
Lai et al. Cybersecurity            (2024) 7:44  
https://doi.org/10.1186/s42400-024-00238-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

Ensemble learning based anomaly 
detection for IoT cybersecurity via Bayesian 
hyperparameters sensitivity analysis
Tin Lai1*   , Farnaz Farid2, Abubakar Bello2 and Fariza Sabrina3 

Abstract 

The Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability 
of communicating with other connected devices with little to no human intervention. IoT enables data aggrega-
tion and analysis on a large scale to improve life quality in many domains. In particular, data collected by IoT contain 
a tremendous amount of information for anomaly detection. The heterogeneous nature of IoT is both a challenge 
and an opportunity for cybersecurity. Traditional approaches in cybersecurity monitoring often require different kinds 
of data pre-processing and handling for various data types, which might be problematic for datasets that contain het-
erogeneous features. However, heterogeneous types of network devices can often capture a more diverse set of sig-
nals than a single type of device readings, which is particularly useful for anomaly detection. In this paper, we present 
a comprehensive study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly 
detection. Rather than using one single machine learning model, ensemble learning combines the predictive power 
from multiple models, enhancing their predictive accuracy in heterogeneous datasets rather than using one single 
machine learning model. We propose a unified framework with ensemble learning that utilises Bayesian hyperparam-
eter optimisation to adapt to a network environment that contains multiple IoT sensor readings. Experimentally, we 
illustrate their high predictive power when compared to traditional methods.
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Introduction
We live in a modern era where internet-connected 
devices are ubiquitous, and cybersecurity threats per-
sist everywhere. The connected devices, often known 
as the Internet of Things (IoT) (Lee and Lee 2015), refer 
to all electronic devices connected to the internet or 
other devices. IoT devices are capable of transmitting 

and collecting data for various tasks. For example, now-
adays, household appliances, cars, tools, or personal 
devices can sense, process, and connect to the inter-
net  (González-Zamar et  al. 2020). The development of 
technologies enables the usage of IoT in urban environ-
ments, creating smarter cities (Okano 2017). Devices can 
now communicate with each other, such as household 
appliances, consumer devices, sensors, or even indus-
trial controls (Okano 2017). IoT products resemble a 
powerful approach for increasing connectivity between 
devices. Altogether it represents interconnected devices 
and services that can communicate and share data 
and information among various domains and applica-
tions. IoT lead systems can transform our lives by mak-
ing intelligent decisions to improve the quality of daily 
tasks. For example, seamless home integration, smart 
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city infrastructures, and transportation are relevant sec-
tors in which IoT devices can be used. The high availabil-
ity of data generated by IoT devices enables researchers 
to perform extensive scientific analysis on data mining 
and extracting the underlying relationship that is oth-
erwise hard to discover (Kaur et al. 2018). However, like 
many other new innovations, it comes with specific secu-
rity risks   (Wheelus and Zhu 2020). By extending inter-
net connections to everyday devices, these threats have 
expanded from our homes to workplaces, healthcare and 
other facilities. Many security risks exist that enable vari-
ous electronic devices to exhibit the capability to record 
and send received signals to remote locations over the 
internet (Hassija et al. 2019). However, this unified capa-
bility also opens a powerful opportunity in the applica-
tion of anomaly detection.

Cybersecurity threat modelling and detection via 
anomaly detection is a multidisciplinary problem with 
applications in various domains. It involves identifying 
unusual or unexpected observations within the captured 
data due to uncommon values or data sequence  (Chan-
dola et  al. 2009). Anomaly detection finds patterns in 
data that do not conform to expected behaviour, and 
these non-conforming patterns are referred to as anom-
alies. Traditional anomaly detection applications are 
typically used extensively in intrusion detection, spot-
ting malicious activities and even in safety-critical sys-
tems like military surveillance. The usage is applicable in 
numerous domains, and anomalies in data often trans-
late to critical actionable information. Anomalies might 
be induced due to various reasons like malicious activity, 
credit card fraud, cyber-intrusion, breakdown of a sys-
tem, or malfunction of some components. Therefore, the 
ability to detect such events provides us with an opportu-
nity to react to such an anomaly event.

Moreover, anomalies in data often imply critical and 
actionable information essential to implement a secure 
network system. Anomaly detection had been success-
fully used to identify thief  (Aleskerov et  al. 1997), pres-
ence of tumours in medical settings (Spence et al. 2001), 
compromised computer sending sensitive data to remote 
location (Kumar 2005), or even signifying faulty compo-
nent within space craft  (Fujimaki et  al. 2005). Anomaly 
detection enhances cybersecurity’s resilience and robust-
ness in mission-critical applications.

The abundance of sensor data enables a new oppor-
tunity for vendors and device owners to utilise the 
sensor data for continuous system monitoring. Using 
a machine-intelligent approach to tackle cybersecu-
rity via automatic detection of anomaly events can 
better utilise the available information. The use of 
machine learning (ML) in IoT devices is still relatively 

new compared to other domains  (Cook et  al. 2020). 
Traditional methods in for anomaly detection often 
involves rule-based approaches, which require manual 
adjustments to accommodate changing conditions. In 
contrast, ML have a remarkable ability to adapt and 
generalise on patterns that are directly learned from 
historical data, making them suitable for environments 
where the characteristics of normal and anomalous 
behaviour may evolve over time. Moreover, ML mod-
els can be fine-tuned to reduce false positive rates by 
learning from data and making informed decisions 
based on observed patterns. Traditional methods may 
produce more false positives since they often rely on 
static thresholds that may not account for contextual 
nuances.

In contrast to typical datasets in traditional ML, 
most data sources collected in IoT devices are time-
series because of the continuous monitoring nature 
of the sensory devices. Most contextual anomalies are 
observations that deviate from the expected patterns 
within the time-sires (Chandola et al. 2009). The recent 
advancement of Deep Learning (DL) also enables us to 
utilise them as a universal function approximator to 
extract patterns that are had to hand-craft automati-
cally. For example, DL can detect suspicious activities 
in a practical real-time system for intrusion detec-
tion (Alghamdi et al. 2021).

In this study, we improve the robustness of the exist-
ing state-of-the-art ensemble machine learning model 
in cybersecurity via a systematic hyperparameter opti-
misation process. We comprehensively investigate the 
predictive performance of traditional machine learning 
and ensembles of ML models in a wide range of data-
sets. In particular, machine learning models tend to be 
sensitive to the choice of hyperparameters, which can 
significantly affect the model’s predictive accuracy. Our 
contributions are summarised as follows. 

