
Alam and Demir Cybersecurity (2024) 7:52
https://doi.org/10.1186/s42400-024-00241-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

SIFT: Sifting file types—application
of explainable artificial intelligence in cyber
forensics
Shahid Alam1* and Alper Kamil Demir2

Abstract

Artificial Intelligence (AI) is being applied to improve the efficiency of software systems used in various domains,
especially in the health and forensic sciences. Explainable AI (XAI) is one of the fields of AI that interprets and explains
the methods used in AI. One of the techniques used in XAI to provide such interpretations is by computing the rel-
evance of the input features to the output of an AI model. File fragment classification is one of the vital issues of file
carving in Cyber Forensics (CF) and becomes challenging when the filesystem metadata is missing. Other major
challenges it faces are: proliferation of file formats, file embeddings, automation, We leverage and utilize interpretations
provided by XAI to optimize the classification of file fragments and propose a novel sifting approach, named SIFT
(Sifting File Types). SIFT employs TF-IDF to assign weight to a byte (feature), which is used to select features from a file
fragment. Threshold-based LIME and SHAP (the two XAI techniques) feature relevance values are computed
for the selected features to optimize file fragment classification. To improve multinomial classification, a Multilayer Per-
ceptron model is developed and optimized with five hidden layers, each layer with i × n neurons, where i = the layer
number and n = the total number of classes in the dataset. When tested with 47,482 samples of 20 file types (classes),
SIFT achieves a detection rate of 82.1% and outperforms the other state-of-the-art techniques by at least 10%. To
the best of our knowledge, this is the first effort of applying XAI in CF for optimizing file fragment classification.

Keywords Explainable artificial intelligence, Deep learning, Cyber forensics, File fragment classification

Introduction and motivation
Cyber Forensics (CF) is the science of gathering digital
testimony to inspect traces of cybercrimes and cyberat-
tacks. File carving is one of the most important processes
of CF that covers the identification, preservation, and
extraction of files from intentionally or unintentionally
corrupted or compromised data storage devices (Boiko
et al. 2023). Often, cybercriminals attempt to erase any
evidence that prosecutes them. For example, they format

the data storage devices. As a result, in such cases, the
traditional reconstruction approaches based on file sys-
tem meta-data fail, unfortunately. Cyber investigators
generally resolve this challenge by file carving that repro-
duces files from data storage devices based on the raw
content type. The file carving process requires recover-
ing the corrupted file from fragments of raw binary files
without using meta-data that forms and utilizes the base
of the file system during routine operation. Thereafter,
file fragment classification (also known as file fragment
type identification (Mittal et al. 2020)) is an essential step
in file carving due to the increasing need for sifting file
types in the presence of law enforcement investigations
of data storage devices (Skračić et al. 2023; Ghaleb et al.
2023; Haque and Tozal 2022).

*Correspondence:
Shahid Alam
sha.alam@uoh.edu.sa
1 Department of Information Security, College of Computer Science
and Engineering, University of Ha’il, Ha’il, Saudi Arabia
2 Computer Engineering Department, Adana Alparslan Turkes Science
and Technology University, Adana, Turkey

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00241-9&domain=pdf
http://orcid.org/0000-0002-4080-8042

Page 2 of 23Alam and Demir Cybersecurity (2024) 7:52

The physical and data structure and logical rules to
store, manage, and retrieve the fragments of raw binary
data and their file names on a storage device are called
file systems. To express the files, the file system contains
meta-data (or meta-information) that provides informa-
tion about the actual data. Therefore, the file system will
also preserve the physical locations of the file fragments
on data storage devices. Principally, a file system allocates
the first several sectors (disc blocks) of a data storage
device to store the meta-data indicating the overall data
storage space, file attributes, and their formation. The
remaining sectors keep the raw binary (real content) of
the files. A sector is the indivisible physical data unit on
a data storage device with a typical size of 512 or 4096
bytes. As a deduction, a file might be spread in fragments
at distinct sectors having different physical addresses on
a data storage device.

Due to data storage and file system failures, formatting,
or erasing the evidence on data storage devices deliber-
ately, the meta-data of a file system may be unavailable
on a storage device. File carving becomes useful in such
cases to rescue files on a data storage device in a piece or
complete without the existence of meta-data. This could
be achieved by analyzing and classifying the raw binary
data of file fragments stored and located at sectors of the
data storage device. After the file fragment types are clas-
sified, ordering and merging the relevant file fragments
procedure to resurrect the initial file(s) is applied as the
next step. As a consequence, it is essential to design and
develop automated methods and tools for accurate file
fragment classification. In our work, we propose, pre-
sent, evaluate, and detail an AI-based approach, specifi-
cally leveraging a new emerging subdomain of AI, called
Explainable Artificial Intelligence.

The rise of AI as a disruptive technology has been
revolutionizing the world recently (Păvăloaia and Nec-
ula 2023). However, AI’s becoming more competent
and being used in very critical decisions with expressive
human intervention is increasingly bringing trust issues
essentially (Kaplan et al. 2023; Langer et al. 2023). Nat-
urally, humans are required to understand, reproduce,
and manipulate the decision-making processes of AI sys-
tems. As a result, there is an increasing need to expose
the decision-making processes of AI systems so that it
is more straightforward, understandable, and explain-
able. Correspondingly, Explainable Artificial Intelligence
(XAI) is a new and prominent research domain intended
to self-explain the reasoning behind decisions and pre-
dictions of AI systems (Hassija et al. 2023; Ali et al. 2023).
XAI hopes to help users of AI-powered systems appear
more understandable and transparent. Traditional AI
systems seem to be the black box where even the design-
ers can not explain why the AI system provided the

conclusive decision. Explanation clarifies the decisions
made by a black-box model where it is more intuitive for
humans. Moreover, an explanation of the decisions made
increases the potential reliability of the AI systems for
final agreement.

Traditionally, XAI involves explaining or interpreting
the predictions of recently developed Deep Learning (DL)
models using diverse rule-based and visualization-based
techniques (Kaur et al. 2022; Vilone and Longo 2021).
Thereby, advances in theory, applications, and trends in
XAI have been discovering and developing computa-
tional approaches in the XAI domain for these AI models
recently (Górriz et al. 2023). In general, from an explain-
ability point of view, these XAI techniques can be divided
into three dimensions using a categorization system: (i)
data explainability, (ii) model explainability, (iii) post-
hoc explainability along with assessment of explanations
axes (Ali et al. 2023). Every dimension of elucidating or
revealing the decision-making mechanisms of AI systems
plays an important role in explainablity. Data explainabil-
ity compiles and study data to offer insight into that data.
Model explainability spells out the internal structures
and running algorithms of the AI systems. On the other
hand, post-hoc explainability refers to methods used to
explain the decision of the AI system. For example, post-
hoc explainability illuminates the significant features
using several kinds of explanation for the outcome of the
AI model. Furthermore, several assessment methods and
their suspicions can be used to evaluate the explanations.
In this study, we utilized two post-hoc explainability
techniques, namely LIME (Ribeiro et al. 2016) and SHAP
(Lundberg and Lee 2017) for file fragment classification.

Various post-hoc explainability methods are classi-
fied into six important groups: (i) attribution methods,
(ii) visualization methods, (iii) example-based explana-
tion methods, (iv) game theory methods, (v) knowledge
extraction methods, and (vi) neural methods (Ali et al.
2023). LIME is a class of attribution methods, whereas
SHAP is a class of game theory methods. A multitude
number of attribution methods depends on pixel cor-
poration to investigate which pixel of a training input
image is relevant from the standpoint of model activat-
ing assuredly in the context of image processing. The
kind of analysis achieved can be categorized as either a
local or a global method. Local explainers only explain a
specific decision whereas global explainers are those that
give a rationale for the whole datasets (Adadi and Ber-
rada 2018). The major reasons for using LIME and SHAP
in this paper are that they provide local explanations and
are model-agnostic.

Most of the previous research on file fragment classi-
fication can be categorized into (i) signature, (ii) statis-
tical, (ii) artificial intelligence (AI), or (iv) hybrid-based

Page 3 of 23Alam and Demir Cybersecurity (2024) 7:52

landscape (Sester et al. 2021). The file type is related by a
signature that has unique, individualistic, and evidentiary
attributes related to a file type. Comparison of known to
unknown file fragment classification methods are applied
in signature-based approaches. Statistical techniques
are leveraged in the second class of approaches by uti-
lizing the characteristic features of the file content. On
the other hand, AI-based techniques principally utilize
computational intelligence such as machines and mod-
els. Hybrid-based techniques apply an ensemble of these
three techniques.

In this study, we urge a novel AI-based file fragment
classification method. At first, we preprocess the files
in the dataset to part the file fragments and basic raw
features of them. Afterward, the Term Frequency and
Inverse Document Frequency (TF-IDF) (Manning et al.
2010) technique is applied for feature selection. Spe-
cifically, each raw feature is designated with a weight
depending on its TF-IDF, and the features holding posi-
tive weights are chosen. Then we apply two XAI tech-
niques, LIME and SHAP, to gather the most decisive
(relevant) features among the selected features. Finally,
these relevant features are used to train and test a Mul-
tilayer Perceptron (MLP) (Hornik et al. 1989) classifier to
categorize the file fragments into file types. MLP is the
most common and practical model (Heidari et al. 2016).
The results show that this approach is feasible and able to
achieve better outcomes.

The major differences between the techniques explored
in this paper and other AI-based works (Haque and Tozal
2022; Bhatt et al. 2020; Chen et al. 2018; Wang et al.
2018) are (1) Lossless feature extraction. (2) Adaption
of TF-IDF and two XAI techniques LIME and SHAP to
estimate inter-Classes and intra-Classes information gain
of a feature. Given these new revisions, our study har-
vests encouraging results as regards other works. There
are only two research works (Mahajan et al. 2021; Hall
et al. 2022) that use LIME to explain the predictions of
an AI model in CF but don’t use such explanation (LIME
values) to optimize the predictions/classification. To the
best of our knowledge, this is the first effort of applying
XAI within CF for optimizing file fragment classification.

