
Xu et al. Cybersecurity            (2024) 7:55  
https://doi.org/10.1186/s42400-024-00245-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

MVD-HG: multigranularity smart contract 
vulnerability detection method based 
on heterogeneous graphs
Jingjie Xu1, Ting Wang1, Mingqi Lv1, Tieming Chen1*  , Tiantian Zhu1 and Baiyang Ji1 

Abstract 

Smart contracts have significant losses due to various types of vulnerabilities. However, traditional vulnerability detec-
tion methods rely extensively on expert rules, resulting in low detection accuracy and poor adaptability to novel 
attacks. To address these problems, in this paper, deep learning methods are combined with smart contract vulner-
ability code detection approaches. Abstract syntax trees (ASTs), which are special isomorphic graph structures, are 
an important bridge between source code and graph neural networks. By learning the AST, the model can under-
stand the semantics of the source code. Moreover, graph neural networks have an increasing ability to address com-
plex heterogeneous graphs. Therefore, control flow graphs are fused with data flow graphs on the basis of the ASTs 
to build heterogeneous graphs with richer code semantics. Furthermore, multigranularity analysis of the vulnerability 
detection results is performed, including coarse-grained contract-level vulnerability detection and fine-grained line-
level vulnerability detection. Through this multigranularity detection approach, vulnerabilities in contracts can be 
identified and analysed more comprehensively, providing a richer perspective and more solutions for vulnerability 
detection. The experimental results show that the proposed multigranularity vulnerability detection method based 
on heterogeneous graphs (MVD-HG) improves both the accuracy and range of the detected vulnerability types 
in contract-level vulnerability detection tasks; moreover, in the line-level vulnerability detection task, the MVD-HG 
model achieves significant results and addresses the shortcomings of existing methods. In addition, based on code 
generation methods used in related fields, a data enhancement method based on the source code is developed, 
which effectively expands the experimental dataset to address the reduced credibility of the results due to insufficient 
amounts of data.
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Introduction
In recent years, with the advancement of blockchain 
technology, smart contracts have received much atten-
tion from researchers in academia and industry. Smart 
contracts were originally designed to automatically exe-
cute predefined code in scenarios with no trusted third 

party. However, because smart contracts unconditionally 
follow predefined programs and record results on block-
chain platforms that are difficult to tamper with, many 
malicious, irreversible events occur in the blockchain. 
The occurrence of malevolent events not only severely 
reduces the security of user property but also impacts the 
reliability of blockchain platforms. The DAO incident in 
2016 and the Second Parity MultiSig Wallet incident in 
2017 (Samreen and Alalfi 2021) resulted in losses of 3.6 
million ether and 150,000 ether, respectively. Thus, smart 
contracts with vulnerabilities in their design attract many 
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malicious users, demonstrating the importance of smart 
contract vulnerability detection.

To address the problem of vulnerable code in smart 
contracts, researchers have investigated various detection 
methods for identifying code vulnerabilities. Traditional 
methods for smart contract vulnerability analysis include 
static analysis, dynamic analysis, and formal verifica-
tion methods (Tang et al. 2021). Static analysis methods 
include Oyente (Luu et al. 2016), Securify (Tsankov et al. 
2018), SmartCheck (Tikhomirov et al. 2018), EtherTrust 
(Grishchenko et  al. 2018), and SmartConDetect (Jeon 
et al. 2021); dynamic analysis methods include Contract-
Fuzzer (Jiang et al. 2018), ReGuard (Liu et al. 2018), and 
Maian (Nikolić et al. 2018); and formal validation meth-
ods include ZEUS (Kalra et al. 2018) and KEVM (Hilden-
brandt et  al. 2018). These traditional analysis methods 
usually use manually defined expert rules for vulner-
ability detection. However, when new types of vulner-
abilities appear, the rules need to be updated to identify 
these new vulnerabilities. With the widespread use of 
smart contracts and their changing application scenarios, 
traditional analysis methods based on manually defined 
expert rules have faced great challenges.

Compared with traditional methods, deep learning-
based approaches can address the drawback of requir-
ing experts to define vulnerability patterns and instead 
use neural networks to identify patterns. For example, 
MANDO was proposed by Nguyen et al. (2022), Peculiar 
was proposed by Wu et  al. (2021), DR-GCN with TMP 
was proposed by Zhuang et  al. (2021), and VDDL was 
proposed by Jiang et al. (2022).

However, existing deep learning-based methods for 
detecting vulnerabilities in smart contracts suffer from 
several shortcomings.

First, since most methods are based on graph neural 
networks, the program first needs to be represented as 
a graph structure. Most of the related studies have used 
specific types of graph structures; for example, Pecu-
liar used CDFG, DR-GCN used Contract Graph, and 
MANDO used a heterogeneous graph consisting of CGs 
and CFGs. However, some of the semantic information 
may be lost when these graph structures are used. More-
over, they can capture information about only a few kinds 
of vulnerabilities, and their generalizability is relatively 
poor. For example, MANDO only considers control flow 
information and ignores the information available in data 
flows, which prevents effective detection if the vulner-
ability is caused by the data flow.

Second, most deep learning-based methods can per-
form only contract-level code vulnerability detection. The 
only method that can obtain more fine-grained line-level 
vulnerability detection results is MANDO. However, 
since MANDO is a metapath-based task, the researcher 

must manually specify all the metapaths, which relies 
considerably on the researcher’s domain knowledge and 
complicates makes metapath design process. In addition, 
for existing attack types, these metapath rules can be 
bypassed by changing the attack steps without affecting 
the attack effect, while for new types of attacks, the cor-
responding metapath rule base needs to be updated, and 
existing methods have a low level of automation.

Third, in contrast to traditional methods, deep learn-
ing-based approaches require a large amount of data to 
train the model. However, it is difficult for researchers 
that are unfamiliar with smart contract development to 
perform meticulous data annotations, which makes it dif-
ficult and extremely laborious to build datasets. There-
fore, it is necessary to hire professionals to manually 
annotate the data or use traditional automated vulner-
ability detection methods to reduce the annotation costs 
(Wang et al. 2020; Qian et al. 2020; Durieux et al. 2020). 
As a result, publicly available datasets are very scarce, and 
the number of vulnerabilities recorded in these datasets 
is limited, which leads to overfitting problems and lack of 
robustness with deep learning-based detection methods.

