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Abstract 

Artificial Intelligence (AI) is being applied to improve the efficiency of software systems used in various domains, 
especially in the health and forensic sciences. Explainable AI (XAI) is one of the fields of AI that interprets and explains 
the methods used in AI. One of the techniques used in XAI to provide such interpretations is by computing the rel-
evance of the input features to the output of an AI model. File fragment classification is one of the vital issues of file 
carving in Cyber Forensics (CF) and becomes challenging when the filesystem metadata is missing. Other major 
challenges it faces are: proliferation of file formats, file embeddings, automation, We leverage and utilize interpretations 
provided by XAI to optimize the classification of file fragments and propose a novel sifting approach, named SIFT 
(Sifting File Types). SIFT employs TF-IDF to assign weight to a byte (feature), which is used to select features from a file 
fragment. Threshold-based LIME and SHAP (the two XAI techniques) feature relevance values are computed 
for the selected features to optimize file fragment classification. To improve multinomial classification, a Multilayer Per-
ceptron model is developed and optimized with five hidden layers, each layer with i × n neurons, where i = the layer 
number and n = the total number of classes in the dataset. When tested with 47,482 samples of 20 file types (classes), 
SIFT achieves a detection rate of 82.1% and outperforms the other state-of-the-art techniques by at least 10%. To 
the best of our knowledge, this is the first effort of applying XAI in CF for optimizing file fragment classification.
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Introduction and motivation
Cyber Forensics (CF) is the science of gathering digital 
testimony to inspect traces of cybercrimes and cyberat-
tacks. File carving is one of the most important processes 
of CF that covers the identification, preservation, and 
extraction of files from intentionally or unintentionally 
corrupted or compromised data storage devices (Boiko 
et  al. 2023). Often, cybercriminals attempt to erase any 
evidence that prosecutes them. For example, they format 

the data storage devices. As a result, in such cases, the 
traditional reconstruction approaches based on file sys-
tem meta-data fail, unfortunately. Cyber investigators 
generally resolve this challenge by file carving that repro-
duces files from data storage devices based on the raw 
content type. The file carving process requires recover-
ing the corrupted file from fragments of raw binary files 
without using meta-data that forms and utilizes the base 
of the file system during routine operation. Thereafter, 
file fragment classification (also known as file fragment 
type identification (Mittal et al. 2020)) is an essential step 
in file carving due to the increasing need for sifting file 
types in the presence of law enforcement investigations 
of data storage devices (Skračić et al. 2023; Ghaleb et al. 
2023; Haque and Tozal 2022).
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The physical and data structure and logical rules to 
store, manage, and retrieve the fragments of raw binary 
data and their file names on a storage device are called 
file systems. To express the files, the file system contains 
meta-data (or meta-information) that provides informa-
tion about the actual data. Therefore, the file system will 
also preserve the physical locations of the file fragments 
on data storage devices. Principally, a file system allocates 
the first several sectors (disc blocks) of a data storage 
device to store the meta-data indicating the overall data 
storage space, file attributes, and their formation. The 
remaining sectors keep the raw binary (real content) of 
the files. A sector is the indivisible physical data unit on 
a data storage device with a typical size of 512 or 4096 
bytes. As a deduction, a file might be spread in fragments 
at distinct sectors having different physical addresses on 
a data storage device.

Due to data storage and file system failures, formatting, 
or erasing the evidence on data storage devices deliber-
ately, the meta-data of a file system may be unavailable 
on a storage device. File carving becomes useful in such 
cases to rescue files on a data storage device in a piece or 
complete without the existence of meta-data. This could 
be achieved by analyzing and classifying the raw binary 
data of file fragments stored and located at sectors of the 
data storage device. After the file fragment types are clas-
sified, ordering and merging the relevant file fragments 
procedure to resurrect the initial file(s) is applied as the 
next step. As a consequence, it is essential to design and 
develop automated methods and tools for accurate file 
fragment classification. In our work, we propose, pre-
sent, evaluate, and detail an AI-based approach, specifi-
cally leveraging a new emerging subdomain of AI, called 
Explainable Artificial Intelligence.

The rise of AI as a disruptive technology has been 
revolutionizing the world recently (Păvăloaia and Nec-
ula 2023). However, AI’s becoming more competent 
and being used in very critical decisions with expressive 
human intervention is increasingly bringing trust issues 
essentially (Kaplan et  al. 2023; Langer et  al. 2023). Nat-
urally, humans are required to understand, reproduce, 
and manipulate the decision-making processes of AI sys-
tems. As a result, there is an increasing need to expose 
the decision-making processes of AI systems so that it 
is more straightforward, understandable, and explain-
able. Correspondingly, Explainable Artificial Intelligence 
(XAI) is a new and prominent research domain intended 
to self-explain the reasoning behind decisions and pre-
dictions of AI systems (Hassija et al. 2023; Ali et al. 2023). 
XAI hopes to help users of AI-powered systems appear 
more understandable and transparent. Traditional AI 
systems seem to be the black box where even the design-
ers can not explain why the AI system provided the 

conclusive decision. Explanation clarifies the decisions 
made by a black-box model where it is more intuitive for 
humans. Moreover, an explanation of the decisions made 
increases the potential reliability of the AI systems for 
final agreement.

Traditionally, XAI involves explaining or interpreting 
the predictions of recently developed Deep Learning (DL) 
models using diverse rule-based and visualization-based 
techniques (Kaur et  al. 2022; Vilone and Longo 2021). 
Thereby, advances in theory, applications, and trends in 
XAI have been discovering and developing computa-
tional approaches in the XAI domain for these AI models 
recently (Górriz et al. 2023). In general, from an explain-
ability point of view, these XAI techniques can be divided 
into three dimensions using a categorization system: (i) 
data explainability, (ii) model explainability, (iii) post-
hoc explainability along with assessment of explanations 
axes (Ali et  al. 2023). Every dimension of elucidating or 
revealing the decision-making mechanisms of AI systems 
plays an important role in explainablity. Data explainabil-
ity compiles and study data to offer insight into that data. 
Model explainability spells out the internal structures 
and running algorithms of the AI systems. On the other 
hand, post-hoc explainability refers to methods used to 
explain the decision of the AI system. For example, post-
hoc explainability illuminates the significant features 
using several kinds of explanation for the outcome of the 
AI model. Furthermore, several assessment methods and 
their suspicions can be used to evaluate the explanations. 
In this study, we utilized two post-hoc explainability 
techniques, namely LIME (Ribeiro et al. 2016) and SHAP 
(Lundberg and Lee 2017) for file fragment classification.

Various post-hoc explainability methods are classi-
fied into six important groups: (i) attribution methods, 
(ii) visualization methods, (iii) example-based explana-
tion methods, (iv) game theory methods, (v) knowledge 
extraction methods, and (vi) neural methods (Ali et  al. 
2023). LIME is a class of attribution methods, whereas 
SHAP is a class of game theory methods. A multitude 
number of attribution methods depends on pixel cor-
poration to investigate which pixel of a training input 
image is relevant from the standpoint of model activat-
ing assuredly in the context of image processing. The 
kind of analysis achieved can be categorized as either a 
local or a global method. Local explainers only explain a 
specific decision whereas global explainers are those that 
give a rationale for the whole datasets (Adadi and Ber-
rada 2018). The major reasons for using LIME and SHAP 
in this paper are that they provide local explanations and 
are model-agnostic.

Most of the previous research on file fragment classi-
fication can be categorized into (i) signature, (ii) statis-
tical, (ii) artificial intelligence (AI), or (iv) hybrid-based 
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landscape (Sester et al. 2021). The file type is related by a 
signature that has unique, individualistic, and evidentiary 
attributes related to a file type. Comparison of known to 
unknown file fragment classification methods are applied 
in signature-based approaches. Statistical techniques 
are leveraged in the second class of approaches by uti-
lizing the characteristic features of the file content. On 
the other hand, AI-based techniques principally utilize 
computational intelligence such as machines and mod-
els. Hybrid-based techniques apply an ensemble of these 
three techniques.