The following are the major contributions of this paper:

• We propose a novel method, named SIFT, to clas-
sify file fragments in the absence of metadata of the
filesystem. TF-IDF technique and two XAI tech-
niques, LIME and SHAP, are enriched as a feature
selection and relevance, and multinomial classifica-
tion with an MLP model is leveraged to train and test
the effectiveness of SIFT.

• We randomly selected 20 file types, from a publicly
available and more standardized dataset for cyber

forensics research, and extracted 47,482 samples
(fragments) from them. To keep the evaluation unbi-
ased we selected 7 files from each file type and chose
512 bytes as the fragment size. We chose three state-
of-the-art works in this area to compare SIFT with
them. We observe that SIFT produces promising
(better) results by at least 10%.

The rest of the paper is organized as follows. Sec-
tion “Background” gives background information. Sec-
tion “SIFT—system overview” describes the proposed
method, SIFT, along with preprocessing, feature extrac-
tion, LIME and SHAP feature relevance, feature selec-
tion, and multinomial classification steps. Empirical
evaluation with dataset collection, evaluation metrics,
validation results with discussion, and comparative
results are presented in Section “Empirical evaluation”.
Section “Related work” details the related work. In Sec-
tion “Limitations and future work”, limitations and future
work are presented. Finally, Section “Conclusion” con-
cludes our work.

Background
To make the reader familiar with the research presented
in this paper here we provide some background on XAI,
CF and TF-IDF.

Explainable artificial intelligence (XAI)
XAI, a subdomain of AI, targets transforming complex
black box data, models, and decisions of AI algorithms
and systems into easily explainable and evaluative nota-
tions and methods (Schwalbe and Finzel 2023; Saeed and
Omlin 2023; Vilone and Longo 2021). A vast amount of
techniques to deal with this issue have been proposed,
developed, and tested, striving to specify the concept of
explainability and its evaluation. XAI leads the users of
AI systems to trust. Comprehending and accepting the
decision process of an AI system is especially important
in high-risk tasks for humans (Leichtmann et al. 2023).
XAI aims to advance the AI literacy of humans. While AI
literacy is tough to characterize, XAI seeks to describe
the complex construct of AI systems by investigating
various computational methods to satisfy the cognitive
abilities of humans. While developing explainable meth-
ods, it is also important to involve techniques to measure
goodness, satisfaction, mental models, curiosity, trust,
and human-AI performance in the context of XAI (Hoff-
man et al. 2023). In brief, XAI explores methods that can
provide clear, verifiable, and trustworthy explanations
of decision-making processes of AI systems, bringing
experts from various disciplines, including computer sci-
ence, psychology, philosophy, and ethics.

Page 4 of 23Alam and Demir Cybersecurity (2024) 7:52

Recently, XAI has been penetrating various application
domains and tasks of AI systems (Islam et al. 2022). Cyber
security is also one of the promising application domains
of XAIs (Capuano et al. 2022). Application of XAI in the
cyber security field broadly ranges from Intrusion Detec-
tion Systems to Malware detection, Phishing and Spam
detection, botnet detection, Fraud detection, Zero-Day
vulnerabilities, Digital Forensics, CryptoJacking, etc. A
fresh field of Cyber security that requires exposing the
XAI is file carving (Saxena et al. 2023; Dunsin et al. 2023).
File fragment classification is one of the most important
steps of file carving. Therefore, we study the application
of XAI to file fragment classification problems of Cyber
security with LIME and SHAP techniques of the XAI,
freshly minted. To the best of our knowledge, this is the
first initial study in the literature for such a problem.

LIME first generates a dataset of perturbed data points,
then calculates the sample weights using a kernel func-
tion and a distance function to calculate how far the
sampled points are from the original point. It then uses a
surrogate model (interpretable model) on the perturbed
dataset using the sample weights. This trained model is
then used to provide explanations (including LIME val-
ues) for each instance.

SHAP calculates the Shapley values for each feature of
the dataset used to train and test the AI model that is to
be interpreted. These values represent the impact of the
feature in generating the prediction/output delivered by
the AI model. Shapley values borrow the concept of the
game theory field where the objective of the values is
the contribution of each player to the game. One of the
explainers available in SHAP is the TreeExplainer which
is being used in SIFT. The TreeExplainer takes as an input
a tree model such as RandomForest and DecisionTree
etc, and uses the conditional expectation to estimate the
effects and computes the Shapley values.

Cyber forensics (CF)
Every contact by a perpetrator leaves behind traces
(Chisum and Turvey 2000). To make a case against the
perpetrator these traces or pieces of evidence need to be
found, collected, secured, studied, and analyzed. Cyber
forensics (CF) (Alam 2022) uses scientific methods and

expertise to gather and analyze pieces of evidence found
in cyber devices that can be used in criminal or other
investigations in a court of law. This evidence can be used
for different purposes, such as electronic discovery, intelli-
gence, and administrative. For example, the data collected
from cyber devices can provide actionable intelligence.
This intelligence can help accomplish different types of
missions, such as securing national interests, decreasing
or eliminating crimes like kidnapping and child exploita-
tion, etc. Electronic discovery is the process of searching,
finding, and securing any electronic data later to be used
in a civil or criminal forensic case.

File system
A storage media or device stores information as blocks
of raw data (bytes). There is no particular organization or
access control to this raw data. A block or sector is the
smallest storage unit on a device with a typical size of 512
or 4096 bytes. Filesystem organizes this raw data into files
and folders for ease of management, storage, and retrieval
of information. The first few sectors of a file: contain
meta information, such as owner, size access rights, and
creation time about files, and keep information about the
overall storage space, files, and organization. The remain-
ing sectors store the actual content of the files. A gener-
ally high-level structure of a storage device is shown in
Fig. 1. The boot block mostly contains the information
to boot the device. A superblock is the metadata reposi-
tory. File system data structures keep information about
the files and their data blocks. Data blocks contain the
actual contents of the files. It is not necessary for data
blocks belonging to a file to be contiguous. For example,
the first two blocks of a.pdf are followed by one block
of b.png, an unused block, one block of a.pdf, and one
block of a.png, and so on.

File carving
In cyber forensics File Carving (Alam 2022) is the pro-
cess of mining and extracting files from a storage device.
In general, files are present in the form of raw bytes, i.e.,
there is no metadata information available about the files,
and the filesystem that created the files is damaged. A
file is generally identified by the header. A fragmented

Fig. 1 High-level structure of a storage device

Page 5 of 23Alam and Demir Cybersecurity (2024) 7:52

file is much more difficult to extract than a continuous
file. A file is stored and retrieved as blocks (fragments –
can be of size 512 or 4096 bytes) of raw bytes. To make
files portable across different platforms files are encoded
in standard formats. For example, a PNG file type stores
bitmap images using lossless compression. To success-
fully extract a file from a storage device it is necessary to
identify the fragment types of the file. After the fragment
types are identified, the next step is to reconstruct the file
by properly merging the fragments.

File fragment classification
The main focus of the research done in this paper is to
assist File Carving by successfully identifying fragment
types of the file, also called File Fragment Classification.
Every file is encoded in a standard format or type, such
as DOC, HTML, PDF, SWF, PNG, GIF, XML, etc. The
type of a fragment extracted from a file is the same as the
type of the file. The problem of fragment classification is:
to successfully classify a fragment out of several different
types (classes) of fragments. This is the first and foremost
step during file carving. There are different methods used
for fragment classification, including signature-based
(McDaniel and Heydari 2003; Thi et al. 2017; Garfin-
kel 2006; Garfinkel et al. 2010; Garfinkel and McCarrin
2015), statistical (McDaniel and Heydari 2003; Dhanalak-
shmi and Chellappan 2009; Beebe et al. 2016), machine
learning (Axelsson 2010; Conti et al. 2010b; Li et al. 2011;
Veenman 2007; Conti et al. 2010a; Bhatt et al. 2020), and
image-based (Xu et al. 2014).

Fragment classification challenges
Classifying a file fragment successfully is a challenging
task because of the following reasons.

1. Missing Metadata—A filesystem contains metadata
that expresses the actual filesystem and contains
information about the location of fragments and
attributes of each file, etc. If this metadata is missing
due to damage to the device or format operations,
then it becomes challenging to recover files on a stor-
age device for forensics analysis.

2. Proliferation of file formats—Too many file types
(each type is taken as a class) make it difficult to clas-
sify and lead to a multinomial classification problem.
It becomes difficult to put a lower and upper bound
for distances between classes required for success-
ful feature selection and classification with a given
accuracy. Class imbalance problem arises when data
across the classes are imbalanced. This problem is

aggravated when carrying out multinomial classifica-
tion.

3. File embeddings—An image is generally first com-
pressed and then stored. Therefore, part (block) of
a zipped (compressed) file may contain similar pat-
terns as an image file, especially if they are using the
same compression types. During classification, this
may make block(s) of a zipped file get detected/clas-
sified as an image file type and vice versa. SWF is an
Adobe file format and may contain images to create
animations. Such file types may also contain simi-
lar patterns as an image file and hence a block of an
SWF file may get detected as a block from an image
file and vice versa. The same is true for PDF and PPT
(Microsoft PowerPoint) file types containing embed-
ded images.

4. Automation—A digital forensic and incidence
response professional can look through (using a hex
editor) a piece of binary data and identify the type
of data it carries. This requires experience which
can be very helpful in various forensic tasks, such as
decoding memory dumps, reverse engineering mal-
ware, data recovery, and so on. The main problem
with manual examination is that it does not scale.
Therefore, we need automated tools to perform frag-
ment classification. Such a tool: should be accurate;
and fast enough to handle large data; the error rates
should be reliable; and should produce clear results.

