
CybersecurityMeng et al. Cybersecurity (2018) 1:2
https://doi.org/10.1186/s42400-018-0001-z

SURVEY Open Access

Security-first architecture: deploying
physically isolated active security processors
for safeguarding the future of computing
Dan Meng1, Rui Hou1*, Gang Shi1, Bibo Tu1, Aimin Yu1, Ziyuan Zhu1, Xiaoqi Jia1 and Peng Liu2

Abstract

It is fundamentally challenging to build a secure system atop the current computer architecture. The complexity in
software, hardware and ASIC manufacture has reached beyond the capability of existing verification methodologies.
Without whole-system verification, current systems have no proven security. It is observed that current systems are
exposed to a variety of attacks due to the existence of a large number of exploitable security vulnerabilities. Some
vulnerabilities are difficult to remove without significant performance impact because performance and security can
be conflicting with each other. Even worse, attacks are constantly evolving, and sophisticated attacks are now capable
of systematically exploiting multiple vulnerabilities while remain hidden from detection. Eagering to achieve security
hardening of current computer architecture, existing defenses are mostly ad hoc and passive in nature. They are
normally developed in responding to specific attacks spontaneously after specific vulnerabilities were discovered. As a
result, they are not yet systematic in protecting systems from existing attacks and likely defenseless in front of
zero-day attacks.
To confront the aforementioned challenges, this paper proposes Security-first Architecture, a concept which enforces
systematic and active defenses using Active Security Processors. In systems built based on this concept, traditional
processors (i.e., Computation Processors) are monitored and protected by Active Security Processors. The two types of
processors execute on their own physically-isolated resources, including memory, disks, network and I/O devices. The
Active Security Processors are provided with dedicated channels to access all the resources of the Computation
Processors but not vice versa. This allows the Active Security Processors to actively detect and tackle malicious
activities in the Computation Processors with minimum performance degradation while protecting themselves from
the attacks launched from the Computation Processors thanks to the resource isolation.

The challenges of building a secure system
In the era of cyberspace, computer security becomes
vitally important for protecting personal privacy, business
confidence and even national security. However, existing
computer security mechanisms have no proven security,
and they usually don’t protect computer systems against
all existing attacks, not tomention the future ones. PRISM
(Gellman and Poitras 2013), WannaCry (Ehrenfeld 2017),
and recent serious security incidents like Meltdown (Lipp
et al. 2018) and Spectre (Kocher et al. 2018) reflect the
weakness of existing computer security mechanisms. It is

*Correspondence: hourui@iie.ac.cn
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China
Full list of author information is available at the end of the article

clear that there is an urgent need to enhance computer
security using effective, efficient and systematic counter-
measures.

Software vulnerabilities are inevitable
Software security vulnerabilities exist because software
systems are too complicated. During the past two decades,
software has been increasingly woven into the human
society, and the scale and complexity of software systems
have been increasing significantly. The complexity of most
applications goes far beyond the understanding of a sin-
gle person. For example, the Firefox browser contains 36
million lines of code committed by 6313 contributors over
ten years (Mozilla Firefox 2018). Complex code would no

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

mailto: hourui@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Meng et al. Cybersecurity (2018) 1:2 Page 2 of 11

wonder have a higher chance of having security vulnera-
bilities exploitable by attacks (Shin et al. 2011). As men-
tioned in the June 2017 update, Mozilla fixed a total of 32
bugs of the Firefox browser, among which the most dan-
gerous is a use-after-free vulnerability, CVE-2017-5472,
using a destroyed node when regenerating trees. This
vulnerability is obviously a severe security vulnerability
resulted at least partially from code complexity. Another
representative instance is the Linux operating system. The
size of Linux kernel is increasing and the function is more
and more complicated. As shown in Fig. 1 (Common
Vulnerabilities and Exposures 2018), in 2017 the number
of newly exposed Linux kernel vulnerabilities hit a his-
torical high of 453, more than twice as many as in 2016.
Overflow and memory corruption are classic security vul-
nerabilities and should have been avoided as much as
possible. However, in 2017 the yearly numbers of CVE
exposed Linux kernel vulnerabilities of the two types are
still the highest, reaching 51 and 26, respectively. Due
to great complexity, many critical software systems are
extremely difficult to test. Also, the complexity in software
has reached beyond the capability of existing verification
methodologies. Without whole-system verification, cur-
rent software systems have no proven security. As the
complexity of modern software systems increases contin-
uously, software vulnerabilities are inevitable.

Hardware components are insecure
Similar to the inevitable software vulnerabilities, hard-
ware vulnerabilities broadly exist as well. Unsafe hardware
architecture and complex production processes are two
main factors of hardware vulnerabilities.
(1) Unsafe hardware architecture
Security risks widely exist in performance-oriented

architecture design. In such design, inherent security risks
are associated with branch prediction, cache, instruction
prefetch and so on. These security risks are well reflected
in the following two examples. First, cache is often the
target of attacks. Exploiting the time difference between
cache miss and hit, side channel attacks (Liu et al. 2015)
can successfully speculate code paths. Private keys can
be extracted from a code path because the code paths
of an encrypted program are deterministic. Second, out-
of-order and speculative execution are two fundamental
optimization techniques for improving chip-level perfor-
mance, but from the security viewpoint they can also be
viewed as two security vulnerabilities. The recently dis-
closed Meltdown (Lipp et al. 2018) and Spectre (Kocher
et al. 2018) attacks respectively exploited these two vul-
nerabilities to compromize computers.
(2) Complex production processes
Modern processor chips are produced by complex man-