In this study, we urge a novel AI-based file fragment 
classification method. At first, we preprocess the files 
in the dataset to part the file fragments and basic raw 
features of them. Afterward, the Term Frequency and 
Inverse Document Frequency (TF-IDF) (Manning et  al. 
2010) technique is applied for feature selection. Spe-
cifically, each raw feature is designated with a weight 
depending on its TF-IDF, and the features holding posi-
tive weights are chosen. Then we apply two XAI tech-
niques, LIME and SHAP, to gather the most decisive 
(relevant) features among the selected features. Finally, 
these relevant features are used to train and test a Mul-
tilayer Perceptron (MLP) (Hornik et al. 1989) classifier to 
categorize the file fragments into file types. MLP is the 
most common and practical model (Heidari et al. 2016). 
The results show that this approach is feasible and able to 
achieve better outcomes.

The major differences between the techniques explored 
in this paper and other AI-based works (Haque and Tozal 
2022; Bhatt et  al. 2020; Chen et  al. 2018; Wang et  al. 
2018) are (1) Lossless feature extraction. (2) Adaption 
of TF-IDF and two XAI techniques LIME and SHAP to 
estimate inter-Classes and intra-Classes information gain 
of a feature. Given these new revisions, our study har-
vests encouraging results as regards other works. There 
are only two research works (Mahajan et  al. 2021; Hall 
et  al. 2022) that use LIME to explain the predictions of 
an AI model in CF but don’t use such explanation (LIME 
values) to optimize the predictions/classification. To the 
best of our knowledge, this is the first effort of applying 
XAI within CF for optimizing file fragment classification.

The following are the major contributions of this paper:

•	 We propose a novel method, named SIFT, to clas-
sify file fragments in the absence of metadata of the 
filesystem. TF-IDF technique and two XAI tech-
niques, LIME and SHAP, are enriched as a feature 
selection and relevance, and multinomial classifica-
tion with an MLP model is leveraged to train and test 
the effectiveness of SIFT.

•	 We randomly selected 20 file types, from a publicly 
available and more standardized dataset for cyber 

forensics research, and extracted 47,482 samples 
(fragments) from them. To keep the evaluation unbi-
ased we selected 7 files from each file type and chose 
512 bytes as the fragment size. We chose three state-
of-the-art works in this area to compare SIFT with 
them. We observe that SIFT produces promising 
(better) results by at least 10%.

The rest of the paper is organized as follows. Sec-
tion  “Background” gives background information. Sec-
tion  “SIFT—system overview” describes the proposed 
method, SIFT, along with preprocessing, feature extrac-
tion, LIME and SHAP feature relevance, feature selec-
tion, and multinomial classification steps. Empirical 
evaluation with dataset collection, evaluation metrics, 
validation results with discussion, and comparative 
results are presented in Section  “Empirical evaluation”. 
Section  “Related work” details the related work. In Sec-
tion “Limitations and future work”, limitations and future 
work are presented. Finally, Section  “Conclusion” con-
cludes our work.

Background
To make the reader familiar with the research presented 
in this paper here we provide some background on XAI, 
CF and TF-IDF.

Explainable artificial intelligence (XAI)
XAI, a subdomain of AI, targets transforming complex 
black box data, models, and decisions of AI algorithms 
and systems into easily explainable and evaluative nota-
tions and methods (Schwalbe and Finzel 2023; Saeed and 
Omlin 2023; Vilone and Longo 2021). A vast amount of 
techniques to deal with this issue have been proposed, 
developed, and tested, striving to specify the concept of 
explainability and its evaluation. XAI leads the users of 
AI systems to trust. Comprehending and accepting the 
decision process of an AI system is especially important 
in high-risk tasks for humans (Leichtmann et  al. 2023). 
XAI aims to advance the AI literacy of humans. While AI 
literacy is tough to characterize, XAI seeks to describe 
the complex construct of AI systems by investigating 
various computational methods to satisfy the cognitive 
abilities of humans. While developing explainable meth-
ods, it is also important to involve techniques to measure 
goodness, satisfaction, mental models, curiosity, trust, 
and human-AI performance in the context of XAI (Hoff-
man et al. 2023). In brief, XAI explores methods that can 
provide clear, verifiable, and trustworthy explanations 
of decision-making processes of AI systems, bringing 
experts from various disciplines, including computer sci-
ence, psychology, philosophy, and ethics.
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Recently, XAI has been penetrating various application 
domains and tasks of AI systems (Islam et al. 2022). Cyber 
security is also one of the promising application domains 
of XAIs (Capuano et al. 2022). Application of XAI in the 
cyber security field broadly ranges from Intrusion Detec-
tion Systems to Malware detection, Phishing and Spam 
detection, botnet detection, Fraud detection, Zero-Day 
vulnerabilities, Digital Forensics, CryptoJacking, etc. A 
fresh field of Cyber security that requires exposing the 
XAI is file carving (Saxena et al. 2023; Dunsin et al. 2023). 
File fragment classification is one of the most important 
steps of file carving. Therefore, we study the application 
of XAI to file fragment classification problems of Cyber 
security with LIME and SHAP techniques of the XAI, 
freshly minted. To the best of our knowledge, this is the 
first initial study in the literature for such a problem.

LIME first generates a dataset of perturbed data points, 
then calculates the sample weights using a kernel func-
tion and a distance function to calculate how far the 
sampled points are from the original point. It then uses a 
surrogate model (interpretable model) on the perturbed 
dataset using the sample weights. This trained model is 
then used to provide explanations (including LIME val-
ues) for each instance.

SHAP calculates the Shapley values for each feature of 
the dataset used to train and test the AI model that is to 
be interpreted. These values represent the impact of the 
feature in generating the prediction/output delivered by 
the AI model. Shapley values borrow the concept of the 
game theory field where the objective of the values is 
the contribution of each player to the game. One of the 
explainers available in SHAP is the TreeExplainer which 
is being used in SIFT. The TreeExplainer takes as an input 
a tree model such as RandomForest and DecisionTree 
etc, and uses the conditional expectation to estimate the 
effects and computes the Shapley values.

Cyber forensics (CF)
Every contact by a perpetrator leaves behind traces 
(Chisum and Turvey 2000). To make a case against the 
perpetrator these traces or pieces of evidence need to be 
found, collected, secured, studied, and analyzed. Cyber 
forensics (CF) (Alam 2022) uses scientific methods and 

expertise to gather and analyze pieces of evidence found 
in cyber devices that can be used in criminal or other 
investigations in a court of law. This evidence can be used 
for different purposes, such as electronic discovery, intelli-
gence, and administrative. For example, the data collected 
from cyber devices can provide actionable intelligence. 
This intelligence can help accomplish different types of 
missions, such as securing national interests, decreasing 
or eliminating crimes like kidnapping and child exploita-
tion, etc. Electronic discovery is the process of searching, 
finding, and securing any electronic data later to be used 
in a civil or criminal forensic case.

File system
A storage media or device stores information as blocks 
of raw data (bytes). There is no particular organization or 
access control to this raw data. A block or sector is the 
smallest storage unit on a device with a typical size of 512 
or 4096 bytes. Filesystem organizes this raw data into files 
and folders for ease of management, storage, and retrieval 
of information. The first few sectors of a file: contain 
meta information, such as owner, size access rights, and 
creation time about files, and keep information about the 
overall storage space, files, and organization. The remain-
ing sectors store the actual content of the files. A gener-
ally high-level structure of a storage device is shown in 
Fig.  1. The boot block mostly contains the information 
to boot the device. A superblock is the metadata reposi-
tory. File system data structures keep information about 
the files and their data blocks. Data blocks contain the 
actual contents of the files. It is not necessary for data 
blocks belonging to a file to be contiguous. For example, 
the first two blocks of a.pdf are followed by one block 
of b.png, an unused block, one block of a.pdf, and one 
block of a.png, and so on.

