
LSTM to obtain temporal representations of phishing
nodes, effectively improving detection accuracy. Graph-
based semi-supervised learning methods adopt an end-
to-end approach, integrating network structure, node
attributes, and labels, demonstrating effective classifica-
tion results in single networks. However, these methods
face challenges in generalizing to other networks experi-
encing significant distribution drift (Yang et al. 2016).

Cross‑network learning method
Currently, blockchain phishing detection methods
lack generalizability and do not employ cross-block-
chain-networklearning models. However, to promptly
detect phishing activities on new chains, research on
cross-blockchain-network phishing detection meth-
ods is necessary. Existing methods utilizing source net-
work information to assist in identifying target network
behavior include: Fang et al. (2013) propose the NetTr
method, which only transfers topological information in
networked data, but it is computationally expensive and
transfers limited information. Shen et al. (2020) propose
CDNE, learning representations of nodes within multiple
networks and minimizing the Maximum Mean Discrep-
ancy (MMD) loss function to mitigate distribution drift
between nodes in different networks. To further allevi-
ate domain drift during knowledge transfer, Ganin et al.
propose the domain adaptation method DANN (Ganin
and Lempitsky 2015), learning inter-domain invariance
through a min-max game approach. Building on DANN,
Shen et al. (2018) use Wasserstein distance to quantify
inter-domain differences for better gradient properties,
thereby improving transfer effectiveness. Current meth-
ods that leverage edge information across networks to
improve classification typically involve learning embed-
dings across multiple networks, but heavily rely on inter-
network connections. Although cross-chain transactions
can occur between different blockchains, establishing
inter-network edges becomes challenging after passing
through cross-chain bridges or mixing services, render-
ing such methods unsuitable for the problem addressed
in our study. For the issue addressed in this paper, which
involves phishing detection on new chains with limited
annotations, cross-network transfer learning algorithms
are appropriate. These algorithms primarily address the
adverse effects on models caused by domain shift dur-
ing knowledge transfer from the source domain to the
target domain. This paper will use adversarial domain

Page 5 of 22Yan et al. Cybersecurity (2024) 7:45 	

adaptation based on graph networks to generalize the
model to different chains and promptly detect phishing
activities.

Preliminaries
This section mainly introduces the definition and feature
construction of on-chain interaction graphs and the defi-
nition of the issues studied in this paper. Table 1 shows
the main symbols used in our framework.

On‑chain interaction graph
This subsection defines the Ethereum, Bitcoin and
EOSIO networks modeled as graph structures and gives
the Graph definition after subtraction.

Ethereum Attribution Graph (E-AIG) A
directed, weighted, homogeneous multigraph
G = (V e,Ee,Ae,Fev ,F

e
e ,Y

e) , where V e , Ee , and Ae respec-
tively represent the sets of nodes, directed edges, and
the adjacency matrix. The edge set Ee is defined as
Ee = {(vi, vj ,F

e
e)|vi, vj ∈ V e} . Fev and Fee respectively repre-

sent the feature matrices for Ethereum nodes and edges,
as detailed in Sect. 3.2. Some nodes in the E-AIG are
labeled with yi ∈ Y e , where Y e = {(vi, yi)|vi ∈ V e}.

EOSIO Address Interaction Graph (EO-AIG) The
definition is the same as for the E-AIG and will not be
repeated.

Bitcoin Address-Transaction Interaction Graph
(B-ATIG) A directed, weighted, heterogeneous multi-
graph G = (Vb

a ,V
b
t ,E

b,Fb
v ,F

b
e ,Y

b) , where Vb
a and Vb

t
respectively represent the sets of address nodes and
transaction nodes, Eb represents the set of edges, defined
as Eb = {(vi, vj ,F

b
e)|vi ∈ Vb

a ∪ Vb
t , vj ∈ Vb

a ∪ Vb
t } . Fb

v and

Fb
e respectively represent the feature matrices for Bitcoin

address nodes and edges, as detailed in Sect. 3.2. Some
address nodes in the B-ATIG are labeled with yi ∈ Y b ,
where Y b = {(vi, yi)|vi ∈ Vb

a }.
As the original B-ATIG is a heterogeneous graph, to

align with the graph network of E-AIG and reduce com-
putational complexity, the strategy proposed in Sect. 4.1
is used to remove transaction nodes from B-ATIG, con-
verting it into a homogeneous graph B-AIG.

Bitcoin Address Interaction Graph (B-AIG) A
directed, weighted, homogeneous multigraph
G = (Vb,Eb,A

b
,Fb

v ,F
b

e ,Y
b) , where Vb , Ẽb , and Ab are the sets

of address nodes, transformed set of directed edges, and
adjacency matrix, respectively. The transformed edge set
Ẽb is defined as Ẽb = {(vi, vj , F̃

b

e)|vi, vj ∈ Vb
a } , and F̃

b

e is
the edge feature matrix after the removal of transaction
nodes.

E-AIG, EO-AIG, and B-AIG are all dense connected
homogeneous multigraphs, which increases the complex-
ity during subsequent knowledge transfer. Thus, through
feature reconstruction, interaction aggregation, and node
reduction as described in Sect. 4.1, the directed graphs
r-AIG (E-AIG→rE-AIG, EO-AIG→rEO-AIG, B-AIG→

rB-AIG) are obtained.
Reduced Address Interaction Graph (r-AIG)

A directed, weighted, homogeneous graph
G = (V r ,Er ,Ar ,F r

v ,F
r
e ,Y

r) , where V r is the set of
nodes after the TopK reduction described in Sect. 4.1,
Er = {(vi, vj ,F

r
e)|vi, vj ∈ V r} is the remaining set of edges,

and Ar is the adjacency matrix. F r
v and F r

e are the feature
matrices for the nodes V r and edges Er , respectively.

Table 1  Main symbols used in our framework

Symbols Expression

Gs ,Gt Graph in the source and target domain

Vs , V t Nodes in the source and target domain

Es , Et Edges in the source and target domain

As , At Adjacency matrix in the source and target domain

Fv
s , Fv

t Nodes’ feature set in the source and target domain

Fe
s , Fe

t Edges’ feature set in the source and target domain

Ys Source domain label set

sdisc Domain discriminator training set

γ , � Coeffeicients in the loss function

αdisc ,αencod Learning rates of discriminator and encoder

Ns ,Nt The number of subgraphs in the source and target domian

fencod , fpred , fdisc Optimal encoder, semi-supervised learning classifier and domain discriminator

θencod , θpred , θdisc Parameters for encoder, clssifier and discriminator

Hs ,Ht Addresses representation in the source and target domian

Lpred ,Ldisc ,Lpenal The loss function of classifier, domain discriminator and penalty factor

Page 6 of 22Yan et al. Cybersecurity (2024) 7:45

Some nodes in r-AIG are labeled with yi ∈ Y r , where
Y r = {(vi, yi)|vi ∈ V r}.

Feature construction
Node features and edge features in Ethereum, Bitcoin,
and EOSIO are categorized into three types: transac-
tion time, transaction amount, and transaction count.
Each type is differentiated by direction and further clas-
sified into incoming and outgoing transactions. In multi-
graphs, node features primarily include overall subgraph
information like lifespan, total amount, degree, and the
number of active nodes. Edge features mainly encom-
pass information for each transaction, including block
number, timestamp, transaction amount, and transac-
tion fees. For transaction amount-type features, the
maximum, minimum, and average functions will be used.
Transaction amount-type features will utilize the maxi-
mum, minimum, and average functions. Similarly, trans-
action count-type features, based on the same approach,
are combined with transaction amount-type features to
derive per-transaction average features.

Problem definition
The primary focus of this paper is on detecting cross-
blockchain-network phishing behavior through domain
adaptation. Specifically, it leverages knowledge of phish-
ing behavior in the source domain to assist in recognizing
phishing behavior in a new target domain. This process
transforms the phishing behavior recognition challenge
into a graph classification problem.

The source network is denoted as
G

s
= (V s ,Es ,A

s
,F s

v ,F
s
e ,Y

s) , where V s = {v1, v2, . . . , vns} rep-
resents the set of address nodes, Es ⊆ {(vi, vj)|vi, vj ∈ V s}
represents the set of interaction edges, As ∈ R

ns×ns rep-
resents the adjacency matrix, F s

v ∈ R
ns×csn represents the

node feature matrix, with csn being the number of features

for each node, F s
e ∈ R

ms×cse represents the edge feature
matrix, with ms = |Es| and cse being the number of fea-
tures for each edge, Y s = {(vi, yi)|vi ∈ V s} represents the
label set for some labeled address nodes, where if yi = 1 ,
the node is a phishing node, otherwise yi = 0 . Similarly,
the target network is denoted as Gt = (V t ,Et ,At ,F t

v ,F
t
e) .

In this approach, r-AIG is used as both the source and
target networks.

A subgraph centered around vr is defined as gvr ⊂ Gr ,
where r ∈ {s, t} , the source domain is Ds = (Gs, f (gsvr)) ,
and the target domain is Dt = (Gt , f (gtvr)) , with Ds = Dt ,
and f (g) being the subgraph classification task. The prob-
lem studied in this paper is, given a distributional differ-
ence but identical label sets between source and target
domains, to learn a classification function f (g) → yi with
the aid of source domain information, in order to accu-
rately identify the category of gtvr in the target domain.

Cross‑blockchain‑network phishing behavior
detection method
In this section, we offer a comprehensive overview of
the ADA-Spear phishing detection method’s structure,
as illustrated in Fig. 2. ADA-Spear is applicable both for
phishing behavior recognition and mining within the
same blockchain, as well as for cross-blockchain-network
phishing detection. When examining a node v, ADA-
Spear takes the r-AIG gv centered around v as input and
outputs the node’s label. A label of 1 indicates a phish-
ing node, while 0 represents a benign node. ADA-Spear
comprises the following components: Firstly, to charac-
terize on-chain interaction behavior, an r-AIG centered
around v is constructed. Secondly, to depict the complex
behavior of node v, an r-AIG encoder is designed, incor-
porating temporal feature analysis and attention mecha-
nisms. Thirdly, an adversarial domain adaptation transfer

Fig. 2  The framework of cross-blockchain-network phishing behavior detection method

Page 7 of 22Yan et al. Cybersecurity (2024) 7:45 	

learning module is developed, adapting the encoder to
the address behavior representation on the target chain
and identifying phishing behavior on the target chain.
Finally, a training module is designed, integrating domain
adaptive transfer learning with binary classification tasks
for training.