	(i)	 We present an in-depth empirical study on ensem-
ble models’ predictive performance for IoT Cyber-
security, which combines multiple weak predictors 
into ensembles of models with a much higher pre-
dictive capability.

	(ii)	 We investigate the choice of hyperparameter via 
parametric sensitivity analysis and present the 
important set of hyperparameters for each type of 
ensemble model.

	(iii)	 We propose a Bayesian-based framework for train-
ing ensemble models that utilise Bayesian Optimi-
sation techniques for automatic search for the best 
set of hyperparameters via optimising a surrogate 
model.



Page 3 of 18Lai et al. Cybersecurity            (2024) 7:44 	

	(iv)	 Finally, we summarise the essential network fea-
tures for detecting network cybersecurity threats 
on IoT devices.

Experimentally, we demonstrate the Bayesian-based 
framework’s effectiveness, which can improve the F1 
score of state-the-art ensemble models by 10% to 30% for 
models with and without hyperparameter optimisation.

Related works
IoT systems have benefited the development and data 
usage across numerous domains. However, several weak-
nesses exist across IoT systems, for example, vulnerabil-
ity, security, device disruption, data theft, interruption, 
and Main-in-The-Middle attacks  (Gou et  al. 2013). In 
addition to the research and development of commu-
nication techniques, a large amount of work within IoT 
involves imposing security measures  (Hassan 2019) and 
bridging with the domain of cyber computing. For exam-
ple, it is essential to strategise a security system (Hassija 
et  al. 2019) for minimising the potential vulnerability 
and composing network architectures that address secu-
rity threats (Hwang 2015). Most recent researches focus 
on challenges and status within IoT security meas-
ure (Mahmoud et al. 2015), IoT exploitations (Neshenko 
et  al. 2019), possible approaches to enhance secu-
rity (Riahi et al. 2013) and possible resolution by employ-
ing a deep learning approach  (Al-Garadi et  al. 2020). 
Innovative smart city applications connect enormous 
IoT devices to real-world objects spanning large dis-
tances and can often provide essential benefits to urban 
life (Borgia 2014). Moreover, the massive number of IoT 
devices contain heterogeneous services and protocols, 
which leads to the complexity of managing numerous 
devices across networks. Therefore, integrating devices 
without proper management might introduce serious 
cybersecurity threats and vulnerabilities for malicious 
actors to attack and extract daily activities and informa-
tion about the average citizen’s life.

Machine Learning (ML) is a powerful approach to 
enhancing the detection of IoT cyberattacks and mali-
cious events. It is an integral part of extracting patterns 
within data (Mahesh 2020) for providing a data-driven 
approach to creating predictive models  (Carbonell 
et  al. 1983). There have been lots of recent develop-
ment in artificial intelligence in various domains; for 
example, in computer vision (Geraldes et al. 2019) and 
robotics  (Lai and Ramos 2021) domains, for problems 
such as classification  (Kotsiantis et  al. 2007), extract-
ing patterns from time series data  (Wang et  al. 2021), 
and for processing sequential data (Dietterich 2022). A 
smart city calls for the use of more innovative systems, 
Big Data analytics and the use of pattern recognition 

for detecting trends that are abnormal from previous 
observations. For example, we can associate the cur-
rent observation of some sensor data against previ-
ously observed data to assess the degree of deviations 
from the expected value defined by the anomaly detec-
tion model. There are a variety of methods of generat-
ing anomaly scores that are unique to each detection 
algorithm and model. Anomaly scoring is helpful in the 
identification and management of outliers when per-
forming analytical tasks such as predictive analytics.

Machine Learning allows for utilising sensor data 
from IoT devices to improve their associate secu-
rity (Xiao et al. 2018). Using pattern matching and com-
puting statistical inference can help to address some of 
the ongoing IoT security challenges (Zhang et al. 2014). 
The collected IoT sensor data typically contain tempo-
ral components as they are some time series describ-
ing monitoring system attributes. Anomaly detection 
in time series is a well-known problem that has been 
tackled with a long history  (Hawkins 1980; Abraham 
and Chuang 1989). We refer interested readers to exist-
ing surveys like  (Markou and Singh 2003) and  (Zhang 
et al. 2010) for a comprehensive overview of the various 
statistical approaches and network models employed in 
time-series data.

More recently, deep learning approaches have also 
been employed in the space of time-series anomaly 
detection, with some focus on applications in Industrial 
IoT. Most current approaches involve some statistical 
inference for utilising historical data for modelling the 
expected system behaviour. It involves pattern match-
ing of anomaly events in a supervised-learning setting 
with known anomalous characteristics or distance-based 
approaches that detect anomalies by detecting outliers. 
Deep learning cybersecurity approach can be adopted in 
applications like smart grids (Ruan et al. 2023) and DDoS 
inrusion detection  (Akgun et  al. 2022). Most existing 
techniques can be grouped into the following categories: 

	(i)	 Statistical and Probabilistic approach—utilise his-
torical data to model the expected behaviour of a 
system. New observations are compared against 
the current model for the system of interest.When 
the observation does not agree with the model, the 
observation is registered as an anomaly.

	(ii)	 Predictive model—where a regression model 
is used to predict potential future values, and 
when the predicted value does not agree with the 
observed values, they are flagged as an anomaly.

	(iii)	 Clustering-based methods— project the data into a 
high-dimensional space and uses the density of the 
resulting clusters to determine outliers. Significant 
clusters are typically indicated as regular observa-
tions, while outliers are identified as anomalies.
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	(iv)	 Pattern matching—directly models the time series 
in a supervised setting with known characteristics 
for anomalous data.

New observations are compared against a database of 
labelled anomaly events and flags observations sub-
stantially different from data within the database as an 
anomaly. Recent advancements in big data have enabled 
supervised learning methods in IoT settings due to the 
availability of sufficiently large IoT datasets. The IoT-
23 (Garcia et al. 2020) dataset is a recent network traffic 
dataset that consists of recorded data from multiple intel-
ligent home IoT devices. The recording devices include 
Amazon Echo, Phillips HUE, and Somfy Door Lock. The 
dataset contains real and labelled IoT malware infections 
and benign traffic. The mass adoption of IoT devices 
enables researchers to access numerous datasets. For 
example, MQTTset (Vaccari et al. 2020) is another data-
set that recorded network traffics under MQTT proto-
col. The availability of IoT deployment has increased the 
integration pace and extended the internet to multiple 
physical devices in our physical world. This paper com-
prehensively studies the current state-of-the-art ensem-
ble models on IoT anomaly detection tasks on multiple 
cybersecurity datasets.