File carving
In cyber forensics File Carving (Alam 2022) is the pro-
cess of mining and extracting files from a storage device. 
In general, files are present in the form of raw bytes, i.e., 
there is no metadata information available about the files, 
and the filesystem that created the files is damaged. A 
file is generally identified by the header. A fragmented 

Fig. 1  High-level structure of a storage device
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file is much more difficult to extract than a continuous 
file. A file is stored and retrieved as blocks (fragments – 
can be of size 512 or 4096 bytes) of raw bytes. To make 
files portable across different platforms files are encoded 
in standard formats. For example, a PNG file type stores 
bitmap images using lossless compression. To success-
fully extract a file from a storage device it is necessary to 
identify the fragment types of the file. After the fragment 
types are identified, the next step is to reconstruct the file 
by properly merging the fragments.

File fragment classification
The main focus of the research done in this paper is to 
assist File Carving by successfully identifying fragment 
types of the file, also called File Fragment Classification. 
Every file is encoded in a standard format or type, such 
as DOC, HTML, PDF, SWF, PNG, GIF, XML, etc. The 
type of a fragment extracted from a file is the same as the 
type of the file. The problem of fragment classification is: 
to successfully classify a fragment out of several different 
types (classes) of fragments. This is the first and foremost 
step during file carving. There are different methods used 
for fragment classification, including signature-based 
(McDaniel and Heydari 2003; Thi et  al. 2017; Garfin-
kel 2006; Garfinkel et  al. 2010; Garfinkel and McCarrin 
2015), statistical (McDaniel and Heydari 2003; Dhanalak-
shmi and Chellappan 2009; Beebe et  al. 2016), machine 
learning (Axelsson 2010; Conti et al. 2010b; Li et al. 2011; 
Veenman 2007; Conti et al. 2010a; Bhatt et al. 2020), and 
image-based (Xu et al. 2014).

Fragment classification challenges
Classifying a file fragment successfully is a challenging 
task because of the following reasons. 

1.	 Missing Metadata—A filesystem contains metadata 
that expresses the actual filesystem and contains 
information about the location of fragments and 
attributes of each file, etc. If this metadata is missing 
due to damage to the device or format operations, 
then it becomes challenging to recover files on a stor-
age device for forensics analysis.

2.	 Proliferation of file formats—Too many file types 
(each type is taken as a class) make it difficult to clas-
sify and lead to a multinomial classification problem. 
It becomes difficult to put a lower and upper bound 
for distances between classes required for success-
ful feature selection and classification with a given 
accuracy. Class imbalance problem arises when data 
across the classes are imbalanced. This problem is 

aggravated when carrying out multinomial classifica-
tion.

3.	 File embeddings—An image is generally first com-
pressed and then stored. Therefore, part (block) of 
a zipped (compressed) file may contain similar pat-
terns as an image file, especially if they are using the 
same compression types. During classification, this 
may make block(s) of a zipped file get detected/clas-
sified as an image file type and vice versa. SWF is an 
Adobe file format and may contain images to create 
animations. Such file types may also contain simi-
lar patterns as an image file and hence a block of an 
SWF file may get detected as a block from an image 
file and vice versa. The same is true for PDF and PPT 
(Microsoft PowerPoint) file types containing embed-
ded images.

4.	 Automation—A digital forensic and incidence 
response professional can look through (using a hex 
editor) a piece of binary data and identify the type 
of data it carries. This requires experience which 
can be very helpful in various forensic tasks, such as 
decoding memory dumps, reverse engineering mal-
ware, data recovery, and so on. The main problem 
with manual examination is that it does not scale. 
Therefore, we need automated tools to perform frag-
ment classification. Such a tool: should be accurate; 
and fast enough to handle large data; the error rates 
should be reliable; and should produce clear results.

Term frequency and inverse document frequency (TF‑IDF)
Term Frequency (TF) is the relative frequency of a term 
in a document. Inverse Document Frequency (IDF) is the 
measure of the commonality or rarity of a term across all 
documents. The product of TF and IDF is used to assign 
weight to the term. This weight indicates the importance 
of the term in the corpus (set of documents). In informa-
tion retrieval TF-IDF measures how important a term is 
inside a document with respect to a corpus.

The TF-IDF algorithm was first proposed by Sparck 
(1972) and consists of the following three items.

•	 TF(t, d) → number of times the term t occurs in 
document d

•	 N → total number of documents in a given corpus D
•	 DF(t) → number of documents containing the term 

t

The TF-IDF of the term t is computed as

TF − IDF(t, d,D) = TF(t, d)× IDF(t,D)
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and

As an example usage, for identifying keywords we take 
into account not only how many times a keyword occurs 
in a document but also how frequently the keyword 
occurs in other documents in a corpus. For retrieving 
keywords, we can use the above algorithm by selecting 
the keyword t with the largest value of TF-IDF in a given 
corpus D. In the next iteration, we select the keyword 
with the next largest value of TF-IDF and so on.

SIFT—system overview
SIFT extracts fragments from the dataset with their raw 
features. These features are then sifted through to select 
the most important features. Sifting examines thoroughly 
to isolate the most important features by using statisti-
cal and XAI techniques. TF-IDF is used to assign weight 
to each feature according to its importance. Two of the 
popular techniques of XAI, SHAP, and LIME, are used to 
find the most relevant features. These weighted and rel-
evant features are then used by a classifier to classify the 

IDF(t,D) = log
N

DF(t)

file types of the fragments. Figure  2 shows a high-level 
component overview of the proposed system SIFT. The 
following sections further explain each of these compo-
nents in detail.

Preprocessing and feature extraction
SIFT first reads each file in a dataset and then preproc-
esses the file as follows. It excludes files with size < 2 
× fragment size and also removes the duplicate files. 
After this fragments are extracted at the byte level from 
each file. Each fragment is of the same size S. To cater 
to resource-constrained devices such as embedded sys-
tems and IoT, S can vary from 25–212 = { 32, 64, 128, 
256, 512, 1024, 2048, 4096 }. These devices generally 
store information in a flash ROM whose size is in the 
kilobyte range. The data from this flash ROM is trans-
mitted to the edge/gateway/cloud to be stored for later 
use. The sector sizes of the filesystem, e.g., FAT 12/16—
TinyOS (TinyOS 2023), for these flash ROMs typically 
range from 32–128 bytes.

Figure  3 shows an example of a fragment extracted 
from one of the dataset files used in this paper. The left 
column shows the address/location (in decimal), and 

Fig. 2  Overview of the proposed system SIFT
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the right column shows the byte value stored in hex. 
The size of the fragment shown in Fig. 3 is 4096–4608 
= 512 bytes. There are only 256 different values at the 
byte level. Therefore, the byte value ranges from 0 ×00–
0×FF. A total of S number of raw features are extracted 
for each fragment in a file. The first fragment contains 
the header information that identifies the file type, 
therefore SIFT excludes the first fragment of a file. The 

last fragment of a file may be of a different size. This 
last fragment is filled with bytes from a randomly cho-
sen fragment of the file as shown in Fig. 4. This way we 
make sure that all the fragments of all the files are of 
equal size. These steps for extracting raw fragments 
from a list of files (dataset) are listed in Algorithms  1 
and 2. Equation  1 formally defines this set of raw 
fragments.

Algorithm 1  Algorithm for extracting fragments from a list of files.

Fig. 3  Example of a fragment, of size = 512 bytes, extracted from one of the dataset files used in this paper

Fig. 4  Fragment extraction. As an example, there are 9 fragments of a file shown here. 8 are complete, whereas the last one is a partial fragment, 
filled to make it complete
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Algorithm 2  Algorithm for extracting fragments from a file.

We define a fragment of bytes as f = { b1 , b2 , b3,..., bS }, 
where S is the size of the fragment. Let M = { m1 , m2 , m3

,..., mN }: where N = number of files in a dataset; and ma 
is the number of fragments extracted from file a. A file in 
a dataset (set of files) is defined as file = { f1 , f2 , f3,..., fm }, 
where m ∈ M . Then, we define the set of fragments with 
extracted (raw) features F from a dataset as follows.

where fij is the jth fragment extracted from the ith file. 
We add an extra byte i at the end of each fragment to use 
as the Class (file type) label.