ufacturing processes. Due to the complexity, product

Fig. 1 Vulnerabilities numbers of Linux kernel over years

Meng et al. Cybersecurity (2018) 1:2 Page 3 of 11

security cannot be guaranteed. To make sure that the cost
is not too high, modern processor chips generally adopt
the OEM (Original Equipment Manufacturer) produc-
tion mode. In this mode, design, layout, manufacturing,
packaging and testing are in general separated; each pro-
cess has different vendors. The design process frequently
uses third party IP, standard cell, and a variety of EDA
(Electronics Design Automation) tools. Due to globaliza-
tion, a product often needs to “travel” from one country
to another. Figure 2 illustrates the production process of
CPU chips and highlights the potential hazards in relevant
stages. These uncontrollable factors are likely to introduce
additional security risks. On one hand, it is possible for
disgruntled or malicious chip designers to implant mali-
cious logic or circuits without being noticed. On the other
hand, foundries also have the opportunities to deploy
malicious circuits on the chip layout without even mod-
ifying the design logic, as shown in the A2 attack (Yang
et al. 2016). Finally, real-world manufacturing processes
have very limited ability to detect malicious circuits; and
very limited ability to verify that circuits are free of mal-
ice. This also aggravates the aforementioned hardware
security problem.

Attacks are becomingmore sophisticated
The complexity of attacks is mainly shown in two aspects:
(1) Width of attack range. Attacks can be launched from

any places, including all layers from application software
to physical hardware. Many popular attacks are mainly
at the software level, such as SQL injection (Halfond
et al. 2006) and CSRF (Cross-site request forgery) (Lin et al.
2009). In addition, ARP (Address Resolution Protocol)
Spoofing (Whalen 2001), session hijacking and others

indicate that the network protocols can be attacked. Fur-
thermore, various vulnerabilities also show that hack-
ers are able to launch hardware-level attacks, such as
Rowhammer (Seaborn and Dullien 2015; Kim et al. 2014),
Meltdown (Lipp et al. 2018) and Spectre (Kocher et al.
2018).
(2) Variety of attack means. The simple means of attack

rely on unintentional yet harmful operations, such as
downloading a program bundled with a Trojan. Next,
worms and botnets are designed to self-replicate and
spread. These attack means automatically exploit software
vulnerabilities. The exploitation of software vulnerabili-
ties has also evolved from code injection attacks to code
reuse attacks such as ROP (Return-oriented program-
ming) (Checkoway et al. 2010) and JOP (Jump-oriented
programming) (Bletsch et al. 2011). Shifting the target
from software to hardware, many side channel attacks
exploit hardware vulnerability.

Fundamental issues
Building a secure system atop the current computer archi-
tecture is fundamentally difficult. The fast-growing com-
plexity in software inevitably leads to exploitable secu-
rity vulnerabilities. IP (Intellectural Property) reuse and
the separated ASIC manufacture procedure with mul-
tiple vendors make it impossible to thoroughly inspect
the whole design and the manufacture procedures. Some
architecture-level vulnerabilities are difficult to remove
due to the conflicting interests between performance and
security. In the meanwhile, attacks are constantly evolving
with new means to outwit existing defenses. To meet this
challenge, this paper proposes security-priority architec-
ture, a concept which separates the security tasks from the

Fig. 2 The common attacks in typical chip design flow (this figure is from (Yang et al. 2016))

Meng et al. Cybersecurity (2018) 1:2 Page 4 of 11

normal tasks by physical isolation. The architecture can
remedy the deficiencies of existing security mechanisms
and provide a new direction worth exploring.

Weaknesses of current countermeasures
Security has always been a secondary consideration in
computer system designs in the past two decades because
the priority is always given to performance, power and
cost (area). This subordination leads to potential security
risks and weak defense mechanisms.

Existing architecture-level defenses are usually resulted
from passively responding to specific attacks
Several micro-architecture level defense mechanisms
have been integrated into commercial chips. Here, we
discuss three representative types of architecture-level
defenses.

Memory overflow defense : Memory corruption bugs
enable attackers to maliciously change a program’s behav-
ior (van der Veen et al. 2012; Szekeres et al. 2013). Applica-
tions written in low-level languages like C/C++ are prone
to these kinds of bugs due to the lack of memory safety.
Since it is difficult to figure out all potential memory over-
flow bugs, an efficient way to enforce memory safety is
to add extra hardware protection mechanisms. For exam-
ple, Intel recently released a new ISA extension, named
as Memory Protection Extensions (MPX) (Oleksenko
et al. 2017). To facilitate memory safety checking, appli-
cation developers are allowed to insert boundary record
instructions to store the boundaries of protected memory
regions, like arrays, at the places where these data struc-
tures are defined, and insert boundary check instructions
to ensure that the access to these data structures are inside
their valid ranges. Unfortunately, MPX suffers from high
performance overhead which limits its adoption.

Pointer integrity defense : The Pointer Authentication
(PA) mechanism is added to ARMv8.3-A to prevent mem-
ory corruption attacks (Qualcomm Technologies 2017).
PA guarantees the integrity of pointers by binding each
pointer with a Pointer Authentication Code (PAC). As
the actual address space in 64-bit architectures is less
than 64 bits, PA places the PAC to the unused bits in
the pointer value to minimize the size and performance
impact. PACs are computed by a lightweight cryptogra-
phy algorithm (Avanzi 2017) and added to the pointer
values by extended PAC instructions. The integrity of
pointers is verified and restored by the AUT instructions.
To restrict the accesses to pointers in special context, PA
allocates keys for instruction pointers, data pointers and
general-purpose instructions. The keys are still managed
by software.

