
Xu et al. Cybersecurity (2024) 7:55
https://doi.org/10.1186/s42400-024-00245-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

MVD-HG: multigranularity smart contract
vulnerability detection method based
on heterogeneous graphs
Jingjie Xu1, Ting Wang1, Mingqi Lv1, Tieming Chen1* , Tiantian Zhu1 and Baiyang Ji1

Abstract

Smart contracts have significant losses due to various types of vulnerabilities. However, traditional vulnerability detec-
tion methods rely extensively on expert rules, resulting in low detection accuracy and poor adaptability to novel
attacks. To address these problems, in this paper, deep learning methods are combined with smart contract vulner-
ability code detection approaches. Abstract syntax trees (ASTs), which are special isomorphic graph structures, are
an important bridge between source code and graph neural networks. By learning the AST, the model can under-
stand the semantics of the source code. Moreover, graph neural networks have an increasing ability to address com-
plex heterogeneous graphs. Therefore, control flow graphs are fused with data flow graphs on the basis of the ASTs
to build heterogeneous graphs with richer code semantics. Furthermore, multigranularity analysis of the vulnerability
detection results is performed, including coarse-grained contract-level vulnerability detection and fine-grained line-
level vulnerability detection. Through this multigranularity detection approach, vulnerabilities in contracts can be
identified and analysed more comprehensively, providing a richer perspective and more solutions for vulnerability
detection. The experimental results show that the proposed multigranularity vulnerability detection method based
on heterogeneous graphs (MVD-HG) improves both the accuracy and range of the detected vulnerability types
in contract-level vulnerability detection tasks; moreover, in the line-level vulnerability detection task, the MVD-HG
model achieves significant results and addresses the shortcomings of existing methods. In addition, based on code
generation methods used in related fields, a data enhancement method based on the source code is developed,
which effectively expands the experimental dataset to address the reduced credibility of the results due to insufficient
amounts of data.

Keywords Smart contracts, Abstract syntax trees, Heterogeneous graphs, Vulnerability detection, Data augmentation

Introduction
In recent years, with the advancement of blockchain
technology, smart contracts have received much atten-
tion from researchers in academia and industry. Smart
contracts were originally designed to automatically exe-
cute predefined code in scenarios with no trusted third

party. However, because smart contracts unconditionally
follow predefined programs and record results on block-
chain platforms that are difficult to tamper with, many
malicious, irreversible events occur in the blockchain.
The occurrence of malevolent events not only severely
reduces the security of user property but also impacts the
reliability of blockchain platforms. The DAO incident in
2016 and the Second Parity MultiSig Wallet incident in
2017 (Samreen and Alalfi 2021) resulted in losses of 3.6
million ether and 150,000 ether, respectively. Thus, smart
contracts with vulnerabilities in their design attract many

*Correspondence:
Tieming Chen
tmchen@zjut.edu.cn
1 College of Computer Science and Technology, Zhejiang University
of Technology, Hangzhou 310000, Zhejiang, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-024-00245-5&domain=pdf
http://orcid.org/0000-0003-4664-3311

Page 2 of 15Xu et al. Cybersecurity (2024) 7:55

malicious users, demonstrating the importance of smart
contract vulnerability detection.

To address the problem of vulnerable code in smart
contracts, researchers have investigated various detection
methods for identifying code vulnerabilities. Traditional
methods for smart contract vulnerability analysis include
static analysis, dynamic analysis, and formal verifica-
tion methods (Tang et al. 2021). Static analysis methods
include Oyente (Luu et al. 2016), Securify (Tsankov et al.
2018), SmartCheck (Tikhomirov et al. 2018), EtherTrust
(Grishchenko et al. 2018), and SmartConDetect (Jeon
et al. 2021); dynamic analysis methods include Contract-
Fuzzer (Jiang et al. 2018), ReGuard (Liu et al. 2018), and
Maian (Nikolić et al. 2018); and formal validation meth-
ods include ZEUS (Kalra et al. 2018) and KEVM (Hilden-
brandt et al. 2018). These traditional analysis methods
usually use manually defined expert rules for vulner-
ability detection. However, when new types of vulner-
abilities appear, the rules need to be updated to identify
these new vulnerabilities. With the widespread use of
smart contracts and their changing application scenarios,
traditional analysis methods based on manually defined
expert rules have faced great challenges.

Compared with traditional methods, deep learning-
based approaches can address the drawback of requir-
ing experts to define vulnerability patterns and instead
use neural networks to identify patterns. For example,
MANDO was proposed by Nguyen et al. (2022), Peculiar
was proposed by Wu et al. (2021), DR-GCN with TMP
was proposed by Zhuang et al. (2021), and VDDL was
proposed by Jiang et al. (2022).

However, existing deep learning-based methods for
detecting vulnerabilities in smart contracts suffer from
several shortcomings.

First, since most methods are based on graph neural
networks, the program first needs to be represented as
a graph structure. Most of the related studies have used
specific types of graph structures; for example, Pecu-
liar used CDFG, DR-GCN used Contract Graph, and
MANDO used a heterogeneous graph consisting of CGs
and CFGs. However, some of the semantic information
may be lost when these graph structures are used. More-
over, they can capture information about only a few kinds
of vulnerabilities, and their generalizability is relatively
poor. For example, MANDO only considers control flow
information and ignores the information available in data
flows, which prevents effective detection if the vulner-
ability is caused by the data flow.

Second, most deep learning-based methods can per-
form only contract-level code vulnerability detection. The
only method that can obtain more fine-grained line-level
vulnerability detection results is MANDO. However,
since MANDO is a metapath-based task, the researcher

must manually specify all the metapaths, which relies
considerably on the researcher’s domain knowledge and
complicates makes metapath design process. In addition,
for existing attack types, these metapath rules can be
bypassed by changing the attack steps without affecting
the attack effect, while for new types of attacks, the cor-
responding metapath rule base needs to be updated, and
existing methods have a low level of automation.

Third, in contrast to traditional methods, deep learn-
ing-based approaches require a large amount of data to
train the model. However, it is difficult for researchers
that are unfamiliar with smart contract development to
perform meticulous data annotations, which makes it dif-
ficult and extremely laborious to build datasets. There-
fore, it is necessary to hire professionals to manually
annotate the data or use traditional automated vulner-
ability detection methods to reduce the annotation costs
(Wang et al. 2020; Qian et al. 2020; Durieux et al. 2020).
As a result, publicly available datasets are very scarce, and
the number of vulnerabilities recorded in these datasets
is limited, which leads to overfitting problems and lack of
robustness with deep learning-based detection methods.

To address the above shortcomings, this paper pro-
poses a multigranularity vulnerability detection method
that aims to improve model robustness and capture more
code semantics. The main features of the method are
described as follows:

1. In existing studies, graph structures transformed
based on source code usually retain only part of the
code semantics, limiting the possible detection types.
In this paper, we enrich the semantics of the code
contained in the graph by converting the smart con-
tract source code into a heterogeneous graph fusing
abstract syntax trees (ASTs), CFGs, and DFGs. This
approach extracts features of smart contract source
code from multiple perspectives to improve the gen-
eralization ability of the model and increase the num-
ber of detectable vulnerability types.

2. The multigranularity vulnerability detection method
based on heterogeneous graphs (MVD-HG)
approach proposed in this paper combines the atten-
tion mechanism with a graph convolution operation
for heterogeneous graphs to realize multigranularity
vulnerability detection at the graph and node levels.
These two levels correspond to the contract-level and
line-level vulnerability detection tasks in smart con-
tract vulnerability detection. The detection effect of
the proposed method is significantly better than that
of the current state-of-the-art methods, providing a
more comprehensive and effective solution for smart
contract vulnerability detection. Thus, complex rules
do not need to be set for each attack scenario, and

Page 3 of 15Xu et al. Cybersecurity (2024) 7:55

fully automated detection can be achieved for differ-
ent attack patterns.