Methodology
We propose a unified framework for evaluating Machine 
Learning models for use in an internet-connected 
environment via a monitoring network for detecting 
cybersecurity related anomaly events. The proposed 
methodology implements a detector for anomalies. Sys-
tematically, we analyse the overall performance of vari-
ous machine learning models and their respective model 
architectures.

To identify IoT machine learning models that perform 
well across a wide range of domains, we empirically eval-
uate the performance of various baseline models by opti-
mising their hyperparameters and their sensitivity toward 
the choice of parameters. Our framework uses a Bayesian 
approach in searching for the most optimal set of hyper-
parameters. Bayesian optimisation is a sequential design 
strategy that aims to optimise some objective value, 
which corresponds to the anomaly detection perfor-
mance in our scenario. Then, we present a set of ensem-
ble models capable of combining the strength of multiple 
weaker predictive models into one that achieves superior 
predictive performance. This section describes the sys-
tematic procedure of data preprocessing, data cleaning, 
feature engineering, and the various models used in this 
study. Then, in  section  “Experimental results”, we pre-
sent the empirical results obtained from our benchmark 
models, followed by a discussion of model sensitivity 

and important parameters in  section  “Hyperparameters 
optimisation”.

Data preprocessing
We first standardise each input feature in our evaluation 
by removing the mean and scaling to unit variance from 
the dataset X  . Let xi ∈ X  denote the ith datapoint, where 
we will use xi,j to index into the jth feature of the data-
point. We perform the standardisation by transforming 
each feature xi,j to x′i,j by

where

and |X | denote the cardinality of X  . In addition, we com-
pute pairwise Pearson correlation coefficient for the 
input features, where the correlation coefficient rj,k for 
the jth and kth feature is given by

which gives us the measure of linear correlation between 
the two features. If rj,k > δ for δ ∈ R, 0 < δ ≤ 1 , then we 
will remove the kth feature to help avoid overfitting. The 
δ acts as a threshold to avoid highly correlated features, 
and in our experiments, we set δ = 0.7 . We also convert 
all categorical features into one hot encoded feature, 
except for the IP address features. It contains more than 
5000 unique sparse categories in some scenarios, dramat-
ically increasing the feature set size without providing 
meaningful predictive power.

Anomaly detection dataset
We evaluate each benchmark model against the following 
set of cybersecurity datasets to develop a model archi-
tecture that performs reasonably well across a range of 
IoT datastream domains. In the following, we will briefly 
describe each dataset’s content and the type of features 
the dataset contains.

The IoTID20  (Kim 2019) is an IoT intrusion dataset 
designed to be a comprehensive network dataset with 
flow-based features. These flow-based features in this 
new botnet dataset help analyse flow-based intrusion 
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detection systems, especially for monitoring anoma-
lous activity across IoT networks. The dataset contains 
captured attack packets from the smart home devices 
NUGU (NU 100) and EZVIZ Wi-Fi Camera (C2C Mini 
O Plus 1080P), alongside some other laptops and smart-
phones within the same wireless network. In particular, 
IoTID20 contains 80 network features and detailed 
categories. The dataset contains three variants for the 
labelled classes: 

1	 IoTID20 Binary contains two possible classes. (i) 
Normal: which indicates that there are no suspicious 
or malicious activities found within the connections, 
and (ii) Malicious: which indicates malicious network 
traffics from infected devices.

2	 IoTID20 Multi-Cat contains multiple catego-
ries with five possible classes. (i) Normal: represents 
the same set of flow data as the Binary dataset. 
The Malicious is divided into individual classes, with 
(ii) DoS: denoting network traffic that belongs to a 
Denial-of-Service attack; (iii) MITM ARP Spoofing: 
denoting Man in the Middle attack by ARP spoofing; 
(iv) Mirai: denoting traffics coming from devices that 
are infected by the Mirai malware, which will turn 
networked devices into remotely controlled bots; 
and (v) Scan: which denote traffics scanning the IoT 
devices.

3	 IoTID20 Multi-SubCat divides the malicious 
traffic into sub-categories with nine possible classes. 
(i) Normal: are the same as the previous variants; (ii) 
DOS-Synflooding: denote Denial-of-Service attack by 
SYN flood; (iii) MITM ARP Spoofing: denoting Man 
in the Middle attack by ARP spoofing; (iv) Mirai-Ack-
flooding: denote traffics from Mirai Bot that is per-
forming flooding with TCP ACK packets; (v) Mirai-
HTTP flooding: denote traffics from Mirai Bot that is 
performing flooding with HTTP requests; (vi) Mirai-
Host Bruteforcing: denote traffics from Mirai Bot that 
is performing brute force attack on a virtual host; 
(vii) Mirai-UDP flooding: denote traffics from Mirai 
Bot that is performing flooding with User Datagram 
Protocol (UDP) packets; (viii) Scan Hostport: denote 
traffics that is scanning the host for open ports; and 
(ix) Scan Port OS: denotes traffic scanning the ports 
of the OS.

The IoT-23  (Garcia et  al. 2020) dataset is a recent net-
work traffic dataset that consists of recorded data from 
multiple smart home IoT devices. The recording devices 
include Amazon Echo, Phillips HUE, and Somfy Door 
Lock. The dataset contains real and labelled IoT malware 
infections and benign traffic. In particular, IoT-23 con-
tains twenty-three captured scenarios, including twenty 

malicious network traffic and three benign traffic captures. 
Moreover, the dataset recorded newer devices that the cur-
rent cyber security systems have not interacted with before, 
which helps evaluate the current security measure against 
newer IoT devices. In our evaluation of the candidate mod-
els, we clean the dataset by unifying the mismatched labels, 
loading up the first 1,  000,  000 entries of each captured 
scenario, and removing classes containing less than five 
instances. The dataset contains two variants for the labelled 
classes: 

4	 IoT-23 Binary contains two possible classes. (i) 
Benign: which indicates that there are no suspicious 
or malicious activities found within the connections, 
and (ii) Malicious: which indicates malicious network 
traffics from infected devices.