Feature selection
As shown in Fig. 3 a fragment of size S consists of S num-
ber of bytes whose value ranges from 0 ×00–0×FF. There-
fore, for a fragment, we select a total of 256 features, and 
a weight is assigned to each of these bytes according to 
their importance in the fragment.

Term Frequency and Inverse Document Frequency 
(TF-IDF) (Manning et  al. 2010) is often considered an 
empirical method in data mining to separate relevant fea-
tures in a set of data. TF-IDF computes the information 

(1)F =

N

i=1

m∈M

j=1

{fij , i}

gain of a term (in our case a byte) weighted by its occur-
rence of probability. We explain in the following, how we 
adopt the TF-IDF weighting method and assign weight 
to a byte (feature). We define TF-IDF of a byte bj ∈ f  as 
follows:

where, fbj is the number of times (frequency) byte bj 
appears in a fragment f; and Kj is the number of all the 
fragments with bj in it.

Based on these definitions, we assign weight to a byte 
bj as follows:

We build a vector of the fragments with selected features 
FS in the form of a matrix as follows.

The weight Wj ranges from 0–1. We only keep bj if 
Wj > 0 . For example, we noticed that the byte 0 × FB 
occurs several times in many fragments of type (Class) 

TFj =
fbj

R
and IDFj = log

(

∑N
n=1mn

Kj

)

(2)Wj = TFj × IDFj

(3)FS =

N
�

i=1

S+1
�

j=1







Wj ifWj > 0
0 otherwise
i if j = S + 1
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EPS, in the dataset used in this paper. A total of 20 
Classes are part of the dataset used in this paper and 
are listed in Table  1. The byte 0 × FB gets a score > 0.98 
for Class EPS and mostly 0 or < 0.25 for the rest of the 
Classes. Similarly, the byte 0 × 30 gets a score > 0.98 for 
the Classes EPS, PS, and PDF, and mostly 0 or < 0.30 for 
the rest of the Classes. This indicates that the feature 
selection scheme we presented in Eq. 3 has the potential 
of successfully separating important features from the 
raw features computed in Eq. 1. This in turn helps a clas-
sifier correctly predict the Class (file type) of a fragment.

XAI—feature relevance
XAI is one of the branches of AI that interprets and 
explains the methods used in AI. One of the techniques 
used in XAI to provide such interpretations is by com-
puting the relevance of the input features to the output 
of an AI model. SIFT uses LIME and SHAP, two pop-
ular XAI model-agnostic techniques to compute the 
relevance of input features to its output. Being model-
agnostic, SHAP and LIME need to be initialized with 
the training and testing data. This training and testing 
data should be chosen from the dataset that is to be 
used to train and test the model of SIFT. We can either 
use the whole dataset or choose a part that is chosen 
randomly from the whole dataset.

LIME and SHAP feature relevance values
We initialize LIME with the following parameters: 
training data; testing data; features; class names; and 
Ridge Regression the interpretable model to be used 
as a surrogate. We initialize SHAP with the following 
parameters: training data; testing data; and Random-
Forest as the ensemble tree model. Then we use LIME 
and SHAP to compute the relevance value RV of a fea-
ture f, i.e., RVf  for each sample in the testing data. We 
compute the mean relevance value (also called LIME 
and SHAP value in this paper) LV (LIME value) and SV 
(SHAP value) of each feature f for a class c in the testing 
data as follows.

and

where NS = number of samples in class c and RVf ,n is the 
relevance value of feature f in sample n.

LVf ,c =

∑NS
n=1 RVf ,n

NS

SVf ,c =

∑NS
n=1 RVf ,n

NS

Similarly, the LIME (LVs) and SHAP (SVs) values are 
computed for each feature in all the classes (in this paper 
for 20 classes) in the testing data as follows.

and

where NF = number of selected input features in the 
dataset and NC = number of classes in the dataset.

XAI—threshold‑based feature relevance
The LIME and SHAP feature relevance values computed 
above are used to remove non-relevance features from 
the dataset based on a threshold. For each of the LIME 
and SHAP values separate thresholds, Tlime and Tshap 
respectively, are computed. The motivation behind these 
threshold values is to mark irrelevant features from the 
selected features and obtain the most relevant features 
for the dataset. Another motivation is to reduce the 
number of features and improve the computing time of 
the classification, which in the case of DL is a substan-
tial improvement. These two thresholds are computed as 
follows.

We randomly choose a subset (part) of the dataset 
that we call D to compute the LIME and SHAP feature 
relevance values using the Eqs. 4 and 5. The higher value 
represents more relevance of an input feature to the 
model’s output. To try different threshold values, we pick 
a range t1–t2 between the minimum and maximum rel-
evance values (computed in Eqs.  4 and 5) that allow us 
to mark 10–30% irrelevant features from the selected fea-
tures computed in Eq. 3. We divide D into 80% training 
and 20% testing and perform several experiments of frag-
ment classification using a (in our case MLP) model by 
choosing different threshold values in the range t1–t2 . We 
picked the threshold value that gave us the best results. 
This process was repeated for both LIME and SHAP and 
we get two threshold values Tlime for LIME values and 
Tshap for SHAP values.

Using the two threshold values Tlime and Tshap com-
puted above we remove the irrelevant features from the 
dataset and get the set of final fragments with threshold-
based relevant features for LIME (FRL) and SHAP (FRS) 
as follows:

and

(4)LVs =

NF
⋃

f=1

NC
⋃

c=1

{LVf ,c}

(5)SVs =

NF
⋃

f=1

NC
⋃

c=1

{SVf ,c}

(6)FRL = {v | v ∈ LVs ∧ v > Tlime}



Page 10 of 23Alam and Demir ﻿Cybersecurity            (2024) 7:52 

This set of final fragments with threshold-based relevant 
features is used for training a model for classifying file 
fragments.

Multinomial classification with deep learning
One of the main challenges of file fragment classification 
is multinomial classification. The other main challenge 
is the class imbalance problem. The dataset used in this 
paper presents both of these challenges. To overcome 
these challenges to some extent we use a model for file 
fragment classification. We develop and build the model 
using Multilayer Perceptron (MLP) (Hornik et al. 1989), 
one of the most common and practical models (Heidari 
et  al. 2016), with one input, one output, and five hid-
den layers. The developed MLP artificial neural network 

(7)FRS = {v | v ∈ SVs ∧ v > Tshap}
architecture is shown in Fig. 5. The reason for using five 
hidden layers is because of the complexity, such as the 
large number of file types (classes) and class imbalance, 
of the data found in most of the file fragment classifica-
tion problems. To improve multinomial classification, the 
MLP model is optimized with hidden layers, each layer 
with i × n neurons, where i = the layer number and n 
= the total number of classes in the dataset. We use an 
adaptive learning rate algorithm RMSProp (Root Mean 
Square Propagation) (Hinton et al. 2012) for optimizing 
the learning process. RMSProp addresses some issues 
with the stochastic gradient descent method in training 
deep neural networks.

One of the major performance optimizations of neu-
ral networks is tuning the hyperparameters, such as 
the batch size, number of hidden layers, and number of 
epochs. The tuning depends on the type and complexity 
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Fig. 5  A high-level architecture of the MLP artificial neural network developed in the paper, where n = total number of classes in the dataset, i = 
layer number, and ni = i × n
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of the dataset. Batch size is the number of samples that 
are propagated through the network. It can be a subset 
or whole of the dataset. In the case of a subset, the whole 
dataset is divided into subsets, and with each iteration, 
each subset is propagated through the network until all 
the samples have been propagated. Hidden layers refers 
to a set of neurons, that makes neural networks deep 
and enable them to learn complex data representations. 
Epochs is the complete training of neural networks on all 
the datasets exactly once. The value of epochs can range 
from 1 to ∞ . They are the fundamental part of the train-
ing of neural networks. We compute and set these param-
eters experimentally on a subset of the main dataset. We 
randomly chose a subset of the samples from the main 
dataset and trained the model using this subset. Then, for 
setting the number of epochs we try different values and 
set the final epochs to the value when the model achieves 
more than 99% accuracy on this training data. Values of 
other hyperparameters are set using the same technique. 
These same values of the hyperparameters are then used 
for training the model with the main dataset.