3. In previous experimental work, the size of the data-
sets used was usually small, and the experimental
results were susceptible to problems such as over-
fitting, reducing the reliability of the experimental
results. To address this issue, a data augmentation
method that expands the size of the existing dataset
based on code generation methods used in related
fields is implemented to improve the reliability of the
experimental results and the robustness of the model.

The rest of the paper is organized as follows: “Research
background” section reviews the research related to this
work. In “Background” section presents a partial defini-
tion of heterogeneous graphs and justifies this definition
with an example. In “Methodology” section describes the
detailed design of the MVD-HG approach. In “Experi-
ment” section discusses the experimental setup and the
results, showing the effectiveness of the proposed detec-
tion method. Finally, Section 6 concludes the paper and
discusses its limitations and future prospects.

Research background
Smart contract vulnerability detection
Due to the extremely challenging nature of smart con-
tract vulnerability detection, it is impractical to rely
on only manual detection methods. Thus, researchers
have proposed three traditional methods for smart con-
tract vulnerability detection: static analysis methods,
dynamic analysis methods, and formal verification meth-
ods (Praitheeshan et al. 2019). In addition to traditional
analysis methods, deep learning-based approaches are
becoming increasingly popular in the field of smart con-
tract vulnerability detection. However, deep learning-
based methods usually need to be implemented with
large-scale high-quality datasets (Rameder 2021).

Static analysis methods involve analysing program code
in non-runtime environments, allowing the source code
or bytecode of the target contract to be examined with-
out executing the program. Static analysis approaches are
widely used in the field of smart contract vulnerability
detection. For example, Oyente (Luu et al. 2016) is based
on a symbolic execution approach; Securify (Tsankov
et al. 2018) is a lightweight and extensible method;
SmartCheck (Tikhomirov et al. 2018) converts Solidity
source code into intermediate representations based on
xml format and verifies the results with XPath; Ether-
Trust (Grishchenko et al. 2018) is an automated static
analysis tool for bytecode-level verification; and Smart-
ConDetect (Jeon et al. 2021) extracts code fragments
from Solidity smart contracts for further inspection using
a pretrained Bert model.

Dynamic analysis methods include fuzzy testing meth-
ods; the main idea of fuzzy testing is to observe whether
the target program behaves abnormally for randomly
generated inputs using many random inputs and to iden-
tify inputs that cause issues through random collisions
(Hu et al. 2021). For example, Liu et al. (2018) proposed
ReGuard, a fuzzy analyser for analysing reentrant vul-
nerabilities that performs fuzzy testing based on smart
contracts by iteratively generating random but different
transactions. In addition, ContractFuzzer, proposed by
Jiang et al. (2018), generates random inputs based on the
ABI of smart contracts and records the execution results
based on these inputs; then, security analysis is per-
formed using predefined rules.

Formal verification methods are used to validate code
logic and ensure that the code does not include unan-
ticipated errors in arbitrary situations. In contrast, tra-
ditional test-based approaches always suffer from the
impossibility of testing every input and the possibility
of unanticipated inputs causing anomalies in the system
(Murray and Anisi 2019). Formal verification methods
determine the security of the target contract by verify-
ing that the program contains vulnerabilities that can
be exploited through rigorous logical proofs. There
are fewer formal verification methods than static and
dynamic analysis methods. Some examples include ZEUS
(Kalra et al. 2018), an automated verification framework
using abstract interpretation and symbolic model check-
ing, and KEVM (Hildenbrandt et al. 2018), a formal spec-
ification based on EVM, a reference interpreter, which is
a tool for program analysis and verification based on the
K framework.

Several studies have investigated deep learning-based
approaches for vulnerability detection in smart contracts.
For example, Peculiar (Wu et al. 2021) performed DFG
and CDFG extraction with an AST transformed from
source code, followed by detection with a pretrained
model. In addition, Zhuang et al. (2021) transformed the
source code into a custom contract graph, highlighted
important nodes via normalization to obtain important
information, and performed a smart contract vulner-
ability detection task. Liu et al. (2021) combined custom
expert rules with a graph detection method to further
improve the detection results. Qian et al. (2020) proposed
to utilize bidirectional long-short term memory networks
combined with an attention mechanism for vulnerability
detection. Zhao et al. (2021) proposed a reentrant vulner-
ability detection method based on code embedding and
the GAN model. Nguyen et al. (2022) proposed MANDO
to generate heterogeneous graphs based on smart con-
tract source code and captured code semantics in source
code through metapaths for multigranularity code vul-
nerability detection.

Page 4 of 15Xu et al. Cybersecurity (2024) 7:55

Source code representation
To use deep learning methods to detect code vulnerabili-
ties, the source code needs to be represented as a vector.
Methods combining IR and machine learning have been
considered effective to transform source code into vec-
tors. For example, BGNN4VD (Cao et al. 2021) extracts
syntactic and semantic information from source code
with ASTs, control flow graphs, and data flow graphs.
Furthermore, SedSVD (Dong et al. 2023) learns seman-
tic and syntactic information from source code using
code property graphs (CPGs) and selects several cen-
tral nodes in the CPGs to construct target subgraphs.
Zhang et al. (2022) constructed super dataflow graphs
covering all real dataflow paths and detected whether a
buffer overflow attack occurred by performing recursive
dataflow analysis based on the program’s super dataflow
graph. Wang et al. (2020) constructed FA-AST, increased
the amount of control flows and data flows in the AST
to obtain more detailed code fragment information, and
then performed the vulnerability detection task of code
cloning.

Graph neural networks
In recent years, with the rapid development of graph
neural network techniques such as GCN (Kipf and
Welling 2016), GAT (Veličković et al. 2017), and HAN
(Wang et al. 2019), models for understanding complex
graphs have become easier to achieve. According to the
complexity of heterogeneous graphs and the richness of
information, HGAT (Yang et al. 2021) learns the impor-
tance of different nodes and edges in the graph through
an attention mechanism to effectively capture the rich
structural and semantic information in the graph. In
RGCN (Schlichtkrull et al. 2018), relational features are
introduced through node representations to improve the
expressiveness of the model, and attention mechanisms
and convolution operations are used to aggregate infor-
mation. Typically, these models have better vulnerability
detection capability than detection tools based on tra-
ditional methods. The difference, however, is that these
methods identify the fitted relationships based on the
dataset through extensive training, and sufficient data are
required to obtain better results based on the validation
set.

Background
In this paper, we describe how to convert smart con-
tract source code into heterogeneous graphs based on
ASTs, CFGs, and DFGs and explore data augmentation
based on heterogeneous graphs as well as multigranu-
larity vulnerability detection tasks. First, we introduce
the basics of the fallback mechanism in smart contracts,

which is important to understand some practices in the
conversion process of heterogeneous graphs. During the
conversion process, a fallback node needs to be actively
added to simulate the fallback function of the attack con-
tract, which cannot be automatically generated by build-
ing the AST.

Fallback
The fallback function is a special function in the Solidity
language (ethereum 2022; Fan et al. 2021; Li 2023). This
function plays an important role in smart contracts, as
the function takes no arguments and returns either no
value or only a Boolean value representing the success
of the transaction execution. When a contract receives
an undefined function call, the fallback function ensures
that the contract continues to function properly, which
is essential to ensure the proper execution of Solid-
ity programs. The fallback function can also be used to
receive transfer transactions with ether, and when the
executing program calls the transfer function, the tar-
get contract automatically calls the fallback function to
process the transaction. For example, in the attack case
presented in Section 3.3, the fallback mechanism was uti-
lized to launch the attack. Therefore, to ensure that the
heterogeneous graph is consistent with the source code
semantics, the fallback mechanism is introduced in the
conversion process with the corresponding data flow and
control flow expansions.