5	 IoT-23 Multi-Cat contains two possible classes. 
(i) Benign: which indicates that there are no suspi-
cious or malicious activities found within the con-
nections, and (ii) Malicious: which indicates mali-
cious network traffics from infected devices.

Table 1 summarises the content of all the evaluating data-
sets. The dataset content and associated labels are avail-
able to download in the linked address for reproducing our 
empirical study. In the following, we will detail the models 
used in this study and our methodology for our Bayesian 
approach to optimising the hyperparameters.

Bayesian optimisation with tree‑structured parzen 
estimator
This study uses tree-Structured Parzen Estimator (TPE) 
to implement our automatic model training framework. 
TPE is a sequential model-based Bayesian Optimisation 
(BO) approach, where it sequentially constructs models to 
approximate the performance of hyperparameters based 
on historical measurements. Then, the algorithm updates 
its internal model and selects a new candidate of hyperpa-
rameters with a high potential for better performance.

Hyperparameter optimisation is formally defined as fol-
lows. The performance of hyperparameters x of some 
model f can be measured by the mapping f : X → R , 
where X  denote the space of all possible hyperparameters 
and R is the real domain. The functional f(x) is the optimi-
sation objective, and BO aims to minimise the objective 
score. We use x∗ to denote the hyperparameters that can 
yield the lowest possible objective score, which is given by

Let y = f (x) denote our performance measure in this 
study, where y is typically F1 score or accuracy in our IoT 

(5)x∗ = arg min
x∈X

f (x).
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cybersecurity detection domain. We can then reformu-
late the BO optimisation objective to minimise the nega-
tive F1 score as our performance measure.

In a typical BO setting, we aim to find the conditional 
probability of the objective score given hyperparameters, 
i.e., P(y | x) . In TPE, we instead model P(x | y) and P(y) by 
transforming the generating process of hyperparameters 
and replacing the distribution of the hyperparameters 
prior with non-parametric densities. TPE begins by col-
lecting a few observations using a randomly selected set 
of hyperparameters. Then, TPE sorts the collected obser-
vations by their respective objective score and divide 
them into groups based on quantile. The quantiles are 
used to model empirical densities using Parzen Estima-
tors. A new sample of hyperparameters is then drawn 

from the densities, returning hyperparameters that yield 
the greatest expected improvements. Therefore, TPE 
is an iterative process that uses the history of evaluated 
hyperparameters to create a probabilistic model, which 
is used to suggest the next set of hyperparameters to 
evaluate.

Benchmarking models
This section presents the experimental details of each 
dataset’s machine-learning models. We evaluated 14 
types of machine learning models, including six tra-
ditional ML models and eight ensemble models. Each 
model has its respective set of hyperparameters. We 
perform hyperparameters optimisation via a hierar-
chical Gaussian Process and a tree-structured Parzen 

Table 1  A detailed overview of the distribution of classes within the evaluated dataset

Dataset Label Train set Test set Label instances

IoTID20 Binary Normal 31,979 8,094 40,073

Anomaly 468,353 116,989 585,342

Total 500,332 125,083 625,415

IoTID20 Multi-Cat Normal 31,979 8,094 40,073

DoS 47,537 11,854 59,391

MITM ARP Spoofing 28,214 7,163 35,377

Mirai 332,546 82,763 415,309

Scan 60,056 15,209 75,265

Total 500,332 125,083 625,415

IoTID20 Multi-SubCat Normal 31,979 8,094 40,073

DoS-Synflooding 47,537 11,854 59,391

MITM ARP Spoofing 28,214 7,163 35,377

Mirai-Ackflooding 44,117 11,007 55,124

Mirai-HTTP Flooding 44,643 11,175 55,818

Mirai-Host Bruteforcing 97,093 24,085 121,178

Mirai-UDP flooding 146,693 36,496 183,189

Scan Hostport 17,756 4,436 22,192

Scan Port OS 42,300 10,773 53,073

Total 500,332 125,083 625,415

IoT-23 Binary Benign 1,462,947 366,180 1,829,127

Malicious 9,099,261 2,274,373 11,373,634

Total 10,562,208 2,640,553 13,202,761

IoT-23 Multi-Cat Benign 1,462,947 366,180 1,829,127

PartOfPortScan 5,966,736 1,492,481 7,459,217

Okiru 2,102,304 523,948 2,626,252

DDoS 1,010,098 252,925 1,263,023

Attack 5,518 1,425 6,943

C &C 12,501 3,026 15,527

C &C-HeartBeat 2,022 541 2,563

C &C-FileDownload 63 16 79

C &C-Torii 19 11 30

Total 10,562,208 2,640,553 13,202,761
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estimator  (Bergstra et  al. 2011) with a budget of 45 tri-
als to estimate the best performing set of parameters 
(see section “Hyperparameters optimisation” for visuali-
sation of the influences of hyperparameters).

Our benchmarking models are as follows. 

1	 Ridge Regressor (Ridge)  (Hoerl and Kennard 1970): a 
model that addresses the classification problems as 
ordinary least squares by imposing a penalty on the 
size of the coefficients. Ridge treats the multi-class 
classification setup as a regression task with multiple 
outputs. It is a linear model that trains fast large data-
set but cannot predicts well for nonlinear data.

2	 Naive Bayes (NB)  (Flach and Lachiche 2004): is a 
model that uses Bayes theory for performing class 
conditional density estimation and with classes 
prior probability. The posterior class probability of 
input test data is derived using the Bayes theory to 
be assigned to the class with the maximum posterior 
class probability. NB can often learn quickly from a 
large dataset when compared to other classifiers; 
however, the conditional independence assumption 
in NB is rarely applicable to real-world problems.

3	 Multi-layer Perceptron (MLP)  (Gardner and Dor-
ling 1998): a feed-forward neural network that uses 
backpropagation for model training. MLP updates 
the weights between neurons to minimise the predic-
tion error and can often learn nonlinear features and 
patterns within the dataset. MLP can often generalise 
well to new unseen data, but it is slow in convergence 
and often stuck in local minima.