To address the above shortcomings, this paper pro-
poses a multigranularity vulnerability detection method 
that aims to improve model robustness and capture more 
code semantics. The main features of the method are 
described as follows: 

1. In existing studies, graph structures transformed 
based on source code usually retain only part of the 
code semantics, limiting the possible detection types. 
In this paper, we enrich the semantics of the code 
contained in the graph by converting the smart con-
tract source code into a heterogeneous graph fusing 
abstract syntax trees (ASTs), CFGs, and DFGs. This 
approach extracts features of smart contract source 
code from multiple perspectives to improve the gen-
eralization ability of the model and increase the num-
ber of detectable vulnerability types.

2. The multigranularity vulnerability detection method 
based on heterogeneous graphs (MVD-HG) 
approach proposed in this paper combines the atten-
tion mechanism with a graph convolution operation 
for heterogeneous graphs to realize multigranularity 
vulnerability detection at the graph and node levels. 
These two levels correspond to the contract-level and 
line-level vulnerability detection tasks in smart con-
tract vulnerability detection. The detection effect of 
the proposed method is significantly better than that 
of the current state-of-the-art methods, providing a 
more comprehensive and effective solution for smart 
contract vulnerability detection. Thus, complex rules 
do not need to be set for each attack scenario, and 
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fully automated detection can be achieved for differ-
ent attack patterns.

3. In previous experimental work, the size of the data-
sets used was usually small, and the experimental 
results were susceptible to problems such as over-
fitting, reducing the reliability of the experimental 
results. To address this issue, a data augmentation 
method that expands the size of the existing dataset 
based on code generation methods used in related 
fields is implemented to improve the reliability of the 
experimental results and the robustness of the model.

The rest of the paper is organized as follows: “Research 
background” section reviews the research related to this 
work. In “Background” section presents a partial defini-
tion of heterogeneous graphs and justifies this definition 
with an example. In “Methodology” section describes the 
detailed design of the MVD-HG approach. In “Experi-
ment” section discusses the experimental setup and the 
results, showing the effectiveness of the proposed detec-
tion method. Finally, Section 6 concludes the paper and 
discusses its limitations and future prospects.

Research background
Smart contract vulnerability detection
Due to the extremely challenging nature of smart con-
tract vulnerability detection, it is impractical to rely 
on only manual detection methods. Thus, researchers 
have proposed three traditional methods for smart con-
tract vulnerability detection: static analysis methods, 
dynamic analysis methods, and formal verification meth-
ods (Praitheeshan et al. 2019). In addition to traditional 
analysis methods, deep learning-based approaches are 
becoming increasingly popular in the field of smart con-
tract vulnerability detection. However, deep learning-
based methods usually need to be implemented with 
large-scale high-quality datasets (Rameder 2021).

Static analysis methods involve analysing program code 
in non-runtime environments, allowing the source code 
or bytecode of the target contract to be examined with-
out executing the program. Static analysis approaches are 
widely used in the field of smart contract vulnerability 
detection. For example, Oyente (Luu et al. 2016) is based 
on a symbolic execution approach; Securify (Tsankov 
et  al. 2018) is a lightweight and extensible method; 
SmartCheck (Tikhomirov et  al. 2018) converts Solidity 
source code into intermediate representations based on 
xml format and verifies the results with XPath; Ether-
Trust (Grishchenko et  al. 2018) is an automated static 
analysis tool for bytecode-level verification; and Smart-
ConDetect (Jeon et  al. 2021) extracts code fragments 
from Solidity smart contracts for further inspection using 
a pretrained Bert model.

Dynamic analysis methods include fuzzy testing meth-
ods; the main idea of fuzzy testing is to observe whether 
the target program behaves abnormally for randomly 
generated inputs using many random inputs and to iden-
tify inputs that cause issues through random collisions 
(Hu et al. 2021). For example, Liu et al. (2018) proposed 
ReGuard, a fuzzy analyser for analysing reentrant vul-
nerabilities that performs fuzzy testing based on smart 
contracts by iteratively generating random but different 
transactions. In addition, ContractFuzzer, proposed by 
Jiang et al. (2018), generates random inputs based on the 
ABI of smart contracts and records the execution results 
based on these inputs; then, security analysis is per-
formed using predefined rules.

Formal verification methods are used to validate code 
logic and ensure that the code does not include unan-
ticipated errors in arbitrary situations. In contrast, tra-
ditional test-based approaches always suffer from the 
impossibility of testing every input and the possibility 
of unanticipated inputs causing anomalies in the system 
(Murray and Anisi 2019). Formal verification methods 
determine the security of the target contract by verify-
ing that the program contains vulnerabilities that can 
be exploited through rigorous logical proofs. There 
are fewer formal verification methods than static and 
dynamic analysis methods. Some examples include ZEUS 
(Kalra et al. 2018), an automated verification framework 
using abstract interpretation and symbolic model check-
ing, and KEVM (Hildenbrandt et al. 2018), a formal spec-
ification based on EVM, a reference interpreter, which is 
a tool for program analysis and verification based on the 
K framework.

Several studies have investigated deep learning-based 
approaches for vulnerability detection in smart contracts. 
For example, Peculiar (Wu et  al. 2021) performed DFG 
and CDFG extraction with an AST transformed from 
source code, followed by detection with a pretrained 
model. In addition, Zhuang et al. (2021) transformed the 
source code into a custom contract graph, highlighted 
important nodes via normalization to obtain important 
information, and performed a smart contract vulner-
ability detection task. Liu et al. (2021) combined custom 
expert rules with a graph detection method to further 
improve the detection results. Qian et al. (2020) proposed 
to utilize bidirectional long-short term memory networks 
combined with an attention mechanism for vulnerability 
detection. Zhao et al. (2021) proposed a reentrant vulner-
ability detection method based on code embedding and 
the GAN model. Nguyen et al. (2022) proposed MANDO 
to generate heterogeneous graphs based on smart con-
tract source code and captured code semantics in source 
code through metapaths for multigranularity code vul-
nerability detection.
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Source code representation
To use deep learning methods to detect code vulnerabili-
ties, the source code needs to be represented as a vector. 
Methods combining IR and machine learning have been 
considered effective to transform source code into vec-
tors. For example, BGNN4VD (Cao et al. 2021) extracts 
syntactic and semantic information from source code 
with ASTs, control flow graphs, and data flow graphs. 
Furthermore, SedSVD (Dong et  al. 2023) learns seman-
tic and syntactic information from source code using 
code property graphs (CPGs) and selects several cen-
tral nodes in the CPGs to construct target subgraphs. 
Zhang et  al. (2022) constructed super dataflow graphs 
covering all real dataflow paths and detected whether a 
buffer overflow attack occurred by performing recursive 
dataflow analysis based on the program’s super dataflow 
graph. Wang et al. (2020) constructed FA-AST, increased 
the amount of control flows and data flows in the AST 
to obtain more detailed code fragment information, and 
then performed the vulnerability detection task of code 
cloning.