In the next few sections, we present an empirical evalu-
ation to analyze the correctness and efficiency of SIFT.

Empirical evaluation
We carried out an empirical evaluation to assess the 
performance of SIFT. This section presents the dataset, 
evaluation metrics, empirical study, obtained results, and 
analysis. We also compare SIFT with three other state-of-
the-art file fragment classification techniques. All experi-
ments were run on an IntelÂ® Core(TM) i-7-4510U CPU 
@ 2.00 GHz with 8 GB of RAM, running Windows 8.1.

Dataset
To carry out different experiments we selected a pub-
licly available dataset (Garfinkel 2024) for cyber foren-
sics research. From this dataset, we randomly collected 
20 file types and extracted 47,482 samples (fragments) 
from these files. The distribution of this dataset is 
shown in Table 1. To make sure the evaluation is unbi-
ased, we selected the same number (seven) of files from 
each Class. We chose 512 bytes as the size of a frag-
ment for our experiments. The reason for choosing this 
value is as follows. The researchers are divided between 
512 (Axelsson 2010; Beebe et  al. 2013, 2016; Calhoun 
and Coles 2008; Fitzgerald et al. 2012; Catanzaro et al. 
2008; Sportiello and Zanero 2012) or 4096 (Karresand 
and Shahmehri 2006b, a; Li et  al. 2011; Penrose et  al. 

Table 1  Fragment distribution of the 20 file types (Classes). 
There are a total of 47,482 fragments (samples) each of size 512 
bytes

Classes (file type) Number of files Number of 
fragments

csv 7 889

dbase3 7 66

doc 7 2420

eps 7 5110

gif 7 701

gz 7 4470

jpg 7 924

html 7 613

kmz 7 1381

log 7 5346

pdf 7 2787

png 7 2704

ppt 7 3534

ps 7 3622

swf 7 1991

text 7 4671

txt 7 1374

unk 7 3264

xls 7 813

xml 7 802

Table 2  Results of 10-fold cross-validation of the RandomForest 
classifier

File type (class) TPR FPR Precision F-Measure

csv 0.991 0.000 0.991 0.995

dbase3 1.000 0.000 1.000 1.000

doc 0.724 0.008 0.724 0.776

eps 0.989 0.000 0.989 0.992

gif 0.357 0.000 0.357 0.524

gz 0.889 0.133 0.889 0.560

html 0.977 0.000 0.977 0.976

jpg 0.000 0.000 0.000 0.000

kmz 0.938 0.000 0.938 0.968

log 0.999 0.000 0.999 0.999

pdf 0.463 0.003 0.463 0.611

png 0.720 0.042 0.720 0.597

ppt 0.492 0.014 0.492 0.592

ps 0.996 0.002 0.996 0.988

swf 0.124 0.008 0.124 0.190

text 0.765 0.003 0.765 0.852

txt 0.932 0.000 0.932 0.960

unk 0.995 0.005 0.995 0.965

xls 0.812 0.001 0.812 0.875

xml 0.965 0.000 0.965 0.977

Weighted Avg 0.798 0.018 0.798 0.793
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2013; Sportiello and Zanero 2011; Veenman 2007) 
bytes as the size of a fragment. According to Penrose 
et al. (2013) all the hard drive manufacturers have used 
4096 bytes as their sector size since 2011, therefore 
this is the right size to choose. However, Axelsson et al. 
(2010) makes an observation that 512 bytes are a con-
servative choice. Out of these two choices we chose the 
conservative value, i.e., 512 bytes.

Evaluation metrics
We drive our evaluation metrics from the confusion 
matrix. Confusion matrix (Fawcett 2006) is used for 
measuring the performance of a classification model. 
Items in a confusion matrix belong to an original Class 
from a trusted set of pre-classified items (ground truth 
values) and items that are classified by the model (pre-
dicted values). This allows us to compare our technique 
against the ground truth.

We use four metrics, True Positive Rate (TPR), 
False Positive Rate (FPR), Precision, and F-Measure, 
defined as follows:

where, TP the true positive is the number of fragments 
classified as positive. FP the false positive is the number 
of fragments wrongly classified as positive. FN the false 
negative is the number of fragments wrongly classified as 
negative. P is the total number of fragments in the posi-
tive Class. N is the total number of fragments in the other 
Classes.

TPR =

TP

P
and FPR =

FP

N

Precision =

TP

TP + FP

F −Measure =
2TP

2TP + FP + FN

Empirical study and results
During the empirical study, we carried out three different 
experiments, firstly to obtain the threshold-based LIME 
and SHAP feature relevance values from the selected fea-
tures, secondly for tuning the neural networks hyperpa-
rameters, and thirdly to conduct performance evaluation 
of SIFT.

Threshold based LIME and SHAP feature relevance values
The main dataset used in this paper consists of 47,482 
samples as shown in Table 1. We first extracted the raw 
features from these samples and performed feature selec-
tion to obtain the samples with selected features listed in 
Eq. 3. We then trained a RandomForest classifier on these 
samples and performed 10-fold cross-validation. The 
results of this classification are shown in Table 2.

The RandomForest classifier was able to positively clas-
sify fragments of the 8 classes with a TPR > 95%. Weights 
were assigned using Eq.  2 to bytes in the fragments 
belonging to some of these and other classes. These 
weights are shown in Table  3. To save space, we only 
show specific bytes whose weights are much higher than 
other bytes. The table lists the average weight of all the 
fragments belonging to a class. As an example, the class 
CSV contains 889 fragments as shown in Table  1. Each 
of these 889 fragments contains 512 bytes and each of 
these bytes is assigned 889 different weights. Table 3 lists 
the average of these 889 weights for the class CSV and 
similarly for other classes. These bytes occur much more 
often in the fragments belonging to a specific class than 
any other class. This means these are the features (bytes) 
that helped successfully classify these fragments.

As shown in Table  2 we obtained a weighted average 
TPR of 79.8% and FPR of 1.8%. These results are better 
when compared to other state-of-the-art works discussed 
in Section “Comparison with other works”. We still want 
to improve these results especially the FPR, and TPR 
of some of the file types, such as html and swf. The low 
results for these file types are because of the multinomial 
classification and to some extent class imbalance prob-
lems. The other major reason for these results is because 
of the problem of file embeddings as discussed before. To 
overcome some of these problems and provide a solution 
we apply XAI and compute threshold-based LIME and 
SHAP feature relevance values as follows.

For computing the LIME and SHAP feature rel-
evance values we randomly chose a subset of samples 
from the main dataset. This subset contained 60 sam-
ples from each of the 20 classes, i.e., a total of 1200 
( 60× 20 = 1200 ) samples. We computed the LIME and 
SHAP feature relevance values as described in Section 
“XAI—feature relevance” and listed in Eqs. 4 and 5 using 

Table 3  Weight assigned according to Eq.  2 to bytes in the 
fragments of some of the classes. To save space, we only show 
specific bytes whose weights are much higher than other bytes

Class Byte value in 
hex

Symbol Description Weight 
assigned 
(averaged)

CSV 0×2C , Comma 0.663

CSV 0×22 ” Double quotes 0.335

DBASE3 0×20 Space 0.939

EPS 0×48 0 Zero 0.462

XML 0×3C < Open angled 
bracket

0.185

XML 0×3E > Close angled 
bracket

0.181

XLS 0×40 @ 0.206

LOG 0×3A : Colon 0.160
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these 1200 samples. Figures  6 and  7 show these LIME 
and SHAP values for each of the 20 classes in the dataset.