4	 Support Vector Machine (SVM)  (Pisner and Schnyer 
2020): a well-known model that classifies inputs by 
creating a hyperplane to separate each class. Due to 
its kernel trick of implicitly mapping the input fea-
tures into higher-dimensional feature spaces, SVM 
can efficiently perform nonlinear classification prob-
lems.

5	 Decision Tree (DT) (Myles et al. 2004): is a non-par-
ametric model that uses a tree-like structure to con-
struct its model for making decisions. A DT com-
prises a series of nodes and branches representing 
the decision rules inferred from the input features. 
The main benefit of DT lies in its interpretability due 
to its rule-based logic.

6	 K Nearest Neighbour (kNN)  (Zhu et  al. 2020): is a 
classifier that simply stores the given input features 
and classifies input data via some similarity metrics. 
kNN, as a non-parametric method with a simple 
approach to the typical classification setup, is wildly 
adopted in many domains.

7	 Boostrap aggregation (Bagging)  (Bühlmann 2012): is 
an ensemble method that trains multiple weak classi-

fiers on a random subset of the given dataset. Bagging 
can often reduce the variance within a noisy dataset, 
and the output of the Bagging model is obtained by 
averaging the predictions by its weak internal clas-
sifiers. In contrast to Boosting methods, the weaker 
classifiers in Bagging are trained independently, and 
Bagging can often avoid over-fitting in high-variance 
datasets.

8	 Adaptive Boosting (AdaBoost) (Hastie et al. 2009): is a 
meta-classifier that works in conjunction with other 
learning algorithms. AdaBoost uses a weighted sum 
to combine the predicted output from other weak 
classifiers to output its final prediction. In particular, 
AdaBoost adaptively improves its performance under 
challenging classes by using additional weak learners 
to minimise the misclassification induced by previ-
ous classifiers.

9	 Random Forest (RF) (Pal 2005): an ensemble method 
that internally combines the predictive power of mul-
tiple Decision Trees for outputting a final prediction. 
RF trains each DT using a random subset of the input 
features and uses bootstrapping approach by sub-
sampling random features with replacement.

10	Extremely Randomised Trees (ERT)  (Geurts et  al. 
2006): an ensemble method that behaves similarly to 
RF, which trains multiple weak decision trees as the 
weak learner. However, unlike RF, each decision tree 
is trained with the whole dataset instead of subsam-
pling. ERT also randomly select the split point to split 
nodes in decision trees instead of finding the optimal 
split as in RF. ERT can often train faster than RF and 
attains a lower overall variance due to the random 
splitting of nodes.

11	Gradient Boosting Machine (GBM) (Friedman 2001): 
is an ensemble technique that uses multiple weak 
prediction models built in a stage-wise fashion. 
Similar to RF, a decision tree is a common choice for 
being the weak prediction model within GB. How-
ever, in GB, each weak predictor is trained to correct 
the residuals of its predecessor, and as a result, it can 
often achieve a lower model bias than RF.

12	Extreme Gradient Boosting (XGB)  (Chen and Gues-
trin 2016): a tree boosting method that uses the same 
idea of gradient boosting. In contrast to GB, XGB 
uses the second-order derivatives method to find the 
optimal constant in each terminal node and uses reg-
ularisation of the tree to avoid overfitting.

13	Voting (Ruta and Gabrys 2005): an ensemble method 
that uses voting to combine the predicted out-
puts from several individual predictors. The Voting 
ensemble can use the majority vote or the average 
predicted probability to predict the class labels. The 
Voting ensemble can incorporate arbitrary predic-
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tors and often balance out the weakness between the 
nested predictors.

14	Stacked Generalisation (Stacking)  (Naimi and Balzer 
2018): an ensemble method that allows one to com-
bine several different prediction algorithms by stack-
ing the individual predictors’ output and uses a final 
classifier to compute a final prediction. The stack-
ing approach is straightforward, and different kinds 
of predictors can be easily combined, which could 
potentially use the strength of some models to com-
pensate for the weaknesses of other models.

Experiments
In this section, we present the experimental results from 
benchmarking the discussed Machine Learning models 
against various IoT anomaly detection datasets.

Experimental setups
We randomly split the dataset for each target IoT anom-
aly detection dataset by using 20% of the data as the 
unseen test set. Hyperparameter optimisation is then 
performed by using the training set for testing various 
hyperparameters, thereby computing the correspond-
ing F1-score with five-fold cross-validation. During the 
hyperparameter optimisation process, we kept the test 
set hidden along with the five-fold cross-validation to 
ensure that the optimised hyperparameters can perform 
well robustly across a wide range of domain subsets. This 
procedure is repeated 45 times, and we use the best-per-
forming hyperparameters under this cross-validation to 
report the following scores on the test set.

The reported score is computed using the predictive 
results of the models using the tunned hyperparameters. 
The experimental results are performed on an HPC clus-
ter with 32 requested CPU cores of Intel Xeon E5-2680 
V3 2.50GHz processor, 128GB RAM, and NVIDIA V100 
SXM2 GPU equipped with 16GB vRAM. In total, this 
study performed five-fold cross-validation × 45 trials × 14 
models × 5 datasets, with a total of 15,750 model training 
episodes.

Evaluation metrics
In this study, we use accuracy, precision, recall, and 
F1-score to evaluate our models. In the classification 
problem, there are four possible results in the model pre-
diction: true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN). TP refers to the number 
of instances that have been correctly identified as normal. 
TN represents the number of instances that are classified 
correctly as malicious. FP represents the number of mali-
cious instances that are wrongly classified as normal. FN 
refers to the number of instances that misclassify normal 

data as malicious data. Our evaluation metrics are then 
given by

Accuracy is an intuitive measure summarising the ratio 
of correctly predicted observation to total observation. 
However, when the dataset contains an asymmetric num-
ber of classes, which is the case for some of our data-
sets, accuracy cannot convey the whole picture of model 
performance. Precision refers to the ratio of correctly 
predicted positive observations to the total predicted 
observations. A high value in precision denotes a low 
false positive rate. Recall, sometimes referred to as sen-
sitivity, is the ratio of correctly predicted positive obser-
vation to the total number of that class. Recall answers 
the percentage of correct positives our model can cap-
ture. The F1 score is a weighted average of precision and 
recall. F1 score is usually more helpful information than 
accuracy, especially in datasets with an uneven class 
distribution.