Term frequency and inverse document frequency (TF‑IDF)
Term Frequency (TF) is the relative frequency of a term
in a document. Inverse Document Frequency (IDF) is the
measure of the commonality or rarity of a term across all
documents. The product of TF and IDF is used to assign
weight to the term. This weight indicates the importance
of the term in the corpus (set of documents). In informa-
tion retrieval TF-IDF measures how important a term is
inside a document with respect to a corpus.

The TF-IDF algorithm was first proposed by Sparck
(1972) and consists of the following three items.

• TF(t, d) → number of times the term t occurs in
document d

• N → total number of documents in a given corpus D
• DF(t) → number of documents containing the term

t

The TF-IDF of the term t is computed as

TF − IDF(t, d,D) = TF(t, d)× IDF(t,D)

Page 6 of 23Alam and Demir Cybersecurity (2024) 7:52

and

As an example usage, for identifying keywords we take
into account not only how many times a keyword occurs
in a document but also how frequently the keyword
occurs in other documents in a corpus. For retrieving
keywords, we can use the above algorithm by selecting
the keyword t with the largest value of TF-IDF in a given
corpus D. In the next iteration, we select the keyword
with the next largest value of TF-IDF and so on.

SIFT—system overview
SIFT extracts fragments from the dataset with their raw
features. These features are then sifted through to select
the most important features. Sifting examines thoroughly
to isolate the most important features by using statisti-
cal and XAI techniques. TF-IDF is used to assign weight
to each feature according to its importance. Two of the
popular techniques of XAI, SHAP, and LIME, are used to
find the most relevant features. These weighted and rel-
evant features are then used by a classifier to classify the

IDF(t,D) = log
N

DF(t)

file types of the fragments. Figure 2 shows a high-level
component overview of the proposed system SIFT. The
following sections further explain each of these compo-
nents in detail.

Preprocessing and feature extraction
SIFT first reads each file in a dataset and then preproc-
esses the file as follows. It excludes files with size < 2
× fragment size and also removes the duplicate files.
After this fragments are extracted at the byte level from
each file. Each fragment is of the same size S. To cater
to resource-constrained devices such as embedded sys-
tems and IoT, S can vary from 25–212 = { 32, 64, 128,
256, 512, 1024, 2048, 4096 }. These devices generally
store information in a flash ROM whose size is in the
kilobyte range. The data from this flash ROM is trans-
mitted to the edge/gateway/cloud to be stored for later
use. The sector sizes of the filesystem, e.g., FAT 12/16—
TinyOS (TinyOS 2023), for these flash ROMs typically
range from 32–128 bytes.

Figure 3 shows an example of a fragment extracted
from one of the dataset files used in this paper. The left
column shows the address/location (in decimal), and

Fig. 2 Overview of the proposed system SIFT

Page 7 of 23Alam and Demir Cybersecurity (2024) 7:52

the right column shows the byte value stored in hex.
The size of the fragment shown in Fig. 3 is 4096–4608
= 512 bytes. There are only 256 different values at the
byte level. Therefore, the byte value ranges from 0 ×00–
0×FF. A total of S number of raw features are extracted
for each fragment in a file. The first fragment contains
the header information that identifies the file type,
therefore SIFT excludes the first fragment of a file. The

last fragment of a file may be of a different size. This
last fragment is filled with bytes from a randomly cho-
sen fragment of the file as shown in Fig. 4. This way we
make sure that all the fragments of all the files are of
equal size. These steps for extracting raw fragments
from a list of files (dataset) are listed in Algorithms 1
and 2. Equation 1 formally defines this set of raw
fragments.

Algorithm 1 Algorithm for extracting fragments from a list of files.

Fig. 3 Example of a fragment, of size = 512 bytes, extracted from one of the dataset files used in this paper

Fig. 4 Fragment extraction. As an example, there are 9 fragments of a file shown here. 8 are complete, whereas the last one is a partial fragment,
filled to make it complete

Page 8 of 23Alam and Demir Cybersecurity (2024) 7:52

Algorithm 2 Algorithm for extracting fragments from a file.

We define a fragment of bytes as f = { b1 , b2 , b3,..., bS },
where S is the size of the fragment. Let M = { m1 , m2 , m3

,..., mN }: where N = number of files in a dataset; and ma
is the number of fragments extracted from file a. A file in
a dataset (set of files) is defined as file = { f1 , f2 , f3,..., fm },
where m ∈ M . Then, we define the set of fragments with
extracted (raw) features F from a dataset as follows.

where fij is the jth fragment extracted from the ith file.
We add an extra byte i at the end of each fragment to use
as the Class (file type) label.

Feature selection
As shown in Fig. 3 a fragment of size S consists of S num-
ber of bytes whose value ranges from 0 ×00–0×FF. There-
fore, for a fragment, we select a total of 256 features, and
a weight is assigned to each of these bytes according to
their importance in the fragment.

Term Frequency and Inverse Document Frequency
(TF-IDF) (Manning et al. 2010) is often considered an
empirical method in data mining to separate relevant fea-
tures in a set of data. TF-IDF computes the information

(1)F =

N

i=1

m∈M

j=1

{fij , i}

gain of a term (in our case a byte) weighted by its occur-
rence of probability. We explain in the following, how we
adopt the TF-IDF weighting method and assign weight
to a byte (feature). We define TF-IDF of a byte bj ∈ f as
follows:

where, fbj is the number of times (frequency) byte bj
appears in a fragment f; and Kj is the number of all the
fragments with bj in it.

Based on these definitions, we assign weight to a byte
bj as follows:

We build a vector of the fragments with selected features
FS in the form of a matrix as follows.

The weight Wj ranges from 0–1. We only keep bj if
Wj > 0 . For example, we noticed that the byte 0 × FB
occurs several times in many fragments of type (Class)

TFj =
fbj

R
and IDFj = log

(

∑N
n=1mn

Kj

)

(2)Wj = TFj × IDFj

(3)FS =

N
�

i=1

S+1
�

j=1

Wj ifWj > 0
0 otherwise
i if j = S + 1

Page 9 of 23Alam and Demir Cybersecurity (2024) 7:52

EPS, in the dataset used in this paper. A total of 20
Classes are part of the dataset used in this paper and
are listed in Table 1. The byte 0 × FB gets a score > 0.98
for Class EPS and mostly 0 or < 0.25 for the rest of the
Classes. Similarly, the byte 0 × 30 gets a score > 0.98 for
the Classes EPS, PS, and PDF, and mostly 0 or < 0.30 for
the rest of the Classes. This indicates that the feature
selection scheme we presented in Eq. 3 has the potential
of successfully separating important features from the
raw features computed in Eq. 1. This in turn helps a clas-
sifier correctly predict the Class (file type) of a fragment.

XAI—feature relevance
XAI is one of the branches of AI that interprets and
explains the methods used in AI. One of the techniques
used in XAI to provide such interpretations is by com-
puting the relevance of the input features to the output
of an AI model. SIFT uses LIME and SHAP, two pop-
ular XAI model-agnostic techniques to compute the
relevance of input features to its output. Being model-
agnostic, SHAP and LIME need to be initialized with
the training and testing data. This training and testing
data should be chosen from the dataset that is to be
used to train and test the model of SIFT. We can either
use the whole dataset or choose a part that is chosen
randomly from the whole dataset.

LIME and SHAP feature relevance values
We initialize LIME with the following parameters:
training data; testing data; features; class names; and
Ridge Regression the interpretable model to be used
as a surrogate. We initialize SHAP with the following
parameters: training data; testing data; and Random-
Forest as the ensemble tree model. Then we use LIME
and SHAP to compute the relevance value RV of a fea-
ture f, i.e., RVf for each sample in the testing data. We
compute the mean relevance value (also called LIME
and SHAP value in this paper) LV (LIME value) and SV
(SHAP value) of each feature f for a class c in the testing
data as follows.

and

where NS = number of samples in class c and RVf ,n is the
relevance value of feature f in sample n.

LVf ,c =

∑NS
n=1 RVf ,n

NS

SVf ,c =

∑NS
n=1 RVf ,n

NS

Similarly, the LIME (LVs) and SHAP (SVs) values are
computed for each feature in all the classes (in this paper
for 20 classes) in the testing data as follows.

and

where NF = number of selected input features in the
dataset and NC = number of classes in the dataset.

XAI—threshold‑based feature relevance
The LIME and SHAP feature relevance values computed
above are used to remove non-relevance features from
the dataset based on a threshold. For each of the LIME
and SHAP values separate thresholds, Tlime and Tshap
respectively, are computed. The motivation behind these
threshold values is to mark irrelevant features from the
selected features and obtain the most relevant features
for the dataset. Another motivation is to reduce the
number of features and improve the computing time of
the classification, which in the case of DL is a substan-
tial improvement. These two thresholds are computed as
follows.

We randomly choose a subset (part) of the dataset
that we call D to compute the LIME and SHAP feature
relevance values using the Eqs. 4 and 5. The higher value
represents more relevance of an input feature to the
model’s output. To try different threshold values, we pick
a range t1–t2 between the minimum and maximum rel-
evance values (computed in Eqs. 4 and 5) that allow us
to mark 10–30% irrelevant features from the selected fea-
tures computed in Eq. 3. We divide D into 80% training
and 20% testing and perform several experiments of frag-
ment classification using a (in our case MLP) model by
choosing different threshold values in the range t1–t2 . We
picked the threshold value that gave us the best results.
This process was repeated for both LIME and SHAP and
we get two threshold values Tlime for LIME values and
Tshap for SHAP values.

Using the two threshold values Tlime and Tshap com-
puted above we remove the irrelevant features from the
dataset and get the set of final fragments with threshold-
based relevant features for LIME (FRL) and SHAP (FRS)
as follows:

and

(4)LVs =

NF
⋃

f=1

NC
⋃

c=1

{LVf ,c}

(5)SVs =

NF
⋃

f=1

NC
⋃

c=1

{SVf ,c}

(6)FRL = {v | v ∈ LVs ∧ v > Tlime}

Page 10 of 23Alam and Demir Cybersecurity (2024) 7:52

This set of final fragments with threshold-based relevant
features is used for training a model for classifying file
fragments.