Graph neural networks
In recent years, with the rapid development of graph 
neural network techniques such as GCN (Kipf and 
Welling 2016), GAT (Veličković et  al. 2017), and HAN 
(Wang et  al. 2019), models for understanding complex 
graphs have become easier to achieve. According to the 
complexity of heterogeneous graphs and the richness of 
information, HGAT (Yang et al. 2021) learns the impor-
tance of different nodes and edges in the graph through 
an attention mechanism to effectively capture the rich 
structural and semantic information in the graph. In 
RGCN (Schlichtkrull et  al. 2018), relational features are 
introduced through node representations to improve the 
expressiveness of the model, and attention mechanisms 
and convolution operations are used to aggregate infor-
mation. Typically, these models have better vulnerability 
detection capability than detection tools based on tra-
ditional methods. The difference, however, is that these 
methods identify the fitted relationships based on the 
dataset through extensive training, and sufficient data are 
required to obtain better results based on the validation 
set.

Background
In this paper, we describe how to convert smart con-
tract source code into heterogeneous graphs based on 
ASTs, CFGs, and DFGs and explore data augmentation 
based on heterogeneous graphs as well as multigranu-
larity vulnerability detection tasks. First, we introduce 
the basics of the fallback mechanism in smart contracts, 

which is important to understand some practices in the 
conversion process of heterogeneous graphs. During the 
conversion process, a fallback node needs to be actively 
added to simulate the fallback function of the attack con-
tract, which cannot be automatically generated by build-
ing the AST.

Fallback
The fallback function is a special function in the Solidity 
language (ethereum 2022; Fan et al. 2021; Li 2023). This 
function plays an important role in smart contracts, as 
the function takes no arguments and returns either no 
value or only a Boolean value representing the success 
of the transaction execution. When a contract receives 
an undefined function call, the fallback function ensures 
that the contract continues to function properly, which 
is essential to ensure the proper execution of Solid-
ity programs. The fallback function can also be used to 
receive transfer transactions with ether, and when the 
executing program calls the transfer function, the tar-
get contract automatically calls the fallback function to 
process the transaction. For example, in the attack case 
presented in Section 3.3, the fallback mechanism was uti-
lized to launch the attack. Therefore, to ensure that the 
heterogeneous graph is consistent with the source code 
semantics, the fallback mechanism is introduced in the 
conversion process with the corresponding data flow and 
control flow expansions.

Formal definitions

Definition 1 (AST) The source code 
SC = {L1, . . . , Ln} can be formally represented as 
GAST = {VAST ,EAST ,αAST ,βAST } after preprocess-
ing. VAST is the set of all nodes in the AST, denoted as 
VAST = {V1,V2, . . . ,Vn} , and the subscript denotes the 
ordinal number of the node. Each node represents a dif-
ferent syntactic structure in SC, such as expressions, 
statements, and variable declarations. Different node 
types correspond to various syntactic structures. EAST is 
the set of all edges in the AST, which can be formalized 
as EAST = {e1,2, e1,3, . . . , en,m} for a set of directed edges. 
Here, ei,j = (Vi,Vj) represents the existence of an edge 
between the ith and jth nodes in the AST. αAST denotes 
the mapping function between a node and the corre-
sponding line of code, e.g., αVm

AST = 3 denotes that the 
mth node is located on the 3rd line of the source code. 
βAST denotes a mapping function that maps different 
node types, e.g., βVm

AST = FunctionDefinition represents 
that the mth node is of type FunctionDefinition. In addi-
tion, TAST is defined in this paper to describe the set of all 
possible node types in the AST.
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Definition 2 (CFG) The heterogeneous graphs of the 
generated control flow graph and the AST can be formally 
represented by GHCFG={VHCFG ,EHCFG ,αHCFG ,βHCFG} . 
The build process is based entirely on VAST . However, 
since the automatically converted AST does not con-
tain a corresponding fallback mechanism, it is neces-
sary to manually add nodes of the fallback type. In 
this paper, Vfallback is defined as the fallback node, i.e., 
VHCFG = VAST {Vfallback} , and THCFG = TAST

⋃
{fallback} . 

EHCFG = {e1,2, e1,3, . . . , en,m}
⋃

EAST denotes the set of directed 
edges in the current graph. ei,j = (Vi,Vj) represents the 
existence of a control flow edge between the ith and jth 
nodes in the heterogeneous graph, and EAST denotes the 
original directed edge in the AST. The αHCFG and βHCFG 
in GHCFG are defined similarly as the corresponding 
terms in GAST .

Definition 3 (DFG) The data flow expan-
sion result is similar to the control flow gen-
erator result and can be expressed formally as 
GHDFG = {VHDFG ,EHDFG ,αHDFG ,βHDFG , γHDFG}  . 
Because some global variables such as msg.sender and 
block.timestamp do not reflect their origin when build-
ing the AST, Vblock and Vmsg are added to complete 
the data flow; thus, VHDFG = VHCFG

⋃
{Vblock ,Vmsg } . 

EHDFG = {e1,2, e1,3, . . . , en,m}
⋃
EHCFG denotes the set of 

directed edges in the heterogeneous graph. ei,j = (Vi,Vj) 
represents the existence of a data flow edge between the 
ith and jth nodes in the heterogeneous graph. EHCFG 
denotes the information of the two underlying edges 
contained in the heterogeneous graph composed of the 
control flow graph and the AST. The αHDFG and βHDFG in 
GHDFG are defined similarly as the corresponding terms 

in GAST . γHDFG denotes a mapping function that maps 
different edge types, e.g., γ ei,j

HDFG = {AST } represents 
that the edge between (Vi,Vj) is created when the AST 
is created. ETHDFG = {AST ,CFG,DFG} is defined to 
represent all possible edge types, and γ ei,j

HDFG ⊆ ETHDFG . 
THDFG = THCFG is defined to describe the set of all pos-
sible node types in the heterogeneous graph.

Attack example
For the acquired smart contract source code, the edge 
information is automatically expanded on the basis of the 
AST nodes to generate a heterogeneous graph with richer 
semantic information. In this paper, the detection task 
is divided into two subtasks: first, the entire contract is 
classified with binary results to determine whether there 
are vulnerabilities; then, each line in the source code is 
classified with binary results to identify whether there are 
vulnerabilities in that line of code. These two detection 
methods satisfy the requirements in most scenarios.