Formal definitions

Definition 1 (AST) The source code
SC = {L1, . . . , Ln} can be formally represented as
GAST = {VAST ,EAST ,αAST ,βAST } after preprocess-
ing. VAST is the set of all nodes in the AST, denoted as
VAST = {V1,V2, . . . ,Vn} , and the subscript denotes the
ordinal number of the node. Each node represents a dif-
ferent syntactic structure in SC, such as expressions,
statements, and variable declarations. Different node
types correspond to various syntactic structures. EAST is
the set of all edges in the AST, which can be formalized
as EAST = {e1,2, e1,3, . . . , en,m} for a set of directed edges.
Here, ei,j = (Vi,Vj) represents the existence of an edge
between the ith and jth nodes in the AST. αAST denotes
the mapping function between a node and the corre-
sponding line of code, e.g., αVm

AST = 3 denotes that the
mth node is located on the 3rd line of the source code.
βAST denotes a mapping function that maps different
node types, e.g., βVm

AST = FunctionDefinition represents
that the mth node is of type FunctionDefinition. In addi-
tion, TAST is defined in this paper to describe the set of all
possible node types in the AST.

Page 5 of 15Xu et al. Cybersecurity (2024) 7:55

Definition 2 (CFG) The heterogeneous graphs of the
generated control flow graph and the AST can be formally
represented by GHCFG={VHCFG ,EHCFG ,αHCFG ,βHCFG} .
The build process is based entirely on VAST . However,
since the automatically converted AST does not con-
tain a corresponding fallback mechanism, it is neces-
sary to manually add nodes of the fallback type. In
this paper, Vfallback is defined as the fallback node, i.e.,
VHCFG = VAST {Vfallback} , and THCFG = TAST

⋃
{fallback} .

EHCFG = {e1,2, e1,3, . . . , en,m}
⋃

EAST denotes the set of directed
edges in the current graph. ei,j = (Vi,Vj) represents the
existence of a control flow edge between the ith and jth
nodes in the heterogeneous graph, and EAST denotes the
original directed edge in the AST. The αHCFG and βHCFG
in GHCFG are defined similarly as the corresponding
terms in GAST .

Definition 3 (DFG) The data flow expan-
sion result is similar to the control flow gen-
erator result and can be expressed formally as
GHDFG = {VHDFG ,EHDFG ,αHDFG ,βHDFG , γHDFG} .
Because some global variables such as msg.sender and
block.timestamp do not reflect their origin when build-
ing the AST, Vblock and Vmsg are added to complete
the data flow; thus, VHDFG = VHCFG

⋃
{Vblock ,Vmsg } .

EHDFG = {e1,2, e1,3, . . . , en,m}
⋃
EHCFG denotes the set of

directed edges in the heterogeneous graph. ei,j = (Vi,Vj)
represents the existence of a data flow edge between the
ith and jth nodes in the heterogeneous graph. EHCFG
denotes the information of the two underlying edges
contained in the heterogeneous graph composed of the
control flow graph and the AST. The αHDFG and βHDFG in
GHDFG are defined similarly as the corresponding terms

in GAST . γHDFG denotes a mapping function that maps
different edge types, e.g., γ ei,j

HDFG = {AST } represents
that the edge between (Vi,Vj) is created when the AST
is created. ETHDFG = {AST ,CFG,DFG} is defined to
represent all possible edge types, and γ ei,j

HDFG ⊆ ETHDFG .
THDFG = THCFG is defined to describe the set of all pos-
sible node types in the heterogeneous graph.

Attack example
For the acquired smart contract source code, the edge
information is automatically expanded on the basis of the
AST nodes to generate a heterogeneous graph with richer
semantic information. In this paper, the detection task
is divided into two subtasks: first, the entire contract is
classified with binary results to determine whether there
are vulnerabilities; then, each line in the source code is
classified with binary results to identify whether there are
vulnerabilities in that line of code. These two detection
methods satisfy the requirements in most scenarios.

The advantages of expanding the data flow and control
flow based on an AST can be illustrated by an example.
The left side of Fig. 1 shows source code with a reentrancy
attack, with the vulnerability located in the withdraw
function between lines 10 and 15 in the source code. The
right side of Fig. 1 shows the transformed source code to
extract the subgraph portion of the heterogeneous graph
associated with the withdrawal function. In this diagram,
each node represents a syntactic structure in the pro-
gram code, such as expressions, statements, and variable
declarations. For example, FunctionDefinition represents
the function definition in line 10, and amountSource rep-
resents the corresponding amount variable in line 10.
AST, CF, and DF are the edges defined in Definition 1,
Definition 2, and Definition 3, respectively. AST repre-
sents the edge in the abstract syntax tree, which is used

Fig. 1 Sample code transformed into a heterogeneous graph subgraph

Page 6 of 15Xu et al. Cybersecurity (2024) 7:55

to indicate the connection between syntax structures; CF
represents the edge in the CFG, which is used to indicate
how the control flow moves and executes between differ-
ent nodes; and DF represents the edge in the DFG, which
indicates how variables are defined or assigned between
different nodes.

First, the details of the attack are assessed at the code
level. The attacker contract calls the donate function to
deposit startup funds for the victim contract. Then, the
attacker contract calls the withdraw function to launch
the attack. Since the account balance is sufficient, the IF
condition in line 11 of the victim contract is judged to
be true, allowing the execution of the transfer function
code in line 12. Then, the fallback function in the attacker
contract is called. If there is a function call to withdraw
in the attacker’s fallback function, the attacker can per-
form repeated withdrawals with recursive functions. At
this point, the account balance deduction code in line
13 of the victim’s contract is not executed to ensure that
the result is true each time the IF conditional judgement
statement in line 11 is executed, thus realizing the reen-
trant attack.

Next, the whole process of the withdrawal function
call is evaluated from the perspective of a heterogene-
ous graph. The attacker contract calls the withdrawal
function to launch the attack, and with the control flow,
the attack contract reaches the BinaryOperation func-
tion for the IF condition judgement. Two data flow vari-
ables are used in the judgement process: amountSource
and balanceSource. Since the attacker has already depos-
ited the initial funds, the conditional judgement result
is true, and the attacker continues to execute the next

ExpressionStatement node along the control flow. Since
this node calls the transfer function, it no longer executes
in the original control flow direction and instead calls the
attacker’s fallback function.

A benign contract slowly moves the control flow back
to the withdrawal function after processing its own fall-
back function logic and executes the remaining logic
without any issues. However, for malicious contracts,
the control flow moves to FunctionDefinition and starts a
new round of withdrawal function calls. During this pro-
cess, the account balance deduction operation is tempo-
rarily ignored, and balanceSource and amountSource are
not updated through the data stream. Therefore, during
each malicious call to the withdrawal function, these two
variables remain unchanged until a certain fallback func-
tion returns the control flow to the normal withdrawal
function.

Methodology
The general framework proposed in this paper is shown
in Fig. 2 and consists of the following three parts:

1. Heterogeneous graph construction phase The
AST is extracted based on the source code, and the
heterogeneous graph of the target structure is con-
structed by expanding the edge relations of the nodes
in the abstract syntax tree according to the logic of
the source code.

2. Data augmentation phase: this step is optional The
code fragments that do not contain vulnerabilities

Fig. 2 General architecture diagram

Page 7 of 15Xu et al. Cybersecurity (2024) 7:55

are extracted from the benign contract and inserted
into the contract that contains the vulnerability.

3. Vulnerability detection phase Based on the word-
2vec pretrained word vector model, the heteroge-
neous graphs are vectorized into trainable graph
embeddings and combined with a neural network to
output the detection results.

Heterogeneous graph construction
According to previous research results on related codes,
processing source code as natural language text may
cause the rich semantic information in source code to
be ignored (Zhang et al. 2019). In contrast, ASTs contain
both the corresponding syntactic information and a cer-
tain amount of semantic information. Therefore, various
methods based on ASTs have been proposed (Wu et al.
2021; Wang et al. 2020; Zhang et al. 2019; Liang et al.
2019), which help to improve the understanding of the
source code by the model and thus improve the experi-
mental results. In this paper, solc-select (Crytic 2022)
is used to extract the basic AST structure based on the
smart contract source code. The obtained AST is dis-
cussed in Definition 1.