Control-flow integrity defense : Control-flow integrity
(CFI) (Abadi et al. 2005; Davi 2015; Burow et al. 2017)
is considered as one general and promising defense
against code-reuse attacks (Shacham 2007; Bletsch et al.
2011; Carlini and Wagner 2014; Schuster et al. 2015).
CFI restricts the control-flow of an application program
to valid execution traces; and the program’s predefined
Control-Flow Graph (CFG) tells what is valid. Forward-
edge control-flow represents transfers caused by indirect
jumps and function calls. Backward-edge control-flow
represents transfers caused by function return instruc-
tions. Intel has an ISA-level CFI extension, named
as Control-flow Enforcement Technology (CET) (Intel
Corporation 2016), which protects forward-edge CFI by
indirect branch tracking and ensures backward-edge CFI
by hardware shadow stacks. However, CET suffers from
two problems. One is the difficulty in defining a complete
and precise legal CFG (Evans et al. 2015), because some
informaion is only available at runtime, such as the tar-
get of an indirect jump. The other is the limited size of
the hardware shadow stack. The stack has to rely on the
operating system (OS) for handling context switches and
deeply nested function calls (Frantzen and Shuey 2001).
In summary, a common characteristic of three repre-

sentative types of architecture-level defenses is that they
seek to protect the chip or system from a specific vulnera-
bility. In other words, existing architecture-level defenses
are usually resulted from passively responding to specific
attacks. As a consequence, such patch-like approaches
are usually not generic and cannot handle attacks which
exploit zero-day vulnerabilities.

Trusted computing alone is not secure
Trusted computing ensures that executable binaries are
not tampered (David et al. 2008; Trusted Computing
2008). The foundation for trusted computing relies on a
dedicated chip, which is defined as a Trusted Platform
Module (TPM), to measure the integrity of executable
binaries by verifying their hash values. To implement this
measuring idea, the TPM is designed as a coprocessor that
helps the platform software to verify itself using a pre-
defined sequence as well as a cryptographic engine that
accelerates encryption, digital signatures, and hashing.
The TPM was initially used as the static root of trust for

measurement (SRTM) (Trusted Computing Group 2003).
SRTM utilizes the TPM to verify the integrity of boot-
ing processes. If a chain of trust is established during a
booting process, the boundary of trust can be extended
to include more than one level of software within the
system. To set the system into a clean state without
rebooting, researchers propose dynamic root of trust for
measurement (DRTM). Two DRTM implementations are
as follows. Intel develops the Trusted Execution Technol-
ogy (TXT) (Intel Corporation 2006) to securely launch

Meng et al. Cybersecurity (2018) 1:2 Page 5 of 11

software (such as the hypervisor and security kernel) at
arbitrary time. AMD offers similar capabilities with its
Secure Virtual Machine (SVM) extensions.
However, the security requirements are far beyond

guaranteeing the integrity of executable binaries. Even if
the executable binaries are unchanged, there are still secu-
rity risks as the control flow integrity (CFI) and data flow
integrity (DFI) can be exploited by malware. Dedicated
mechanisms implemented in processor chips could be
very helpful in defending such kind of advanced attacks.

Logical isolation suffers from information leak through
physical side-channels
ARM TrustZone (Wojtczuk and Rutkowska 2017) and
Intel SGX (McKeen et al. 2013) are similar technologies
which adopt logical isolation to provide a trusted exe-
cution environment for security-sensitive data and code.
For performance reasons, secure and non-secure pro-
grams (or worlds) still share substantial physical hardware
resources, including the on-chip cache hierarchy, TLB
and others. This sharing leads to the risk of side-channel
information leakage.
ARM TrustZone adds a NS bit in the memory system

to divide the processor into two worlds: a normal world
and an isolated secure world. The non-secure world can-
not directly access the resources used by the secure world
(ARM Limited 2009). The two worlds communicate with
each other through a security monitor. To improve the
system performance, caches are not flushed during world
switches. However, this allows cache lines from the secure
world to be evicted by the cache lines from the normal
world and vice versa. Such evictions can be exploited as a
cache side-channel to leak security-sensitive information.
Exploiting the cache side-channel by evicting the secure
cache lines cached in the shared cache belonging to the
normal world, a prime+probe attack (Zhang et al. 2016)
was able to infer the full AES128 secret key in 2.5 sec-
onds from the normal world kernel or 14 minutes from a
user space Android application. Allowing non-secure and
secure cache lines to co-exist in caches may also result
in cache incoherence behavior. This incoherence can be
exploited to install rootkit, which evades the memory
introspection mechanisms (Zhang et al. 2016).
Intel SGX is designed to increase the security of soft-

ware through an “inverse sandbox” mechanism. In this
approach, rather than attempting to identify and isolate
all the malware on the platform, legitimate software can
be sealed inside an enclave and protected from attacks by
the malware, irrespective of the privilege level of the lat-
ter. In other words, this allows an application to create a
secure enclave at the CPU level which is protected from
the OS upon which it is running. Data inside an enclave
is allowed to be accessed only by the codes located in
the same enclave. Moreover, the content of an enclave is

encrypted when stored in the memory. Even if an attacker
has the ability to snoop the memory bus, she cannot get
any useful information. Although the OS cannot directly
access the memory region used by an enclave, to simplify
the deployment and improve the performance, SGX still
leaves the OS in charge of setting up the page tables used
by enclaves. By observing an application’s page faults and
page table attributes, a malicious OS can infer part of the
memory access pattern of the application. By hacking the
page fault handler of the OS, attackers can track the access
patterns of the enclave at page size granularity. Xu et al.
(2015) implemented a controlled-channel attack on SGX-
enabled platforms to reveal the input-dependent control
transfers and data accesses of the target program. A sim-
ilar but stealthier attack can be launched utilizing the
access bit inside the page table entry (Wang et al. 2017).
Leveraging the contention in memory resources including
caches and TLBs etc., Wang et al. implemented a tradi-
tional prime+probe attack which is more fine-grained and
powerful on SGX-enabled platforms.