The advantages of expanding the data flow and control 
flow based on an AST can be illustrated by an example. 
The left side of Fig. 1 shows source code with a reentrancy 
attack, with the vulnerability located in the withdraw 
function between lines 10 and 15 in the source code. The 
right side of Fig. 1 shows the transformed source code to 
extract the subgraph portion of the heterogeneous graph 
associated with the withdrawal function. In this diagram, 
each node represents a syntactic structure in the pro-
gram code, such as expressions, statements, and variable 
declarations. For example, FunctionDefinition represents 
the function definition in line 10, and amountSource rep-
resents the corresponding amount variable in line 10. 
AST, CF, and DF are the edges defined in Definition 1, 
Definition 2, and Definition 3, respectively. AST repre-
sents the edge in the abstract syntax tree, which is used 

Fig. 1 Sample code transformed into a heterogeneous graph subgraph
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to indicate the connection between syntax structures; CF 
represents the edge in the CFG, which is used to indicate 
how the control flow moves and executes between differ-
ent nodes; and DF represents the edge in the DFG, which 
indicates how variables are defined or assigned between 
different nodes.

First, the details of the attack are assessed at the code 
level. The attacker contract calls the donate function to 
deposit startup funds for the victim contract. Then, the 
attacker contract calls the withdraw function to launch 
the attack. Since the account balance is sufficient, the IF 
condition in line 11 of the victim contract is judged to 
be true, allowing the execution of the transfer function 
code in line 12. Then, the fallback function in the attacker 
contract is called. If there is a function call to withdraw 
in the attacker’s fallback function, the attacker can per-
form repeated withdrawals with recursive functions. At 
this point, the account balance deduction code in line 
13 of the victim’s contract is not executed to ensure that 
the result is true each time the IF conditional judgement 
statement in line 11 is executed, thus realizing the reen-
trant attack.

Next, the whole process of the withdrawal function 
call is evaluated from the perspective of a heterogene-
ous graph. The attacker contract calls the withdrawal 
function to launch the attack, and with the control flow, 
the attack contract reaches the BinaryOperation func-
tion for the IF condition judgement. Two data flow vari-
ables are used in the judgement process: amountSource 
and balanceSource. Since the attacker has already depos-
ited the initial funds, the conditional judgement result 
is true, and the attacker continues to execute the next 

ExpressionStatement node along the control flow. Since 
this node calls the transfer function, it no longer executes 
in the original control flow direction and instead calls the 
attacker’s fallback function.

A benign contract slowly moves the control flow back 
to the withdrawal function after processing its own fall-
back function logic and executes the remaining logic 
without any issues. However, for malicious contracts, 
the control flow moves to FunctionDefinition and starts a 
new round of withdrawal function calls. During this pro-
cess, the account balance deduction operation is tempo-
rarily ignored, and balanceSource and amountSource are 
not updated through the data stream. Therefore, during 
each malicious call to the withdrawal function, these two 
variables remain unchanged until a certain fallback func-
tion returns the control flow to the normal withdrawal 
function.

Methodology
The general framework proposed in this paper is shown 
in Fig. 2 and consists of the following three parts: 

1. Heterogeneous graph construction phase The 
AST is extracted based on the source code, and the 
heterogeneous graph of the target structure is con-
structed by expanding the edge relations of the nodes 
in the abstract syntax tree according to the logic of 
the source code.

2. Data augmentation phase: this step is optional The 
code fragments that do not contain vulnerabilities 

Fig. 2 General architecture diagram
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are extracted from the benign contract and inserted 
into the contract that contains the vulnerability.

3. Vulnerability detection phase Based on the word-
2vec pretrained word vector model, the heteroge-
neous graphs are vectorized into trainable graph 
embeddings and combined with a neural network to 
output the detection results.

Heterogeneous graph construction
According to previous research results on related codes, 
processing source code as natural language text may 
cause the rich semantic information in source code to 
be ignored (Zhang et al. 2019). In contrast, ASTs contain 
both the corresponding syntactic information and a cer-
tain amount of semantic information. Therefore, various 
methods based on ASTs have been proposed (Wu et al. 
2021; Wang et  al. 2020; Zhang et  al. 2019; Liang et  al. 
2019), which help to improve the understanding of the 
source code by the model and thus improve the experi-
mental results. In this paper, solc-select (Crytic 2022) 
is used to extract the basic AST structure based on the 
smart contract source code. The obtained AST is dis-
cussed in Definition 1.

Control flow generator Control flow analysis is a tra-
ditional software analysis technique that involves mod-
elling and analysing conditional judgement statements, 
looping statements, and function call relationships. Con-
trol flow analysis methods can vary significantly among 
different programming languages. In particular, there are 
features in the Solidity language for writing smart con-
tracts that are not present in other common languages. 
For example, the fallback function is called when the tar-
get of the function call is does not exist or the current 
transaction involves ether transactions.

In this paper, a connection between each node in GAST 
and each line in the source code is established based on 
the content and type. The task of expanding the con-
trol flow information based on the abstract syntax tree 
is achieved by statically scanning the source code and 
simulating the program execution path. In this paper, 
the types of newly expanded edges are not distinguished, 
either in terms of normal advancement between upper 
and lower lines of code or in terms of call and return rela-
tionships between functions, which are reflected in the 
same kinds of directed edges in the heterogeneous graph. 
The obtained heterogeneous graph composed of the AST 
and CFG is discussed in Definition 2.

Data flow generator Data flow analysis is similar to 
control flow analysis and is another traditional software 
analysis technique. It is often used to analyse the flow 
of variable values in programs over different execution 
paths. Since the analysis is based on the execution path, 

the process is performed after the control flow genera-
tor. The approach used in this paper is forwards analy-
sis, which starts at the entry point of the program and 
traverses the execution path generated by the control 
flow generator until the exit point of the program. The 
execution of a smart contract also involves many global 
variables, such as msg.sender, representing the initiator 
of the transaction, and block.timestamp, representing 
the timestamp of the current block. The origin of these 
variables is not reflected in the abstract syntax tree, and 
similar to the fallback function, they need to be actively 
added to the abstract syntax tree.

In data flow analysis, assignment and referencing of 
variables are both considered ways of passing data flows. 
Similarly, in this paper, no distinction needs to be made 
between the different types, which are also reflected in 
the same directed edges in the heterogeneous graph. In 
this paper, how the variables flow through the program 
is considered rather than the specific values represented 
by the variables, as this approach reflects the method by 
which hackers attack contracts. The obtained heteroge-
neous graph consisting of the AST, CFG and DFG is dis-
cussed in Definition 3.