Control flow generator Control flow analysis is a tra-
ditional software analysis technique that involves mod-
elling and analysing conditional judgement statements,
looping statements, and function call relationships. Con-
trol flow analysis methods can vary significantly among
different programming languages. In particular, there are
features in the Solidity language for writing smart con-
tracts that are not present in other common languages.
For example, the fallback function is called when the tar-
get of the function call is does not exist or the current
transaction involves ether transactions.

In this paper, a connection between each node in GAST
and each line in the source code is established based on
the content and type. The task of expanding the con-
trol flow information based on the abstract syntax tree
is achieved by statically scanning the source code and
simulating the program execution path. In this paper,
the types of newly expanded edges are not distinguished,
either in terms of normal advancement between upper
and lower lines of code or in terms of call and return rela-
tionships between functions, which are reflected in the
same kinds of directed edges in the heterogeneous graph.
The obtained heterogeneous graph composed of the AST
and CFG is discussed in Definition 2.

Data flow generator Data flow analysis is similar to
control flow analysis and is another traditional software
analysis technique. It is often used to analyse the flow
of variable values in programs over different execution
paths. Since the analysis is based on the execution path,

the process is performed after the control flow genera-
tor. The approach used in this paper is forwards analy-
sis, which starts at the entry point of the program and
traverses the execution path generated by the control
flow generator until the exit point of the program. The
execution of a smart contract also involves many global
variables, such as msg.sender, representing the initiator
of the transaction, and block.timestamp, representing
the timestamp of the current block. The origin of these
variables is not reflected in the abstract syntax tree, and
similar to the fallback function, they need to be actively
added to the abstract syntax tree.

In data flow analysis, assignment and referencing of
variables are both considered ways of passing data flows.
Similarly, in this paper, no distinction needs to be made
between the different types, which are also reflected in
the same directed edges in the heterogeneous graph. In
this paper, how the variables flow through the program
is considered rather than the specific values represented
by the variables, as this approach reflects the method by
which hackers attack contracts. The obtained heteroge-
neous graph consisting of the AST, CFG and DFG is dis-
cussed in Definition 3.

Thus far, the data flow and control flow in the smart
contract have been fused with the AST and used to
enrich the graph information to be trained to improve
the classification ability of the model. Different from the
idea of Liu et al. (2021), the idea in this paper is that the
intricate edge relations and the structural information
are important for detecting various vulnerabilities, and
no deletion operation should be performed to simplify
the graph structure, which would lead to the loss of code
semantics. This heterogeneous graph can increase the
generalization ability of the model, thus improving its
detection ability for various types of vulnerabilities.

Data augmentation
The lack of datasets for this task has been criticized, as
the number of datasets available for training is very lim-
ited and the cost of manual labelling is high. Further-
more, the trained models show poor performance, and
the validation sets are too small to fully verify the validity
of the models.

In the field of computer vision, it is common to
enhance the robustness or accuracy of models by data
augmentation (Wong et al. 2016), and the most common
data enhancement strategies include distortion, adding
noise, rotation, panning, clipping, and merging. In this
paper, we propose a data augmentation method for smart
contract source code, aiming to address the issues caused
by insufficient training data. Specifically, a function is
selected from the benign file, and the remaining neces-
sary code required for the function to run is determined

Page 8 of 15Xu et al. Cybersecurity (2024) 7:55

by control flow analysis. Then, the benign function is
inserted before the line containing the vulnerability in
the code to be enhanced. To ensure that the heterogene-
ous graph is changed without affecting the original code
execution results, the inserted part is wrapped using
a while loop (false). The remaining necessary code is
inserted into a blank position in the file to be enhanced
according to the dependency with the benign function,
thus generating a new experimental sample. Finally, the
line-level and contract-level labels of the new samples
are determined according to the inserted positions. This
approach can effectively expand the dataset and improve
the generalization ability and robustness of the model. In
terms of the graph structure, data augmentation methods
connect two partial subtrees of an abstract syntax tree by
controlling the flow edges. Theoretically, enough training
data can be constructed with data augmentation meth-
ods to alleviate the training and validation problems.

The specific enhancement process is shown in Algo-
rithm 1. The algorithm inputs include srcPath (path of
the complete contract file to be enhanced), segPath (path
of the benign code file), nDict (dictionary stored by node
type after converting the benign file to the AST) and
insertLine (insert location in the file to be enhanced).

Algorithm 1 Data augmentation

In the algorithm, the set fullNodes is first initialized to
record all the nodes that may be involved in the execu-
tion of the function. In line 2, all nodes with node type

FunctionDefinition are traversed, i.e., all functions in
the benign file are traversed. In lines 3–7, all nodes that
may be involved in executing the function are added to
the fullNodes set to map the specific lines in the benign
file that need to be inserted into the new sample. In line
8–9, the DetailMsg function calculates the order in which
the two files should be saved as new experimental sam-
ples when they are merged, and the results are stored as
arrays as segLine and srcLine. In lines 10–15, the benign
file and the file to be enhanced are fused according to
segLine and srcLine. Then, diffLine is updated to record
the deviation between the position of the vulnerability in
the file to be enhanced and its position in the new sam-
ple. In line 16, the tag of the new sample file is updated
using diffLine.

Vulnerability detection
Vectorizing graph data is one of the important steps in
using graph neural networks for deep learning. Another
idea proposed in this paper is to use a word vector model
to map the content and type of each node in the AST
and thus obtain embeddings that can be used in the neu-
ral network. The word2vec (Mikolov et al. 2013, 2013)
method is used as an intermediate step between the raw
graph data and trainable node embeddings in this paper.
Word2vec is a neural network-based natural language
processing technique for converting text into vector rep-
resentations. Since code can be considered a special form
of text, a similar technique can be used to convert codes
into vector representations. Specifically, elements such as
identifiers, variables, functions, and operators in the code
can be considered as words and trained using a word2vec
model to obtain vector representations of each word. For
example, Lin et al. (2018) used word2vec to map each ele-
ment in a serialized form of an AST to a trainable vector.
In this paper, we first serialize the AST structure using
depth-first search (DFS) and breadth-first search (BFS)
techniques to preserve the structural properties of the
AST and convert each node in the serialized AST to a
string containing the node type and node content. This
serialized and converted corpus is used for word vector
model training. Thus, word2vec can be used to extract
the semantic relations between different nodes in the
AST. Then, these relations can be converted into vector
representations to better represent the similarities and
differences between nodes, thereby allowing the model
to better interpret and understand the relations between
nodes. The vectorization process is discussed in Defini-
tion 4.

Definition 4 (Vectorization Process) The program
source code SC = {L1, L2, . . . , Ln} represents each line of
statements in the source file. Li consists of an ordered set

Page 9 of 15Xu et al. Cybersecurity (2024) 7:55

of symbols, e.g., Li = {Si,1, Si,2, ..., Si,m} indicates that the
ith line in the source code contains m symbols. Moreo-
ver, Li can be represented by a set of nodes in GHDFG , e.g.,
Li = {Vu,Vu+1, ...,Vw} , where each node may contain
one or more symbols, so |w − u| ≤ m− 1 . The process
to transform Vk into a vector is shown in Eq. 1. h0Vk

 rep-
resents the original input to node VK , the dimension is
R1×d , and d denotes the vector length specified after the
word2vec transformation.

The classifiers used in this paper are divided into two cat-
egories: contract-level vulnerability detection and line-
level vulnerability detection. Contract-level vulnerability
detection is the most basic classification task in which
binary results are generated to indicate whether a con-
tract is vulnerable. Specifically, the model performs the
node classification task via RGCN, which aggregates the
information of neighbouring nodes through a multilayer
convolution operation (Schlichtkrull et al. 2018). The
aggregation process is shown in Eq. 2, where Nr

i denotes
the set of neighbour nodes of node i that have relation-
ship r with node i, and σ is the ReLU function.