Current architecture-level security subsystems are not
really secure
Most of current server chips include a subsystem dedi-
cated for system management. The subsystem is basically
a tiny computer-within-a-computer normally embed-
ded directly in the chip along with the host processor
cores. Typical examples of such subsystems include Intel
Management Engine (ME) (Datenschutz and Pataky 2017;
Bogowitz and Swinford 2004), AMD Platform Secu-
rity Processor (PSP) (Advanced Micro Devices 2018b;
Wikimedia Foundation 2018) and Power On Chip Con-
troller (OCC) (Sinharoy et al. 2015). The functions of
these subsystems include managing the boot process,
keeping the system under thermal limits, and running
based on user input modes and parameters. The subsys-
tems can also be used to monitor the system for iden-
tifying suspicious activities or events, and make appro-
priate responses. As security subsystems usually con-
tain a rich set of hardware-based cryptographic prim-
itives, they process security related functions, such as
secure boot, secure updates, secure debug and secure
communication, significantly faster than software-only
solutions.
However, current designs (of these subsystems) need

improvement in terms of performance and security.
Firstly, complicated logic is expected to run on these
subsystems to detect and handle potential malicious
behaviors, even unknown attacks. These security inspec-
tion workloads can have strong hardware performance
requirements, but popular designs use tiny embeded pro-
cessor cores, such as ARM M series processors. Hence,
there is a performance gap between the required work-
loads and the actual computation power. Secondly, the

Meng et al. Cybersecurity (2018) 1:2 Page 6 of 11

security of such a subsystem itself is a concern. As the
subsystem has accessves to everything, it might provide
an attacker with a powerful backdoor if compromised.
The subsystem consists of layers of quite complex software.
For example, the Intel ME runs a hidden MINIX OS
(Datenschutz and Pataky 2017; Bogowitz and Swinford
2004). Various software components also run on the ME,
such as the Intel Active Management Technology (AMT)
(Bogowitz and Swinford 2004). On other hand, the com-
plexity provides an attacker with a good chance to com-
promise the subsystem. On the other hand, the subsystem
is implemented with embedded processors (Sinharoy et
al. 2015; Datenschutz and Pataky 2017; Advanced Micro
Devices 2018b) which usually lack the common security
hardening such as stack cookies, No-eXecute (NX) flags,
or address space layout randomization (ASLR). Hence,
there is also a security gap between the security require-
ments and the current security hardening. It has been
reported that the vulnerabilities in Intel ME and AMD
PSP allow attackers to gain administrative capabilities
(Intel Security 2017; Advanced Micro Devices 2018a).

Security-first architecture
Architecture overview
According to the analysis in “Weaknesses of current
countermeasures” section, the design of security mech-
anism has the trend which is evolving from passive to
active. For example, existing architecture-level defenses
are usually resulted from passively responding to spe-
cific attacks. And the techniques like trust computing and
SGX/trustzone are of much more active defenses, which
provide generic secure execution check or environment
instead of targeting at specific attacks. However, these
active defence mechanisms still suffer from some prob-
lems. Firstly, since security is usually not the first priority
design goal, logical isolation is preferred than physical iso-
lation, which causes side-channel information leakages.
And secondly, even for independent secure environment
like AMD PSP or Intel ME, there is a performance gap
between the required security workloads and the actual
computation power. More seriously, existing active mech-
anisms usually need to be invoked by other compute units
such as CPU. Therefore, once the computer has been com-
promised, these active security mechanisms are possibly
evaded.
Motivated by above analysis, we propose security-first

architecture. And our design philosophy obeys following
principles:

• Security should be considered at the stage of
architecture design and in the context of the whole
system instead of the processor chip alone.

• Security should be one of the major goals of
architecture design, and it should be paid as least the

same amount attention as paid to performance and
energy efficiency.

• Minimum performance impacts on the
computational workloads are expected.

• Minimum side-channel information leakage is
expected.

• Efficiently support the execution of diverse security
tasks.

• Security unit should have the highest priority and is
independent on computation.

Figure 3 illustrates our proposed security-first archi-
tecture. In existing commercial systems, tasks in differ-
ent security modes or with different privilege levels are
being performed consuming one set of physical resources,
including processor cores and shared cache. This in prin-
ciple would result in side-channel information leakages.
As a comparison, security-first architecture explicitly dif-
ferentiates the role of a processor in the same node into
two types: conventional processors named as Computa-
tion Processors (CP), and newly designed “dedicated to
security” processors named as Active Security Proces-
sors (ASP). CPs are monitored and protected by these
ASPs. The two types of processors execute on their own
resources, including memory, disks, network and I/O
devices. The ASPs are provided with dedicated channels
to access all the resources of the CPs but not vice versa.
Such uni-directional information flows lead to physi-
cal isolation for computation and security systems. The
functionalities of computation and security are physically
decoupled. Most of the security tasks or functions shall
be assigned to ASP, and all other tasks are still kept on
CP as what commercial systems are currently doing. Due
to physical isolation, the likelihood to suffer from side-
channel attacks will be significantly reduced for the ASP
system.

Active Security Processor (ASP)
A physically isolated ASP is a key component for security-
first architecture. On one hand, the security of secu-
rity tasks and mechanisms is guaranteed due to phys-

Fig. 3 Security-first architecture

Meng et al. Cybersecurity (2018) 1:2 Page 7 of 11

ical isolation. On the other hand, the performance
impacts on the execution of computational workloads
are minimum due to the transfer the security tasks from
CPs to ASPs. This section introduces the detailed ASP
design.
At architecture level, ASP is designed to have the high-

est privileges. Once the system is reset, it starts to work
on firstly building the trusted boot chain. During the exe-
cution phase, ASP is designed to have the following (com-
posable) capabilities to support diverse active security
tasks:

• Actively access (read and write) the host memory.
Since many defence mechanisms need to do in-depth
analysis of host memory, ASP should efficiently
access the contents of host memory. One intuitive
idea is to integrate DMA engine into ASP. However,
such a method can only monitor the memory
contents, and would fail to monitor each memory
access request issued by CP. In some cases, such a
method even discards some dangerous memory
requests (e.g., illegal access according to a specific
rule). To address these limitations, one enhanced
solution is to employ a store-and-forward design.
However, such advanced feature inevitable increases
the memory access latency. Thus in security-first
architecture it is optional regarding whether to to
support fine-grained memory request monitoring or
not.