Multinomial classification with deep learning
One of the main challenges of file fragment classification
is multinomial classification. The other main challenge
is the class imbalance problem. The dataset used in this
paper presents both of these challenges. To overcome
these challenges to some extent we use a model for file
fragment classification. We develop and build the model
using Multilayer Perceptron (MLP) (Hornik et al. 1989),
one of the most common and practical models (Heidari
et al. 2016), with one input, one output, and five hid-
den layers. The developed MLP artificial neural network

(7)FRS = {v | v ∈ SVs ∧ v > Tshap}
architecture is shown in Fig. 5. The reason for using five
hidden layers is because of the complexity, such as the
large number of file types (classes) and class imbalance,
of the data found in most of the file fragment classifica-
tion problems. To improve multinomial classification, the
MLP model is optimized with hidden layers, each layer
with i × n neurons, where i = the layer number and n
= the total number of classes in the dataset. We use an
adaptive learning rate algorithm RMSProp (Root Mean
Square Propagation) (Hinton et al. 2012) for optimizing
the learning process. RMSProp addresses some issues
with the stochastic gradient descent method in training
deep neural networks.

One of the major performance optimizations of neu-
ral networks is tuning the hyperparameters, such as
the batch size, number of hidden layers, and number of
epochs. The tuning depends on the type and complexity

x1

x2

x3

x4

x5

x6

x7

xn7

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

a
(1)
6

a
(1)
n6

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
4

a
(2)
5

a
(2)
n5

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
4

a
(3)
n4

...

a
(4)
1

a
(4)
2

a
(4)
3

a
(4)
n3

...

a
(5)
1

a
(5)
2

a
(5)
n2

...

y1

yn

...

input
layer

hidden layers

output
layer

Fig. 5 A high-level architecture of the MLP artificial neural network developed in the paper, where n = total number of classes in the dataset, i =
layer number, and ni = i × n

Page 11 of 23Alam and Demir Cybersecurity (2024) 7:52

of the dataset. Batch size is the number of samples that
are propagated through the network. It can be a subset
or whole of the dataset. In the case of a subset, the whole
dataset is divided into subsets, and with each iteration,
each subset is propagated through the network until all
the samples have been propagated. Hidden layers refers
to a set of neurons, that makes neural networks deep
and enable them to learn complex data representations.
Epochs is the complete training of neural networks on all
the datasets exactly once. The value of epochs can range
from 1 to ∞ . They are the fundamental part of the train-
ing of neural networks. We compute and set these param-
eters experimentally on a subset of the main dataset. We
randomly chose a subset of the samples from the main
dataset and trained the model using this subset. Then, for
setting the number of epochs we try different values and
set the final epochs to the value when the model achieves
more than 99% accuracy on this training data. Values of
other hyperparameters are set using the same technique.
These same values of the hyperparameters are then used
for training the model with the main dataset.

In the next few sections, we present an empirical evalu-
ation to analyze the correctness and efficiency of SIFT.

Empirical evaluation
We carried out an empirical evaluation to assess the
performance of SIFT. This section presents the dataset,
evaluation metrics, empirical study, obtained results, and
analysis. We also compare SIFT with three other state-of-
the-art file fragment classification techniques. All experi-
ments were run on an IntelÂ® Core(TM) i-7-4510U CPU
@ 2.00 GHz with 8 GB of RAM, running Windows 8.1.

Dataset
To carry out different experiments we selected a pub-
licly available dataset (Garfinkel 2024) for cyber foren-
sics research. From this dataset, we randomly collected
20 file types and extracted 47,482 samples (fragments)
from these files. The distribution of this dataset is
shown in Table 1. To make sure the evaluation is unbi-
ased, we selected the same number (seven) of files from
each Class. We chose 512 bytes as the size of a frag-
ment for our experiments. The reason for choosing this
value is as follows. The researchers are divided between
512 (Axelsson 2010; Beebe et al. 2013, 2016; Calhoun
and Coles 2008; Fitzgerald et al. 2012; Catanzaro et al.
2008; Sportiello and Zanero 2012) or 4096 (Karresand
and Shahmehri 2006b, a; Li et al. 2011; Penrose et al.

Table 1 Fragment distribution of the 20 file types (Classes).
There are a total of 47,482 fragments (samples) each of size 512
bytes

Classes (file type) Number of files Number of
fragments

csv 7 889

dbase3 7 66

doc 7 2420

eps 7 5110

gif 7 701

gz 7 4470

jpg 7 924

html 7 613

kmz 7 1381

log 7 5346

pdf 7 2787

png 7 2704

ppt 7 3534

ps 7 3622

swf 7 1991

text 7 4671

txt 7 1374

unk 7 3264

xls 7 813

xml 7 802

Table 2 Results of 10-fold cross-validation of the RandomForest
classifier

File type (class) TPR FPR Precision F‑Measure

csv 0.991 0.000 0.991 0.995

dbase3 1.000 0.000 1.000 1.000

doc 0.724 0.008 0.724 0.776

eps 0.989 0.000 0.989 0.992

gif 0.357 0.000 0.357 0.524

gz 0.889 0.133 0.889 0.560

html 0.977 0.000 0.977 0.976

jpg 0.000 0.000 0.000 0.000

kmz 0.938 0.000 0.938 0.968

log 0.999 0.000 0.999 0.999

pdf 0.463 0.003 0.463 0.611

png 0.720 0.042 0.720 0.597

ppt 0.492 0.014 0.492 0.592

ps 0.996 0.002 0.996 0.988

swf 0.124 0.008 0.124 0.190

text 0.765 0.003 0.765 0.852

txt 0.932 0.000 0.932 0.960

unk 0.995 0.005 0.995 0.965

xls 0.812 0.001 0.812 0.875

xml 0.965 0.000 0.965 0.977

Weighted Avg 0.798 0.018 0.798 0.793

Page 12 of 23Alam and Demir Cybersecurity (2024) 7:52

2013; Sportiello and Zanero 2011; Veenman 2007)
bytes as the size of a fragment. According to Penrose
et al. (2013) all the hard drive manufacturers have used
4096 bytes as their sector size since 2011, therefore
this is the right size to choose. However, Axelsson et al.
(2010) makes an observation that 512 bytes are a con-
servative choice. Out of these two choices we chose the
conservative value, i.e., 512 bytes.

Evaluation metrics
We drive our evaluation metrics from the confusion
matrix. Confusion matrix (Fawcett 2006) is used for
measuring the performance of a classification model.
Items in a confusion matrix belong to an original Class
from a trusted set of pre-classified items (ground truth
values) and items that are classified by the model (pre-
dicted values). This allows us to compare our technique
against the ground truth.

We use four metrics, True Positive Rate (TPR),
False Positive Rate (FPR), Precision, and F-Measure,
defined as follows:

where, TP the true positive is the number of fragments
classified as positive. FP the false positive is the number
of fragments wrongly classified as positive. FN the false
negative is the number of fragments wrongly classified as
negative. P is the total number of fragments in the posi-
tive Class. N is the total number of fragments in the other
Classes.

TPR =

TP

P
and FPR =

FP

N

Precision =

TP

TP + FP

F −Measure =
2TP

2TP + FP + FN

Empirical study and results
During the empirical study, we carried out three different
experiments, firstly to obtain the threshold-based LIME
and SHAP feature relevance values from the selected fea-
tures, secondly for tuning the neural networks hyperpa-
rameters, and thirdly to conduct performance evaluation
of SIFT.

Threshold based LIME and SHAP feature relevance values
The main dataset used in this paper consists of 47,482
samples as shown in Table 1. We first extracted the raw
features from these samples and performed feature selec-
tion to obtain the samples with selected features listed in
Eq. 3. We then trained a RandomForest classifier on these
samples and performed 10-fold cross-validation. The
results of this classification are shown in Table 2.

The RandomForest classifier was able to positively clas-
sify fragments of the 8 classes with a TPR > 95%. Weights
were assigned using Eq. 2 to bytes in the fragments
belonging to some of these and other classes. These
weights are shown in Table 3. To save space, we only
show specific bytes whose weights are much higher than
other bytes. The table lists the average weight of all the
fragments belonging to a class. As an example, the class
CSV contains 889 fragments as shown in Table 1. Each
of these 889 fragments contains 512 bytes and each of
these bytes is assigned 889 different weights. Table 3 lists
the average of these 889 weights for the class CSV and
similarly for other classes. These bytes occur much more
often in the fragments belonging to a specific class than
any other class. This means these are the features (bytes)
that helped successfully classify these fragments.

As shown in Table 2 we obtained a weighted average
TPR of 79.8% and FPR of 1.8%. These results are better
when compared to other state-of-the-art works discussed
in Section “Comparison with other works”. We still want
to improve these results especially the FPR, and TPR
of some of the file types, such as html and swf. The low
results for these file types are because of the multinomial
classification and to some extent class imbalance prob-
lems. The other major reason for these results is because
of the problem of file embeddings as discussed before. To
overcome some of these problems and provide a solution
we apply XAI and compute threshold-based LIME and
SHAP feature relevance values as follows.

For computing the LIME and SHAP feature rel-
evance values we randomly chose a subset of samples
from the main dataset. This subset contained 60 sam-
ples from each of the 20 classes, i.e., a total of 1200
(60× 20 = 1200) samples. We computed the LIME and
SHAP feature relevance values as described in Section
“XAI—feature relevance” and listed in Eqs. 4 and 5 using

Table 3 Weight assigned according to Eq. 2 to bytes in the
fragments of some of the classes. To save space, we only show
specific bytes whose weights are much higher than other bytes

Class Byte value in
hex

Symbol Description Weight
assigned
(averaged)

CSV 0×2C , Comma 0.663

CSV 0×22 ” Double quotes 0.335

DBASE3 0×20 Space 0.939

EPS 0×48 0 Zero 0.462

XML 0×3C < Open angled
bracket

0.185

XML 0×3E > Close angled
bracket

0.181

XLS 0×40 @ 0.206

LOG 0×3A : Colon 0.160

Page 13 of 23Alam and Demir Cybersecurity (2024) 7:52

Fi
g.