Subgraph construction
Ethereum and Bitcoin data both reach million-level
scales, resulting in excessively large graph data for their
respective AIGs. This poses a challenge for full-batch
training in graph nerual network (GNN)-based neural
networks. Furthermore, an abundance of redundant data
hinders effective transfer learning, making the migration
of source domain features to the target domain challeng-
ing. This may result in issues like overfitting, impacting
the effectiveness of phishing detection. Consequently,
this subsection aligns and simplifies E-AIG/EO-AIG and
B-ATIG, creating a unified r-AIG. The subgraph con-
struction process is illustrated in Fig. 3.

Sampling original data into multigraphs
In this subsection, the second-order nodes of the tar-
get address are sampled from the original block data
of Ethereum and EOSIO to create the subgraph repre-
senting the target address, resulting in the multigraph
E-AIG. Given Bitcoin’s distinct organizational struc-
ture from Ethereum, the original block data for Bitcoin
involves sampling the second-order transaction nodes

of the target address and the next-order addresses cor-
responding to these transactions. This process results in
the creation of a heterogeneous graph containing trans-
action nodes and address nodes, forming the multigraph
B-ATIG.

The design of the sampling method outlined above is
driven by two key considerations: a. Phishing and benign
nodes exhibit distinct behavioral patterns, manifested
in their interactions with neighboring nodes, i.e., local
structural features on the graph; b. Subgraphs, in com-
parison to the full graph, undergo a significant reduction
in scale and are adaptable to the training method of the
model network.

To facilitate adaptation to the later-designed encoder
and adversarial domain adaptive learning, aligning EAIG/
EO-AIG with B-ATIG is essential. This involves trans-
forming B-ATIG into B-AIG. The transformation process
is shown in Fig. 4. In the heterogeneous graph B-ATIG,
all nodes of type “transaction” ntx ∈ Ntx and their corre-
sponding edge pairs (ntxpre , ntx), (ntx, ntxnext) are extracted.
By removing ntx , the edge (ntxpre , ntxnext) is formed. The
attributes of the edge (ntx, ntxnext) are retained as new
edge attributes. This process concludes with the con-
struction of the homogeneous multigraph B-AIG.

Node and edge feature construction
Following the analysis of phishing behaviors, fea-
tures exhibit strong correlations with amount, time,
frequency, and degrees. The feature construction

Fig. 3  ADA-Spear subgraph construction flowchart

Page 8 of 22Yan et al. Cybersecurity (2024) 7:45

schematic is shown in Fig. 4a, b. In the AIGs formed by
the three chains, node attributes are denoted fv ∈ Fv .
Specifically, fv = (in, out), fe = (t, a) where in and
out represent the in-degree and out-degree of the
node, respectively. Edge attributes are represented as
fe = (t, a), fe ∈ Fe , where t indicates the order of the
transaction occurrence in the subgraph. Specifically,
t = rank(time, gi), i ∈ {1, 2, . . . , count} , with time being
the transaction timestamp, gi being the subgraph con-
taining the target node, and count being the total num-
ber of nodes. Additionally, a represents the transaction
amount type attribute.

Merging interactions into a directed graph
To transform multigraphs into directed graphs, edge
aggregation is employed, as shown in Fig. 4b, c. For clar-
ity, the figure only displays the aggregation method for
the sum of amounts. Given the temporal characteristics
of phishing behaviors, the graph preserves crucial tempo-
ral information of transactions to the fullest extent. Mul-
tiple parallel edges between two nodes are aggregated
into a single edge, and the attributes on the edge (vi, vj)
are ((�at1,Max(at1),Min(at1),Mean(at1)), . . . , (�atM ,Max(atM),

Min(atM),Mean(atM))) where �atM , Max(atM) ,
Min(atM) , Mean(atM) , m ∈ M respectively represent
the sum, maximum, minimum, and mean of all transac-
tion amounts at the mth moment, and M indicates the
maximum occurrence sequence of transactions in the
subgraph.

It should be noted that different target nodes will
form different subgraphs, and the number of transac-
tions within different subgraphs may vary. Therefore, the
dimensions of the edges in different subgraphs may differ
after aggregation. Subsequently, the issue of dimension
alignment will be addressed by using a variable-length
long short-term memory (LSTM).

Graph reduction with directed edges
Although sampling second-order nodes reduces the
data volume compared to the full blockchain interac-
tion graph, the data volume remains significant. There-
fore, further reduction of the directed AIG, as shown
in Fig. 5, occurs while retaining information relevant to
phishing detection. In this subsection, the TopK tech-
nique is utilized to sample nodes at each order. The

strategy is based on the following considerations: When
comparing nodes of the same order, nodes with fewer zeros
in the feature vector of the edges they belong to (i.e., fewer
zeros), a larger sum of all amounts in the vector (i.e., larger
sum), and higher degrees (i.e., higher degree) are more
important and have a higher probability of being retained.
In each order, the weight at which each node is retained,
denoted as w, can be expressed as:

where each node utilizes the sum of all incoming edges
and outgoing edges czero + aall + d , hopvi denotes the
current order of node vi , gvi represents the subgraph
where vi belongs. After the final iteration and reduction,
the resulting node set can be represented as:

In conclusion, a reduced sub-directed graph is obtained.
For the reduction process in this paper, we choose
K = 25.

Encoder network
This section presents a comprehensive over-
view of the ADA-Spear model’s feature extractor
fencod(A,F v ,F e; θ encod) . It employs a hierarchical atten-
tion mechanism based on LSTM to map the behavioral
features of target nodes into representation vectors for
subsequent transfer learning. The schematic diagram
is illustrated in Fig. 6. Additionally, the encoder, in
conjunction with the prediction head described in the
next section, can also be applied for phishing detection
within the same blockchain domain. In the following,
the specific details of the encoder will be presented.

(1)w(vi) = rank((czero + aall + d), hopvi , gvi)

(2)
V r = ∪vi∈V r TopK (G = gvi ,K ,w(vi), hop),

hop ∈ {0, 1, 2}

Fig. 4  ADA-Spear directed graph construction flow chart

Fig. 5  ADA-Spear directed graph reduction flow chart

Page 9 of 22Yan et al. Cybersecurity (2024) 7:45 	

Node level addreses representation based on temporal
and spatial behavior
Node Level Address Representation Based on Temporal
Behavior In the previously discussed r-AIG, nodes are
encoded considering transaction flow and frequency, while
edges are encoded based on transaction occurrence order.
Since AIG is a graph centered around addresses, and each
node has both incoming and outgoing transactions with its
neighboring nodes, it is essential to preserve the tempo-
ral characteristics of transaction information. Therefore,
in this subsection, the edge features between the central
node vi and its neighboring nodes are aggregated into node
vi . The input vector of the central node vi is represented
as f

′

vi
= [(f

t1
e_in, f

t1
e_out), (f

t2
e_in, f

t2
e_out), . . . (f

tm
e_in, f

tm
e_out)] . f

′

vi

serves as the input for a variable-length LSTM, resulting in
embedded vectors htvi . This operation is performed for all
nodes on the graph, resulting in htvi , where vj represents the
neighbors of vi . Since the total number of time steps m may
vary between different subgraphs, a variable-length LSTM

is employed to adapt to m . Figure 6a presents a visualiza-
tion of this process.

Specifically, for any node vk , k ∈ {i, j} , f
′

vk
 is used as the

LSTM input, and the forgetting gate and input gate are cal-
culated as follows:

Then, we calculate the current candidate cell state:

Combine the forget gate and input gate to update the
current cell state as follows:

(3)fg tvk =σ(W
fg
vk [h

th−1
vk , (f thevk _in

, f thevk _out
)] + b

fg
vk)

(4)i
th
vk =σ(W i

vk
[h

th−1
vk , (f thevk _in

, f thevk _out
)] + bivk)

(5)C̃
th
vk

= tanh(W C
vk
[h

th−1
vk , (f thevk _in

, f thevk _out
)] + bCvk)

(6)C
th
vk = fg

th
vkC

th−1
vk + i

th
vk C̃

th
vk

Fig. 6  The architecture of ADA-Spear encoder network

Page 10 of 22Yan et al. Cybersecurity (2024) 7:45

At time step t, the current cell’s output hidden layer is
expressed as:

Here, σ represents the sigmoid activation function, and t
takes values from the set {t1, t2, . . . , tm}.

Node Level Address Representation Based on Address
Source Data on Blocks Subsequently, the node features f vk
are concatenated with hTvk = (ht1vk ,h

t2
vk
,ht3vk , . . . ,h

tm
vk
) , result-

ing in h̃vk = [f vk�h
T
vk
] . The same process is applied to other

neighboring nodes. At this point, each node has aggregated
edge features into the node and has fused them with the
original node features, preserving transaction information
based on time sequences.

Node Level Address Representation Based on Spatial
Behavior After obtaining the features of each node, this
step aims to retain the most relevant neighbor interac-
tion information between nodes. In phishing behavior,
each neighboring node contributes differently to phishing
detection. For example, a phishing address may engage in
small transactions with benign addresses to obfuscate its
malicious behavior, which can interfere with the detection
process and should be excluded. Leveraging this insight,
the paper utilizes the graph attention mechanism (GAT)
mechanism to understand the distinct contributions of
each neighbor node to phishing behavior detection and
learn the hidden layer representation between each pair of
nodes. The process is shown in Fig. 6a.

Specifically, for any node vi in the subgraph, the attention
score between it and its neighbor node vj is calculated as
follows:

where W a represents the weight to be learned in a single-
layer feedforward network, and LeakyRelu is used as a
non-linear activation layer for subsequent normalization
operations.