• Bridge the host I/O devices and CP. The feature of
bridging (or I/O switch hub) enables ASP to analyze
the I/O traffic and actively manage the I/O devices
(e.g., to physically connect or dis-connect host I/O
devices). Considering that the PCIe protocol is widely
used to connect I/O devices and processor chip in
commercial systems, an embedded PCIe switch
module is integrated into ASP.

• Actively access (read and write) micro-architecture
states or events inside CP. The micro-architectural
execution data, including committed instruction
trace, cache miss, branch mis-prediction, and value
change of status registers, provide many valuable
information items for detecting malicious behavior. It
is challenging to collect these information since it is
difficult to send these high volume data from the
domain of CP to ASP. In security-first architecture,
many micro-architecture event collection agents are
embedded into each major module in CP, and the
collected information will be sent to an on-chip
pre-processing engine via dedicated on-chip event
monitoring fabric. The pre-processing engine will
filter unnecessary or repeated information, and send
the compressed valuable information to ASP for
further analysis.

Another architecture-level feature is the asymmet-
ric memory space, which enables the physical isola-
tion between the Computation domain and the Security
domain. CP and ASP have their own memory, chip sets
and I/O devices. And the inter-domain communications
are unidirectional. That is to say, ASP can access all
resources including the internal status of CP, the mem-
ory and I/O devices in the Computation domain, while
CP cannot access any information within the Security
domain.
At micro-architecture level, security-first architecture

adopts the classic general-purpose processor hardware
optimizations including Out-of-Order execution and
speculative technique to meet the performance and
flexibility requirements of diverse security tasks. Besides
these, unique hardware optimizations like heterogeneous
computing are also considered in the micro-architecture
design of ASP. For instance, typical operations like
encryption/de-encryption, and pattern matching are
selected as acceleration targets via domain-specific hard-
ware accelerators.

Security mechanisms on ASP
The security tasks safeguard the execution of computa-
tional workloads. In general, three kinds of security tasks
are running on ASP:

Malicious behavior active online detection and secu-
rity inspection. Malicious behaviors like ROP and
Flush+Reload attacks usually have unique patterns, which
can be observed by analyzing the execution trace and
other relevant micro-architectural events sent from CP.
Thus, active online detection logic is deployed on ASP to
recognize such malicious patterns. In addition, it is also
allowed to specify actionable rules for security inspec-
tion. For example, the host memory may be scanned at
specific frequency; and the contents of specified memory
region where kernel data structures are located may be
monitored to avoid rootkit attacks. ASP also has the active
capability to capture each I/O operation, to discard illegal
I/O operations, or even to close the related I/O channel
according to the rules.

Secure computation offloading. ASP can provide a
secure execution environment for legitimate applications.
Selected codes and data are allowed to be encrypted
offline in advance, and the encrypted codes and data can
be sealed as a secure region with a signature. Once the
secure region is dispatched to ASP via dedicated APIs, the
internal codes and data will be decrypted and the integrity
will also be verified by checking the signature. Then the
codes start to run after necessary environment is initial-
ized. During the execution, only the codes located in the
same secure region can access its internal data. Since the

Meng et al. Cybersecurity (2018) 1:2 Page 8 of 11

ASP is physical isolated from CP, the codes and data are
not visible to any application or OS running on CP. The
secure region is similar to an enclave of Intel SGX, and the
difference is that the secure region runs on physical iso-
lated ASP. Such mechanism provides a better protection
against side-channel attacks.
Active Trusted computing. Traditional trust comput-

ing has two limitations. First, the core part of existing
trusted computing model called Trusted Platform Mod-
ule(TPM) is a passive chip intended to serve as a hardware
root of trust for trusted infrastructure leading to software
applications that are trusted. The TPM cannot actively ini-
tiate a trusted measurement, and it needs to be invoked
by other compute units such as CPU. Therefore, once the
computer has been compromised, the trusted measure-
ment process is capable of being evaded. Second, although
provably correct chains of trust from BIOS through sev-
eral levels of operating systems is theoretically sound,
the measurement technique used in conjunction with the
TPM is vulnerable because it lacks of runtime changes
detection methods. Here we introduce our active trusted
model for computer devices, which can solve those two
problems above. Our active trusted model consists of
static trusted chain and dynamic trust chain. The static
trusted measurement are performed when the computer
is being started or a software application is being exe-
cuted. For the integrity of the static trusted chain to
remain intact, operating system kernel, modules, libraries
and all the applications must be measured before its
being executed. The dynamic trustedmeasurement is per-
formed when the computer is running. It measures lots
of factors such as the code segment and static data at the
runtime. ASP is considered as the trust foundation of the
active trusted model, and it can actively initiate a trusted
measurement to establish the chain of trust that consists
of multiple trust dependencies. Moreover, ASP can be
used as the root of both static trusted chain and dynamic
trusted chain.