For the 20 classes LIME and SHAP feature relevance 
values are in the range of 0–0.034 as shown in feature rel-
evance graphs in Figs. 6 and 7. There are 120 out of 236, 
i.e., 50.85%, features that have a value < 0.0025 for each of 
the 20 classes in both LIME and SHAP feature relevance 
graphs. There are 116 out of 236, i.e., 49.15%, features 
that have a value > 0.0025 for some of the 20 classes. That 
means both these techniques need a different threshold 
value to mark irrelevant features as described in Section 
“XAI—threshold-based feature relevance”. We perform 
different experiments using the 1200 samples chosen 
above as described in section “XAI—threshold-based 
feature relevance” and computed the two threshold val-
ues as Tlime = 0.00075 and Tshap = 0.00015 . Using these 
two threshold values we obtained the fragments (sam-
ples) with threshold-based relevant features for LIME 
and SHAP as listed in Eqs.  6 and 7. These experiments 
were conducted using the MLP model as described in 
“Multinomial classification with deep learning”.

Neural networks hyperparameters
During the experiments carried out above we also fine-
tuned the different MLP hyperparameters for the dataset 
used in this paper. The batch size and epochs were set to 
189 and 200 respectively and 5 hidden layers were cre-
ated to train the MLP model.

Performance evaluation of SIFT
The final dataset of 47,482 fragments (samples) with 
threshold-based relevant features was divided into 
80% training and 20% testing data as input to our MLP 
model as described in section  “Multinomial classifica-
tion with deep learning” for multinomial classification 
of these file fragments. The time of training the MLP 
model with threshold-based LIME relevant features was 
612.62  s (0.016  s per sample—total training samples 
37,985) and with threshold-based SHAP relevant features 
was 493.44 s (0.013 s per sample). The training time per 
sample indicates that SIFT is scalable and can efficiently 
handle a much larger dataset. To validate this in future 
we will evaluate SIFT with a much larger dataset. The 
obtained results are shown in Tables 4 and 5.

Analysis
The confusion matrices of the MLP model using the final 
dataset of 47,482 fragments (samples) with threshold-
based LIME and SHAP relevant features are shown in 
Figs. 8 and 9 respectively.

Table 4  Results of MLP model using the final dataset of 47,482 
fragments (samples) with threshold-based LIME relevant features

File type (class) TPR FPR Precision F-Measure

csv 1.000 0.000 0.989 0.994

dbase3 1.000 0.000 1.000 1.000

doc 0.864 0.011 0.801 0.831

eps 0.985 0.000 0.992 0.988

gif 0.656 0.005 0.632 0.644

gz 0.610 0.020 0.764 0.678

html 0.989 0.000 0.989 0.989

jpg 0.450 0.012 0.341 0.388

kmz 0.938 0.000 0.985 0.961

log 0.998 0.000 0.998 0.998

pdf 0.592 0.020 0.631 0.611

png 0.694 0.032 0.526 0.599

ppt 0.639 0.034 0.601 0.619

ps 0.992 0.001 0.980 0.986

swf 0.415 0.028 0.395 0.405

text 0.833 0.011 0.889 0.860

txt 0.989 0.001 0.963 0.975

unk 0.982 0.001 0.987 0.985

xls 0.802 0.001 0.905 0.851

xml 0.981 0.000 0.981 0.981

Weighted Avg 0.821 0.009 0.818 0.817

Table 5  Results of MLP model using the final dataset of 47,482 
fragments (samples) with threshold-based SHAP relevant 
features

File type (class) TPR FPR Precision F-Measure

csv 1.000 0.000 0.997 0.995

dbase3 1.000 0.000 0.875 0.933

doc 0.852 0.009 0.822 0.837

eps 0.988 0.001 0.990 0.989

gif 0.625 0.006 0.577 0.601

gz 0.707 0.032 0.702 0.705

html 1.000 0.000 0.989 0.994

jpg 0.351 0.005 0.495 0.412

kmz 0.923 0.000 0.966 0.944

log 1.000 0.000 0.997 0.999

pdf 0.613 0.024 0.595 0.604

png 0.679 0.023 0.597 0.635

ppt 0.593 0.018 0.725 0.652

ps 0.989 0.000 0.991 0.990

swf 0.470 0.029 0.416 0.442

text 0.861 0.018 0.883 0.847

txt 0.985 0.001 0.955 0.970

unk 0.978 0.000 0.991 0.984

xls 0.820 0.001 0.926 0.870

xml 0.968 0.000 0.987 0.977

Weighted Avg 0.820 0.008 0.821 0.820
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The testing data contained a total of 9497 samples (20% 
of 47,482). Here we define and compute another metric 
from the confusion matrix as follows:

From the confusion matrices (Figs. 8 and 9) we compute 
the SIFT overall accuracy with LIME and SHAP values as 
follows:

and

Accuracy =
Total correctly predicted samples

Total number of samples

Accuracy with LIME =

7857

9497
× 100 = 82.37%

SHAP provided a slightly better accuracy than LIME. 
As we can see from Tables  4 and 5 the TPR of LIME 
(82.1%) is slightly better than the TPR of SHAP (82%) 
but the FPR of SHAP (0.8%) is slightly better than LIME 
(0.9%). FPR has a little edge over TPR when computing 
the overall accuracy of a model. The accuracy of SIFT 
without any LIME or SHAP values (RandomForest clas-
sification – Table 2 is 79.77%. This accuracy is computed 
from the confusion matrix of the RandomForest classifier 
not shown in the paper. When comparing the results of 
SIFT without XAI and with XAI and DL, applying XAI 

Accuracy with SHAP =

7941

9497
× 100 = 83.62%

Fig. 8  Confusion matrix of MLP model using the final dataset of 47,482 fragments (samples) with threshold-based LIME relevant features
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with DL improved the overall accuracy of SIFT by 3.85%, 
the TPR by 2.3%, and the FPR by 1%. These may seem 
small improvements but they reinforce the claim that 

applying XAI, SIFT can solve to a certain extent some of 
the challenges of file fragment classification. These are 
overall performance improvements. We did not apply 

Fig. 9  Confusion matrix of MLP model using the final dataset of 47,482 fragments (samples) with threshold-based SHAP relevant features

Table 6  Distribution of the TPR results of SIFT at the local (class) level using different classifiers

TPR (%) RandomForest MLP with LIME values MLP with SHAP values

98–100 CSV, DBASE3, EPS, LOG, PS, UNK CSV, DBASE3, EPS, HTML, LOG, PS, TXT, UNK, 
XML

CSV, DBASE3, EPS, HTML, LOG, PS, TXT

91–97 HTML, KMZ, TXT, XML KMZ KMZ, UNK, XML

71–90 DOC, GZ, PNG, TEXT, XLS DOC, TEXT, XLS DOC, TEXT, XLS

40–70 PDF, PPT GIF, GZ, JPG, PDF, PNG, PPT, SWF GIF, GZ, PDF, PNG, PPT, SWF

0–39 GIF, JPG, SWF – JPG
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global interpretations provided by LIME and SHAP. In 
the future, we would like to apply global interpretations 
provided by some of the XAI techniques to improve the 
overall results and especially further improve the multi-
nomial classification issue.

Distribution of the TPR results of SIFT at the local 
(class) level using RandomForest (i.e., without XAI) and 
MLP with LIME and SHAP values (i.e., with XAI) are 
shown in Table 6. We can see that improvements in clas-
sification are significant when XAI is applied with DL. 
More classes are predicted in the range of 98–100%, and 
no classes < 40% except one class JPG with SHAP, with 
LIME and SHAP values. There are more classes predicted 
in the range 40–70% that depict that applying XAI and 
DL SIFT can solve some of the challenges, especially the 
multinomial classification and file embedding problems 
up to a certain extent.

The updates (increase/decrease) in accuracy at the class 
level after applying XAI and are shown in Table 7. Here 
also, LIME and SHAP are the two XAI techniques and 
provide significant improvements in accuracy (25–50%) 
at the local class level. There is only one class GZ where 
the accuracy dropped. 29.1% in LIME (Fig. 8) and 21.8% 
in SHAP (Fig. 9) of the fragments of GZ are predicted as 
type PDF (4.8% & 5.3%), PNG (8.2% & 5.3%), PPT (9.2% 
& 4.9%), and SWF (6.9% & 6.3%). GZ (gzip) type of file 
consists of compressed data. In general, an image (i.e., file 
types PNG and SWF, etc) is first compressed and then 
stored in the file. The file types PDF and PPT (Microsoft 

PowerPoint) may also contain images. The compressed 
fragments found in these file types (classes) are the main 
reason why SIFT with LIME and SHAP predicted them 
as class GZ. This is just an observation and may need fur-
ther research. In the future, we will look into the respec-
tive LIME and SHAP values and specific interpretations 
of the (MLP) model to know the reasons why there is a 
decline and then improve such a prediction.