After several rounds of RGCN aggregation, it is neces-
sary to divide the nodes according to the corresponding
contract and perform an OR operation based on the divi-
sion results to obtain the final detection results. Equa-
tion 3 defines the process of computing the contract-
level results, where ŷcs ∈ {0, 1} indicates the presence or
absence of vulnerabilities in the source file. Tcs denotes
the set of all contracts in the file, and V con

C represents the
set of all nodes belonging to contract type con:

Line-level vulnerability detection is a more granular pro-
cess than contract-level vulnerability detection, and the
outputs are the binary detection results for each line in
the source code. In this task, RGCN is also used to aggre-
gate information from surrounding neighbouring nodes,
and all nodes associated with each line are pooled equally
to obtain the embedding of the source code for that line.
Based on these line-level embeddings, the model uses an
attention mechanism to further fuse the contextual infor-
mation. The embeddings are mapped to binary detection
results for each line using a fully connected layer and

(1)h0Vk
=word2vec(Vk)⊕ word2vec(β

Vk
HDFG)

(2)hl+1
Vi

=σ(
∑

r∈ETHDFG

∑

j∈Nr
i

1

Ci,r
W l

r h
l
j +Wl

0h
l
i)

(3)ŷcs =
⋃

con∈Tcs

sigmoid(Wcs
1

|V con
C |

∑

j∈V con
C

hVj + bcs)

an activation function. The process of RGCN aggrega-
tion is shown in Eq. 2. Equation 4 defines the process of
computing the line-level results. V l

L denotes the set of all
nodes located in line l, and cof(k) denotes the attention
factor assigned to the kth line of source code.

Experiment
This section presents the experimental setup and experi-
mental results to answer the following research ques-
tions. RQ1: How does the contract-level vulnerability
detection performance of the MVD-HG model compare
to that of several state-of-the-art vulnerability detection
tools? RQ2: How does the line-level vulnerability detec-
tion performance of the MVD-HG model compare to
that of the state-of-the-art MANDO model? RQ3: Does
the proposed data enhancement technique for the deep
learning-based approach enhance performance? RQ4:
What are the impacts of different modules in the hetero-
geneous graph model, including the AST, CFG, and DFG,
on the experimental results?

Datasets
Four datasets were used in the experiments. The Con-
tract-Origin dataset was used for contract-level vul-
nerability detection without data augmentation. The
Line-Origin dataset was used for line-level vulnerability
detection without data augmentation. These two datasets
were derived from the experimental dataset of MANDO.
Contract-augmentation and line-augmentation were the
contract-level vulnerability dataset and line-level vulner-
ability dataset after enhancement using the data enhance-
ment methods proposed in this paper. Each dataset
contains seven vulnerability types, and Table 1 shows the
details of these four datasets.

Experimental setup
In the experiments, to ensure that the original small-scale
dataset is sufficient for model training and testing, the
dataset was partitioned into a training set containing of
70% of the data and a testing set containing the remain-
ing 30%. This partitioning ratio was also used for the
enhanced datasets to ensure consistency. The number
of epochs followed the original experiment setting and
was set to 50, and each experiment was independently
performed 20 times to achieve stable average results. In
addition to the deep learning-based comparison method,
experiments were conducted with a variety of traditional

(4)

ŷLk = sigmoid(Wline

k+1∑

l=k−1

∑

j∈V l
L

hVj

cof (l)

k+1∑
i=k−1

cof (i)

+ bline)

Page 10 of 15Xu et al. Cybersecurity (2024) 7:55

tools through Smartbug (Ferreira et al. 2020), including
HoneyBadger (Torres and ichen 2019), Mythril (Consen-
sys 2022), Osiris (Torres et al. 2018), Oyente (Luu et al.
2016), Securify (Tsankov et al. 2018), Slither (Feist et al.
2019) and SmartCheck (Tikhomirov et al. 2018). Honey-
Badger uses symbolic execution and heuristics to identify
vulnerabilities. Mythril uses taint analysis and control
flow analysis techniques to detect a variety of vulnerabili-
ties, such as reentrancy vulnerabilities and integer over-
flow vulnerabilities. Osiris combines symbolic execution
and taint analysis techniques and is mainly used to detect
integer overflow vulnerabilities. Oyente uses a symbolic
execution approach to simulate the EVM and traverse the
different execution paths of the contract. Securify inves-
tigates contracts for security vulnerabilities by analysing
their dependency graphs and extracting precise seman-
tic information from the code and has the advantages
of being lightweight and scalable. SmartCheck converts
Solidity source code into an intermediate representation
with an XML-based format and verifies the results with
XPath.

We conducted the experiments on a server with an
Intel Xeon E5-2680 v4 CPU (with 14 × 2.4 GHz cores),
128 GB of memory, and 4 × GTX 2080Ti GPUs running
on Ubuntu 20.04. The source code and part of the data-
sets are available at https:// github. com/ Astro naut- diode/
MVD- HG.

Experimental results
RQ1: How does the contract-level vulnerability detec-
tion performance of the MVD-HG model compare to
that of several state-of-the-art vulnerability detection
tools?

Contract-level vulnerability detection is the most com-
mon task in the field of smart contract vulnerability
detection. This paper aims to use multiple smart contract
vulnerability detection tools to demonstrate the poten-
tial of MVD-HG for this basic task. In this experiment,
the vulnerability detection methods are divided into two

categories, detection tools based on deep learning meth-
ods and traditional tools, and a timeout time of 600 s is
set for the traditional tools. The experimental results of
the various methods are shown in Table 2, and the F1
score, which was determined based on the Contract-Ori-
gin dataset, is used as the evaluation metric. This experi-
ment follows the method proposed in the MANDO
paper, in which four experiments were performed using
four node feature generators, nodetype, meta2path, line
and node2vec. The aim of these generators is the same as
that of the word2vec method used in this paper, aiming
to obtain trainable node features.

The following two conclusions can be drawn from
Table 2. First, compared to traditional tools, deep learn-
ing-based vulnerability detection methods typically
enable more comprehensive vulnerability detection and
achieve better overall detection results. This indicates
that traditional tools have smaller detection scopes, are
less likely to detect unanticipated vulnerability types, and
need to continuously produce new heuristic rules for new
attacks to achieve vulnerability detection. In contrast, the
deep learning-based approach is more adaptable and can
better handle new types of vulnerabilities. Second, the
MVD-HG approach outperformed MANDO based on
the Contract-Origin dataset. This indicates that the het-
erogeneous graphs used in the MVD-HG model capture
richer semantic information, enhance the model’s under-
standing of the program code, and improve the effective-
ness of contract-level vulnerability detection tasks.

RQ2: How does the line-level vulnerability detec-
tion performance of the MVD-HG model compare to
that of the state-of-the-art MANDO model?

The experiment to address RQ2 uses the same config-
uration as that to address RQ1 and use the Line-Origin
dataset to explore the effectiveness of MVD-HG for the
line-level vulnerability detection task. The results of this
experiment are shown in Table 3. For each line in Table 3,
to obtain the results of the traditional tool, the research-
ers determined the predicted results for each line of

Table 1 Detailed statistical information about the dataset

Vulnerability type Contract-level Line-level

Number of contract-
origin files

Number of contract-
augmentation files

Number of line-origin files Number of line-
augmentation files

Access control 114 400 57 200

Arithmetic 120 502 60 251

Denial of service 92 286 46 143

Front running 88 342 44 171

Reentrancy 142 362 71 181

Time manipulation 100 212 50 106

Unchecked low level call 190 728 95 364

https://github.com/Astronaut-diode/MVD-HG
https://github.com/Astronaut-diode/MVD-HG

Page 11 of 15Xu et al. Cybersecurity (2024) 7:55

source code in the target file and compared the results
with the original tags.

The experimental results show that most traditional
tools perform poorly for line-level vulnerability detec-
tion tasks, and a deep understanding of the program code
is lacking, making it difficult to obtain fine-grained vul-
nerability detection results. In contrast, the AST-based
detection methods, such as MANDO and MVD-HG,
can provide a more comprehensive understanding of
the source code and achieve better detection results. In
addition, MVD-HG outperforms MANDO in line-level
vulnerability detection tasks, indicating that the use of
heterogeneous graphs and attention mechanisms can

improve the model’s understanding of the program code
and the vulnerability detection results.

RQ3: Does the proposed data enhancement tech-
nique for the deep learning-based approach enhance
performance?