To ensure that the attention scores between nodes are
comparable, a normalization operation is performed:

where N (i) represents all neighboring nodes of node vi.
Neighboring nodes are aggregated based on their atten-

tion scores to obtain the representation of node vi:

(7)o
th
vk =σ(W o

vk
[h

th−1
vk , (f thevk _in

, f thevk _out
)] + bovk)

(8)h
th
vk =o

th
vk tanh(C

th
vk)

(9)ai,j = LeakyRelu(W ah̃vi ,W ah̃vj)

(10)αi,j = softmax(ai,j) =
eai,j

∑

k∈N (i) e
ai,k

(11)ĥvi = σ

(

αi,iW αh̃vi +
∑

αi,jW αh̃vj

)

where W α represents the weight of the linear layer to be
learned, and σ is a non-linear activation function, with
ReLU chosen in this case. After iteration, the node-level
embedding ĥvi is obtained for each node.

The specific iteration process is shown in Fig. 7. Itera-
tion is performed using the graph attention layer at the
hop level, which involves propagating, transforming, and
aggregating the representations between nodes in each
subgraph. This process allows the interaction behavior
of nodes at each level to be fully embedded into vectors,
where hop represents the order of each subgraph. The
initial input to the iteration layer is the node-level repre-
sentations obtained from the temporal feature extraction,
denoted as ĥ0vi = ĥvi , where the neighboring nodes include
all first-order nodes in the subgraph. After hop iterations,
the final node-level representations for all nodes in a sub-
graph, denoted as Ĥhop

g = {ĥvi}vi∈Vg , contain all the infor-
mation about second-order nodes in that subgraph.

Subgraph‑level behavior pattern representation
This module aims to characterize the behavior patterns
of each target subgraph. The identity and methods of the
phisher can lead to varied subgraph differences in phishing
behavior on Ethereum. Therefore, it is necessary to design
subgraph-level feature characterization. To overcome the
limitations of flat GNNs), this subsection combines Diff-
Pool technology (Ying et al. 2018) hierarchically to aggre-
gate subgraph information, as shown in Fig. 6c.

Specifically, the representation H (0)
g = Ĥ

hop

g and the sub-
graph adjacency matrix A(l)

g are used as inputs to the Diff-
Pool layer, which calculates the representation matrix Z(l)

g
and the assignment matrix S(l)g ∈ R

nl×nl+1 , where nl is the
number of nodes in the l th DiffPool layer:

where Ã
(l)

g = A(l)
g + I , D̃

(l)

g =
∑

j Ãij , and W (l−1)
GNN are

learnable parameters.

(12)
Z(l)
g = GNNrepresent(A

(l)
g ,H (l)

g)

= ReLU(D̃
(l)

− 1
2

g Ã
(l)

g D̃
(l)

− 1
2

g H (l−1)
g W

(l−1)
GNN)

(13)S(l)g = softmax(GNNpool(A
(l)
g ,H (l)

g))

Fig. 7  The process of encoder iteration

Page 11 of 22Yan et al. Cybersecurity (2024) 7:45 	

After obtaining Z(l)
g and S(l)g  , we can calculate the repre-

sentation H (l+1)
g and the adjacency matrix A(l+1)

g for the
(l + 1) th layer as follows:

where d is the number of columns in Z(l)
g  , which is the

feature dimension of nodes in the l th layer.

We use two layers of DiffPool to characterize subgraph
behavior and finally obtain the subgraph-level behavior
pattern representation H g , which serves as the output of
the encoder.

Label prediction
Both the source domain and target domain use the meth-
ods mentioned in Sect. 4.2 to represent subgraphs as
H r

g , r ∈ {s, t} . The semi-supervised learning classification
module is designed to perform binary classification sep-
arately on the source and target domains, preparing for
the subsequent domain adaptation module.

Specifically, we employ a multi-layer perceptron
fpred(H; θpred) , where H is the representations of all sub-
graphs, and θpred represents the trainable parameters of
the classifier. The predicted labels can be expressed as:

Subsequently, we use the cross-entropy loss function for
the training of the classifier fpred:

Similarly, this loss function can also be computed on the
target domain.

The specific iterative process of the address encoding
encoder is as Fig. 7. Subgraphs’ A , F v and F e serve as inputs
to the LSTM, resulting in the representation h̃ . After pass-
ing through two layers of GAT and two layers of DiffPool,
the address representation H g is obtained. Multi-layer per-
ceptron (MLP) is employed for address representation clas-
sification. The original label set Y is used as the input to the
loss function, which is then compared with the labels pre-
dicted by MLP to update the encoder’s parameters.

Adversarial domain adaptation
We use a adversarial domain adaptation module to elimi-
nate the divergence between the Ethereum, Bitcoin, and
EOSIO networks, facilitating knowledge transfer between
these networks. For each subgraph in each network, we

(14)H (l+1)
g = S(l)g

T
Zg

(l),H (l+1)
g ∈ R

nl+1×d

(15)A(l+1)
g = S(l)g

T
A(l)
g S(l)g ,A(l+1)

g ∈ R
nl+1×nl+1

(16)ŷr = fpred(H
r
g ; θpred), r ∈ {s, t}

(17)Lpred = −
1

ns

ns∑

i=1

ysi logŷ
s
i

obtain subgraph representations H r
g , r ∈ {s, t} through

the encoder. To generate similar representations in the
source and target domains, we use a fully connected layer
as the domain discriminator, denoted as fdisc(H r

g ; θdisc) ,
with input H r

g = fencod[(A
r ,F r

v ,F
r
e; θ encod)]g , represent-

ing the representation of subgraph g, and θ encod as train-
able parameters. The output is a real number indicating
the similarity between the source and target domains.

Next, we let the generator fencod and domain discrimi-
nator fdisc play against each other, making it impossible
for the domain discriminator to distinguish the domain
of the samples. Specifically, we first compute the optimal
transportation distance also named Wasserstein distance
(Arjovsky et al. 2017; Gulrajani et al. 2017) between the
source and target domain distributions:

where �fdisc�Lc ≤ 1 enforces the Lipschitz continuity
condition on the domain discriminator to prevent gradi-
ent explosions or vanishing between the generator and
domain discriminator, and sup represents the supremum.
Furthermore, the optimal transportation distance maxi-
mizes the domain discriminator loss function under this
condition, where the domain discriminator loss function
is given by:

This loss encourages the domain discriminator to
correctly classify the source and target domain rep-
resentations while the generator aims to generate
domain-invariant representations. The overall objective is
to minimize Ldisc while maximizing W1(PH s ,PH t) , which
promotes domain adaptation and similarity between the
source and target domain representations.

To ensure the Lipschitz continuity condition, a gradient
penalty factor Lpenal is introduced to θdisc:

where the representation Ĥ refers to a random point
along the line between the representations of the source
and target domains, or the source or target domain itself.

(18)
W1(PH s ,PH t) = sup

�fdisc�Lc≤1

EPHs [fdisc(H; θdisc)]

− EPH t [fdisc(H; θdisc)]

(19)
Ldisc = −EPHs [fdisc(H; θdisc)] + EPHt [fdisc(H; θdisc)]

(20)

Ldisc =
1

ns

ns∑

i=1

fdisc([fencod(A
s,F s

v ,F
s
e; θ encod)]i; θdisc)

−
1

nt

nt∑

i=1

fdisc([fencod(A
t ,F t

v ,F
t
e; θ encod)]i; θdisc)

(21)Lpenal(Ĥ) = (�∇
Ĥ
fdisc(Ĥ; θdisc)�2 − 1)2

Page 12 of 22Yan et al. Cybersecurity (2024) 7:45

Therefore, the subgraph representation is maintained
constant by minimizing and maximizing the following:

where γ is the gradient penalty coefficient, set to zero
during the training of the generator. Generally, the
parameters in the domain discriminator fdisc(·) are
trained to optimality before updating the generator
fencod(·) parameters to minimize the optimal transport
distance.

Model training
Expanding formula (22) and integrating it into the semi-
supervised learning prediction loss function yields the
final loss function:

where � is the balancing coefficient between semi-super-
vised learning and domain adaptation.

The training process is depicted in Algorithm 1.

Algorithm 1  Training algorithm for ADA-Spear

Input: Gs = (V s, Es, As, F s
v , F

s
e), Ys), Y s: source do-

main data; Gt = (V t, Et, At, F t
v , F

t
e)): target do-

main data; sdisc: domain discriminator train-
ing step; γ, λ: coefficients in the loss function;
αdisc, αencod: learning rates of discriminator and
encoder; Ns, N t: number of subgraphs in the
source and target domain; ε: a real number ran-
domly drawing from the interval [0,1].

Output: The optimal encoder fencod, semi-supervised
learning classifier fpred and domain discriminator
fdisc.

1: Initialize parameters θencod for encoder fencod;
2: Initialize parameters θpred for classifier fpred;
3: Initialize parameters θdisc for discriminator fdisc;
4: while not converge do
5: // training discriminator;
6: for t = 1, . . . , sdisc do
7: Hs ← fencod(As, F s

v , F
s
e ; θencod);

8: Ht ← fencod(At, F t
v , F

t
e ; θencod);

9: N ← min{Ns, N t};
10: hs ← Hs,ht ← Ht, ε ← [0, 1];
11: hi ← εhs + (1− ε)ht;
12: H = {hi}Ni=1;
13: Ĥ ← {Hs, Ht, H};
14: θdisc ← θdisc+αdisc·∇θdisc{Ldisc−λLpenal(Ĥ)};
15: end for
16: // training encoder and classifier;
17: θ ← {θencod, θpred};
18: θ ← θ − αencod · ∇θ{Lpred + λLdisc};
19: end while
20: return fencod, fpred, fdisc;

(22)min
θ encod

max
θdisc

{Ldisc − γLpenal}

(23)min
θ encod ,θpred

{Lpred + �max
θdisc

[Ldisc − γLpenal]}

Experiments
In this section, the performance of the proposed method
is assessed in comparison to current advanced methods
through experiments. The analysis includes evaluating
the efficiency and scalability of the method. Following
that, it investigates diverse cross-blockchain-network
phishing behavior patterns. Additionally, it assesses
the effectiveness of different modules in the adversarial
domain adaptation architecture and explores the impact
of inter-chain distribution differences on the model.