Thus far, the data flow and control flow in the smart 
contract have been fused with the AST and used to 
enrich the graph information to be trained to improve 
the classification ability of the model. Different from the 
idea of Liu et al. (2021), the idea in this paper is that the 
intricate edge relations and the structural information 
are important for detecting various vulnerabilities, and 
no deletion operation should be performed to simplify 
the graph structure, which would lead to the loss of code 
semantics. This heterogeneous graph can increase the 
generalization ability of the model, thus improving its 
detection ability for various types of vulnerabilities.

Data augmentation
The lack of datasets for this task has been criticized, as 
the number of datasets available for training is very lim-
ited and the cost of manual labelling is high. Further-
more, the trained models show poor performance, and 
the validation sets are too small to fully verify the validity 
of the models.

In the field of computer vision, it is common to 
enhance the robustness or accuracy of models by data 
augmentation (Wong et al. 2016), and the most common 
data enhancement strategies include distortion, adding 
noise, rotation, panning, clipping, and merging. In this 
paper, we propose a data augmentation method for smart 
contract source code, aiming to address the issues caused 
by insufficient training data. Specifically, a function is 
selected from the benign file, and the remaining neces-
sary code required for the function to run is determined 
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by control flow analysis. Then, the benign function is 
inserted before the line containing the vulnerability in 
the code to be enhanced. To ensure that the heterogene-
ous graph is changed without affecting the original code 
execution results, the inserted part is wrapped using 
a while loop (false). The remaining necessary code is 
inserted into a blank position in the file to be enhanced 
according to the dependency with the benign function, 
thus generating a new experimental sample. Finally, the 
line-level and contract-level labels of the new samples 
are determined according to the inserted positions. This 
approach can effectively expand the dataset and improve 
the generalization ability and robustness of the model. In 
terms of the graph structure, data augmentation methods 
connect two partial subtrees of an abstract syntax tree by 
controlling the flow edges. Theoretically, enough training 
data can be constructed with data augmentation meth-
ods to alleviate the training and validation problems.

The specific enhancement process is shown in Algo-
rithm  1. The algorithm inputs include srcPath (path of 
the complete contract file to be enhanced), segPath (path 
of the benign code file), nDict (dictionary stored by node 
type after converting the benign file to the AST) and 
insertLine (insert location in the file to be enhanced).

Algorithm 1 Data augmentation

In the algorithm, the set fullNodes is first initialized to 
record all the nodes that may be involved in the execu-
tion of the function. In line 2, all nodes with node type 

FunctionDefinition are traversed, i.e., all functions in 
the benign file are traversed. In lines 3–7, all nodes that 
may be involved in executing the function are added to 
the fullNodes set to map the specific lines in the benign 
file that need to be inserted into the new sample. In line 
8–9, the DetailMsg function calculates the order in which 
the two files should be saved as new experimental sam-
ples when they are merged, and the results are stored as 
arrays as segLine and srcLine. In lines 10–15, the benign 
file and the file to be enhanced are fused according to 
segLine and srcLine. Then, diffLine is updated to record 
the deviation between the position of the vulnerability in 
the file to be enhanced and its position in the new sam-
ple. In line 16, the tag of the new sample file is updated 
using diffLine.

Vulnerability detection
Vectorizing graph data is one of the important steps in 
using graph neural networks for deep learning. Another 
idea proposed in this paper is to use a word vector model 
to map the content and type of each node in the AST 
and thus obtain embeddings that can be used in the neu-
ral network. The word2vec (Mikolov et  al. 2013, 2013) 
method is used as an intermediate step between the raw 
graph data and trainable node embeddings in this paper. 
Word2vec is a neural network-based natural language 
processing technique for converting text into vector rep-
resentations. Since code can be considered a special form 
of text, a similar technique can be used to convert codes 
into vector representations. Specifically, elements such as 
identifiers, variables, functions, and operators in the code 
can be considered as words and trained using a word2vec 
model to obtain vector representations of each word. For 
example, Lin et al. (2018) used word2vec to map each ele-
ment in a serialized form of an AST to a trainable vector. 
In this paper, we first serialize the AST structure using 
depth-first search (DFS) and breadth-first search (BFS) 
techniques to preserve the structural properties of the 
AST and convert each node in the serialized AST to a 
string containing the node type and node content. This 
serialized and converted corpus is used for word vector 
model training. Thus, word2vec can be used to extract 
the semantic relations between different nodes in the 
AST. Then, these relations can be converted into vector 
representations to better represent the similarities and 
differences between nodes, thereby allowing the model 
to better interpret and understand the relations between 
nodes. The vectorization process is discussed in Defini-
tion 4.

Definition 4 (Vectorization Process) The program 
source code SC = {L1, L2, . . . , Ln} represents each line of 
statements in the source file. Li consists of an ordered set 
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of symbols, e.g., Li = {Si,1, Si,2, ..., Si,m} indicates that the 
ith line in the source code contains m symbols. Moreo-
ver, Li can be represented by a set of nodes in GHDFG , e.g., 
Li = {Vu,Vu+1, ...,Vw} , where each node may contain 
one or more symbols, so |w − u| ≤ m− 1 . The process 
to transform Vk into a vector is shown in Eq. 1. h0Vk

 rep-
resents the original input to node VK  , the dimension is 
R1×d , and d denotes the vector length specified after the 
word2vec transformation.

The classifiers used in this paper are divided into two cat-
egories: contract-level vulnerability detection and line-
level vulnerability detection. Contract-level vulnerability 
detection is the most basic classification task in which 
binary results are generated to indicate whether a con-
tract is vulnerable. Specifically, the model performs the 
node classification task via RGCN, which aggregates the 
information of neighbouring nodes through a multilayer 
convolution operation (Schlichtkrull et  al. 2018). The 
aggregation process is shown in Eq. 2, where Nr

i  denotes 
the set of neighbour nodes of node i that have relation-
ship r with node i, and σ is the ReLU function.