The two XAI techniques LIME and SHAP are model 
agnostic, i.e., they can be used with any model. That 
means LIME and SHAP feature relevance values com-
puted are generated just once and can be used with any 
model (DL or any other ML model). To validate and test 
this claim we carried out another experiment and used 
the SHAP feature relevance values with Random Forest 
to classify the 20 file types. The accuracy achieved was 
79.9%. Random Forest without SHAP achieved an accu-
racy of 79.7%. Random Forest with XAI improved by 
0.2% over Random Forest without XAI. This indicates 
that XAI is able to improve (although small but still an 
improvement) the performance of not only a DL (MLP) 
but also a ML model, and this also verifies that LIME and 
SHAP are model agnostic.

Moreover, we only used LIME and SHAP local inter-
pretations, and using these values we are able to improve 
the performance relative to other works (compared in 
Section  “Comparison with other works”) that use other 
techniques for feature selection/importance. Using 
the same values we are also able to further improve the 
results presented in Table  2. Improvements at the local 
(class) level are more significant as shown in Tables 6 and 
7. This indicates and corroborates that XAI is capable of 
enhancing the performance of an AI model.

Comparison with other works
To compare our technique we chose three state-of-the-
art techniques in this area. The first (Haque and Tozal 
2022) and the most recent from the year 2022, the second 
(Bhatt et  al. 2020) and last (Wang et  al. 2018) from the 

Table 7  The updates (increase/decrease → ±) in accuracy at 
local (class) level after applying XAI (LIME and SHAP values)

Class RandomForest 
accuracy (%)

MLP with LIME 
values accuracy

MLP with SHAP 
values accuracy

GIF 35.66 66.15% (+ 30.49%) 62.60% (+ 26.94%)

GZ 88.98 61.03% ( − 27.95%) 71.44% ( − 17.54%)

JPG 00.00 50.43% (+ 50.43%) 35.11% (+ 35.11%)

SWF 12.36 41.46% (+ 29.10%) 47.07% (+ 34.71%)

Table 8  Comparison of the model SIFT proposed in this paper and three other state-of-the-art models

Model TPR (%) Number of 
fragments

Size of each 
fragment 
(byted)

Number 
of classes

Techniques used

SIFT 82.1 47,482 512 20 Adapted TF-IDF for assigning weights; XAI for feature relevance; MLP 
for classification

 Haque and Tozal 
(2022)

72 87,500 4096 35 Byte2Vec embeddings; extension of Word2Vec and Doc2Vec; k-nearest 
neighbors for classification

 Bhatt et al. (2020) 67 14,000 512 14 Ten features, such as entropy, bigram distribution, hamming weight, 
mean byte value, etc; support vector machine for classification

 Wang et al. (2018) 61 270,000 512 18 Continuous sequence (n–gram) of bytes of different sizes; support vec-
tor machine for classification
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years 2020 and 2018, respectively. The reasons for select-
ing them are: (1) They perform file fragment classification 
and are published in IEEE, Elsevier, and MDPI journals. 
(2) They select their samples from the same dataset (Gar-
finkel 2024) as used in this paper. (3) They also employ 
machine learning to improve performance and perform 
automated classification.

Table 8 provides a comparison of SIFT with the other 
three techniques. SIFT outperforms the others by 
10–19%. (1) One of the major differences between SIFT 
and others is that SIFT uses a single byte as a separate 
feature, i.e., a total of 256 (0×00–0×FF) features. We also 
call this a lossless feature (information) extraction, i.e., 
there is no loss of information. (2) The other major differ-
ence is the technique used to estimate inter-classes and 
intra-classes information gain of a feature. For this pur-
pose, SIFT adapts TF-IDF to compute and assign weight 
to each byte (feature) in a fragment (sample) and then 
applies two XAI techniques LIME and SHAP to compute 
the input feature relevance for selecting important and 
relevant features. (3) For classification SIFT uses a model 
MLP that trains on the dataset with relevant features. 
With these major differences and approaches, SIFT pro-
duces promising (better) results.

As discussed in Section  “Fragment classification chal-
lenges”, a large number of classes in the dataset increases 
the complexity of multinomial classification and this 
effects the TPR of the classifier. All the works compared 
use more than 13 classes for training and testing, which 
depicts that this is a real challenge in file fragment clas-
sification, and also presents a fair comparison with SIFT 
that uses 20 classes. To mitigate this challenge we use 
TF-IDF and two XAI techniques LIME and SHAP, and 
also develop a deep learning model MLP by fine tuning 
its hyperparameters to optimize multinomial classifi-
cation. We also conducted experiments using different 
number of classes. When tested with 18 and 14 classes 
SIFT achieved a TPR of 83% and 86.9% respectively. This 
shows SIFT outweighs the other two works that use a 
similar number of classes.

Size of each fragment used in all the works compared 
are the same, 512 bytes, as SIFT except (Haque and Tozal 
2022) uses 4096 bytes. As discussed in Section “Dataset”, 
researchers are divided on the size of fragment to use. 
We choose the conservative size 512 bytes because of the 
legacy storage systems still being used. Also for compari-
son we choose works that use the same size. But we also 
want to include one of the works that use the fragment 
size 4096 bytes being used in modern storage systems. As 
we can see using the conservative size SIFT achieves bet-
ter results.

Related work
Binary file fragments have been explored in various 
scientific contexts, including digital forensic analysis, 
reverse engineering, and fuzzing, among many others. In 
this section, we briefly highlight recent research works on 
file fragment classification in the context of file carving in 
digital forensics. There are multi-fold ways that one could 
organize a taxonomy of file fragment classification. We 
divide these works into three popular categories (Sester 
et al. 2021). There are several works that have used XAI 
to explain the predictions of an AI model in CF but none 
of them have used such explanation to optimize the pre-
dictions/classification. At the end of this section we also 
present a short discussion on such works.

Signature based approaches
Known signatures in file headers and footers are exclu-
sively useful in file carving. Nevertheless, this approach 
assumes that file clusters remain consecutively. In case 
of file fragmentation, file clusters can be separated, and 
the order can be disrupted such that distinctly file carv-
ing will fail. Signature-based techniques use the potential 
embedded signatures (Sester et al. 2021). Similarly, Rous-
sev et  al. (2012) suggested the adoption of sdhash real-
time digital forensics and triage. Breitinger et  al. (2013) 
used typically similarity-preserving hashing (SPH). Con-
sequently, Lillis et al. (2017) boosted the lookup speed by 
way of hierarchical Bloom filter tress.

Earlier, Garfinkel et al. (2006) and Dandass et al. (2008) 
urged the use of hash-values for fragments to identify 
individual files with the same fragments. A few modifica-
tions on MD5 and SHA1 to CRC32 hashing algorithms 
were also blessed to measure hash values. Besides, Gar-
finkel et  al. (2010) investigated a faster design to match 
master files and image files together by using maps.

Statistical approaches
Conti et al. (2010b; a) pick statistical features, like Shan-
non entropy, chi-square, hamming weight, and arith-
metic mean to resolve the low-level binary data. In each 
group, 1000 fragments, where fragment size is 1 KB, are 
analyzed. Statistical features are detected in agreement 
with the distribution of data fragments by primitive frag-
ment class. It occurred that the bitmap samples exhibit 
little clustering, but the high entropy, text, encoded, and 
machine code primitive types are more densely clustered.

Calhoun et  al. (2008) use statistical features, like 
entropy and frequency of ASCII codes to sift graphic 
files, JPG, GIF, etc. Promising results (83% accuracy) 
are obtained. However, the results are only applicable 
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to graphic types. Veenman et  al. (2007) use statistical 
features, such as histogram, and entropy to classify disc 
images. A dataset of 450 MB is collected from the Inter-
net and used. They carried out multi-class and two-class 
perception experiments with 0.45 overall accuracy which 
is quite modest. The results indicate that ZIP files were 
classified with only 18% accuracy while HTML and JPEG 
files came out with 98% accuracy.