Data preparation
In this subsection, the most popular two blockchain
platforms and the largest Initial Coin Offering (ICO)
platform are selected as the subjects of the experiment:
Ethereum (Etherscan)(ETH), Bitcoin (Nakamoto 2008)
(BTC), and EOSIO (EOSIO)(EOS). Transaction data
from the Ethereum blockchain for the years 2019–2021,
Bitcoin for 2019–2021, and EOSIO for 2018–2019 are
extracted. From each chain, 1000 phishing nodes are
randomly sampled, and to balance the training samples,
the same number of benign nodes are also obtained.
Subgraphs are constructed for each using the method
described in Sect. 4.1. Detailed statistics of the dataset
are shown in Table 2.

For the three datasets, the reduced second-order sub-
graphs of phishing and benign nodes are used as the
experimental input. The Ethereum dataset contains a
total of 1,765,559 nodes and 4,319,271 edges, with the
phishing nodes accounting for 0.06% of the total; the Bit-
coin dataset includes 983,176 nodes and 4,859,188 edges,
with phishing nodes making up 0.10%; the EOSIO data-
set consists of 746,688 nodes and 9,727,013 edges, with
phishing nodes comprising 0.13%. Due to EOSIO’s char-
acteristic of rapidly recording interaction information, it
presents the highest total number of edges and average
degree despite having the fewest total nodes. However,
the proportion of phishing nodes in EOSIO is compara-
ble to the other datasets, which does not affect the subse-
quent experimental analysis.

To further assess the performance of ADA-Spear across
these three domains, it is divided into six transfer learn-
ing tasks, which include: ETH → BTC, EOS → BTC, ETH
→ EOS, BTC → EOS, BTC → ETH, and EOS → ETH,
where ETH, BTC, and EOS respectively represent the
Ethereum dataset, the Bitcoin dataset, and the EOSIO
dataset.

Experiment setup
This subsection primarily describes the baseline methods
and implementation details.

Page 13 of 22Yan et al. Cybersecurity (2024) 7:45 	

Baselines
We select methods from different research approaches
for comparative experiments, mainly divided into feature
engineering, single-network learning, graph-based semi-
supervised learning, and cross-network learning. The
specifics are as follows:

Feature Engineering Inspired by Chen et al. (2020a), we
select 219-dimensional features to characterize subgraph
behavior for phishing behavior detection.

Single Network Learning We use DeepWalk (Perozzi
et al. 2014), Graph2vec (Narayanan et al. 2017), Trans-
2vec (Wu et al. 2020), and T-Edge (Lin et al. 2020) as
comparative methods for extracting subgraph repre-
sentations. DeepWalk and Graph2vec can extract the
structural information of subgraphs, while Trans2vec
and T-Edge incorporate additional information such
as transaction amounts and timing on top of structural
information.

After obtaining subgraph (feature) representations
using feature engineering and single network learning
methods, logistic regression, random forests, and sup-
port vector machines are used for the subgraph classifi-
cation task.

Graph-based Semi-supervised Learning We employ
GCN (Kipf and Welling 2016), GraphSage (Hamilton
et al. 2017), and MCGC (Zhang et al. 2021) as three
deep learning methods, detecting phishing behavior in
an end-to-end learning manner. GCN can integrate net-
work structure and attribute information. GraphSAGE is
derived from a variant of the GCN aggregation function.
MCGC is a deep learning method that extracts subgraph
information hierarchically. The attributes required for
this class of methods are consistent with those proposed
in this subsection.

Cross-Network Learning We use NetTr (Fang et al.
2013) and CDNE (Shen et al. 2020) as two transfer learn-
ing methods. NetTr transfers only network structural
information. CDNE introduces a MMD loss function to
perform domain adaptation learning in an autoencoder
fashion. The attributes required for this class of methods
are consistent with those proposed in this subsection.

Implementation details
This subsection conducts experiments on a Linux oper-
ating system with 128 GB of memory. NetworkX (2020)

is used for graph data processing, PyTorch (Paszke
et al. 2019) for model construction, and Scikit-learn
(Pedregosa et al. 2011) for handling evaluation metrics.

To better compare the effectiveness of the methods,
the dimensions of the subgraph representations used in
this subsection are all the same, each with 128 dimen-
sions. The encoder of the method proposed in the paper
consists of 1 layer of LSTM, 2 layers of GAT, 2 layers of
DiffPool, and 2 layers of MLP, with each layer using a
128-dimensional output for hidden layers. The dropout
rate for hidden neurons is set to 0.4. The function fpred(·)
is a multilayer perceptron, using a 128-dimensional out-
put layer for label prediction. The domain discrimina-
tor fdisc(·) has 2 layers with 128 neurons each, and the
balance coefficient � , the gradient penalty coefficient
γ , and the number of training steps for the domain dis-
criminator sdisc are set to 0.8, 10, and 15, respectively. The
learning rates for the encoder and domain discrimina-
tor, αencod and αdisc , are both set to 0.001. The model is
trained for 30 epochs.

For all non-cross-network learning methods, we merge
the source and target networks into one network for
experimentation. In the merged network, there are no
edges between the source and target networks. Therefore,
an 8:2 split is used as the training and test sets within
each merged network, with fivefold cross validation used
for experimentation. For single network learning meth-
ods, the walking length for DeepWalk, Trans2vec, and
T-Edge is set to 10, and the context size is set to 4. The
shift parameter α in Trans2vec and T-Edge is set to 0.5.
In Graph2vec, the number of training epochs is set to 30,
with a learning rate of 0.001. For subsequent classifiers,
the maximum number of iterations is set to 100 in logis-
tic regression. The support vector machine uses an RBF
kernel with hyperparameter γ set to 1000. In the random
forest, the maximum depth is set to 7, with the number of
base decision trees set to 100.

For graph-based semi-supervised learning methods,
the GCN layers in GCN, GraphSage, and MCGC are set
to 128 dimensions. The number of training epochs is set
to 30, with a learning rate of 0.001. For MCGC, the num-
ber of aggregation layers is set to 3 layers.

For cross-network learning methods, NetTr and
CDNE adopt the hyperparameters recommended in the
literature.

Table 2  Dataset statistics

Dataset Total nodes Phishing nodes Proportion (%) Total edges Average degree

ETH 1,765,559 1000 0.06 4,319,271 4.87

BTC 983,176 1000 0.10 4,859,188 9.88

EOS 746,688 1000 0.13 9,727,013 26.05

Page 14 of 22Yan et al. Cybersecurity (2024) 7:45

Experimental results
This section primarily investigates the comparative
effectiveness of the proposed method against current
advanced methods. To ensure that the behavior pat-
terns of the three blockchains are sufficiently similar
to warrant transfer learning, the target domains in the
experiments are divided into fully unlabeled and partially
labeled (with a label rate of 5%). In this section, ADA-
Spear’s detection effectiveness is verified to surpass cur-
rent advanced methods across these three datasets and
six transfer learning tasks. The main results are presented
in terms of F1 scores, as shown in Table 3.

Firstly, from the table for the target domain with no
labels, it can be seen that the proposed method ADA-
Spear outperforms all comparison methods, demon-
strating its effectiveness in cross-blockchain-network
phishing behavior detection. Under the six cross-block-
chain-network detection tasks, ADA-Spear’s F1 score
is, on average, 7.1% higher than the best comparison
method.

The F1 scores of feature engineering and single net-
work learning methods are comparatively low, which
aligns with expectations. Feature engineering methods
can only depict certain types of phishing behaviors on a
specific chain and struggle to comprehensively character-
ize phishing behaviors across different chains.

Within single network learning methods, it’s evident
that DeepWalk and Graph2vec, which only consider net-
work structure, perform very poorly, even comparable
to feature engineering methods. This can be attributed
to the lack of interconnectivity between ETH, BTC, and
EOS networks, resulting in incomparable representa-
tion vectors trained from the source and target domains.
This is the reason for the subpar detection effectiveness.
Moreover, because they do not incorporate any seman-
tic characterization of on-chain phishing behavior, they
cannot compare with Trans2vec and T-Edge, which
introduce semantics. Semantic-aware detection methods
outperform those considering only network structure by
an average of 7.25% in F1 score, suggesting that phish-
ing behaviors across heterogeneous chains share certain
semantic similarities.

Graph-based semi-supervised learning methods show
significant improvement over the previous two catego-
ries, with the MCGC method achieving the best results
among them. These methods are, on average, 10.04%
higher in F1 score compared to single network learn-
ing methods. This improvement can be attributed to the
end-to-end learning mode of semi-supervised methods,
which allows for the adjustment of subgraph behavior
representation while classifying, rather than post-repre-
sentation classification as with the previous two unsu-
pervised learning approaches. MCGC achieves the best

results because it overcomes the flattening issue of GCN-
based methods, considering subgraph representation
from a hierarchical perspective, and portraying behaviors
more completely and accurately at the subgraph level.

The cross-network learning methods NetTr and CDNE
are the most effective among all comparison methods
but still have a significant gap compared to the detec-
tion effectiveness of the proposed method in this paper.
ADA-Spear’s F1 score exceeds the average of cross-net-
work learning methods by 7.1%. Especially NetTr did not
achieve the expected detection performance. This may
be due to NetTr only transferring the topological struc-
ture between the source and target domains, not consid-
ering the semantic information of behaviors, which also
indirectly proves that phishing behaviors on the three
different chains have significant topological drift. The
substantial improvement in the detection effectiveness
of ADA-Spear is mainly due to the integration of more
semantic information on phishing behavior, hierarchical
stereoscopic behavior characterization, and the loss func-
tion in adversarial domain adaptation being more effec-
tive than the MMD loss function.

From these six transfer learning tasks, it is observed
that transfers to EOS are more challenging, which indi-
rectly suggests that the behavior patterns of nodes on
EOS differ significantly from those on other chains. How-
ever, the detection results are still at a high level, which
indicates that although there are distribution differences
in behavior, the method proposed in this paper can still
mitigate distribution drift and achieve good detection
results.