After several rounds of RGCN aggregation, it is neces-
sary to divide the nodes according to the corresponding 
contract and perform an OR operation based on the divi-
sion results to obtain the final detection results. Equa-
tion  3 defines the process of computing the contract-
level results, where ŷcs ∈ {0, 1} indicates the presence or 
absence of vulnerabilities in the source file. Tcs denotes 
the set of all contracts in the file, and V con

C  represents the 
set of all nodes belonging to contract type con:

Line-level vulnerability detection is a more granular pro-
cess than contract-level vulnerability detection, and the 
outputs are the binary detection results for each line in 
the source code. In this task, RGCN is also used to aggre-
gate information from surrounding neighbouring nodes, 
and all nodes associated with each line are pooled equally 
to obtain the embedding of the source code for that line. 
Based on these line-level embeddings, the model uses an 
attention mechanism to further fuse the contextual infor-
mation. The embeddings are mapped to binary detection 
results for each line using a fully connected layer and 
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an activation function. The process of RGCN aggrega-
tion is shown in Eq. 2. Equation 4 defines the process of 
computing the line-level results. V l

L denotes the set of all 
nodes located in line l, and cof(k) denotes the attention 
factor assigned to the kth line of source code.

Experiment
This section presents the experimental setup and experi-
mental results to answer the following research ques-
tions. RQ1: How does the contract-level vulnerability 
detection performance of the MVD-HG model compare 
to that of several state-of-the-art vulnerability detection 
tools? RQ2: How does the line-level vulnerability detec-
tion performance of the MVD-HG model compare to 
that of the state-of-the-art MANDO model? RQ3: Does 
the proposed data enhancement technique for the deep 
learning-based approach enhance performance? RQ4: 
What are the impacts of different modules in the hetero-
geneous graph model, including the AST, CFG, and DFG, 
on the experimental results?

Datasets
Four datasets were used in the experiments. The Con-
tract-Origin dataset was used for contract-level vul-
nerability detection without data augmentation. The 
Line-Origin dataset was used for line-level vulnerability 
detection without data augmentation. These two datasets 
were derived from the experimental dataset of MANDO. 
Contract-augmentation and line-augmentation were the 
contract-level vulnerability dataset and line-level vulner-
ability dataset after enhancement using the data enhance-
ment methods proposed in this paper. Each dataset 
contains seven vulnerability types, and Table 1 shows the 
details of these four datasets.

Experimental setup
In the experiments, to ensure that the original small-scale 
dataset is sufficient for model training and testing, the 
dataset was partitioned into a training set containing of 
70% of the data and a testing set containing the remain-
ing 30%. This partitioning ratio was also used for the 
enhanced datasets to ensure consistency. The number 
of epochs followed the original experiment setting and 
was set to 50, and each experiment was independently 
performed 20 times to achieve stable average results. In 
addition to the deep learning-based comparison method, 
experiments were conducted with a variety of traditional 

(4)

ŷLk = sigmoid(Wline

k+1∑

l=k−1

∑

j∈V l
L

hVj

cof (l)
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tools through Smartbug (Ferreira et  al. 2020), including 
HoneyBadger (Torres and ichen 2019), Mythril (Consen-
sys 2022), Osiris (Torres et al. 2018), Oyente (Luu et al. 
2016), Securify (Tsankov et al. 2018), Slither (Feist et al. 
2019) and SmartCheck (Tikhomirov et al. 2018). Honey-
Badger uses symbolic execution and heuristics to identify 
vulnerabilities. Mythril uses taint analysis and control 
flow analysis techniques to detect a variety of vulnerabili-
ties, such as reentrancy vulnerabilities and integer over-
flow vulnerabilities. Osiris combines symbolic execution 
and taint analysis techniques and is mainly used to detect 
integer overflow vulnerabilities. Oyente uses a symbolic 
execution approach to simulate the EVM and traverse the 
different execution paths of the contract. Securify inves-
tigates contracts for security vulnerabilities by analysing 
their dependency graphs and extracting precise seman-
tic information from the code and has the advantages 
of being lightweight and scalable. SmartCheck converts 
Solidity source code into an intermediate representation 
with an XML-based format and verifies the results with 
XPath.

We conducted the experiments on a server with an 
Intel Xeon E5-2680 v4 CPU (with 14 × 2.4 GHz cores), 
128 GB of memory, and 4 × GTX 2080Ti GPUs running 
on Ubuntu 20.04. The source code and part of the data-
sets are available at https:// github. com/ Astro naut- diode/ 
MVD- HG.

Experimental results
RQ1: How does the contract-level vulnerability detec-
tion performance of the MVD-HG model compare to 
that of several state-of-the-art vulnerability detection 
tools?

Contract-level vulnerability detection is the most com-
mon task in the field of smart contract vulnerability 
detection. This paper aims to use multiple smart contract 
vulnerability detection tools to demonstrate the poten-
tial of MVD-HG for this basic task. In this experiment, 
the vulnerability detection methods are divided into two 

categories, detection tools based on deep learning meth-
ods and traditional tools, and a timeout time of 600 s is 
set for the traditional tools. The experimental results of 
the various methods are shown in Table  2, and the F1 
score, which was determined based on the Contract-Ori-
gin dataset, is used as the evaluation metric. This experi-
ment follows the method proposed in the MANDO 
paper, in which four experiments were performed using 
four node feature generators, nodetype, meta2path, line 
and node2vec. The aim of these generators is the same as 
that of the word2vec method used in this paper, aiming 
to obtain trainable node features.

The following two conclusions can be drawn from 
Table 2. First, compared to traditional tools, deep learn-
ing-based vulnerability detection methods typically 
enable more comprehensive vulnerability detection and 
achieve better overall detection results. This indicates 
that traditional tools have smaller detection scopes, are 
less likely to detect unanticipated vulnerability types, and 
need to continuously produce new heuristic rules for new 
attacks to achieve vulnerability detection. In contrast, the 
deep learning-based approach is more adaptable and can 
better handle new types of vulnerabilities. Second, the 
MVD-HG approach outperformed MANDO based on 
the Contract-Origin dataset. This indicates that the het-
erogeneous graphs used in the MVD-HG model capture 
richer semantic information, enhance the model’s under-
standing of the program code, and improve the effective-
ness of contract-level vulnerability detection tasks.

RQ2: How does the line-level vulnerability detec-
tion performance of the MVD-HG model compare to 
that of the state-of-the-art MANDO model?

The experiment to address RQ2 uses the same config-
uration as that to address RQ1 and use the Line-Origin 
dataset to explore the effectiveness of MVD-HG for the 
line-level vulnerability detection task. The results of this 
experiment are shown in Table 3. For each line in Table 3, 
to obtain the results of the traditional tool, the research-
ers determined the predicted results for each line of 

Table 1 Detailed statistical information about the dataset

Vulnerability type Contract-level Line-level

Number of contract-
origin files

Number of contract-
augmentation files

Number of line-origin files Number of line-
augmentation files

Access control 114 400 57 200

Arithmetic 120 502 60 251

Denial of service 92 286 46 143

Front running 88 342 44 171

Reentrancy 142 362 71 181

Time manipulation 100 212 50 106

Unchecked low level call 190 728 95 364

https://github.com/Astronaut-diode/MVD-HG
https://github.com/Astronaut-diode/MVD-HG
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source code in the target file and compared the results 
with the original tags.