To address RQ3, researchers conducted experiments to
validate the effectiveness of the proposed data enhance-
ment method for both contract-level and line-level vul-
nerability detection data. Specifically, experiments were
conducted based on the Contract-Origin and Contract-
Augmentation datasets for the contract-level task and
the Line-Origin and Line-Augmentation datasets for the

Table 2 Original contract-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time
manipulation

Unchecked
low level
call

Traditional tools HoneyBadger – – – – 0.4222 – –

Mythril 0.4249 0.5069 – – 0.3695 – 0.5648

Osiris – 0.4303 0.0425 – 0.5799 0.0769 –

Oyente – 0.4042 0.0425 – 0.5656 – –

Securify 0.0344 – – 0.0416 0.4421 – 0.5757

Slither 0.8761 – 0.1960 – 0.9523 0.9504 0.6363

SmartCheck 0.6744 0.8679 0.0833 – 0.9857 0.9473 0.6896

MANDO nodetype 0.7119 0.6685 0.8737 0.8731 0.7609 0.8503 0.7208

meta2path 0.5770 0.5284 0.6016 0.6219 0.5506 0.5947 0.5137

line 0.6512 0.5491 0.8915 0.8986 0.7104 0.8771 0.5944

node2vec 0.5571 0.6411 0.8386 0.8605 0.7139 0.7338 0.6610

MVD-HG 0.9355 0.9196 0.9146 0.9559 0.9397 0.9351 0.9056

Table 3 Original line-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time
manipulation

Unchecked
low level
call

Traditional tools HoneyBadger – – – – – – –

Mythril 0.1137 0.0247 – – 0.0135 – 0.0324

Osiris – 0.0247 – – 0.0062 0.0003 –

Oyente – 0.0061 – – 0.0062 – –

Securify 0.0004 – – – – – –

Slither 0.9197 – 0.0007 – 0.3872 0.5972 0.0355

SmartCheck 0.0379 0.0614 – – 0.0691 0.2112 0.0442

MANDO nodetype 0.7721 0.8162 0.7983 0.8819 0.8424 0.8664 0.6595

meta2path 0.6797 0.7484 0.6722 0.8608 0.7603 0.7381 0.5071

line 0.8119 0.8158 0.8212 0.9047 0.8627 0.8921 0.8337

node2vec 0.8198 0.8435 0.8209 0.9051 0.8640 0.9029 0.8481

MVD-HG 0.8269 0.9312 0.8302 0.9105 0.9469 0.9225 0.9015

Page 12 of 15Xu et al. Cybersecurity (2024) 7:55

line-level task. The experimental results are shown in
Tables 4 and 5.

In Table 4, each pair of rows represents the results
for one kind of vulnerability data before and after data
enhancement, and two main conclusions can be drawn
from the experimental results. First, the performance of
the traditional tool based on the augmented vulnerabil-
ity datasets does not show a simple monotonic increas-
ing or decreasing trend. This result is consistent with the
fact that the traditional tool is based on expert rules, and
increasing the amount of data in the dataset does not
necessarily lead to improved classification results. This
indicates that the data augmentation method proposed

in this paper does not arbitrarily add simple new sam-
ples and that the added samples are difficult to identify.
Second, for the deep learning-based method, the perfor-
mance was improved to some degree in all experiments,
except for the MANDO experiment using meta2path as
the node feature generator, which showed a reduced pre-
diction effect. These results indicate that there is a bot-
tleneck in capturing the semantic relationships between
different nodes in the AST using meta2path and that
relying on only metapath will lead to the loss of semantic
information in the source code. These results also dem-
onstrate that the data augmentation method for smart
contract samples proposed in this paper is effective and

Table 4 Enhanced contract-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time
manipulation

Unchecked
low level
call

Traditional Tools HoneyBadger – – – – 0.1809 – –

Mythril 0.4855 0.5365 – – 0.5426 – 0.4739

Osiris – 0.4714 0.1428 – 0.5041 0.2877 –

Oyente – 0.4016 0.1428 – 0.4916 – –

Securify 0.0099 – – 0.1176 0.4463 – 0.6212

Slither 0.8647 – 0.1059 – 0.7928 0.9056 0.5333

SmartCheck 0.5964 0.8298 0.3372 – 0.9802 0.8287 0.7033

MANDO nodetype 0.7562 0.8431 0.8422 0.9103 0.8267 0.8018 0.8461

meta2path 0.5984 0.5699 0.5324 0.5660 0.5695 0.5641 0.5717

line 0.7095 0.8108 0.7946 0.8311 0.7419 0.7647 0.7947

node2vec 0.7343 0.8198 0.7785 0.8184 0.6723 0.7103 0.8300

MVD-HG 0.9430 0.9461 0.9670 0.9551 0.9564 0.9518 0.9775

Table 5 Enhanced line-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time
manipulation

Unchecked
low level
call

Traditional tools HoneyBadger – – – – – – –

Mythril 0.1592 0.0501 – – 0.0167 – 0.0274

Osiris – 0.0289 – – 0.0044 0.0018 –

Oyente – 0.0072 – – 0.0044 – –

Securify 0.0001 – – 0.0009 – – –

Slither 0.9633 – 0.0020 – 0.3930 0.6081 0.0310

SmartCheck 0.0293 0.0647 – – 0.0677 0.2122 0.0459

MANDO nodetype 0.7407 0.7838 0.7832 0.8541 0.8195 0.8207 0.6678

meta2path 0.6078 0.7164 0.6100 0.8567 0.7405 0.6784 0.5563

line 0.7542 0.8165 0.8064 0.9013 0.8457 0.8759 0.8398

node2vec 0.8048 0.8306 0.8042 0.9006 0.8540 0.8799 0.8508

MVD-HG 0.9544 0.9806 0.9493 0.9653 0.9747 0.9551 0.9748

Page 13 of 15Xu et al. Cybersecurity (2024) 7:55

can produce more training data, allowing the model to
improve its detection capability.

As seen in Table 5, there are fluctuations in the detec-
tion effectiveness of the traditional tools before and after
data augmentation in the line-level vulnerability detec-
tion task. This indicates that the data augmentation
method is equally effective in the line-level vulnerability
detection task, in which the additional data samples are
all difficult to detect. Notably, in the MANDO experi-
ments, the data enhancement method not only did
not improve the detection effect but also led to a slight
decrease or no substantial change. However, MVD-HG
showed significantly improved performance after data
enhancement. This indicates that there is some overfit-
ting problem with the MANDO approach in the line-
level vulnerability detection experiments. The MVD-HG
model, on the other hand, shows more robust perfor-
mance in the line-level vulnerability detection task,
which is attributed to the three-graph fusion to create the
heterogeneous graphs and the use of an attention mecha-
nism to reference the contextual information.

RQ4: What are the impacts of different modules in
the heterogeneous graph model, including the AST,
CFG, and DFG, on the experimental results?

To address RQ4, several ablation experiments are con-
ducted in this paper to demonstrate the effectiveness of
transforming the smart contract source code into a het-
erogeneous graph composed of ASTs, CFGs, and DFGs
in the vulnerability detection task and to explore the roles

of the AST, CFG, and DFG in the model. The Contract-
Augmentation and Line-Augmentation datasets were
used for the experiments, and the results are shown in
Table 6.