Comparing the tables for target domains with and
without labels shows that introducing target domain
labels improves the detection performance of all models,
with many phenomena similar to those observed in the
absence of labels. While detection performance improves
with the introduction of labels, the increase is not sub-
stantial, which also demonstrates the robustness of the
model. Furthermore, it indicates that phishing behaviors
across these three chains possess certain similarities and
that the distributions have consistency. This validates the
meaningfulness of using domain adaptation methods.

Efficiency analysis
This section conducts an efficiency analysis. Firstly, an
analysis of the relationship between time and cost across
different sampling ranges was carried out, with the
results shown in Fig. 8. This subsection uses the ratio of
the number of nodes and edges to the total number of
nodes and edges as a cost indicator for analysis. Since the
task duration remains the same when the datasets used
in the source and target domains of transfer learning are
swapped, so nodes and edges increasing are showing

Page 15 of 22Yan et al. Cybersecurity (2024) 7:45 	

Ta
bl

e 
3 

Co
m

pa
ris

on
 o

f
F1

 s
co

re
s

of
 A

D
A

-S
pe

ar
 a

nd
 o

th
er

 m
et

ho
ds

’ d
et

ec
tio

n
re

su
lts

, w
ith

 o
pt

im
al

 r
es

ul
ts

 w
ith

in
 a

ll
m

et
ho

ds
 in

di
ca

te
d

by
 b

ol
de

d
st

yl
e

an
d

op
tim

al
 r

es
ul

ts

w
ith

in
 e

ac
h

ty
pe

 in
di

ca
te

d
by

 w
av

y
lin

es

Ta
rg

et
 d

om
ai

n
un

la
be

le
d

(%
)

Ta
rg

et
 d

om
ai

n
5%

 la
be

le
d

(%
)

ET
H

 →
 B

TC
EO

S
→

 B
TC

ET
H

 →
 E

O
S

BT
C
→

 E
O

S
EO

S
→

 E
TH

BT
C
→

 E
TH

ET
H

 →
 B

TC
EO

S
→

 B
TC

ET
H

 →
 E

O
S

BT
C
→

 E
O

S
EO

S
→

 E
TH

BT
C
→

 E
TH

Fe
at

ur
e

ba
se

d

St
at

ic
 F

ea
tu

re
 +

 L
R

(C
he

n
et

 a
l.

20
20

a)
40

.5
7

±

0.
02

9
39

.7
3

±

0.
03

1
34

.6
0

±

0.
03

7
32

.5
5

±

0.
02

0
41

.0
1

±

0.
03

4
41

.8
6

±

0.
02

8
48

.6
4

±

0.
02

9
48

.1
9

±

0.
02

3
42

.7
8

±

0.
02

3
40

.7
4

±

0.
02

1
49

.0
9

±

0.
02

0
50

.9
1

±
 0

.0
24

St
at

ic
 fe

at
ur

e
+

SV
M

 (C
he

n
et

 a
l.

20
20

a)
41

.3
4

±

0.
04

0
40

.5
2

±

0.
02

4
35

.2
3

±

0.
01

9
33

.1
9

±

0.
02

3
42

.2
8

±

0.
02

0
43

.4
6

±

0.
02

0
49

.3
9

±

0.
01

8
48

.9
9

±

0.
01

8
43

.3
8

±

0.
02

3
41

.3
5

±

0.
02

6
50

.3
0

±

0.
02

4
51

.5
1

±
 0

.0
28

St
at

ic
 fe

at
ur

e
+

 R
F

(C
he

n
et

 a
l.

20
20

a)
42

.0
1

±

0.
02

8
41

.2
0

±

0.
01

6
37

.9
7

±

0.
03

0
35

.9
5

±

0.
02

8
43

.0
3

±

0.
03

6
43

.8
4

±

0.
01

6
50

.0
5

±

0.
01

4
49

.6
5

±

0.
02

8
46

.0
9

±

0.
02

4
44

.0
6

±

0.
02

5
51

.1
1

±

0.
02

0
51

.9
2

±
 0

.0
21

Si
ng

le
- n

et
w

or
k

ba
se

d

D
ee

pW
al

k
+

 L
R

(P
er

oz
zi

et

 a
l.

20
14

)
40

.6
5

±

0.
02

7
39

.8
4

±

0.
02

7
37

.8
3

±

0.
03

1
40

.1
2

±

0.
02

4
42

.0
4

±

0.
02

0
43

.2
7

±

0.
01

6
48

.7
8

±

0.
01

8
48

.3
7

±

0.
02

1
45

.8
8

±

0.
02

7
43

.8
6

±

0.
01

6
50

.2
1

±

0.
02

5
52

.4
0

±
 0

.0
21

D
ee

pW
al

k
+

 S
VM

 (P
er

oz
zi

et

 a
l.

20
14

)
42

.2
0

±

0.
02

3
43

.7
2

±

0.
01

9
39

.8
1

±

0.
02

6
37

.8
0

±

0.
03

0
43

.2
0

±

0.
02

0
46

.2
6

±

0.
01

5
50

.2
0

±

0.
01

7
49

.8
0

±

0.
02

2
47

.8
0

±

0.
01

5
48

.1
8

±

0.
02

1
51

.2
0

±

0.
01

7
51

.4
3

±
 0

.0
28

D
ee

pW
al

k
+

 R
F

(P
er

oz
zi

et

 a
l.

20
14

)
44

.5
6

±

0.
03

2
47

.8
9

±

0.
03

1
45

.4
6

±

0.
02

4
37

.8
0

±

0.
03

0
45

.6
6

±

0.
01

9
50

.2
5

±

0.
01

7
52

.6
2

±

0.
02

1
52

.2
2

±

0.
01

6
50

.2
0

±

0.
02

8
45

.8
0

±

0.
02

7
53

.7
4

±

0.
02

5
54

.9
5

±
 0

.0
24

G
ra

ph
2v

ec
 +

 L
R

(N
ar

ay
-

an
an

 e
t a

l.
20

17
)

46
.4

3
±

0.

03
8

45
.8

3
±

0.

02
4

43
.9

9
±

0.

01
6

41
.9

6
±

0.

03
7

48
.0

1
±

0.

03
3

44
.4

0
±

0.

02
7

54
.5

8
±

0.

02
6

54
.1

7
±

0.

02
6

53
.4

4
±

0.

02
6

50
.1

1
±

0.

03
3

57
.7

8
±

0.

02
8

57
.5

5
±

 0
.0

19

G
ra

ph
2v

ec
 +

 S
VM

 (N
ar

ay
-

an
an

 e
t a

l.
20

17
)

48
.4

9
±

0.

03
4

41
.3

8
±

0.

02
3

47
.2

0
±

0.

02
1

43
.4

7
±

0.

02
5

49
.7

0
±

0.

02
5

52
.4

0
±

0.

02
7

56
.5

6
±

0.

02
8

58
.0

5
±

0.

01
2

52
.1

4
±

0.

02
8

51
.4

4
±

0.

02
7

56
.3

3
±

0.

01
8

58
.9

9
±

 0
.0

16

G
ra

ph
2v

ec
 +

 R
F

(N
ar

ay
-

an
an

 e
t a

l.
20

17
)

50
.5

0
±

0.

02
6

50
.1

0
±

0.

02
0

42
.1

3
±

0.

02
8

53
.7

5
±

0.

01
9

51
.4

0
±

0.

02
4

53
.4

2
±

0.

02
2

58
.4

5
±

0.

01
4

56
.1

6
±

0.

02
7

55
.2

0
±

0.

02
0

57
.8

1
±

0.

02
1

59
.3

6
±

0.

02
1

60
.4

0
±

 0
.0

19

Tr
an

s2
ve

c
+

 L
R

(W
u

et
 a

l.
20

20
)

55
.5

8
±

0.

02
4

55
.3

2
±

0.

01
8

53
.5

4
±

0.

02
1

51
.3

7
±

0.

02
6

55
.7

2
±

0.

01
3

59
.4

7
±

0.

01
8

59
.7

8
±

0.

01
4

59
.3

7
±

0.

01
4

57
.5

8
±

0.

01
2

55
.4

1
±

0.

02
4

61
.1

2
±

0.

01
6

62
.7

6
±

 0
.0

17

Tr
an

s2
ve

c
+

 S
VM

 (W
u

et
 a

l.
20

20
)

59
.4

8
±

0.

01
2

56
.4

7
±

0.

02
0

54
.8

6
±

0.

01
8

45
.2

1
±

0.

02
8

56
.9

9
±

0.

02
9

58
.7

0
±

0.

02
0

62
.2

2
±

0.

01
5

60
.8

2
±

0.

02
3

61
.3

4
±

0.

01
3

56
.9

1
±

0.

01
8

62
.4

5
±

0.

01
3

63
.5

4
±

 0
.0

15

Tr
an

s2
ve

c
+

 R
F

(W
u

et
 a

l.
20

20
)

57
.0

9
±

0.

02
0

57
.7

8
±

0.

01
7

55
.7

8
±

0.

02
4

52
.8

2
±

0.

02
5

58
.8

2
±

0.

00
8

60
.7

4
±

0.

01
6

61
.2

3
±

0.

01
8

61
.8

2
±

0.

01
5

59
.8

4
±

0.

01
8

53
.2

0
±

0.

01
3

65
.0

5
±

0.

01
2

64
.9

2
±

 0
.0

15

TE
dg

e
+

 L
R

(L
in

 e
t a

l.
20

20
)

55
.0

6
±

0.

02
0

54
.6

5
±

0.

02
2

52
.6

0
±

0.

01
9

50
.6

0
±

0.

01
7

58
.0

4
±

0.

01
9

60
.5

0
±

0.

01
8

59
.0

6
±

0.

01
8

62
.2

6
±

0.

01
3

56
.6

0
±

0.

01
2

54
.6

0
±

0.

01
5

60
.4

0
±

0.

01
7

61
.4

0
±

 0
.0

15

TE
dg

e
+

 S
VM

 (L
in

 e
t a

l.
20

20
)

58
.6

6
±

0.

02
0

59
.0

7
±

0.

01
2

57
.2

9
±

0.

01
7

54
.1

6
±

0.

01
6

56
.1

9
±

0.

01
7

57
.4

0
±

0.

01
9

62
.6

7
±

0.

02
1

58
.6

6
±

0.

01
4

60
.1

8
±

0.