 6
 L

IM
E

fe
at

ur
e

re
le

va
nc

e
va

lu
es

 fo
r t

he
 s

et
 o

f 1
20

0
sa

m
pl

es

Page 14 of 23Alam and Demir Cybersecurity (2024) 7:52

Fi
g.

 7
 S

H
A

P
fe

at
ur

e
re

le
va

nc
e

va
lu

es
 fo

r t
he

 s
et

 o
f 1

20
0

sa
m

pl
es

Page 15 of 23Alam and Demir Cybersecurity (2024) 7:52

these 1200 samples. Figures 6 and 7 show these LIME
and SHAP values for each of the 20 classes in the dataset.

For the 20 classes LIME and SHAP feature relevance
values are in the range of 0–0.034 as shown in feature rel-
evance graphs in Figs. 6 and 7. There are 120 out of 236,
i.e., 50.85%, features that have a value < 0.0025 for each of
the 20 classes in both LIME and SHAP feature relevance
graphs. There are 116 out of 236, i.e., 49.15%, features
that have a value > 0.0025 for some of the 20 classes. That
means both these techniques need a different threshold
value to mark irrelevant features as described in Section
“XAI—threshold-based feature relevance”. We perform
different experiments using the 1200 samples chosen
above as described in section “XAI—threshold-based
feature relevance” and computed the two threshold val-
ues as Tlime = 0.00075 and Tshap = 0.00015 . Using these
two threshold values we obtained the fragments (sam-
ples) with threshold-based relevant features for LIME
and SHAP as listed in Eqs. 6 and 7. These experiments
were conducted using the MLP model as described in
“Multinomial classification with deep learning”.

Neural networks hyperparameters
During the experiments carried out above we also fine-
tuned the different MLP hyperparameters for the dataset
used in this paper. The batch size and epochs were set to
189 and 200 respectively and 5 hidden layers were cre-
ated to train the MLP model.

Performance evaluation of SIFT
The final dataset of 47,482 fragments (samples) with
threshold-based relevant features was divided into
80% training and 20% testing data as input to our MLP
model as described in section “Multinomial classifica-
tion with deep learning” for multinomial classification
of these file fragments. The time of training the MLP
model with threshold-based LIME relevant features was
612.62 s (0.016 s per sample—total training samples
37,985) and with threshold-based SHAP relevant features
was 493.44 s (0.013 s per sample). The training time per
sample indicates that SIFT is scalable and can efficiently
handle a much larger dataset. To validate this in future
we will evaluate SIFT with a much larger dataset. The
obtained results are shown in Tables 4 and 5.

Analysis
The confusion matrices of the MLP model using the final
dataset of 47,482 fragments (samples) with threshold-
based LIME and SHAP relevant features are shown in
Figs. 8 and 9 respectively.

Table 4 Results of MLP model using the final dataset of 47,482
fragments (samples) with threshold-based LIME relevant features

File type (class) TPR FPR Precision F‑Measure

csv 1.000 0.000 0.989 0.994

dbase3 1.000 0.000 1.000 1.000

doc 0.864 0.011 0.801 0.831

eps 0.985 0.000 0.992 0.988

gif 0.656 0.005 0.632 0.644

gz 0.610 0.020 0.764 0.678

html 0.989 0.000 0.989 0.989

jpg 0.450 0.012 0.341 0.388

kmz 0.938 0.000 0.985 0.961

log 0.998 0.000 0.998 0.998

pdf 0.592 0.020 0.631 0.611

png 0.694 0.032 0.526 0.599

ppt 0.639 0.034 0.601 0.619

ps 0.992 0.001 0.980 0.986

swf 0.415 0.028 0.395 0.405

text 0.833 0.011 0.889 0.860

txt 0.989 0.001 0.963 0.975

unk 0.982 0.001 0.987 0.985

xls 0.802 0.001 0.905 0.851

xml 0.981 0.000 0.981 0.981

Weighted Avg 0.821 0.009 0.818 0.817

Table 5 Results of MLP model using the final dataset of 47,482
fragments (samples) with threshold-based SHAP relevant
features

File type (class) TPR FPR Precision F‑Measure

csv 1.000 0.000 0.997 0.995

dbase3 1.000 0.000 0.875 0.933

doc 0.852 0.009 0.822 0.837

eps 0.988 0.001 0.990 0.989

gif 0.625 0.006 0.577 0.601

gz 0.707 0.032 0.702 0.705

html 1.000 0.000 0.989 0.994

jpg 0.351 0.005 0.495 0.412

kmz 0.923 0.000 0.966 0.944

log 1.000 0.000 0.997 0.999

pdf 0.613 0.024 0.595 0.604

png 0.679 0.023 0.597 0.635

ppt 0.593 0.018 0.725 0.652

ps 0.989 0.000 0.991 0.990

swf 0.470 0.029 0.416 0.442

text 0.861 0.018 0.883 0.847

txt 0.985 0.001 0.955 0.970

unk 0.978 0.000 0.991 0.984

xls 0.820 0.001 0.926 0.870

xml 0.968 0.000 0.987 0.977

Weighted Avg 0.820 0.008 0.821 0.820

Page 16 of 23Alam and Demir Cybersecurity (2024) 7:52

The testing data contained a total of 9497 samples (20%
of 47,482). Here we define and compute another metric
from the confusion matrix as follows:

From the confusion matrices (Figs. 8 and 9) we compute
the SIFT overall accuracy with LIME and SHAP values as
follows:

and

Accuracy =
Total correctly predicted samples

Total number of samples

Accuracy with LIME =

7857

9497
× 100 = 82.37%

SHAP provided a slightly better accuracy than LIME.
As we can see from Tables 4 and 5 the TPR of LIME
(82.1%) is slightly better than the TPR of SHAP (82%)
but the FPR of SHAP (0.8%) is slightly better than LIME
(0.9%). FPR has a little edge over TPR when computing
the overall accuracy of a model. The accuracy of SIFT
without any LIME or SHAP values (RandomForest clas-
sification – Table 2 is 79.77%. This accuracy is computed
from the confusion matrix of the RandomForest classifier
not shown in the paper. When comparing the results of
SIFT without XAI and with XAI and DL, applying XAI

Accuracy with SHAP =

7941

9497
× 100 = 83.62%

Fig. 8 Confusion matrix of MLP model using the final dataset of 47,482 fragments (samples) with threshold-based LIME relevant features

Page 17 of 23Alam and Demir Cybersecurity (2024) 7:52

with DL improved the overall accuracy of SIFT by 3.85%,
the TPR by 2.3%, and the FPR by 1%. These may seem
small improvements but they reinforce the claim that

applying XAI, SIFT can solve to a certain extent some of
the challenges of file fragment classification. These are
overall performance improvements. We did not apply

Fig. 9 Confusion matrix of MLP model using the final dataset of 47,482 fragments (samples) with threshold-based SHAP relevant features

Table 6 Distribution of the TPR results of SIFT at the local (class) level using different classifiers

TPR (%) RandomForest MLP with LIME values MLP with SHAP values

98–100 CSV, DBASE3, EPS, LOG, PS, UNK CSV, DBASE3, EPS, HTML, LOG, PS, TXT, UNK,
XML

CSV, DBASE3, EPS, HTML, LOG, PS, TXT

91–97 HTML, KMZ, TXT, XML KMZ KMZ, UNK, XML

71–90 DOC, GZ, PNG, TEXT, XLS DOC, TEXT, XLS DOC, TEXT, XLS

40–70 PDF, PPT GIF, GZ, JPG, PDF, PNG, PPT, SWF GIF, GZ, PDF, PNG, PPT, SWF

0–39 GIF, JPG, SWF – JPG

Page 18 of 23Alam and Demir Cybersecurity (2024) 7:52

global interpretations provided by LIME and SHAP. In
the future, we would like to apply global interpretations
provided by some of the XAI techniques to improve the
overall results and especially further improve the multi-
nomial classification issue.

Distribution of the TPR results of SIFT at the local
(class) level using RandomForest (i.e., without XAI) and
MLP with LIME and SHAP values (i.e., with XAI) are
shown in Table 6. We can see that improvements in clas-
sification are significant when XAI is applied with DL.
More classes are predicted in the range of 98–100%, and
no classes < 40% except one class JPG with SHAP, with
LIME and SHAP values. There are more classes predicted
in the range 40–70% that depict that applying XAI and
DL SIFT can solve some of the challenges, especially the
multinomial classification and file embedding problems
up to a certain extent.

The updates (increase/decrease) in accuracy at the class
level after applying XAI and are shown in Table 7. Here
also, LIME and SHAP are the two XAI techniques and
provide significant improvements in accuracy (25–50%)
at the local class level. There is only one class GZ where
the accuracy dropped. 29.1% in LIME (Fig. 8) and 21.8%
in SHAP (Fig. 9) of the fragments of GZ are predicted as
type PDF (4.8% & 5.3%), PNG (8.2% & 5.3%), PPT (9.2%
& 4.9%), and SWF (6.9% & 6.3%). GZ (gzip) type of file
consists of compressed data. In general, an image (i.e., file
types PNG and SWF, etc) is first compressed and then
stored in the file. The file types PDF and PPT (Microsoft

PowerPoint) may also contain images. The compressed
fragments found in these file types (classes) are the main
reason why SIFT with LIME and SHAP predicted them
as class GZ. This is just an observation and may need fur-
ther research. In the future, we will look into the respec-
tive LIME and SHAP values and specific interpretations
of the (MLP) model to know the reasons why there is a
decline and then improve such a prediction.