Karresand et al. (2006b) introduced Oscar which com-
putes the divergence of the ASCII values in the seam of 
two successive bytes as a scale of change to classify file 
types. As far as is know, Oscar only outperforms well on 
JPG file types. Representing the mean and standard devi-
ation of the byte frequency distribution of distinct file 
types, called Centroids, is the fundamental base for the 
Oscar approach. A weighted quadratic distance metric 
is assigned with the distance between the centroid and 
sample data fragments. When the distance falls below 
a threshold, the sample is classified as possibly associ-
ated with the modeled file type. Besides, Li et al. (2005) 
extract a 1-gram binary distribution for file fragment 
classification on files gathered from the Internet utiliz-
ing a general search of a file type on Google. Results are 
promising when they are realized by using a one-centroid 
and multi-centroid file-type model. Ultimately, McDaniel 
et al. (2003) proposed a file fingerprint for file type detec-
tion. They extract the byte frequency analysis, byte fre-
quency correlation, and file header/trailer information to 
produce the file fingerprint.

Artificial intelligence (AI) based approaches
AI-based file fragment classification approaches have 
been emerging recently. In Ghaleb et  al. (2023), Ghaleb 
et  al. use convolutional neural networks (CNN) with 
an accuracy of 79%. Lie et  al. (2023) also use CNN for 
file fragment classification using bit shift and n-Gram 
embeddings. Recurrent and convolutional neural net-
works (RCNN) have established that ByteCRNN resulted 
with 71.1% average accuracy on 512-byte fragments and 
83.9% average accuracy on 4096-byte fragments (Skračić 
et  al. 2023). Zhu et  al. (2023) also used CNN along 
with LSTM that achieved an average accuracy of 66.5% 
and 78.6% for 512-byte and 4096-byte file fragments, 
respectively.

Haque et  al. (2022) introduced a model that broad-
ens Word2Vec and Doc2Vec embeddings to bytes and 
fragments. The Byte2Vec name is given to this model. 
4096 bytes fragment sizes are separated from each file. 
Byte2Vec embeddings are used to vectorize these frag-
ments. The k-nearest neighbor classification is applied 
afterward. Byte2Vev models achieved an accuracy of 72% 
and a TPR of 72% during the tests.

Bhatt et  al. (2020) introduced a hierarchical machine-
learning-based model for file fragment classification. 
SVM is used as a base classifier. Entropy and bigram dis-
tribution, hamming weight, mean byte value, etc., a total 
of ten features, are extracted from each fragment. The 
proposed approach with the SVM model achieved an 
accuracy of 67.78% and a TPR of 67%.

Chen et  al. (2018) introduced an approach. At first, a 
fragment is turned into a grayscale image for extract-
ing high-dimensional features. Afterward, a convolution 
neural network model is used for the classification of 
fragments. Experiments on models showed an accuracy 
of 70.9%.

Wang et  al. (2018) leveraged sparse coding as auto-
matic feature extraction. Features corresponding to how 
well these can be used to reconstruct the original data 
are extracted by sparse coding. Based on this principle, a 
continuous sequence of bytes (n-grams) of distinct sizes 
is used, and the method showed an accuracy of 61.31% 
and a TPR of 60.99%.

Only special types of fragments are classified by the 
majority of the previous studies, such as graphic types 
(JPG, GIF, PNG, etc.). However, a few of the applied 
approaches do not perform well for high entropy frag-
ments, as they do not have apparent patterns to attain. 
The approach proposed in this study does not have such 
constraints because of lossless feature extraction and 
application of XAI techniques, LIME and SHAP, for 
selecting important and relevant features that make it 
feasible to successfully classify different fragment types 
but a few.

XAI in CF
A detailed review on research works that have used XAI 
to explain the predictions of an AI model in CF is pre-
sented in Alam and Altiparmak (2024). Here we present 
and discuss few of these recent works.

Afzaliseresht et  al. (2019) present an XAI model for 
analyzing security event logs, which can be used dur-
ing forensics investigation of security events. After min-
ing temporal patterns to discover sequential events from 
a log file, storeytelling is used to present this sequence 
of events in a human readable format. This reduces the 
efforts of humans to interpret events.

Mahajan et al. (2021) use LIME to interpret and eval-
uate AI models for toxic comment classification. The 
experiments and results concluded that XAI techniques 
such as LIME are important in selecting the best model.

Jayakumar et  al. (2022) present a method to enhance 
the interpretability of deepfake detection models. 
The method visually explains why a deppfake detec-
tion model classifies a video as a deepfake. This plays a 
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crucial role in the decision-making process of juries in 
CF investigations.

Hall et  al. (2022) evaluate and interpret different AI 
models using LIME. These models were trained to clas-
sify file types. After classification the results were input 
to LIME for explanation. Most of the time LIME was able 
to explain the classification results but sometime failed 
because of the feature interaction. Here LIME is used to 
explain the classification results, whereas we have used 
LIME and SHAP to optimize classification.

Bouter et  al. (2023) propose a method for visualizing 
and interpreting predictions of deepfake video data for 
forensic analysis. This method allows a forensic analyst 
to intuitively interact with the model and hence helps 
the analyst thoroughly explain and evaluate the model. 
This aids the analyst in making a decision if the video is 
manipulated or not. The explanation about this decision 
can be presented in a court of law as a piece of trustwor-
thy evidence.

Limitations and future work
Computer files are often embedded with other files, such 
as images, PNG and JPG, etc., embedded in PDF and 
PPT file types. Some fragments (image type) of these 
files will be classified as the other Class (image). In this 
case, sometimes SIFT is not able to correctly identify 
these fragment types. In the future, we will look into the 
respective LIME and SHAP values and specific inter-
pretations of the (MLP) model to know the reasons why 
there is a decline and then improve such predictions.

The number distributions of different types of files are 
not the same in GovDocs, for example, when the num-
ber of files is very small, it will affect the accuracy of the 
final classification results. This paper does not optimize 
the dataset itself. Therefore, the bias may affect the accu-
racy of our model. In future work, we can focus on the 
optimization of datasets and models to further improve 
classification accuracy.

When applying the XAI techniques, LIME and SHAP, 
we only used their local interpretations, i.e., local fea-
ture relevance values. In the future, we would like to 
apply global interpretations provided by some of the XAI 
techniques to improve the overall results and especially 
improve the multinomial classification issue.

To explore the real world impact of our research, as a 
future work we will implement the proposed technique 
in this paper as part of a tool that provides a complete file 
recovery. To test the scalability of SIFT in future we will 
evaluate SIFT with a much larger dataset.

Conclusion
File carving is the practice of repairing damaged files 
on a storage media in part or whole without any filesys-
tem information. An essential issue in file carving is the 
recognition of file fragment types. In this paper, we pro-
pose a novel file fragment type identification method 
based on the TF-IDF technique to assign a weight for 
each byte (feature) to select important features in a frag-
ment. We used 512-byte segments. Then, we investi-
gated three multinomial classifiers, namely Naive Bayes, 
Decision Tree, and Random Forest, to evaluate the per-
formance on a popular and publicly available dataset by 
10-fold cross-validation in terms of TPR, FPR, Precision, 
F-measure, and AUC metrics. Among these classifiers, 
Random Forest performs the best with our novel feature 
selection technique.

In this paper, we presented a novel sifting file types 
method, called SIFT. SIFT analyzed a total of 47,482 
low-level binary file fragments belonging to 20 file types 
(classes). Our experimental results show that SIFT 
reaches a TPR of 82.1%. Compared to other state-of-the-
art methods presented in Haque and Tozal (2022), Bhatt 
et  al. (2020) and Wang et  al. (2018) where they select 
their samples from the same dataset (Garfinkel 2024) as 
used in this paper, SIFT outperforms by 10–19%.
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