01
6

58
.1

7
±

0.

02
1

63
.7

2
±

0.

01
4

65
.7

3
±

 0
.0

14

TE
dg

e
+

 R
F

(L
in

 e
t a

l.
20

20
)

58
.1

3
±

0.

02
2

58
.2

6
±

0.

01
7

56
.1

7
±

0.

02
1

55
.2

6
±

0.

02
0

58
.3

2
±

0.

02
1

61
.8

9
±

0.

00
8

63
.5

1
±

0.

01
0

63
.1

1
±

0.

01
3

59
.8

4
±

0.

01
8

59
.3

2
±

0.

02
0

63
.4

4
±

0.

01
6

64
.5

3
±

 0
.0

17

Se
m

i-s
up

er
vi

se
d

ba
se

d

G
C

N
 (K

ip
f a

nd
 W

el
lin

g
20

16
)

64
.7

0
±

0.

01
2

63
.7

5
±

0.

01
9

64
.7

4
±

0.

01
7

60
.1

6
±

0.

01
4

66
.0

7
±

0.

01
6

66
.9

3
±

0.

01
6

67
.2

1
±

0.

01
5

66
.8

1
±

0.

01
6

67
.7

3
±

0.

01
1

63
.2

1
±

0.

01
7

68
.7

7
±

0.

01
4

70
.4

6
±

 0
.0

10

G
ra

ph
SA

G
E

(H
am

ilt
on

et

 a
l.

20
17

)
66

.5
3

±

0.
01

6
66

.2
0

±

0.
01

4
62

.2
0

±

0.
01

7
62

.4
1

±

0.
01

1
63

.3
4

±

0.
01

5
66

.4
0

±

0.
01

5
69

.6
0

±

0.
00

9
72

.9
7

±

0.
01

2
65

.2
4

±

0.
01

7
67

.5
4

±

0.
01

1
70

.4
0

±

0.
01

5
73

.7
7

±
 0

.0
12

Page 16 of 22Yan et al. Cybersecurity (2024) 7:45

Ta
bl

e 
3 

(c
on

tin
ue

d)

Ta
rg

et
 d

om
ai

n
un

la
be

le
d

(%
)

Ta
rg

et
 d

om
ai

n
5%

 la
be

le
d

(%
)

ET
H

 →
 B

TC
EO

S
→

 B
TC

ET
H

 →
 E

O
S

BT
C
→

 E
O

S
EO

S
→

 E
TH

BT
C
→

 E
TH

ET
H

 →
 B

TC
EO

S
→

 B
TC

ET
H

 →
 E

O
S

BT
C
→

 E
O

S
EO

S
→

 E
TH

BT
C
→

 E
TH

M
CG

C
 (Z

ha
ng

 e
t a

l.
20

21
)

68
.8

7
±

0.

01
8

69
.7

1
±

0.

01
4

66
.2

0
±

0.

01
3

64
.5

2
±

0.

01
7

69
.2

8
±

0.

00
6

71
.0

7
±

0.

01
1

71
.7

4
±

0.

01
3

71
.3

4
±

0.

01
1

69
.2

1
±

0.

01
1

65
.4

0
±

0.

01
5

72
.9

3
±

0.

01
3

71
.0

4
±

 0
.0

15

Cr
os

s-
ne

tw
or

k
ba

se
d

N
et

Tr
 (F

an
g

et
 a

l.
20

13
)

57
.4

5
±

0.

02
0

57
.2

6
±

0.

01
4

56
.8

7
±

0.

02
0

53
.6

9
±

0.

01
3

59
.5

1
±

0.

01
9

61
.3

1
±

0.

02
3

60
.7

8
±

0.

01
3

60
.3

9
±

0.

00
8

58
.6

2
±

0.

01
4

55
.6

5
±

0.

01
7

62
.8

3
±

0.

01
2

64
.4

3
±

 0
.0

07

C
D

N
E

(S
he

n
et

 a
l.

20
20

)
70

.7
9

±

0.
01

3
68

.3
4

±

0.
01

8
65

.9
9

±

0.
01

8
65

.2
5

±

0.
01

7
72

.2
1

±

0.
00

6
73

.7
4

±

0.
01

3
73

.3
8

±

0.
01

1
69

.2
0

±

0.
01

2
67

.8
2

±

0.
01

6
67

.0
7

±

0.
01

3
75

.5
3

±

0.
01

3
76

.5
5

±
 0

.0
08

A
D

A
-S

pe
ar

77
.5

3
±

0.

01
1

75
.7

6
±

0.

01
2

74
.1

6
±

0.

01
2

73
.2

3
±

0.

01
3

78
.9

8
±

0.

01
0

80
.8

6
±

0.

01
0

78
.5

8
±

0.

00
8

77
.7

3
±

0.

01
0

75
.1

0
±

0.

01
1

74
.0

4
±

0.

01
0

80
.6

1
±

0.

00
9

82
.4

5
±

0.

00
5

Page 17 of 22Yan et al. Cybersecurity (2024) 7:45 	

the same trend in the tasks such as ETH-BTC: ETH →
BTC and BTC → ETH but time cost between the tasks
have slight fluctuation. It can be observed from the fig-
ure that the time increases with the number of sampled
nodes, and the increase tends to be linear. Since graph
data needs to be read, the ratio of nodes and edges repre-
sents the memory usage rate, which, as shown in the fig-
ure, increases linearly with the number of sampled nodes.
Therefore, the method proposed in this paper tends
towards linearity in both time and cost aspects, indicat-
ing that ADA-Spear is suitable for large-scale networks
and has good scalability.

Secondly, this section also compares the impact of the
sampling range on the F1 score for ADA-Spear with two
other methods, with results shown in Fig. 9. The other
two methods selected, GCN and CDNE, were chosen
because they achieved the optimal F1 scores among the
comparison methods. As can be seen from the figure, the
F1 scores for all six tasks are generally optimized when
K = 25; therefore, K = 25 was chosen for experimenta-
tion. Additionally, it is evident from the figure that the
F1 score for ADA-Spear consistently outperforms that of
GCN and CDNE. The detection effect is not ideal before
K reaches 20, but there is a significant improvement after
K exceeds 20. However, there is a slight decline when K
reaches 30. This indicates that the neighboring nodes
have the maximum amount of information when K is
between 20 and 25, and beyond 30, the redundant infor-
mation becomes detrimental to the model’s learning.

In summary, the method proposed in this section has
the best efficiency in balancing time and detection effec-
tiveness, surpassing the other methods.

Ablation experiment
This section investigates the impact of the adversarial
domain adaptation module and the encoder module on
the overall model’s detection performance and conducts
a visual analysis.

Impact of the adversarial domain adaptation module
To explore the effect of this module on the overall detec-
tion performance, the subsection conducts experiments
without this module, and the comparative results are
presented in Table 4. As can be seen from the table, the
adversarial domain adaptation module mitigates domain
discrepancies and enhances detection performance.
The absence of this module would lead to a significant
distributional shift, whereas ADA-Spear can make the
subgraph representations have clearer class boundaries.
This demonstrates that the adversarial domain adapta-
tion module can effectively alleviate the distribution drift
between chains, making a substantial contribution to the
detection of phishing activities on new blockchains.

Impact of the encoder network
To explore whether the encoder network proposed in
this paper accurately captures the distinctive charac-
teristics of phishing and benign behaviors, this section

Fig. 8  Impact of sampling range on time and cost (training time, node-to-edge ratio): a ETH → BTC task; b BTC → ETH task; c EOS → BTC task; d
BTC → EOS task; e ETH → EOS task; f EOS → ETH task

Page 18 of 22Yan et al. Cybersecurity (2024) 7:45

replaces the proposed encoder network with a mul-
tilayer perceptron. This perceptron utilizes a fully
connected approach for feature extraction. The com-
parative results are shown in Table 5. As can be seen

from the table, the implementation of the encoder
designed in this paper leads to improvements in all six
cross-blockchain-network phishing detection tasks.
The averages of Rc, Pr, and F1 increased by 2.85%,

Fig. 9  Impact of sampling range on detection results: a ETH → BTC task; b BTC → ETH task; c EOS → BTC task; d BTC → EOS task; e ETH → EOS task;
f EOS → ETH task

Table 4  Impact of the adversarial domain adaptation module on detection performance

Task Method Rc (recall) (%) Pr (precision) (%) F1 score (%)

ETH → BTC ADA-Spear/ADA 73.54± 0.042 69.49± 0.015 71.46± 0.012

 ADA-Spear 79.79 ± 0.051 75.39 ± 0.024 77.53 ± 0.011

 Improvement 6.25 5.90 6.07

 EOS → BTC ADA-Spear/ADA 72.71 ± 0.029 68.56 ± 0.010 70.58 ± 0.008

 ADA-Spear 78.12 ± 0.051 73.53 ± 0.023 75.76 ± 0.012

 Improvement 5.41 4.97 5.18

 ETH → EOS ADA-Spear/ADA 71.66 ± 0.036 67.98 ± 0.012 69.78 ± 0.011

 ADA-Spear 76.25 ± 0.047 72.19 ± 0.020 74.16 ± 0.012

 Improvement 4.59 4.21 4.38

 BTC → EOS ADA-Spear/ADA 70.62 ± 0.042 67.80 ± 0.014 69.18 ± 0.013

ADA-Spear 75.22 ± 0.050 71.34 ± 0.020 73.23 ± 0.013

 Improvement 4.60 3.54 4.05

 EOS → ETH ADA-Spear/ADA 73.75 ± 0.041 70.38 ± 0.016 72.03 ± 0.011

 ADA-Spear 81.04 ± 0.051 77.03 ± 0.026 78.98 ± 0.010

 Improvement 7.29 6.65 6.95

 BTC → ETH ADA-Spear/ADA 74.59 ± 0.058 70.89 ± 0.023 72.69 ± 0.016

 ADA-Spear 82.29 ± 0.055 79.48 ± 0.031 80.86 ± 0.010

 Improvement 7.70 8.59 8.17

 Average Improvement 5.97 5.64 5.80

Page 19 of 22Yan et al. Cybersecurity (2024) 7:45 	

2.81%, and 2.83%, respectively. This demonstrates that
the encoder can effectively delineate the distinctive fea-
tures between phishing and benign behaviors, making
it an indispensable part of the model.