Based on the experimental results in Table 6, two con-
clusions can be drawn. First, the CFG is a higher prior-
ity for two attacks, reentrancy and time manipulation,
and is sufficient to capture the code semantics needed
to identify these two attacks; however, this component
shows significant performance degradation for the other
five attacks. This suggests that different heterogeneous
graph components have distinct effects on various vul-
nerability types that may be related to the characteristics
of the vulnerability. Second, changing the components in
the heterogeneous graph can slightly improve the perfor-
mance in certain vulnerability detection tasks. For exam-
ple, merging the AST and DFG into a heterogeneous
graph slightly improves performance in the contract-level
arithmetic, denial of service, front running, and time
manipulation vulnerability detection tasks but tends to
lead to significant performance degradation for the other
vulnerability types. Thus, although merging the AST,
CFG, and DFG into heterogeneous graphs may intro-
duce some additional information, the approach success-
fully improves the overall performance. Additionally, the
row of Average Runtime indicates the time required for
training a single file (in seconds). It can be seen that dif-
ferent combinations of heterogeneous graphs have little
effect on training time. Given the combination of AST,

Table 6 Results of ablation experiments

The best two average results are shown in bold and italic fonts

Task Vulnerability type AST CFG DFG CFG DFG AST DFG AST CFG AST CFG DFG

Contract level Access control 0.9430 0.7797 0.8800 0.9438 0.8564 0.6867 0.6697

Arithmetic 0.9461 0.9563 0.9558 0.9667 0.9537 0.8968 0.8978

Denial of service 0.9670 0.9260 0.9781 0.9763 0.9538 0.7668 0.7845

Front running 0.9551 0.9790 0.9658 0.9627 0.9793 0.9566 0.9574

Reentrancy 0.9564 0.9740 0.8669 0.9146 0.8453 0.9449 0.9536

Time manipulation 0.9518 0.9548 0.9634 0.9635 0.9440 0.9064 0.9308

Unchecked low level call 0.9775 0.7683 0.9332 0.9630 0.9513 0.7040 0.6888

Average 0.9567 0.9054 0.9347 0.9558 0.9262 0.8374 0.8403

Average runtime 13.34 12.75 13.60 13.51 13.80 13.19 13.01

Line level Access control 0.9544 0.9681 0.8773 0.9457 0.8869 0.9225 0.9161

Arithmetic 0.9806 0.9841 0.9473 0.9705 0.9435 0.9666 0.9600

Denial of service 0.9493 0.9560 0.8732 0.9267 0.8702 0.8788 0.8825

Front running 0.9653 0.9508 0.9273 0.9407 0.9284 0.9441 0.9445

Reentrancy 0.9747 0.9127 0.8643 0.9135 0.8675 0.8826 0.8694

Time manipulation 0.9551 0.9097 0.8805 0.8934 0.8813 0.9031 0.8973

Unchecked low level call 0.9748 0.9585 0.9159 0.9713 0.9564 0.9087 0.9166

Average 0.9648 0.9485 0.8979 0.9374 0.9191 0.9152 0.9123

Average Runtime 87.83 90.01 91.11 87.63 84.83 88.76 89.57

Page 14 of 15Xu et al. Cybersecurity (2024) 7:55

CFG and DFG, for a source file of 40KB, contract-level
vulnerability detection takes 30 s, while line-level vulner-
ability detection takes 72 s. Meanwhile, for a source file of
1KB, contract-level vulnerability detection can be com-
pleted within 1 s, and line-level vulnerability detection
only takes 24 s. This confirms that the proposed approach
to merge these three parts into a heterogeneous graph
is appropriate to better understand the source code and
achieve highly accurate detection results.

Conclusion
This paper proposes a method to generate hybrid hetero-
geneous graphs containing ASTs, CFGs and DFGs based
on Solidity smart contract source code to capture more
complete semantic information. The proposed method
deepens the model’s understanding of the source code
and enables vulnerability detection at both the contract
level and line level. The results of several experiments
with both original and enhanced datasets show that the
proposed approach is promising and outperforms the
state-of-the-art methods; thus, the proposed approach is
worthy of reference.

However, the method proposed in this paper can still
be improved. For example, to protect the security of
smart contracts, most of the contract source code is not
published, and only the converted bytecode of the con-
tract source code is released. Bytecode is not currently
applicable with the methods proposed in this paper, so it
is imperative to explore how to use deep learning meth-
ods for vulnerability identification based on bytecode
files. In addition, most of the existing detection tools only
identify which part of the source code is vulnerable but
cannot determine specific attack routes; thus, the results
are less interpretable. Therefore, determining the specific
line of attack should be the focus of future work.

Acknowledgements
Here, we sincerely want to express our gratitude to all those who have pro-
vided help and support during the research process of this article.

Author contributions
All authors have contributed to this manuscript and approve of this
submission.

Funding
This work was supported by the Major Program of Natural Science Foundation
of Zhejiang Province (No. LD22F020002), the National Natural Science Founda-
tion of China (Nos. 62372410, U22B2028), the Zhejiang Provincial Natural
Science Foundation of China (No. LZ23F020011), the Fundamental Research
Funds for the Provincial Universities of Zhejiang (No. RF-A2023009) and the
Key R&D Projects in Zhejiang Province (No. 2021C01117).

Availability of data and materials
Our experimental data and code can be found at https:// github. com/ Astro
naut- diode/ MVD- HG.

Declarations

Competing interests
The authors declare that they have no conflict of interest.

Received: 31 October 2023 Accepted: 10 April 2024

References
Cao S, Sun X, Bo L, Wei Y, Li B (2021) BGNN4VD: constructing bidirectional

graph neural-network for vulnerability detection. Inf Softw Technol
136:106576

Consensys (2022) Consensys/mythril: security analysis tool for EVM bytecode.
Supports smart contracts built for Ethereum, Hedera, Quorum, Vechain,
Roostock, Tron and other EVM-compatible blockchains. https:// github.
com/ Conse nsys/ mythr il

Crytic (2022) crytic/solc-select: Manage and switch between Solidity compiler
versions. https:// github. com/ crytic/ solc- select

Dong Y, Tang Y, Cheng X, Yang Y, Wang S (2023) SEDSVD: statement-level
software vulnerability detection based on relational graph convolutional
network with subgraph embedding. Inf Softw Technol 158:107168

Durieux T, Ferreira JF, Abreu R, Cruz P (2020) Empirical review of automated
analysis tools on 47,587 Ethereum smart contracts. In: Proceedings of the
ACM/IEEE 42nd international conference on software engineering, pp
530–541

ethereum (2022) Contracts—Solidity 0.8.22 documentation. https:// docs. solid
ityla ng. org/ en/ latest/ contr acts. html# fallb ack- funct ion

Fan Y, Shang S, Ding X (2021) Smart contract vulnerability detection based on
dual attention graph convolutional network. In: Collaborative comput-
ing: networking, applications and worksharing: 17th EAI international
conference, CollaborateCom 2021, Virtual Event, October 16–18, 2021,
Proceedings, Part II 17. Springer, pp 335–351

Feist J, Grieco G, Groce A (2019) Slither: a static analysis framework for smart
contracts. In: 2019 IEEE/ACM 2nd international workshop on emerging
trends in software engineering for blockchain (WETSEB). IEEE, pp 8–15

Ferreira JF, Cruz P, Durieux T, Abreu R (2020) SmartBugs: a framework to analyze
solidity smart contracts. In: Proceedings of the 35th IEEE/ACM interna-
tional conference on automated software engineering, pp 1349–1352

Grishchenko I, Maffei M, Schneidewind C (2018) EtherTrust: sound static
analysis of Ethereum bytecode. Technische Universität Wien, technical
report, pp 1–41

Hildenbrandt E, Saxena M, Rodrigues N, Zhu X, Daian P, Guth D, Moore B, Park
D, Zhang Y, Stefanescu A (2018) KEVM: a complete formal semantics
of the Ethereum virtual machine. In: 2018 IEEE 31st computer security
foundations symposium (CSF). IEEE, pp 204–217

Hu B, Zhang Z, Liu J, Liu Y, Yin J, Lu R, Lin X (2021) A comprehensive survey
on smart contract construction and execution: paradigms, tools, and
systems. Patterns 2(2)

Jeon S, Lee G, Kim H, Woo SS (2021) SmartConDetect: highly accurate smart
contract code vulnerability detection mechanism using BERT. In: KDD
workshop on programming language processing

Jiang F, Cao Y, Xiao J, Yi H, Lei G, Liu M, Deng S, Wang H (2022) VDDL: a deep
learning-based vulnerability detection model for smart contracts.
In: International conference on machine learning for cyber security.
Springer, pp 72–86

Jiang B, Liu Y, Chan WK (2018) ContractFuzzer: fuzzing smart contracts for vul-
nerability detection. In: Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering, pp 259–269