Implementation options
In this section, three typical system-level implementa-
tions are discussed. They all follow the design philosophy
of security-first architecture, and reflect different design
considerations in terms of system overhead, complexity
and performance. ASP can be implemented as an addi-
tional IP module on a chipset, an extra core on a processor
chip, or a separate processor chip.
(1) Implementation inside a chipset. In Fig. 4, the ASP

is located at the entry point of the chipset as an inte-
grated IP and is attached to the existing on-chip fabric
of the chipset. This implementation option makes it con-
venient for the ASP to analyze I/O traffic and effectively
shutdown/re-open the I/O channel when requested. Fol-
lowing the principles of asymmetric memory space, the

Fig. 4 Implement ASP in Chipsets

ASP has its own memory, disk, and I/O devices. An
embedded DMA engine is used to scan the host mem-
ory on the CPU side. However, the chipset is normally
I/O bounded.Without the ASP, the original chipset has an
already complex internal architecture, which contains an
on-chip routing fabric and several controllers for various
I/O devices. It is difficult to increase the number of I/O
pins in an I/O bounded chipset. The memory bandwidth
for ASP is thus possibly limited. For this reason, Intel ME
borrows memory from the CPU but this unfortunately
introduces security risk. Moreover, due to the limited area
available in the already crowded chipset, the ASP is left
with a tiny processor which lacks the calculation power
required by active defenses.
(2) Implementation inside a processor chip. As shown

in Fig. 5, the ASP Core is integrated into the processor
chip as an extra core. This is the most efficient way of
implementing an ASP to monitor and analyze the on-chip
micro-architecture behaviors on the CPU side. On-chip
monitoring enables the timely identification and response
to elusive attacks and malicious behaviors. On-chip mon-
itoring also avoids transferring a large amount of micro-
architecture (behavior) information off the chip, which is
actually very challenging. Since the ASP is also utilized
as an extra IP, it has similar performance and memory
bandwidth limitations as the chipset implementation has.

Fig. 5 On-chip implementation of ASP

Meng et al. Cybersecurity (2018) 1:2 Page 9 of 11

(3) Implementation on a separate chip. As depicted
in Fig. 6, the ASP is deployed as a separate chip. The
ASP controls all system resources, monitors all CPU off-
chip requests in fine granularity and collects all the CPU
micro-architectural events. Compared to the other two
implementations, in this implementation option the ASP
has the largest asymmetric memory bandwidth. It is even
possible to use additional hardware accelerators or GPUs
for accerlating the security tasks. For example, online real-
time deep neural network learning tasks can be boosted
by using additional accelerators, which could greatly
enhance the ability of monitoring and recognizing elusive
attacks. In addition, the abundent computing power of the
ASP and the isolated physical environment make it effi-
cient to handle offloaded jobs such as protecting specific
codes and data, and running encryption and decryption
operations.

Architecture comparisons
This section compares security-first architecture with
other architecture-level security techniques.
Many existing architecture-level security mechanisms

have their specific uses. For examples, TPM is used to
provide a chain of trust and measure the integrity of
executable binaries. In contrast, the security-first archi-
tecture proposes a generic security platform with strong
support for various defense mechanisms.
Given the big challenges mentioned in “Weaknesses

of current countermeasures” section, “patching” hard-
ware and the OS kernel in response to any new attack
is a passive way of defense. In contrast, active defense
mechanisms enabled by security-first architecture moni-
tor suspicious behaviors at multiple layers ranging from
chip to software applications, dynamically recognize the
illegal operations, and physically shutdown or re-open the
I/O channels.

Fig. 6 Board-level implementation of ASP

SGX and Trustzone suffer from various side-channel
attacks. In contrast, security-first architecture is immune
to most if not all side-channel attacks thanks to its phys-
ical isolation. Different from the logic isolation designs
in Trustzone and SGX, physical isolation significantly
reduces side-channel information leakage. Numerous
security mechanisms, such as ASLR at OS level, and
CFI and buffer overflow protection at chip level, can be
directly integrated into ASP (and the security tasks run-
ning on the ASP). Moreover, the security inspection agent
running on the ASP can be thoroughly verified as the exe-
cution environment of ASP is fairly enclosed. This further
enhances the security of ASP.
In terms of performance, first, since ASP has its own

memory, disk and I/O resources, it does not occupy
the resources belonging to the computation processors;
therefore, the performance impact caused by ASP on the
computation jobs is minimumized. Second, more power-
ful processor cores are preferred for ASP in security-first
architecture, in order to meet the performance require-
ments of active defense jobs. This is an important differ-
ence between security-first architecture and the existing
architecture-level security subsystems like AMD PSP and
Intel ME.

Conclusion
Building a secure system atop the current computer archi-
tecture is fundamentally difficult. The fast-growing com-
plexity in software inevitably leads to exploitable secu-
rity vulnerabilities. IP (Intellectual Property) reuse and
the separated ASIC manufacture procedure with mul-
tiple vendors make it impossible to thoroughly inspect
the whole design and the manufacture procedures. Some
architecture-level vulnerabilities are difficult to remove
due to the conflicting interests between performance and
security. In the meanwhile, attacks are constantly evolv-
ing with new means to outwit existing defenses. To meet
this challenge, this paper proposes security-priority archi-
tecture, a concept which separates the security tasks from
the normal tasks by physical isolation. In systems built
based on this concept, traditional processors (i.e., Compu-
tation Processors) are monitored and protected by Active
Security Processors. The two types of processors exe-
cute on their own physically-isolated resources, including
memory, disks, network and I/O devices. The physically
isolatedActive Security Processors are a key component for
security-first architecture, which are provided with dedi-
cated tightly-coupled channels to access all the resources
of the Computation Processors but not vice versa. This
allows the Active Security Processors to actively detect
and tackle malicious activities in the Computation Pro-
cessors with minimum performance degradation while
protecting themselves from the attacks launched from the
Computation Processors thanks to the resource isolation.

Meng et al. Cybersecurity (2018) 1:2 Page 10 of 11

This paper introduces three implementations of Security-
first Architecture, and makes comparasions with other
classic security mechanisms. Security-first Architecture
can remedy the deficiencies of existing security mecha-
nisms and provide a new direction worth exploring.

Authors’ contributions
DM proposed the concept and made the key design of security-first
architecture. RH drafted the paper. GS, BT, AY, ZZ, XJ and RH are in charge of
different aspects of this architecture and the implementations of its key
mechanisms. PL polished the whole paper. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2Pennsylvania State University, Old Main, 16801 State College, PA, USA.