Distribution difference analysis
This section discusses the differences in distributions
between the source chain and the target chain. Under six
cross-blockchain-network phishing detection tasks, the
impact of changes in the distribution differences on the
detection results is explored by varying the feature over-
lap degree between the source and target domains. The
feature overlap degree is defined as C =

|Fs∩Ft |

|Fs∪Ft |
 , where Fr

(with r ∈ {s, t} ) represents the features in domain r . This
is achieved by randomly removing certain attributes,
causing C to vary from 10% to 50%. The final results are
shown in Fig. 10. The best methods of semi-supervised
learning and cross-network learning are selected for
comparison with the proposed method. As seen in the
figure, ADA-Spear consistently outperforms GCN and
CDNE across all label rates in all tasks. This also indicates
that, even with only a small portion of overlapping attrib-
utes between two domains, adversarial domain adapta-
tion techniques still make a significant contribution to
the model. This adequately demonstrates the robustness
of the method proposed in this paper, making it capable

of detecting phishing behaviors across an even wider
range of new chains.

Sensitivity analysis
This section conducts a parameter sensitivity analysis of
ADA-Spear to explore the impact of hyperparameters
on the model. The sensitivity of the LSTM length m , the
training steps of the domain discriminator sdisc , the pen-
alty factor γ , and the balance coefficient � are analyzed.
Since the trends in hyperparameter changes are similar
across various tasks, this section presents the F1 values
only for the ETH → BTC task to avoid repetition. The
method of controlling variables is used here; when study-
ing a single hyperparameter, the others are kept constant
as described in Sect. 5.2.

LSTM Length m The length of LSTM is used to receive
subgraph feature inputs of different total time steps. As
shown in Fig. 11a, subgraphs with a time span of more
than 30 days have achieved good and stable detection
results. The detection results show stability when LSTM
encompasses information over more days, demonstrating
the robustness of the model. When the length is 10, the
detection performance is lower, indicating that subgraphs
should ideally not be chosen with less than 10 steps. The
stable performance in the graph also proves that using
LSTM of variable lengths for detection is feasible.

Table 5  Impact of the encoder network on detection performance

Task Method Rc (recall) (%) Pr (precision) (%) F1 score (%)

ETH → BTC ADA-Spear/encoder 76.67 ± 0.059 72.44 ± 0.025 74.49 ± 0.015

ADA-Spear 79.79 ± 0.051 75.39 ± 0.024 77.53 ± 0.011

Improvement 3.12 2.95 3.04

EOS → BTC ADA-Spear/encoder 76.67 ± 0.059 72.44 ± 0.025 74.49 ± 0.015

ADA-Spear 78.12 ± 0.051 73.53 ± 0.023 75.76 ± 0.012

Improvement 1.45 1.09 1.27

ETH → EOS ADA-Spear/encoder 72.71 ± 0.041 68.83 ± 0.015 70.72 ± 0.012

ADA-Spear 76.25 ± 0.047 72.19 ± 0.020 74.16 ± 0.012

Improvement 3.54 3.36 3.44

BTC → EOS ADA-Spear/encoder 72.08 ± 0.051 68.38 ± 0.018 70.18 ± 0.015

ADA-Spear 75.22 ± 0.050 71.34 ± 0.020 73.23 ± 0.013

Improvement 3.14 2.96 3.05

EOS → ETH ADA-Spear/encoder 78.32 ± 0.041 74.17 ± 0.019 76.19 ± 0.009

ADA-Spear 81.04 ± 0.051 77.03 ± 0.026 78.98 ± 0.010

Improvement 2.72 2.86 2.79

BTC → ETH ADA-Spear/encoder 79.17 ± 0.047 75.85 ± 0.023 77.47 ± 0.010

ADA-Spear 82.29 ± 0.055 79.48 ± 0.031 80.86 ± 0.010

Improvement 3.12 3.63 3.39

Average Improvement 2.85 2.81 2.83

Page 20 of 22Yan et al. Cybersecurity (2024) 7:45

Domain Discriminator Training Steps sdisc As observed
in Fig. 11b, there is a clear increase in the F1 value when
sdisc changes from 5 to 10, followed by a tendency to
stabilize. This confirms the optimization theory of the
domain discriminator. Since the parameters of other
components in the model remain unchanged during the
training of the domain discriminator, as long as the num-
ber of training steps for the domain discriminator is suf-
ficiently large, it can reach the optimal solution.

Penalty Factor γ The penalty factor is used to adjust
various hyperparameters of the domain discriminator.
As can be seen from Fig. 11c, the optimal detection per-
formance is achieved when γ = 10 . Both excessively high
and low values lead to model degradation. Therefore, this
paper adopts a penalty factor of 10 for the experiments.

Balance Coefficient � The balance coefficient is used
to adjust the balance between adversarial domain adap-
tation learning and semi-supervised learning. As shown
in Fig. 11d, the detection results improve when � varies
between 0.4 and 1.0. There is a sharp decline in detection
performance after � = 1.0 . Therefore, the chosen � for
the model should be between 0.4 and 1.0 to balance the
learning of distinguishability between different categories
and the similarity between domains.

Conclusion
This paper addresses the detection of cross-blockchain-
network phishing activities by combining an encoder
that effectively characterizes phishing behaviors with
ADA-Spear’s adversarial domain adaptation module.

Fig. 10  Comparison chart of detection efficacy with different overlap rates of attributes between source and target domains: a ETH → BTC; b EOS
→ BTC; c ETH → EOS; d BTC → EOS; e EOS → ETH; f BTC → ETH

Fig. 11  ADA-Spear parameter sensitivity analysis: a LSTM sequence
length; b training steps; c penalty factor; d balance coefficient

Page 21 of 22Yan et al. Cybersecurity (2024) 7:45 	

The encoder module combines temporal and topological
information to create a hierarchical subgraph representa-
tion. Simultaneously, the adversarial domain adaptation
module facilitates knowledge transfer from the source
domain to the target domain. This combination enables
ADA-Spear to be effectively applied to new chains for
recognizing phishing behavior. Detailed experiments,
using Ethereum, Bitcoin, and EOSIO as examples, further
demonstrate ADA-Spear’s advantages in accuracy and
robustness. Meanwhile, ADA-Spear exhibits certain limi-
tations.The precision of ADA-Spear demonstrates a con-
siderable improvement over existing methods; however,
there is still room for further enhancement until it can
rival the detection performance achieved solely within
a single chain. Additionally, ADA-Spear may encounter
limitations in knowledge transfer in cases where there is
significant disparity between the two chains. Research on
generalizable phishing recognition methods across differ-
ent chains is still in its early stages. This paper introduces
one potential approach, offering a new research perspec-
tive to the community.

Acknowledgements
We are deeply grateful to the blind peer reviewers for their valuable sug-
gestions and feedback on our paper. Their contributions have significantly
enhanced the quality of our research. We would also like to extend our
gratitude to all those who have provided assistance and support throughout
the development of this paper.

Author contributions
All authors have contributed to this manuscript and approve of this submis-
sion. CY participated in all the work and drafting the article. XH participated in
the drafting the article. YZ did some basic collection work. Prof. YL, ZL, and Dr.
DD made a decisive contribution to the content of research and revising the
article critically.

Funding
This research is supported by National Key Research and Development
Program of China (Nos. 2023YFC3306305, 2021YFF0307203, 2019QY1300),
Foundation Strengthening Program Technical Area Fund (No.2021-JCJQ-
JJ-0908), technological project funding of the State Grid Corporation of China
(Contract Number: SG270000YXJS2311060), Youth Innovation Promotion
Association CAS (No. 2021156), the Strategic Priority Research Program of
Chinese Academy of Sciences (No. XDC02040100) and National Natural Sci-
ence Foundation of China (No. 61802404). This work is also supported by the
Program of Key Laboratory of Network Assessment Technology, the Chinese
Academy of Sciences, Program of Beijing Key Laboratory of Network Security
and Protection Technology.

Availability of data and materials
The datasets using in this paper can be seen in https://​drive.​google.​com/​
drive/​folde​rs/​1xopl​Zg0vO​BKF9H​w1aHN​BD-​KTpK0​YW_​P0?​usp=​shari​ng.

Declarations

Competing interests
The authors declare that they have no Conflict of interest.

Received: 15 January 2024 Accepted: 1 April 2024

References
Aggarwal CC et al (2015) Data mining: the textbook, vol 1
Ao X, Liu Y, Qin Z, Sun Y, He Q (2021) Temporal high-order proximity aware

behavior analysis on Ethereum. World Wide Web 24:1–21
Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative adversarial

networks. In: International conference on machine learning. PMLR, pp
214–223

Chainanalysis: The 2022 Crypto Crime Report. https://​go.​chain​alysis.​com/​rs/​
503-​FAP-​074/​images/​Crypto-​Crime-​Report-​2022.​pdf

Chen L, Peng J, Liu Y, Li J, Xie F, Zheng Z (2020a) Phishing scams detection
in Ethereum transaction network. ACM Trans Internet Technol (TOIT)
21(1):1–16

Chen T, Li Z, Zhu Y, Chen J, Luo X, Lui JC-S, Lin X, Zhang X (2020b) Understand-
ing Ethereum via graph analysis. ACM Trans Internet Technol (TOIT)
20(2):1–32

CNVD-BC: blockchain security situation perception report. https://​bc.​cnvd.​org.​
cn/​notice_​info?​num=​0c408​8bbb6​f7346​000c3​ac1ce​13f03​47

CoinMarketCap: CoinMarketCap. https://​coinm​arket​cap.​com/
Dai Q, Li Q, Tang J, Wang D (2018) Adversarial network embedding. In: Pro-

ceedings of the AAAI conference on artificial intelligence, vol 32
Dai Q, Shen X, Zhang L, Li Q, Wang D (2019) Adversarial training methods for

network embedding. In: The world wide web conference, pp 329–339
EOSIO: EOSIO. https://​eos.​io/
Etherscan: Etherscan. https://​ether​scan.​io
Etherscan: explore navigate Etherescan’s label world cloud. https://​ether​scan.​

io/​label​cloud
Fang M, Yin J, Zhu X (2013) Transfer learning across networks for collective

classification. In: 2013 IEEE 13th international conference on data mining.
IEEE, pp 161–170