Experimental results
All models are trained on the same training set and 
evaluated on the same test set, and we use five-fold 
cross-validation on the train set to select the set of hyper-
parameters that achieved the highest performance in the 
F1 score. The numerical results from the models with the 
best-performing hyperparameters are summarised and 
presented in Table 2.

The results are indicative of the overall performance of 
the various approaches. Traditional linear models, such 
as Ridge, perform poorly across all five datasets. The 
reason is likely due to the limited expressiveness of the 
model to learn the nonlinearity input features. Models 
such as DT can achieve a decent result on more straight-
forward datasets with binary labels, but their perfor-
mance drops rapidly once the dataset contains more label 
classes. Moreover, models like RF exhibit a higher accu-
racy value but with a considerably low precision value, 
indicating that the model is biased towards the classes 
with a higher number of instances leading to a high false 
positive rate.

(6)Accuracy =
TP+ TN

TP+ TN+ FP+ FN

(7)Precision =
TP

TP+ FP

(8)Recall =
TP

TP+ FN

(9)F1-score =
2× (Precision× Recall)

Precision+ Recall
.
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Table 2  Experimental results of the benchmarking ML models

Model ensemble? Dataset Type Metric

Accuracy Precision Recall F1

Ridge IoTID20 Binary 0.94 0.83 0.55 0.57

Multi-Cat 0.77 0.78 0.50 0.54

Multi-SubCat 0.54 0.43 0.35 0.32

IoT23 Binary 0.86 0.43 0.50 0.46

Multi-Cat 0.81 0.78 0.54 0.57

NB IoTID20 Binary 0.45 0.55 0.69 0.39

Multi-Cat 0.57 0.47 0.58 0.47

Multi-SubCat 0.46 0.34 0.36 0.32

IoT23 Binary 0.81 0.45 0.48 0.46

Multi-Cat 0.43 0.32 0.35 0.31

MLP IoTID20 Binary 0.95 0.95 0.60 0.65

Multi-Cat 0.78 0.84 0.53 0.57

Multi-SubCat 0.50 0.45 0.39 0.36

IoT23 Binary 0.86 0.43 0.50 0.46

Multi-Cat 0.57 0.06 0.11 0.08

SVM IoTID20 Binary 0.96 0.91 0.71 0.78

Multi-Cat 0.80 0.80 0.57 0.62

Multi-SubCat 0.58 0.49 0.42 0.38

IoT23 Binary 0.90 0.95 0.62 0.67

Multi-Cat 0.49 0.42 0.41 0.43

DT IoTID20 Binary 0.96 0.91 0.73 0.79

Multi-Cat 0.76 0.31 0.40 0.35

Multi-SubCat 0.58 0.39 0.42 0.39

IoT23 Binary 0.86 0.43 0.50 0.46

Multi-Cat 0.64 0.18 0.20 0.18

kNN IoTID20 Binary 0.98 0.96 0.90 0.93

Multi-Cat 0.85 0.81 0.77 0.78

Multi-SubCat 0.60 0.56 0.51 0.52

IoT23 Binary 0.92 0.89 0.85 0.87

Multi-Cat 0.71 0.23 0.15 0.20

Bagging � IoTID20 Binary 0.99 0.99 0.93 0.96

Multi-Cat 0.87 0.84 0.80 0.81

Multi-SubCat 0.65 0.65 0.55 0.56

IoT23 Binary 1.00 1.00 1.00 1.00

Multi-Cat 0.85 0.51 0.43 0.49

AdaBoost � IoTID20 Binary 0.99 0.98 0.89 0.93

Multi-Cat 0.81 0.85 0.63 0.66

Multi-SubCat 0.61 0.60 0.46 0.46

IoT23 Binary 0.99 0.99 0.98 0.99

Multi-Cat 0.84 0.36 0.32 0.33

RF � IoTID20 Binary 0.94 0.47 0.50 0.48

Multi-Cat 0.66 0.13 0.20 0.16

Multi-SubCat 0.29 0.03 0.11 0.05

IoT23 Binary 0.86 0.43 0.50 0.46

Multi-Cat 0.57 0.06 0.11 0.08
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In contrast, ensemble models can utilise multiple 
weaker predictors’ predictive power to improve the over-
all predictive accuracy. For example, XGB can achieve 
superior results on most datasets due to its utilisation of 
multiple DT under the hood. Most ensemble models can 
consistently achieve higher model performance across 
a wide range of IoT anomaly scenarios. For example, 
ensemble models like Stacking and XGB have consist-
ently high performance across the more trivial dataset 
IoTID20 Binary and the more complicated IoTID20 
Multi-SubCat. When the number of classes increases, 
most traditional models like RF have a dramatic drop 
in performance, while ensemble models are still able to 
maintain performance in the higher end of the spectrum

Hyperparameters optimisation
Hyperparameters tend to be one of the aspects that can 
mystify ML due to models’ sensitiveness towards the 
choice of hyperparameters. A decent model can achieve 
mediocre results due to a poor choice of hyperparam-
eters. In this section, we study the models’ sensitivity 

toward their choice of hyperparameters. All of the results 
are obtained via 45 trials of hyperparameter optimisa-
tion for each of the models. As mentioned earlier, the 
tree-structured Parzen estimator  (Bergstra et  al. 2011) 
is used for our Bayesian Optimisation procedure by fit-
ting multiple Gaussian Mixture Models for searching the 
most promising hyperparameter values. In the following, 
we focus on the multi-class anomaly detection dataset 
IoTID20 Multi-SubCat and provide visualisation of 
the hyperparameter optimisation procedure.