Kalra S, Goel S, Dhawan M, Sharma S (2018) Zeus: analyzing safety of smart
contracts. In: Ndss, pp 1–12

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv: 1609. 02907

Li J (2023) Metamorphic testing for smart contract vulnerabilities detection.
arXiv preprint arXiv: 2303. 03179

Liang H, Sun L, Wang M, Yang Y (2019) Deep learning with customized abstract
syntax tree for bug localization. IEEE Access 7:116309–116320

https://github.com/Astronaut-diode/MVD-HG
https://github.com/Astronaut-diode/MVD-HG
https://github.com/Consensys/mythril
https://github.com/Consensys/mythril
https://github.com/crytic/solc-select
https://docs.soliditylang.org/en/latest/contracts.html#fallback-function
https://docs.soliditylang.org/en/latest/contracts.html#fallback-function
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2303.03179

Page 15 of 15Xu et al. Cybersecurity (2024) 7:55

Lin G, Zhang J, Luo W, Pan L, Xiang Y, De Vel O, Montague P (2018) Cross-
project transfer representation learning for vulnerable function discovery.
IEEE Trans Ind Inf 14(7):3289–3297

Liu C, Liu H, Cao Z, Chen Z, Chen B, Roscoe B (2018) ReGuard: finding reen-
trancy bugs in smart contracts. In: Proceedings of the 40th international
conference on software engineering: companion proceedings, pp 65–68

Liu Z, Qian P, Wang X, Zhuang Y, Qiu L, Wang X (2021) Combining graph neural
networks with expert knowledge for smart contract vulnerability detec-
tion. IEEE Trans Knowl Data Eng

Luu L, Chu D-H, Olickel H, Saxena P, Hobor A (2016) Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security, pp 254–269

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv: 1301. 3781

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Distributed represen-
tations of words and phrases and their compositionality. Adv Neural Inf
Process Syst 26

Murray Y, Anisi DA (2019) Survey of formal verification methods for smart
contracts on blockchain. In: 2019 10th IFIP international conference on
new technologies, mobility and security (NTMS). IEEE, pp 1–6

Nguyen HH, Nguyen N-M, Xie C, Ahmadi Z, Kudendo D, Doan T-N, Jiang
L (2022) MANDO: multi-level heterogeneous graph embeddings for
fine-grained detection of smart contract vulnerabilities. In: 2022 IEEE 9th
international conference on data science and advanced analytics (DSAA).
IEEE, pp 1–10

Nikolić I, Kolluri A, Sergey I, Saxena P, Hobor A (2018) Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th annual
computer security applications conference, pp 653–663

Praitheeshan P, Pan L, Yu J, Liu J, Doss R (2019) Security analysis methods on
Ethereum smart contract vulnerabilities: a survey. arXiv preprint arXiv:
1908. 08605

Qian P, Liu Z, He Q, Zimmermann R, Wang X (2020) Towards automated reen-
trancy detection for smart contracts based on sequential models. IEEE
Access 8:19685–19695

Rameder H (2021) Systematic review of Ethereum smart contract security
vulnerabilities, analysis methods and tools

Samreen NF, Alalfi MH (2021) A survey of security vulnerabilities in Ethereum
smart contracts. arXiv preprint arXiv: 2105. 06974

Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I, Welling M (2018)
Modeling relational data with graph convolutional networks. In: The
semantic web: 15th international conference, ESWC 2018, Heraklion,
Crete, Greece, June 3–7, 2018, Proceedings 15. Springer, pp 593–607

Tang X, Zhou K, Cheng J, Li H, Yuan Y (2021) The vulnerabilities in smart
contracts: a survey. In: Advances in artificial intelligence and security: 7th
international conference, ICAIS 2021, Dublin, Ireland, July 19–23, 2021,
Proceedings, Part III 7. Springer, pp 177–190

Tikhomirov S, Voskresenskaya E, Ivanitskiy I, Takhaviev R, Marchenko E, Alex-
androv Y (2018) SmartCheck: static analysis of Ethereum smart contracts.
In: Proceedings of the 1st international workshop on emerging trends in
software engineering for blockchain, pp 9–16

Torres CF, ichen M (2019) The art of the scam: demystifying honeypots in
Ethereum smart contracts. In: 28th USENIX security symposium (USENIX
security 19), pp 1591–1607

Torres CF, Schütte J, State R (2018) Osiris: hunting for integer bugs in Ethereum
smart contracts. In: Proceedings of the 34th annual computer security
applications conference, pp 664–676

Tsankov P, Dan A, Drachsler-Cohen D, Gervais A, Buenzli F, Vechev M (2018)
Securify: practical security analysis of smart contracts. In: Proceedings of
the 2018 ACM SIGSAC conference on computer and communications
security, pp 67–82

Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph
attention networks. arXiv preprint arXiv: 1710. 10903

Wang W, Song J, Xu G, Li Y, Wang H, Su C (2020) ContractWard: automated
vulnerability detection models for Ethereum smart contracts. IEEE Trans
Netw Sci Eng 8(2):1133–1144

Wang X, Ji H, Shi C, Wang B, Ye Y, Cui P, Yu PS (2019) Heterogeneous graph
attention network. In: The world wide web conference, pp 2022–2032

Wang W, Li G, Ma B, Xia X, Jin Z (2020) Detecting code clones with graph neu-
ral network and flow-augmented abstract syntax tree. In: 2020 IEEE 27th
international conference on software analysis, evolution and reengineer-
ing (SANER). IEEE, pp 261–271

Wong SC, Gatt A, Stamatescu V, McDonnell MD (2016) Understanding data
augmentation for classification: when to warp? In: 2016 international
conference on digital image computing: techniques and applications
(DICTA). IEEE, pp 1–6

Wu H, Zhang Z, Wang S, Lei Y, Lin B, Qin Y, Zhang H, Mao X (2021) Peculiar:
smart contract vulnerability detection based on crucial data flow graph
and pre-training techniques. In: 2021 IEEE 32nd international symposium
on software reliability engineering (ISSRE). IEEE, pp 378–389

Yang T, Hu L, Shi C, Ji H, Li X, Nie L (2021) HGAT: heterogeneous graph atten-
tion networks for semi-supervised short text classification. ACM Trans Inf
Syst TOIS 39(3):1–29

Zhang Y, Chen L, Nie X, Shi G (2022) An effective buffer overflow detection
with super data-flow graphs. In: 2022 IEEE international conference on
parallel & distributed processing with applications, big data & cloud
computing, sustainable computing & communications, social computing
& networking (ISPA/BDCloud/SocialCom/SustainCom). IEEE, pp 684–691

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019) A novel neural source
code representation based on abstract syntax tree. In: 2019 IEEE/ACM
41st international conference on software engineering (ICSE). IEEE, pp
783–794

Zhao H, Su P, Wei Y, Gai K, Qiu M (2021) Gan-enabled code embedding for
reentrant vulnerabilities detection. In: Knowledge science, engineering
and management: 14th international conference, KSEM 2021, Tokyo,
Japan, August 14–16, 2021, Proceedings, Part III 14. Springer, pp 585–597

Zhuang Y, Liu Z, Qian P, Liu Q, Wang X, He Q (2021) Smart contract vulnerability
detection using graph neural networks. In: Proceedings of the twenty-
ninth international conference on international joint conferences on
artificial intelligence, pp 3283–3290

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1908.08605
http://arxiv.org/abs/1908.08605
http://arxiv.org/abs/2105.06974
http://arxiv.org/abs/1710.10903

	MVD-HG: multigranularity smart contract vulnerability detection method based on heterogeneous graphs
	Abstract
	Introduction
	Research background
	Smart contract vulnerability detection
	Source code representation
	Graph neural networks

	Background
	Fallback
	Formal definitions
	Attack example

	Methodology
	Heterogeneous graph construction
	Data augmentation
	Vulnerability detection

	Experiment
	Datasets
	Experimental setup
	Experimental results

	Conclusion
	Acknowledgements
	References