The experimental results show that most traditional 
tools perform poorly for line-level vulnerability detec-
tion tasks, and a deep understanding of the program code 
is lacking, making it difficult to obtain fine-grained vul-
nerability detection results. In contrast, the AST-based 
detection methods, such as MANDO and MVD-HG, 
can provide a more comprehensive understanding of 
the source code and achieve better detection results. In 
addition, MVD-HG outperforms MANDO in line-level 
vulnerability detection tasks, indicating that the use of 
heterogeneous graphs and attention mechanisms can 

improve the model’s understanding of the program code 
and the vulnerability detection results.

RQ3: Does the proposed data enhancement tech-
nique for the deep learning-based approach enhance 
performance?

To address RQ3, researchers conducted experiments to 
validate the effectiveness of the proposed data enhance-
ment method for both contract-level and line-level vul-
nerability detection data. Specifically, experiments were 
conducted based on the Contract-Origin and Contract-
Augmentation datasets for the contract-level task and 
the Line-Origin and Line-Augmentation datasets for the 

Table 2 Original contract-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time 
manipulation

Unchecked 
low level 
call

Traditional tools HoneyBadger – – – – 0.4222 – –

Mythril 0.4249 0.5069 – – 0.3695 – 0.5648

Osiris – 0.4303 0.0425 – 0.5799 0.0769 –

Oyente – 0.4042 0.0425 – 0.5656 – –

Securify 0.0344 – – 0.0416 0.4421 – 0.5757

Slither 0.8761 – 0.1960 – 0.9523 0.9504 0.6363

SmartCheck 0.6744 0.8679 0.0833 – 0.9857 0.9473 0.6896

MANDO nodetype 0.7119 0.6685 0.8737 0.8731 0.7609 0.8503 0.7208

meta2path 0.5770 0.5284 0.6016 0.6219 0.5506 0.5947 0.5137

line 0.6512 0.5491 0.8915 0.8986 0.7104 0.8771 0.5944

node2vec 0.5571 0.6411 0.8386 0.8605 0.7139 0.7338 0.6610

MVD-HG 0.9355 0.9196 0.9146 0.9559 0.9397 0.9351 0.9056

Table 3 Original line-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time 
manipulation

Unchecked 
low level 
call

Traditional tools HoneyBadger – – – – – – –

Mythril 0.1137 0.0247 – – 0.0135 – 0.0324

Osiris – 0.0247 – – 0.0062 0.0003 –

Oyente – 0.0061 – – 0.0062 – –

Securify 0.0004 – – – – – –

Slither 0.9197 – 0.0007 – 0.3872 0.5972 0.0355

SmartCheck 0.0379 0.0614 – – 0.0691 0.2112 0.0442

MANDO nodetype 0.7721 0.8162 0.7983 0.8819 0.8424 0.8664 0.6595

meta2path 0.6797 0.7484 0.6722 0.8608 0.7603 0.7381 0.5071

line 0.8119 0.8158 0.8212 0.9047 0.8627 0.8921 0.8337

node2vec 0.8198 0.8435 0.8209 0.9051 0.8640 0.9029 0.8481

MVD-HG 0.8269 0.9312 0.8302 0.9105 0.9469 0.9225 0.9015
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line-level task. The experimental results are shown in 
Tables 4 and 5.

In Table  4, each pair of rows represents the results 
for one kind of vulnerability data before and after data 
enhancement, and two main conclusions can be drawn 
from the experimental results. First, the performance of 
the traditional tool based on the augmented vulnerabil-
ity datasets does not show a simple monotonic increas-
ing or decreasing trend. This result is consistent with the 
fact that the traditional tool is based on expert rules, and 
increasing the amount of data in the dataset does not 
necessarily lead to improved classification results. This 
indicates that the data augmentation method proposed 

in this paper does not arbitrarily add simple new sam-
ples and that the added samples are difficult to identify. 
Second, for the deep learning-based method, the perfor-
mance was improved to some degree in all experiments, 
except for the MANDO experiment using meta2path as 
the node feature generator, which showed a reduced pre-
diction effect. These results indicate that there is a bot-
tleneck in capturing the semantic relationships between 
different nodes in the AST using meta2path and that 
relying on only metapath will lead to the loss of semantic 
information in the source code. These results also dem-
onstrate that the data augmentation method for smart 
contract samples proposed in this paper is effective and 

Table 4 Enhanced contract-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time 
manipulation

Unchecked 
low level 
call

Traditional Tools HoneyBadger – – – – 0.1809 – –

Mythril 0.4855 0.5365 – – 0.5426 – 0.4739

Osiris – 0.4714 0.1428 – 0.5041 0.2877 –

Oyente – 0.4016 0.1428 – 0.4916 – –

Securify 0.0099 – – 0.1176 0.4463 – 0.6212

Slither 0.8647 – 0.1059 – 0.7928 0.9056 0.5333

SmartCheck 0.5964 0.8298 0.3372 – 0.9802 0.8287 0.7033

MANDO nodetype 0.7562 0.8431 0.8422 0.9103 0.8267 0.8018 0.8461

meta2path 0.5984 0.5699 0.5324 0.5660 0.5695 0.5641 0.5717

line 0.7095 0.8108 0.7946 0.8311 0.7419 0.7647 0.7947

node2vec 0.7343 0.8198 0.7785 0.8184 0.6723 0.7103 0.8300

MVD-HG 0.9430 0.9461 0.9670 0.9551 0.9564 0.9518 0.9775

Table 5 Enhanced line-level vulnerability detection results

The best two average results are shown in bold and italic fonts

Testing method Access control Arithmetic Denial of service Front running Reentrancy Time 
manipulation

Unchecked 
low level 
call

Traditional tools HoneyBadger – – – – – – –

Mythril 0.1592 0.0501 – – 0.0167 – 0.0274

Osiris – 0.0289 – – 0.0044 0.0018 –

Oyente – 0.0072 – – 0.0044 – –

Securify 0.0001 – – 0.0009 – – –

Slither 0.9633 – 0.0020 – 0.3930 0.6081 0.0310

SmartCheck 0.0293 0.0647 – – 0.0677 0.2122 0.0459

MANDO nodetype 0.7407 0.7838 0.7832 0.8541 0.8195 0.8207 0.6678

meta2path 0.6078 0.7164 0.6100 0.8567 0.7405 0.6784 0.5563

line 0.7542 0.8165 0.8064 0.9013 0.8457 0.8759 0.8398

node2vec 0.8048 0.8306 0.8042 0.9006 0.8540 0.8799 0.8508

MVD-HG 0.9544 0.9806 0.9493 0.9653 0.9747 0.9551 0.9748
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can produce more training data, allowing the model to 
improve its detection capability.