The two XAI techniques LIME and SHAP are model
agnostic, i.e., they can be used with any model. That
means LIME and SHAP feature relevance values com-
puted are generated just once and can be used with any
model (DL or any other ML model). To validate and test
this claim we carried out another experiment and used
the SHAP feature relevance values with Random Forest
to classify the 20 file types. The accuracy achieved was
79.9%. Random Forest without SHAP achieved an accu-
racy of 79.7%. Random Forest with XAI improved by
0.2% over Random Forest without XAI. This indicates
that XAI is able to improve (although small but still an
improvement) the performance of not only a DL (MLP)
but also a ML model, and this also verifies that LIME and
SHAP are model agnostic.

Moreover, we only used LIME and SHAP local inter-
pretations, and using these values we are able to improve
the performance relative to other works (compared in
Section “Comparison with other works”) that use other
techniques for feature selection/importance. Using
the same values we are also able to further improve the
results presented in Table 2. Improvements at the local
(class) level are more significant as shown in Tables 6 and
7. This indicates and corroborates that XAI is capable of
enhancing the performance of an AI model.

Comparison with other works
To compare our technique we chose three state-of-the-
art techniques in this area. The first (Haque and Tozal
2022) and the most recent from the year 2022, the second
(Bhatt et al. 2020) and last (Wang et al. 2018) from the

Table 7 The updates (increase/decrease → ±) in accuracy at
local (class) level after applying XAI (LIME and SHAP values)

Class RandomForest
accuracy (%)

MLP with LIME
values accuracy

MLP with SHAP
values accuracy

GIF 35.66 66.15% (+ 30.49%) 62.60% (+ 26.94%)

GZ 88.98 61.03% (− 27.95%) 71.44% (− 17.54%)

JPG 00.00 50.43% (+ 50.43%) 35.11% (+ 35.11%)

SWF 12.36 41.46% (+ 29.10%) 47.07% (+ 34.71%)

Table 8 Comparison of the model SIFT proposed in this paper and three other state-of-the-art models

Model TPR (%) Number of
fragments

Size of each
fragment
(byted)

Number
of classes

Techniques used

SIFT 82.1 47,482 512 20 Adapted TF-IDF for assigning weights; XAI for feature relevance; MLP
for classification

 Haque and Tozal
(2022)

72 87,500 4096 35 Byte2Vec embeddings; extension of Word2Vec and Doc2Vec; k-nearest
neighbors for classification

 Bhatt et al. (2020) 67 14,000 512 14 Ten features, such as entropy, bigram distribution, hamming weight,
mean byte value, etc; support vector machine for classification

 Wang et al. (2018) 61 270,000 512 18 Continuous sequence (n–gram) of bytes of different sizes; support vec-
tor machine for classification

Page 19 of 23Alam and Demir Cybersecurity (2024) 7:52

years 2020 and 2018, respectively. The reasons for select-
ing them are: (1) They perform file fragment classification
and are published in IEEE, Elsevier, and MDPI journals.
(2) They select their samples from the same dataset (Gar-
finkel 2024) as used in this paper. (3) They also employ
machine learning to improve performance and perform
automated classification.

Table 8 provides a comparison of SIFT with the other
three techniques. SIFT outperforms the others by
10–19%. (1) One of the major differences between SIFT
and others is that SIFT uses a single byte as a separate
feature, i.e., a total of 256 (0×00–0×FF) features. We also
call this a lossless feature (information) extraction, i.e.,
there is no loss of information. (2) The other major differ-
ence is the technique used to estimate inter-classes and
intra-classes information gain of a feature. For this pur-
pose, SIFT adapts TF-IDF to compute and assign weight
to each byte (feature) in a fragment (sample) and then
applies two XAI techniques LIME and SHAP to compute
the input feature relevance for selecting important and
relevant features. (3) For classification SIFT uses a model
MLP that trains on the dataset with relevant features.
With these major differences and approaches, SIFT pro-
duces promising (better) results.

As discussed in Section “Fragment classification chal-
lenges”, a large number of classes in the dataset increases
the complexity of multinomial classification and this
effects the TPR of the classifier. All the works compared
use more than 13 classes for training and testing, which
depicts that this is a real challenge in file fragment clas-
sification, and also presents a fair comparison with SIFT
that uses 20 classes. To mitigate this challenge we use
TF-IDF and two XAI techniques LIME and SHAP, and
also develop a deep learning model MLP by fine tuning
its hyperparameters to optimize multinomial classifi-
cation. We also conducted experiments using different
number of classes. When tested with 18 and 14 classes
SIFT achieved a TPR of 83% and 86.9% respectively. This
shows SIFT outweighs the other two works that use a
similar number of classes.

Size of each fragment used in all the works compared
are the same, 512 bytes, as SIFT except (Haque and Tozal
2022) uses 4096 bytes. As discussed in Section “Dataset”,
researchers are divided on the size of fragment to use.
We choose the conservative size 512 bytes because of the
legacy storage systems still being used. Also for compari-
son we choose works that use the same size. But we also
want to include one of the works that use the fragment
size 4096 bytes being used in modern storage systems. As
we can see using the conservative size SIFT achieves bet-
ter results.

Related work
Binary file fragments have been explored in various
scientific contexts, including digital forensic analysis,
reverse engineering, and fuzzing, among many others. In
this section, we briefly highlight recent research works on
file fragment classification in the context of file carving in
digital forensics. There are multi-fold ways that one could
organize a taxonomy of file fragment classification. We
divide these works into three popular categories (Sester
et al. 2021). There are several works that have used XAI
to explain the predictions of an AI model in CF but none
of them have used such explanation to optimize the pre-
dictions/classification. At the end of this section we also
present a short discussion on such works.

Signature based approaches
Known signatures in file headers and footers are exclu-
sively useful in file carving. Nevertheless, this approach
assumes that file clusters remain consecutively. In case
of file fragmentation, file clusters can be separated, and
the order can be disrupted such that distinctly file carv-
ing will fail. Signature-based techniques use the potential
embedded signatures (Sester et al. 2021). Similarly, Rous-
sev et al. (2012) suggested the adoption of sdhash real-
time digital forensics and triage. Breitinger et al. (2013)
used typically similarity-preserving hashing (SPH). Con-
sequently, Lillis et al. (2017) boosted the lookup speed by
way of hierarchical Bloom filter tress.

Earlier, Garfinkel et al. (2006) and Dandass et al. (2008)
urged the use of hash-values for fragments to identify
individual files with the same fragments. A few modifica-
tions on MD5 and SHA1 to CRC32 hashing algorithms
were also blessed to measure hash values. Besides, Gar-
finkel et al. (2010) investigated a faster design to match
master files and image files together by using maps.

Statistical approaches
Conti et al. (2010b; a) pick statistical features, like Shan-
non entropy, chi-square, hamming weight, and arith-
metic mean to resolve the low-level binary data. In each
group, 1000 fragments, where fragment size is 1 KB, are
analyzed. Statistical features are detected in agreement
with the distribution of data fragments by primitive frag-
ment class. It occurred that the bitmap samples exhibit
little clustering, but the high entropy, text, encoded, and
machine code primitive types are more densely clustered.

Calhoun et al. (2008) use statistical features, like
entropy and frequency of ASCII codes to sift graphic
files, JPG, GIF, etc. Promising results (83% accuracy)
are obtained. However, the results are only applicable

Page 20 of 23Alam and Demir Cybersecurity (2024) 7:52

to graphic types. Veenman et al. (2007) use statistical
features, such as histogram, and entropy to classify disc
images. A dataset of 450 MB is collected from the Inter-
net and used. They carried out multi-class and two-class
perception experiments with 0.45 overall accuracy which
is quite modest. The results indicate that ZIP files were
classified with only 18% accuracy while HTML and JPEG
files came out with 98% accuracy.

Karresand et al. (2006b) introduced Oscar which com-
putes the divergence of the ASCII values in the seam of
two successive bytes as a scale of change to classify file
types. As far as is know, Oscar only outperforms well on
JPG file types. Representing the mean and standard devi-
ation of the byte frequency distribution of distinct file
types, called Centroids, is the fundamental base for the
Oscar approach. A weighted quadratic distance metric
is assigned with the distance between the centroid and
sample data fragments. When the distance falls below
a threshold, the sample is classified as possibly associ-
ated with the modeled file type. Besides, Li et al. (2005)
extract a 1-gram binary distribution for file fragment
classification on files gathered from the Internet utiliz-
ing a general search of a file type on Google. Results are
promising when they are realized by using a one-centroid
and multi-centroid file-type model. Ultimately, McDaniel
et al. (2003) proposed a file fingerprint for file type detec-
tion. They extract the byte frequency analysis, byte fre-
quency correlation, and file header/trailer information to
produce the file fingerprint.

Artificial intelligence (AI) based approaches
AI-based file fragment classification approaches have
been emerging recently. In Ghaleb et al. (2023), Ghaleb
et al. use convolutional neural networks (CNN) with
an accuracy of 79%. Lie et al. (2023) also use CNN for
file fragment classification using bit shift and n-Gram
embeddings. Recurrent and convolutional neural net-
works (RCNN) have established that ByteCRNN resulted
with 71.1% average accuracy on 512-byte fragments and
83.9% average accuracy on 4096-byte fragments (Skračić
et al. 2023). Zhu et al. (2023) also used CNN along
with LSTM that achieved an average accuracy of 66.5%
and 78.6% for 512-byte and 4096-byte file fragments,
respectively.

Haque et al. (2022) introduced a model that broad-
ens Word2Vec and Doc2Vec embeddings to bytes and
fragments. The Byte2Vec name is given to this model.
4096 bytes fragment sizes are separated from each file.
Byte2Vec embeddings are used to vectorize these frag-
ments. The k-nearest neighbor classification is applied
afterward. Byte2Vev models achieved an accuracy of 72%
and a TPR of 72% during the tests.