Received: 4 January 2018 Accepted: 17 April 2018

References
Abadi M, Budiu M, Erlingsson U, Ligatti J (2005) Control-flow integrity. In:

Proceedings of the 12th ACM Conference on Computer and
Communications Security. ACM, Alexandria. pp 340–353

Advanced Micro Devices Inc (2018) An update on AMD processor security.
https://www.amd.com/en/corporate/speculative-execution

Advanced Micro Devices Inc (2018) Full security solutions that locks you down,
not in. https://www.amd.com/en/technologies/security

ARM Limited (2009) Building a secure system using TrustZone technology.
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

Avanzi R (2017) The QARMA block cipher family. IACR Transactions on
Symmetric Cryptology 1:4–44

Bletsch T, Jiang X, Freeh VW, Liang Z (2011) Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security.
ACM, Hong Kong. pp 30–40

Bogowitz B, Swinford T (2004) Intel® active management technology reduces it
costs with improved PC manageability. Technol@ Intel Mag. https://www.
intel.com/content/dam/www/public/us/en/documents/solution-briefs/
optimize-management-and-security-of-client-devices-solution-brief.pdf

Burow N, Carr SA, Nash J, Larsen P, Franz M, Brunthaler S, Payer M (2017)
Control-flow integrity: Precision, security, and performance. ACM Comput
Surv 50(1)

Carlini N, Wagner D (2014) ROP is still dangerous: Breaking modern defenses.
In: Proceedings of the 23rd USENIX Conference on Security Symposium.
ACM, San Diego. pp 385–399

Checkoway S, Davi L, Dmitrienko A, Sadeghi A-R, Shacham H, Winandy M
(2010) Return-oriented programming without returns. In: Proceedings of
the 17th ACM conference on Computer and communications security.
ACM, Chicago. pp 559–572

Common Vulnerabilities and Exposures (2018) Linux kernel: Vulnerability
statistics. https://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33

Datenschutz HT, Pataky D (2017) Intel management engine. https://bitkeks.eu/
docs/intelme-report.pdf/

David C, Kent Y, Ryan C, David S, Leendert D (2008) A practical guide to trusted
computing. IBM Press, first ed., Boston

Davi LV (2015) Code-Reuse Attacks and Defenses. PhD thesis. Technische
Universität, Darmstadt

Ehrenfeld JM (2017) Wannacry, cybersecurity and health information
technology: A time to act. J Med Syst 41(7):101

Evans I, Long F, Otgonbaatar U, Shrobe H, Rinard M, Okhravi H, Sidiroglou-
Douskos S (2015) Control jujutsu: On the weaknesses of fine-grained

control flow integrity. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, Denver. pp 901–913

Frantzen M, Shuey M (2001) Stackghost: Hardware facilitated stack protection.
In: Proceedings of the 10th Conference on USENIX Security Symposium.
ACM, Washington. pp 5–5

Gellman B, Poitras L (2013) US intelligence mining data from nine U.S. internet
companies in broad secret program. The Washington Post. https://www.
sanders.senate.gov/newsroom/must-read/us-intelligence-mining-data-
from-nine-us-internet-companies-in-broad-secret-program

Halfond WG, Viegas J, Orso A (2006) A classification of SQL-injection attacks
and countermeasures. In: Proceedings of the IEEE International Symposium
on Secure Software Engineering, vol 1. IEEE, Washington. pp 13–15

Intel Corporation (2006) LaGrande technology preliminary architecture
specification. http://kib.kiev.ua/x86docs/SDMs/315168-002.pdf

Intel Corporation (2016) Control-flow enforcement technology preview.
https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf

Intel Security Center (2017) Intel active management technology, intel small
business technology, and intel standard manageability escalation of
privilege. https://security-center.intel.com/advisory.aspx?intelid=INTEL-
SA-00075&languageid=en-fr

Kim Y, Daly R, Kim J, Fallin C, Lee JH, Lee D, Wilkerson C, Lai K, Mutlu O (2014)
Flipping bits in memory without accessing them: An experimental study
of DRAM disturbance errors. ACM SIGARCH Computer Architecture News
42(3):361–372

Kocher P, Genkin D, Gruss D, Haas W, Hamburg M, Lipp M, Mangard S,
Prescher T, Schwarz M, Yarom Y (2018) Spectre attacks: Exploiting
speculative execution. ArXiv e-prints. https://spectreattack.com/
spectre.pdf

Lin X, Zavarsky P, Ruhl R, Lindskog D (2009) Threat modeling for CSRF attacks.
In: International Conference on Computational Science and Engineering.
IEEE, Vancouver. Vol. 3. pp 486–491

Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Mangard S, Kocher P, Genkin D,
Yarom Y, Hamburg M (2018) Meltdown. ArXiv e-prints. https://
meltdownattack.com/meltdown.pdf

Liu F, Yarom Y, Ge Q, Heiser G, Lee RB (2015) Last-level cache side-channel
attacks are practical. In: Proceedings of the IEEE Symposium on Security
and Privacy. IEEE, San Jose. pp 605–622

McKeen F, Alexandrovich I, Berenzon A, Rozas CV, Shafi H, Shanbhogue V,
Savagaonkar UR (2013) Innovative instructions and software model for
isolated execution. In: Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy. ACM,
Tel-Aviv. pp 10:1–10:1

Mozilla Firefox (2018) Project summary. https://www.openhub.net/p/firefox
Oleksenko O, Kuvaiskii D, Bhatotia P, Felber P, Fetzer C (2017) Intel MPX

explained: An empirical study of intel MPX and software-based bounds
checking approaches. arXiv preprint arXiv:1702.00719. https://arxiv.org/
pdf/1702.00719.pdf

Qualcomm Technologies Inc (2017) Whitepaper: Pointer Authentication on
ARMv8.3. https://www.qualcomm.com/documents/whitepaper-pointer-
authentication-armv83