Visualising optimisation history
The hyperparameter optimisation history of a few 
selected models is shown in Fig. 1, which includes a few 
traditional ML models and ensemble models. The figure 
illustrates the optimisation history of the object value, 
which is the F1 score obtained with a five-fold cross-
validation on the training set. The plots include the 
history of the 45 trials horizon and keep track of the best-
obtained value. The scattering of the objective value also 
illustrates the consistency of each method. For example, 

Table 2  (continued)

Model ensemble? Dataset Type Metric

Accuracy Precision Recall F1

ERT � IoTID20 Binary 0.94 0.47 0.50 0.48

Multi-Cat 0.75 0.35 0.39 0.37

Multi-SubCat 0.52 0.22 0.31 0.25

IoT23 Binary 0.97 0.98 0.89 0.93

Multi-Cat 0.84 0.30 0.31 0.30

GBM � IoTID20 Binary 0.95 0.96 0.63 0.69

Multi-Cat 0.83 0.85 0.69 0.70

Multi-SubCat 0.61 0.53 0.48 0.48

IoT23 Binary 0.86 0.43 0.50 0.46

Multi-Cat 0.89 0.38 0.38 0.38

XGB � IoTID20 Binary 0.99 0.99 0.94 0.96

Cat 0.87 0.84 0.81 0.81

SubCat 0.66 0.65 0.56 0.57

IoT23 Binary 1.00 1.00 1.00 1.00

Multi 0.98 0.74 0.63 0.66

Stacking � IoTID20 Binary 0.99 0.98 0.94 0.96

Multi-Cat 0.87 0.83 0.78 0.80

Multi-SubCat 0.67 0.65 0.57 0.58

IoT23 Binary 0.88 0.85 0.90 0.87

Multi-Cat 0.59 0.32 0.36 0.35

Voting � IoTID20 Binary 0.98 0.95 0.93 0.94

Multi-Cat 0.85 0.84 0.74 0.77

Multi-SubCat 0.63 0.61 0.54 0.53

IoT23 Binary 0.99 0.99 0.95 0.97

Multi-Cat 0.82 0.39 0.41 0.41
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traditional methods such as DT can achieve an F1 score 
above 0.55 in their training set. However, its optimisa-
tion history has a significant variance. Moreover, the 
same model only obtains an F1 score of 0.39 in its test 
set (see Table 2). The result suggests that models like DT 

are prone to overfitting on their training set despite using 
k-fold cross-validation (Fig. 2).

On the other hand, ensemble models seem to have less 
variance in their optimisation history. The extreme gra-
dient boosting model contains an outlier that achieves 

Fig. 1  Plots of the history of hyperparameter optimisation process against the achieved F1 objective values
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poor performance (around 0.1); however, generally, most 
attainable objective values tend to fluctuate in the higher 
end of the spectrum. As a result, ensemble models are 
less prone to the choice of hyperparameters. Poor choices 
of hyperparameters can still lead to inferior performance. 
However, the end results from ensemble models are still 
more consistent than traditional results due to the way 
that ensemble models aggregate results from their inter-
nal estimators.

Estimating the importance of hyperparameter
The performance of the evaluated methods can be heavily 
dependent on the hyperparameter settings. Therefore, in 
our parametric study, we leverage a functional ANOVA 
framework to quantify the importance of the hyperpa-
rameters used in the various modes (Hutter et al. 2014). 
The estimation leverages random forest models to ana-
lyse the target model’s variance, which helps decompose 
the importance of its corresponding hyperparameters.

Fig. 2  Plots of quantifying the importance of each hyperparameter with respect to the objective value via the functional ANOVA framework
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Figure  3 illustrates the critical features in our best-
performing model. This measure is obtained by updat-
ing the hyperparameters and evaluating the model F1 
score whilst treating the model as a black-box function. 
The fANOVA framework  (Hutter et  al. 2014) is then 

used to estimate how the changes of each hyperparam-
eter affect the final F1 score on the training set. The 
degree of importance can have a high variation among 
hyperparameters, and the numerical value presented 

Fig. 3  Slice plot of parameter relationship with respect to the F1 objective value
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in Fig. 3 can be seen as the proportion of effect that the 
hyperparameter exhibit on the final F1 score.

We can observe common patterns among various 
models. For example, the “Min Samples Leaf” hyperpa-
rameter in both tree-based methods (DT and ERT) is 
the most contributing factor. The parameter controls the 
minimum number of samples required to be a leaf node, 
which determines the resulting structure of the trees. 
Similarly, we can see that parameters that control the 
number of features or estimators also contribute tremen-
dously to the F1 score (“Max Features” in Bagging and “N 
Estimators” in XGB). The former is the maximum thresh-
old of features used to train its internal sub-estimator, 
while the latter directly controls the number of sub-esti-
mators. Finally, the “Criterion” hyperparameter in GBM 
controls the metric used to measure the quality of a split 
in GBM, which seems to be essential in GBM. Overall, it 

can be seen that only a small set of hyperparameters gen-
erally contribute towards the actual model performance. 
However, the hyperparameters influential to the model 
might differ, and the set of hyperparameters generally 
differs significantly across model types. Therefore, it is 
essential to obtain a rough estimate of hyperparameters’ 
importance when deploying ML models on IoT detection 
tasks, such that we can account for the model’s sensitivity 
to hyperparameters and tune their corresponding value 
when necessary.

Visualising parametric relationship
Continuing from the previous parametric study, we fur-
ther study the relationship between each hyperparam-
eter with respect to the model performance on its final 
F1 score. Figure 3 illustrates a set of subplots that plots 
the value of each hyperparameter against their objective 

Fig. 3  continued
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values. Scatters with the same hue of colour refer to the 
same trial, and the scatters visualise the attainable objec-
tive values for various sets of hyperparameters and their 
distribution.

Some subplots illustrate a clear relationship between 
the choice of hyperparameters, while some hyperparam-
eters do not indicate any apparent effect on the objec-
tive value. For example, most hyperparameters for GBM 
in Fig. 3e do not appear to contain any clear indications 
of best value, with the exception for “Criterion”, where 
the Friedman Mean Square Error (MSE) (Friedman 2001) 
is superior to the traditional MSE. In contrast, hyperpa-
rameters for Bagging in  Fig.  3c exhibit clear trends. On 
the one hand, a higher value of “Max Features” (the maxi-
mum number of features used to train sub-estimators) 
seems to provide a better objective value; on the other 
hand, a lower value of “Max Samples” (the maximum 
subset of the dataset used to sample for training sub-
estimators) seems to yield better results. Moreover, most 
hyperparameters for XGB appear to consistently score 
high objective value, with some exceptional outliers that 
occur when both “Min Child Weight” and “N Estimators” 
are close to zero.

It should be noted that the plots in  Fig.  1 illustrates 
the complex interaction in-between hyperparameters; 
therefore, it is difficult to provide a definitive conclusive 
decision on the effect of a single hyperparameter. How-
ever, the general trend of a hyperparameter can illustrate 
the model’s sensitivity towards such a hyperparameter. 
Moreover, the use of Bayesian Optimisation techniques 
like tree-structured Parzen estimator  (Bergstra et  al. 
2011) helps to search for the set of hyperparameters that 
are best suited for our objectives.