Bhatt et al. (2020) introduced a hierarchical machine-
learning-based model for file fragment classification.
SVM is used as a base classifier. Entropy and bigram dis-
tribution, hamming weight, mean byte value, etc., a total
of ten features, are extracted from each fragment. The
proposed approach with the SVM model achieved an
accuracy of 67.78% and a TPR of 67%.

Chen et al. (2018) introduced an approach. At first, a
fragment is turned into a grayscale image for extract-
ing high-dimensional features. Afterward, a convolution
neural network model is used for the classification of
fragments. Experiments on models showed an accuracy
of 70.9%.

Wang et al. (2018) leveraged sparse coding as auto-
matic feature extraction. Features corresponding to how
well these can be used to reconstruct the original data
are extracted by sparse coding. Based on this principle, a
continuous sequence of bytes (n-grams) of distinct sizes
is used, and the method showed an accuracy of 61.31%
and a TPR of 60.99%.

Only special types of fragments are classified by the
majority of the previous studies, such as graphic types
(JPG, GIF, PNG, etc.). However, a few of the applied
approaches do not perform well for high entropy frag-
ments, as they do not have apparent patterns to attain.
The approach proposed in this study does not have such
constraints because of lossless feature extraction and
application of XAI techniques, LIME and SHAP, for
selecting important and relevant features that make it
feasible to successfully classify different fragment types
but a few.

XAI in CF
A detailed review on research works that have used XAI
to explain the predictions of an AI model in CF is pre-
sented in Alam and Altiparmak (2024). Here we present
and discuss few of these recent works.

Afzaliseresht et al. (2019) present an XAI model for
analyzing security event logs, which can be used dur-
ing forensics investigation of security events. After min-
ing temporal patterns to discover sequential events from
a log file, storeytelling is used to present this sequence
of events in a human readable format. This reduces the
efforts of humans to interpret events.

Mahajan et al. (2021) use LIME to interpret and eval-
uate AI models for toxic comment classification. The
experiments and results concluded that XAI techniques
such as LIME are important in selecting the best model.

Jayakumar et al. (2022) present a method to enhance
the interpretability of deepfake detection models.
The method visually explains why a deppfake detec-
tion model classifies a video as a deepfake. This plays a

Page 21 of 23Alam and Demir Cybersecurity (2024) 7:52

crucial role in the decision-making process of juries in
CF investigations.

Hall et al. (2022) evaluate and interpret different AI
models using LIME. These models were trained to clas-
sify file types. After classification the results were input
to LIME for explanation. Most of the time LIME was able
to explain the classification results but sometime failed
because of the feature interaction. Here LIME is used to
explain the classification results, whereas we have used
LIME and SHAP to optimize classification.

Bouter et al. (2023) propose a method for visualizing
and interpreting predictions of deepfake video data for
forensic analysis. This method allows a forensic analyst
to intuitively interact with the model and hence helps
the analyst thoroughly explain and evaluate the model.
This aids the analyst in making a decision if the video is
manipulated or not. The explanation about this decision
can be presented in a court of law as a piece of trustwor-
thy evidence.

Limitations and future work
Computer files are often embedded with other files, such
as images, PNG and JPG, etc., embedded in PDF and
PPT file types. Some fragments (image type) of these
files will be classified as the other Class (image). In this
case, sometimes SIFT is not able to correctly identify
these fragment types. In the future, we will look into the
respective LIME and SHAP values and specific inter-
pretations of the (MLP) model to know the reasons why
there is a decline and then improve such predictions.

The number distributions of different types of files are
not the same in GovDocs, for example, when the num-
ber of files is very small, it will affect the accuracy of the
final classification results. This paper does not optimize
the dataset itself. Therefore, the bias may affect the accu-
racy of our model. In future work, we can focus on the
optimization of datasets and models to further improve
classification accuracy.

When applying the XAI techniques, LIME and SHAP,
we only used their local interpretations, i.e., local fea-
ture relevance values. In the future, we would like to
apply global interpretations provided by some of the XAI
techniques to improve the overall results and especially
improve the multinomial classification issue.

To explore the real world impact of our research, as a
future work we will implement the proposed technique
in this paper as part of a tool that provides a complete file
recovery. To test the scalability of SIFT in future we will
evaluate SIFT with a much larger dataset.

Conclusion
File carving is the practice of repairing damaged files
on a storage media in part or whole without any filesys-
tem information. An essential issue in file carving is the
recognition of file fragment types. In this paper, we pro-
pose a novel file fragment type identification method
based on the TF-IDF technique to assign a weight for
each byte (feature) to select important features in a frag-
ment. We used 512-byte segments. Then, we investi-
gated three multinomial classifiers, namely Naive Bayes,
Decision Tree, and Random Forest, to evaluate the per-
formance on a popular and publicly available dataset by
10-fold cross-validation in terms of TPR, FPR, Precision,
F-measure, and AUC metrics. Among these classifiers,
Random Forest performs the best with our novel feature
selection technique.

In this paper, we presented a novel sifting file types
method, called SIFT. SIFT analyzed a total of 47,482
low-level binary file fragments belonging to 20 file types
(classes). Our experimental results show that SIFT
reaches a TPR of 82.1%. Compared to other state-of-the-
art methods presented in Haque and Tozal (2022), Bhatt
et al. (2020) and Wang et al. (2018) where they select
their samples from the same dataset (Garfinkel 2024) as
used in this paper, SIFT outperforms by 10–19%.

Acknowledgements
Not applicable.

Author contributions
Shahid Alam: idea development; system design, implementation, and testing;
writing and editing of the paper. Alper Kamil Demir: background and literature
review; writing and editing of the paper.

Funding
None.

Availability of data and materials
The dataset used in the paper is publicly available in Garfinkel (2024).

Declarations

Competing interests
The authors declare no potential competing interests.

Received: 2 January 2024 Accepted: 10 April 2024

References
Adadi A, Berrada M (2018) Peeking inside the black-box: a survey on explain-

able artificial intelligence (XAI). IEEE Access 6:52138–52160
AfzaliSeresht N, Liu Q, Miao Y (2019) An explainable intelligence model for

security event analysis. In: AI 2019: Advances in Artificial Intelligence:
32nd Australasian Joint Conference, Adelaide, SA, Australia, December
2–5, 2019, Proceedings 32, Springer, pp 315–327

Page 22 of 23Alam and Demir Cybersecurity (2024) 7:52

Alam S (2022) Cyber Security: Past Present and Future. Lambert Academic
Publishing, London, UK

Alam S (2023) Sift—file fragment classification without metadata. In: 3rd
International Conference on Computing and Information Technology
(ICCIT), IEEE, pp 123–129

Alam S, Altiparmak Z (2024) XAI-CF–Examining the role of explainable artificial
intelligence in cyber forensics. arXiv preprint arXiv: 2402: 02452

Ali S, Abuhmed T, El-Sappagh S et al (2023) Explainable artificial intelligence
(xai): what we know and what is left to attain trustworthy artificial intel-
ligence. Inform Fus 99:101805

Axelsson S (2010) The normalised compression distance as a file fragment
classifier. Digit Investig 7:S24–S31

Beebe N, Liu L, Sun M (2016) Data type classification: Hierarchical class-to-type
modeling. In: IFIP International Conference on Digital Forensics, Springer,
pp 325–343

Beebe NL, Maddox LA, Liu L et al (2013) Sceadan: using concatenated n-gram
vectors for improved file and data type classification. IEEE Trans Inf Foren-
sics Secur 8(9):1519–1530

Bhatt M, Mishra A, Kabir MWU et al (2020) Hierarchy-based file fragment clas-
sification. Mach Learn Knowled Extract 2(3):216–232

Boiko M, Moskalenko V, Shovkoplias O (2023) Advanced file carving: ontology,
models and methods. Radioelectron Comput Syst 1(3):204–216

Bouter MdLd, Pardo JL, Geradts Z, et al (2023) Protoexplorer: Interpretable
forensic analysis of deepfake videos using prototype exploration and
refinement. arXiv preprint arXiv: 2309: 11155

Breitinger F, Stivaktakis G, Baier H (2013) Frash: a framework to test algorithms
of similarity hashing. Digit Investig 10:S50–S58

Calhoun WC, Coles D (2008) Predicting the types of file fragments. Digit
Investig 5:S14–S20

Capuano N, Fenza G, Loia V et al (2022) Explainable artificial intelligence in
cybersecurity: a survey. IEEE Access 10:93575–93600

Catanzaro B, Sundaram N, Keutzer K (2008) Fast support vector machine train-
ing and classification on graphics processors. In: Proceedings of the 25th
international conference on Machine learning, ACM, pp 104–111

Chen Q, Liao Q, Jiang ZL, et al (2018) File fragment classification using gray-
scale image conversion and deep learning in digital forensics. In: 2018
IEEE Security and Privacy Workshops (SPW), IEEE, pp 140–147

Chisum WJ, Turvey B (2000) Evidence dynamics: Locard’s exchange principle &
crime reconstruction. J Behav Profil 1(1):1–15

Conti G, Bratus S, Shubina A et al (2010) A visual study of primitive binary frag-
ment types. White Paper, Black Hat USA

Conti G, Bratus S, Shubina A et al (2010) Automated mapping of large binary
objects using primitive fragment type classification. Digit Investig
7:S3–S12

Dandass YS, Necaise NJ, Thomas SR (2008) An empirical analysis of disk sector
hashes for data carving. J Digit Forensic Pract 2(2):95–104

Dhanalakshmi R, Chellappan C (2009) File format identification and informa-
tion extraction. In: 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), IEEE, pp 1497–1501

Dunsin D, Ghanem MC, Ouazzane K, et al (2023) A comprehensive analysis of
the role of artificial intelligence and machine learning in modern digital
forensics and incident response. arXiv preprint arXiv: 2309: 07064

Fawcett T (2006) An Introduction to ROC Analysis. Pattern Recogn Lett
27(8):861–874