As seen in Table 5, there are fluctuations in the detec-
tion effectiveness of the traditional tools before and after 
data augmentation in the line-level vulnerability detec-
tion task. This indicates that the data augmentation 
method is equally effective in the line-level vulnerability 
detection task, in which the additional data samples are 
all difficult to detect. Notably, in the MANDO experi-
ments, the data enhancement method not only did 
not improve the detection effect but also led to a slight 
decrease or no substantial change. However, MVD-HG 
showed significantly improved performance after data 
enhancement. This indicates that there is some overfit-
ting problem with the MANDO approach in the line-
level vulnerability detection experiments. The MVD-HG 
model, on the other hand, shows more robust perfor-
mance in the line-level vulnerability detection task, 
which is attributed to the three-graph fusion to create the 
heterogeneous graphs and the use of an attention mecha-
nism to reference the contextual information.

RQ4: What are the impacts of different modules in 
the heterogeneous graph model, including the AST, 
CFG, and DFG, on the experimental results?

To address RQ4, several ablation experiments are con-
ducted in this paper to demonstrate the effectiveness of 
transforming the smart contract source code into a het-
erogeneous graph composed of ASTs, CFGs, and DFGs 
in the vulnerability detection task and to explore the roles 

of the AST, CFG, and DFG in the model. The Contract-
Augmentation and Line-Augmentation datasets were 
used for the experiments, and the results are shown in 
Table 6.

Based on the experimental results in Table 6, two con-
clusions can be drawn. First, the CFG is a higher prior-
ity for two attacks, reentrancy and time manipulation, 
and is sufficient to capture the code semantics needed 
to identify these two attacks; however, this component 
shows significant performance degradation for the other 
five attacks. This suggests that different heterogeneous 
graph components have distinct effects on various vul-
nerability types that may be related to the characteristics 
of the vulnerability. Second, changing the components in 
the heterogeneous graph can slightly improve the perfor-
mance in certain vulnerability detection tasks. For exam-
ple, merging the AST and DFG into a heterogeneous 
graph slightly improves performance in the contract-level 
arithmetic, denial of service, front running, and time 
manipulation vulnerability detection tasks but tends to 
lead to significant performance degradation for the other 
vulnerability types. Thus, although merging the AST, 
CFG, and DFG into heterogeneous graphs may intro-
duce some additional information, the approach success-
fully improves the overall performance. Additionally, the 
row of Average Runtime indicates the time required for 
training a single file (in seconds). It can be seen that dif-
ferent combinations of heterogeneous graphs have little 
effect on training time. Given the combination of AST, 

Table 6 Results of ablation experiments

The best two average results are shown in bold and italic fonts

Task Vulnerability type AST CFG DFG CFG DFG AST DFG AST CFG AST CFG DFG

Contract level Access control 0.9430 0.7797 0.8800 0.9438 0.8564 0.6867 0.6697

Arithmetic 0.9461 0.9563 0.9558 0.9667 0.9537 0.8968 0.8978

Denial of service 0.9670 0.9260 0.9781 0.9763 0.9538 0.7668 0.7845

Front running 0.9551 0.9790 0.9658 0.9627 0.9793 0.9566 0.9574

Reentrancy 0.9564 0.9740 0.8669 0.9146 0.8453 0.9449 0.9536

Time manipulation 0.9518 0.9548 0.9634 0.9635 0.9440 0.9064 0.9308

Unchecked low level call 0.9775 0.7683 0.9332 0.9630 0.9513 0.7040 0.6888

Average 0.9567 0.9054 0.9347 0.9558 0.9262 0.8374 0.8403

Average runtime 13.34 12.75 13.60 13.51 13.80 13.19 13.01

Line level Access control 0.9544 0.9681 0.8773 0.9457 0.8869 0.9225 0.9161

Arithmetic 0.9806 0.9841 0.9473 0.9705 0.9435 0.9666 0.9600

Denial of service 0.9493 0.9560 0.8732 0.9267 0.8702 0.8788 0.8825

Front running 0.9653 0.9508 0.9273 0.9407 0.9284 0.9441 0.9445

Reentrancy 0.9747 0.9127 0.8643 0.9135 0.8675 0.8826 0.8694

Time manipulation 0.9551 0.9097 0.8805 0.8934 0.8813 0.9031 0.8973

Unchecked low level call 0.9748 0.9585 0.9159 0.9713 0.9564 0.9087 0.9166

Average 0.9648 0.9485 0.8979 0.9374 0.9191 0.9152 0.9123

Average Runtime 87.83 90.01 91.11 87.63 84.83 88.76 89.57
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CFG and DFG, for a source file of 40KB, contract-level 
vulnerability detection takes 30 s, while line-level vulner-
ability detection takes 72 s. Meanwhile, for a source file of 
1KB, contract-level vulnerability detection can be com-
pleted within 1  s, and line-level vulnerability detection 
only takes 24 s. This confirms that the proposed approach 
to merge these three parts into a heterogeneous graph 
is appropriate to better understand the source code and 
achieve highly accurate detection results.

Conclusion
This paper proposes a method to generate hybrid hetero-
geneous graphs containing ASTs, CFGs and DFGs based 
on Solidity smart contract source code to capture more 
complete semantic information. The proposed method 
deepens the model’s understanding of the source code 
and enables vulnerability detection at both the contract 
level and line level. The results of several experiments 
with both original and enhanced datasets show that the 
proposed approach is promising and outperforms the 
state-of-the-art methods; thus, the proposed approach is 
worthy of reference.

However, the method proposed in this paper can still 
be improved. For example, to protect the security of 
smart contracts, most of the contract source code is not 
published, and only the converted bytecode of the con-
tract source code is released. Bytecode is not currently 
applicable with the methods proposed in this paper, so it 
is imperative to explore how to use deep learning meth-
ods for vulnerability identification based on bytecode 
files. In addition, most of the existing detection tools only 
identify which part of the source code is vulnerable but 
cannot determine specific attack routes; thus, the results 
are less interpretable. Therefore, determining the specific 
line of attack should be the focus of future work.
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