Schuster F, Tendyck T, Liebchen C, Davi L, Sadeghi AR, Holz T (2015)
Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications. In: Proceedings of the IEEE
Symposium on Security and Privacy. IEEE, San Jose. pp 745–762

Seaborn M, Dullien T (2015) Exploiting the DRAM rowhammer bug to gain
kernel privileges. In: Black Hat. UBM, Las Vegas. pp 7–9

Shacham H (2007) The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: Proceedings of the
14th ACM Conference on Computer and Communications Security. ACM,
Alexandria. pp 552–561

Shin Y, Meneely A, Williams L, Osborne J (2011) Evaluating complexity, code
churn, and developer activity metrics as indicators of software
vulnerabilities. IEEE Trans Softw Eng 37(6):772–787

Sinharoy B, Swanberg R, Nayar N, Mealey B, Stuecheli J, Schiefer B, Leenstra J,
Jann J, Oehler P, Levitan D, Eisen S, Sanner D, Pflueger T, Lichtenau C, Hall
W, Block T (2015) Advanced features in IBM POWER8 systems. IBM J Res
Dev 59(1):1–1

Szekeres L, Payer M, Wei T, Song D (2013) Sok: Eternal war in memory.
In: Proceedings of the IEEE Symposium on Security and Privacy. pp 48–62

https://www.amd.com/en/corporate/speculative-execution
https://www.amd.com/en/technologies/security
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/optimize-management-and-security-of-client-devices-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/optimize-management-and-security-of-client-devices-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/optimize-management-and-security-of-client-devices-solution-brief.pdf
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://bitkeks.eu/docs/intelme-report.pdf/
https://bitkeks.eu/docs/intelme-report.pdf/
https://www.sanders.senate.gov/newsroom/must-read/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program
https://www.sanders.senate.gov/newsroom/must-read/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program
https://www.sanders.senate.gov/newsroom/must-read/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program
http://kib.kiev.ua/x86docs/SDMs/315168-002.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
https://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00075&languageid=en-fr
https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf
https://meltdownattack.com/meltdown.pdf
https://meltdownattack.com/meltdown.pdf
https://www.openhub.net/p/firefox
https://arxiv.org/pdf/1702.00719.pdf
https://arxiv.org/pdf/1702.00719.pdf
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83
https://www.qualcomm.com/documents/whitepaper-pointer-authentication-armv83

Meng et al. Cybersecurity (2018) 1:2 Page 11 of 11

Trusted Computing GroupAdministration (2008) Trusted Platform Module
(TPM) summary. https://trustedcomputinggroup.org/trusted-platform-
module-tpm-summary/

Trusted Computing Group Incorporated (2003) TCG specification architecture
overview. https://www.trustedcomputinggroup.org/wp-content/
uploads/TCG_1_4_Architecture_Overview.pdf

van der Veen V, dutt Sharma N, Cavallaro L, Bos H (2012) Memory errors: the
past, the present, and the future. In: Proceedings of the 15th ACM
International Conference on Research in Attacks, Intrusions, and Defenses.
Springer, Amsterdam. pp 86–106

Wang W, Chen G, Pan X, Zhang Y, Wang X, Bindschaedler V, Tang H, Gunter CA
(2017) Leaky cauldron on the dark land: Understanding memory side-
channel hazards in SGX. In: Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security. ACM, Dallas. pp 2421–2434

Whalen S (2001) An introduction to ARP spoofing. Node99 [Online Document].
http://www.madchat.fr/reseau/arp/intro_to_arp_spoofing.pdf

Wikimedia Foundation Inc (2018) AMD Platform Security Processor. https://en.
wikipedia.org/wiki/AMD_Platform_Security_Processor

Wojtczuk R, Rutkowska J (2017) SoC and CPU system-wide approach to
security. https://www.arm.com/products/security-on-arm/trustzone

Xu Y, Cui W, Peinado M (2015) Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In: Proceedings of the IEEE
Symposium on Security and Privacy. IEEE, San Jose. pp 640–656

Yang K, Hicks M, Dong Q, Austin T, Sylvester D (2016) A2: Analog malicious
hardware. In: Proceedings of the IEEE Symposium on Security and Privacy.
IEEE, San Jose. pp 18–37

Zhang N, Sun K, Shands D, Lou W, Hou YT (2016) Truspy: Cache side-channel
information leakage from the secure world on ARM devices. IACR Cryptol
ePrint Arch:980

Zhang N, Sun H, Sun K, Lou W, Hou YT (2016) Cachekit: Evading memory
introspection using cache incoherence. In: Proceedings of the IEEE
European Symposium on Security and Privacy. IEEE, Saarbrücken.
pp 337–352

https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://trustedcomputinggroup.org/trusted-platform-module-tpm-summary/
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
http://www.madchat.fr/reseau/arp/intro_to_arp_spoofing.pdf
https://en.wikipedia.org/wiki/AMD_Platform_Security_Processor
https://en.wikipedia.org/wiki/AMD_Platform_Security_Processor
https://www.arm.com/products/security-on-arm/trustzone

	Abstract
	The challenges of building a secure system
	Software vulnerabilities are inevitable
	Hardware components are insecure
	Attacks are becoming more sophisticated
	Fundamental issues

	Weaknesses of current countermeasures
	Existing architecture-level defenses are usually resulted from passively responding to specific attacks
	Memory overflow defense
	Pointer integrity defense
	Control-flow integrity defense

	Trusted computing alone is not secure
	Logical isolation suffers from information leak through physical side-channels
	Current architecture-level security subsystems are not really secure

	Security-first architecture
	Architecture overview
	Active Security Processor (ASP)

	Security mechanisms on ASP
	Malicious behavior active online detection and security inspection.
	Secure computation offloading.

	Implementation options
	Architecture comparisons
	Conclusion
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