Fitzgerald S, Mathews G, Morris C et al (2012) Using nlp techniques for file
fragment classification. Digit Investig 9:S44–S49

Garfinkel S (2024) GovDocs. Digital Corpora, http:// downl oads. digit alcor pora.
org/ corpo ra/ files/ govdo cs1

Garfinkel S, Nelson A, White D et al (2010) Using purpose-built functions and
block hashes to enable small block and sub-file forensics. Digit Investig
7:S13–S23

Garfinkel SL (2006) Forensic feature extraction and cross-drive analysis. Digit
Investig 3:71–81

Garfinkel SL, McCarrin M (2015) Hash-based carving: Searching media for
complete files and file fragments with sector hashing and hashdb. Digit
Investig 14:S95–S105

Ghaleb M, Saaim K, Felemban M, et al (2023) File fragment classification using
light-weight convolutional neural networks. arXiv preprint arXiv: 2305:
00656

Górriz J, Álvarez-Illán I, Álvarez-Marquina A et al (2023) Computational
approaches to explainable artificial intelligence: advances in theory,
applications and trends. Inform Fus 100:101945

Hall SW, Sakzad A, Minagar S (2022) A proof of concept implementation of
explainable artificial intelligence (xai) in digital forensics. In: International
Conference on Network and System Security, Springer, pp 66–85

Haque ME, Tozal ME (2022) Byte embeddings for file fragment classification.
Futur Gener Comput Syst 127:448–461

Hassija V, Chamola V, Mahapatra A, et al (2023) Interpreting black-box models:
a review on explainable artificial intelligence. Cogn Comput pp 1–30

Heidari E, Sobati MA, Movahedirad S (2016) Accurate prediction of nanofluid
viscosity using a multilayer perceptron artificial neural network (mlp-
ann). Chemom Intell Lab Syst 155:73–85

Hinton G, Srivastava N, Swersky K (2012) Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on 14(8):2

Hoffman RR, Mueller ST, Klein G et al (2023) Measures for explainable ai: expla-
nation goodness, user satisfaction, mental models, curiosity, trust, and
human-ai performance. Front Comput Sci 5:1096257

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are
universal approximators. Neural Netw 2(5):359–366

Islam MR, Ahmed MU, Barua S et al (2022) A systematic review of explainable
artificial intelligence in terms of different application domains and tasks.
Appl Sci 12(3):1353

Jayakumar K, Skandhakumar N (2022) A visually interpretable forensic deep-
fake detection tool using anchors. In: 2022 7th international conference
on information technology research (ICITR), IEEE, pp 1–6

Kaplan AD, Kessler TT, Brill JC et al (2023) Trust in artificial intelligence: meta-
analytic findings. Hum Factors 65(2):337–359

Karresand M, Shahmehri N (2006a) File type identification of data fragments
by their binary structure. In: Proceedings of the IEEE Information Assur-
ance Workshop, IEEE, pp 140–147

Karresand M, Shahmehri N (2006b) Oscar–file type identification of binary data
in disk clusters and ram pages. In: IFIP International Information Security
Conference, Springer, pp 413–424

Kaur D, Uslu S, Rittichier KJ et al (2022) Trustworthy artificial intelligence: a
review. ACM Comput Surv 55(2):1–38

Langer M, König CJ, Back C et al (2023) Trust in artificial intelligence: compar-
ing trust processes between human and automated trustees in light of
unfair bias. J Bus Psychol 38(3):493–508

Leichtmann B, Humer C, Hinterreiter A et al (2023) Effects of explainable artifi-
cial intelligence on trust and human behavior in a high-risk decision task.
Comput Hum Behav 139:107539

Li Q, Ong A, Suganthan P, et al (2011) A novel support vector machine
approach to high entropy data fragment classification. In: Proceedings of
the South African Information Security Multi-Conf (SAISMC), University of
Plymouth, pp 236–247

Li WJ, Wang K, Stolfo SJ, et al (2005) Fileprints: Identifying file types by n-gram
analysis. In: Proceedings from the Sixth Annual IEEE SMC Information
Assurance Workshop, IEEE, pp 64–71

Lillis D, Breitinger F, Scanlon M (2017) Expediting mrsh-v2 approximate match-
ing with hierarchical bloom filter trees. In: International Conference on
Digital Forensics and Cyber Crime, Springer, pp 144–157

Liu W, Wang Y, Wu K, et al (2023) A byte sequence is worth an image: Cnn for
file fragment classification using bit shift and n-gram embeddings. arXiv
preprint arXiv: 2304: 06983

Lundberg SM, Lee SI (2017) A unified approach to interpreting model predic-
tions. Adv Neural Inform Process Syst. 30

Mahajan A, Shah D, Jafar G (2021) Explainable ai approach towards toxic
comment classification. In: Emerging Technologies in Data Mining and
Information Security: Proceedings of IEMIS 2020, Volume 2, Springer, pp
849–858

Manning C, Raghavan P, Schütze H (2010) Introduction to information retrieval.
Nat Lang Eng 16(1):100–103

McDaniel M, Heydari MH (2003) Content based file type detection algorithms.
In: 36th Annual Hawaii international conference on system sciences,
2003. Proceedings of the, IEEE, pp 10–pp

Mittal G, Korus P, Memon N (2020) Fifty: large-scale file fragment type identifi-
cation using convolutional neural networks. IEEE Trans Inf Forensics Secur
16:28–41

Păvăloaia VD, Necula SC (2023) Artificial intelligence as a disruptive technol-
ogy–a systematic literature review. Electronics 12(5):1102

http://arxiv.org/abs/2402:02452
http://arxiv.org/abs/2309:11155
http://arxiv.org/abs/2309:07064
http://downloads.digitalcorpora.org/corpora/files/govdocs1
http://downloads.digitalcorpora.org/corpora/files/govdocs1
http://arxiv.org/abs/2305:00656
http://arxiv.org/abs/2305:00656
http://arxiv.org/abs/2304:06983

Page 23 of 23Alam and Demir Cybersecurity (2024) 7:52

Penrose P, Macfarlane R, Buchanan WJ (2013) Approaches to the classification
of high entropy file fragments. Digit Investig 10(4):372–384

Ribeiro MT, Singh S, Guestrin C (2016) “Why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, ACM,
pp 1135–1144

Roussev V, Quates C (2012) Content triage with similarity digests: The m57
case study. Digit Investig 9:S60–S68

Saeed W, Omlin C (2023) Explainable ai (xai): a systematic meta-survey of cur-
rent challenges and future opportunities. Knowl-Based Syst 263:110273

Saxena I, Usha G, Vinoth N, et al (2023) The future of artificial intelligence in
digital forensics: A revolutionary approach. In: Artificial Intelligence and
Blockchain in Digital Forensics. River Publishers, pp 133–151

Schwalbe G, Finzel B (2023) A comprehensive taxonomy for explainable
artificial intelligence: a systematic survey of surveys on methods and
concepts. Data Mining and Knowledge Discovery pp 1–59

Sester J, Hayes D, Scanlon M et al (2021) A comparative study of support vec-
tor machine and neural networks for file type identification using n-gram
analysis. Forensic Sci Int Digital Investig 36:301121

Skračić K, Petrović J, Pale P (2023) Bytercnn: Enhancing file fragment type iden-
tification with recurrent and convolutional neural networks. IEEE Access

Sparck Jones K (1972) A statistical interpretation of term specificity and its
application in retrieval. J Document 28(1):11–21

Sportiello L, Zanero S (2011) File block classification by support vector
machine. In: 2011 Sixth international conference on availability, reliability
and security, IEEE, pp 307–312

Sportiello L, Zanero S (2012) Context-based file block classification. In: IFIP
international conference on digital forensics, Springer, pp 67–82

Thi NN, Cao VL, Le-Khac NA (2017) One-class collective anomaly detection
based on lstm-rnns. In: Transactions on Large-Scale Data-and Knowl-
edge-Centered Systems XXXVI, Springer, pp 73–85

TinyOS (2023) Open source operating system designed for low-power wireless
devices. http:// www. tinyos. net/, [Online; 2024/04/13 10:12:31]

Veenman CJ (2007) Statistical disk cluster classification for file carving. In: Third
international symposium on information assurance and security, IEEE, pp
393–398

Vilone G, Longo L (2021) Notions of explainability and evaluation approaches
for explainable artificial intelligence. Inform Fus 76:89–106

Wang F, Quach TT, Wheeler J et al (2018) Sparse coding for n-gram feature
extraction and training for file fragment classification. IEEE Trans Inf
Forensics Secur 13(10):2553–2562

Xu T, Xu M, Ren Y et al (2014) A file fragment classification method based on
grayscale image. J Comput 9(8):1863–1870

Zhu N, Liu Y, Wang K, et al (2023) File fragment type identification based on
cnn and lstm. In: Proceedings of the 2023 7th International Conference
on Digital Signal Processing, pp 16–22

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.tinyos.net/

	SIFT: Sifting file types—application of explainable artificial intelligence in cyber forensics
	Abstract
	Introduction and motivation
	Background
	Explainable artificial intelligence (XAI)
	Cyber forensics (CF)
	File system
	File carving
	File fragment classification
	Fragment classification challenges
	Term frequency and inverse document frequency (TF-IDF)

	SIFT—system overview
	Preprocessing and feature extraction
	Feature selection
	XAI—feature relevance
	LIME and SHAP feature relevance values

	XAI—threshold-based feature relevance
	Multinomial classification with deep learning

	Empirical evaluation
	Dataset
	Evaluation metrics
	Empirical study and results
	Threshold based LIME and SHAP feature relevance values
	Neural networks hyperparameters
	Performance evaluation of SIFT

	Analysis
	Comparison with other works

	Related work
	Signature based approaches
	Statistical approaches
	Artificial intelligence (AI) based approaches
	XAI in CF

	Limitations and future work
	Conclusion
	Acknowledgements
	References