Ganin Y, Lempitsky V (2015) Unsupervised domain adaptation by backpropa-
gation. In: International conference on machine learning. PMLR, pp
1180–1189

Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, March M,
Lempitsky V (2016) Domain-adversarial training of neural networks. J
Mach Learn Res 17(59):1–35

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville
A, Bengio Y (2020) Generative adversarial networks. Commun ACM
63(11):139–144

Gouk H, Frank E, Pfahringer B, Cree MJ (2021) Regularisation of neural networks
by enforcing lipschitz continuity. Mach Learn 110:393–416

Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks.
In: Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pp 855–864

Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC (2017) Improved
training of wasserstein gans. Adv Neural Inf Process Syst 30

Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on
large graphs. Adv Neural Inf Process Syst 30

Heimann M, Koutra D (2017) On generalizing neural node embedding meth-
ods to multi-network problems. In: KDD MLG workshop

Jain AK, Gupta BB et al (2017) Phishing detection: analysis of visual similarity
based approaches. Secur Commun Netw 2017

Ji S, Pan S, Cambria E, Marttinen P, Philip SY (2021) A survey on knowledge
graphs: representation, acquisition, and applications. IEEE Trans Neural
Netw Learn Syst 33(2):494–514

Jiao P, Guo X, Jing X, He D, Wu H, Pan S, Gong M, Wang W (2021) Temporal net-
work embedding for link prediction via VAE joint attention mechanism.
IEEE Trans Neural Netw Learn Syst 33(12):7400–7413

Jourdan M, Blandin S, Wynter L, Deshpande P (2018) Characterizing entities
in the bitcoin blockchain. In: 2018 IEEE international conference on data
mining workshops (ICDMW). IEEE, pp 55–62

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolu-
tional networks. arXiv:​1609.​02907

Li Y, Cai Y, Tian H, Xue G, Zheng Z (2020) Identifying illicit addresses in bitcoin
network. In: Blockchain and trustworthy systems: second international
conference, BlockSys 2020, Dali, China, August 6–7, 2020, Revised
Selected Papers 2. Springer, pp 99–111

Li S, Gou G, Liu C, Hou C, Li Z, Xiong G (2022) Ttagn: Temporal transaction
aggregation graph network for Ethereum phishing scams detection. In:
Proceedings of the ACM web conference 2022, pp 661–669

https://drive.google.com/drive/folders/1xoplZg0vOBKF9Hw1aHNBD-KTpK0YW_P0?usp=sharing
https://drive.google.com/drive/folders/1xoplZg0vOBKF9Hw1aHNBD-KTpK0YW_P0?usp=sharing
https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf
https://go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.pdf
https://bc.cnvd.org.cn/notice_info?num=0c4088bbb6f7346000c3ac1ce13f0347
https://bc.cnvd.org.cn/notice_info?num=0c4088bbb6f7346000c3ac1ce13f0347
https://coinmarketcap.com/
https://eos.io/
https://etherscan.io
https://etherscan.io/labelcloud
https://etherscan.io/labelcloud
http://arxiv.org/abs/1609.02907

Page 22 of 22Yan et al. Cybersecurity (2024) 7:45

Lin D, Wu J, Yuan Q, Zheng Z (2020) T-edge: temporal weighted multidigraph
embedding for Ethereum transaction network analysis. Front Phys 8:204

Nakamoto S (2008) Bitcoin: a peer-to-peer electronic cash system. Decentral-
ized Business Review

Narayanan A, Chandramohan M, Venkatesan R, Chen L, Liu Y, Jaiswal S (2017)
graph2vec: learning distributed representations of graphs. arXiv:​1707.​
05005

NetworkX D (2020) Networkx: network analysis in python
Ni J, Chang S, Liu X, Cheng W, Chen H, Xu D, Zhang X (2018) Co-regularized

deep multi-network embedding. In: Proceedings of the 2018 world wide
web conference, pp 469–478

Orunsolu AA, Sodiya AS, Akinwale A (2022) A predictive model for phishing
detection. J King Saud Univ-Comput Inf Sci 34(2):232–247

Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng
22(10):1345–1359

Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized
graph autoencoder for graph embedding. arXiv:​1802.​04407

Pan S, Hu R, Fung S-F, Long G, Jiang J, Zhang C (2019) Learning graph
embedding with adversarial training methods. IEEE Trans Cybern
50(6):2475–2487

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-per-
formance deep learning library. Adv Neural Inf Process Syst 32:8024–8035

Patel V, Pan L, Rajasegarar S (2020) Graph deep learning based anomaly detec-
tion in Ethereum blockchain network. In: Network and system security:
14th international conference, NSS 2020, Melbourne, VIC, Australia,
November 25–27, 2020, Proceedings 14. Springer, pp 132–148

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning
in python. J Mach Learn Res 12:2825–2830

Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social
representations. In: Proceedings of the 20th ACM SIGKDD international
conference on knowledge discovery and data mining, pp 701–710

Sayadi S, Rejeb SB, Choukair Z (2019) Anomaly detection model over
blockchain electronic transactions. In: 2019 15th international wireless
communications and mobile computing conference (IWCMC). IEEE, pp
895–900

Shen J, Qu Y, Zhang W, Yu Y (2018) Wasserstein distance guided representation
learning for domain adaptation. In: Proceedings of the AAAI conference
on artificial intelligence, vol 32

Shen X, Dai Q, Mao S, Chung F-L, Choi K-S (2020) Network together: node clas-
sification via cross-network deep network embedding. IEEE Trans Neural
Netw Learn Syst 32(5):1935–1948

Singh A (2019) Anomaly detection in the Ethereum network. A thesis for the
degree of Master of Technology/Indian Institute of Technology Kanpur

SlowMist: 2022 blockchain security and AML analysis annual report. https://​
www.​slowm​ist.​com/​report/​2022-​Block​chain-​Secur​ity-​and-​AML-​Analy​sis-​
Annual-​Repor​t(CN).​pdf

Toyoda K, Ohtsuki T, Mathiopoulos PT (2018) Multi-class bitcoin-enabled
service identification based on transaction history summarization. In:
2018 IEEE international conference on internet of things (iThings) and
IEEE green computing and communications (GreenCom) and IEEE cyber,
physical and social computing (CPSCom) and IEEE smart data (Smart-
Data). IEEE, pp 1153–1160

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 1225–1234

Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community preserving
network embedding. In: Proceedings of the AAAI conference on artificial
intelligence, vol 31

Wiles O, Gowal S, Stimberg F, Alvise-Rebuffi S, Ktena I, Dvijotham K, Cemgil T
(2021) A fine-grained analysis on distribution shift. arXiv:​2110.​11328

Wu J, Yuan Q, Lin D, You W, Chen W, Chen C, Zheng Z (2020) Who are the
phishers? Phishing scam detection on Ethereum via network embedding.
IEEE Trans Syst Man Cybern Syst 52(2):1156–1166

Xu L, Wei X, Cao J, Yu PS (2017) Embedding of embedding (EOE) joint embed-
ding for coupled heterogeneous networks. In: Proceedings of the tenth
ACM international conference on web search and data mining, pp
741–749

Xu L, Wei X, Cao J, Yu PS (2018) On exploring semantic meanings of links for
embedding social networks. In: Proceedings of the 2018 world wide web
conference, pp 479–488

Yang Z, Cohen W, Salakhudinov R (2016) Revisiting semi-supervised learning
with graph embeddings. In: International conference on machine learn-
ing. PMLR, pp 40–48

Ying Z, You J, Morris C, Ren X, Hamilton W, Leskovec J (2018) Hierarchical
graph representation learning with differentiable pooling. Adv Neural Inf
Process Syst 31

Yuan Q, Huang B, Zhang J, Wu J, Zhang H, Zhang X (2020) Detecting phishing
scams on Ethereum based on transaction records. In: 2020 IEEE interna-
tional symposium on circuits and systems (ISCAS). IEEE, pp 1–5

Zhang D, Chen J, Lu X (2021) Blockchain phishing scam detection via multi-
channel graph classification. In: Blockchain and trustworthy systems:
third international conference, BlockSys 2021, Guangzhou, China, August
5–6, 2021, Revised Selected Papers 3. Springer, pp 241–256

Zheng H, Ma M, Ma H, Chen J, Xiong H, Yang Z (2023) Tegdetector: a phishing
detector that knows evolving transaction behaviors. IEEE Trans Comput
Soc Syst

Zuraiq AA, Alkasassbeh M (2019) Phishing detection approaches. In: 2019 2nd
international conference on new trends in computing sciences (ICTCS).
IEEE, pp 1–6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1707.05005
http://arxiv.org/abs/1802.04407
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report%28CN%29.pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report%28CN%29.pdf
https://www.slowmist.com/report/2022-Blockchain-Security-and-AML-Analysis-Annual-Report%28CN%29.pdf
http://arxiv.org/abs/2110.11328

	Phishing behavior detection on different blockchains via adversarial domain adaptation
	Abstract
	Introduction
	Related work
	Feature engineering based method
	Graph analysis based method
	Single network learning method
	Graph-based semi-supervised learning method
	Cross-network learning method

	Preliminaries
	On-chain interaction graph
	Feature construction
	Problem definition

	Cross-blockchain-network phishing behavior detection method
	Subgraph construction
	Sampling original data into multigraphs
	Node and edge feature construction
	Merging interactions into a directed graph
	Graph reduction with directed edges

	Encoder network
	Node level addreses representation based on temporal and spatial behavior
	Subgraph-level behavior pattern representation

	Label prediction
	Adversarial domain adaptation
	Model training

	Experiments
	Data preparation
	Experiment setup
	Baselines
	Implementation details

	Experimental results
	Efficiency analysis
	Ablation experiment
	Impact of the adversarial domain adaptation module
	Impact of the encoder network
	Distribution difference analysis
	Sensitivity analysis

	Conclusion
	Acknowledgements
	References