Most influential features for detecting cyber attacks in IoT 
devices
This section summarises the numerous cybersecurity 
attacks studied in this paper and the type of features 
that are useful for identifying such an attack. The degree 
of influential for each type of cyber attacks is computed 
using the absolute value of the pearson correlation coef-
ficients. The following summarises the top 3 most impor-
tant features for detecting the studied IoT cyber attacks. 

	 i.	 Distributed denial of service (DDoS): DDoS attack 
is a form of a malicious attempt to disrupt the nor-
mal traffic of some targeted server. These traffic 
flows are detected as part of a DDoS attack because 
of the number of flows directed to the same IP 
address. The essential network features that can 
identify whether a network package belongs to a 
DDoS attack are: (1) the originating or responding 
port number, (2) the maximum time between two 

packets sent in the backward direction, and (3) the 
number of packets with SYN / ACK flag being set.

	 ii.	 Man-in-the-middle attack (MITM): MITM refers 
to an attacker being positioned between the IoT 
device and the communication endpoint to inter-
cept and potentially alter data travelling between 
them. The network features that contribute primar-
ily to identifying MITM attacks are: (1) the number 
of packets with ACK flag set, (2) the size (length) of 
packet in forward direction, and (3) the size of the 
package in the backward direction.

	iii.	 Host port scan: Port scanning is a method where 
attackers scope out their target environment by 
sending packets to specific ports on a host and 
using the responses to find vulnerabilities. Notable 
network features that identify such attack includes: 
(1) the number of packets with ACK flag set, (2) 
the size of packet in backward direction, and (3) 
the total number of bytes sent in the initial window 
in the backward direction.

	iv.	 Mirai—HTTP flooding/ACK flooding: Mirai is a 
malware that exploits security holes in IoT devices 
and attempts to harness the collective power of 
millions of IoT devices into botnets for launching 
distributed attacks. For Mirai-infected devices that 
are performing HTTP Flooding attacks (a type of 
DDoS), the following network features are most 
helpful in identifying them: (1) the size of packet 
in forward direction, (2) the size of packet in back-
ward direction, and (3) the total number of bytes 
sent in the initial window in the backward direc-
tion. The same goes for ACK flooding attack.

	 v.	 Mirai—UDP flooding: UDP flooding is a type of 
DDoS attack where a large number of User Data-
gram Protocol (UDP) packets are sent to a targeted 
server to overwhelm that device’s ability to process 
and respond. The identifiable network features 
include: (1) the number of packets with ACK flag 
set, (2) the count of packets with at least 1 byte of 
TCP data payload in the forward direction, and (3) 
the number of backward packets per second.

	vi.	 Mirai—Host brute force: Brute force attacks exe-
cuted by Mirai-infected devices attempt to gain 
access to a site or server by systematically trying 
every possible combination. The typical preven-
tative approach of blocking brute force attacks by 
locking out IP addresses would be less effective 
because the Mirai botnet is a distributed attack. 
The important identifiable network features 
include: (1) the number of packets with ACK / SYN 
flag set, (2) the size of packet in backward direc-
tion, and (3) the number of flow bytes per second.
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The summarised network features insights on popular 
cyber security attacks are useful for IoT device design-
ers and network security experts to design an integrated 
system that can monitor and potentially identify and 
prevents IoT devices from being hijacked by the cyber 
threats. Interested reader can refer to reviews on cyber-
security like  (Hussain et  al. 2020; Lu et  al. 2021; Mijwil 
et al. 2023) for a more in-depth discussion on the emerg-
ing threats within the cyberspace.

Conclusion
This paper presents a comprehensive study on applying 
ensemble machine learning methodologies for detect-
ing cybersecurity attacks in an IoT environment. A wide 
range of traditional and ensemble machine learning 
models is analysed, along with a Bayesian Optimisation 
framework and analysis of the sensitivity of the choice 
of hyperparameters on model performance. This study 
highlighted the set of influential configurations on the 
popular models and the optimisation approach of auto-
matic tunning of such hyperparameters with Bayesian 
Optimisation. In addition, we evaluate the various mod-
els against a wide range of IoT anomaly datasets to evalu-
ate each model’s robustness. Empirical evidence suggests 
that Tree-based boosting methods like GBM and XGB 
can consistently achieve high accuracy and recall. More-
over, the parametric study on hyperparameters illumi-
nates their importance and effects on the final model 
performance. Most machine learning models contain a 
large set of hyperparameters, but only a small set exhibit 
a strong influence on the model performance. Therefore, 
such hyperparameters should either be derived from best 
practice or by performing the present parametric study 
to determine important hyperparameters.

Cybersecurity, IoT devices and related technologies are 
the current focus in many multi-discipline domains, for 
example, electronics manufacturers on designing smart 
devices, network security analysts on improving the cur-
rent network protocol, and data scientists on better uti-
lising the vast amount of available data. In particular, 
people rely heavily on IoT devices and services due to the 
wide range of applications in our daily lives.

Future direction
Looking ahead, the convergence of cybersecurity, IoT 

devices, and related technologies continues to be a focal 
point across multidisciplinary domains. The widespread 
reliance on IoT devices in our daily lives, with applica-
tions spanning from smart homes to industrial settings, 
underscores the importance of advancing cybersecurity 
measures.

A possible direction for future studies is testing more 
variety of networks protocol and device types as they 
can provide a more diverse set of representations for the 

model to extract more meaningful features. Investigating 
how different IoT device types interact with various net-
work protocols and assessing the unique challenges they 
pose for anomaly detection is crucial.

Given the critical nature of IoT systems in domains 
such as healthcare, smart cities, and critical infrastruc-
ture, enhancing real-time threat detection capabilities is 
paramount. Future studies should focus on developing 
models that can deliver instantaneous responses to secu-
rity threats, minimising the potential for breaches.

Leveraging transfer learning and federated learn-
ing techniques in IoT cybersecurity can also enable the 
sharing of knowledge and models across devices and 
networks without compromising sensitive data. Future 
work should explore these methodologies for scalable 
and efficient anomaly detection, while considering pri-
vacy-preserving techniques within the realm of anomaly 
detection.
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