
CybersecurityChen et al. Cybersecurity (2018) 1:3
https://doi.org/10.1186/s42400-018-0003-x

RESEARCH Open Access

Feedback control can make data structure
layout randomization more cost-effective
under zero-day attacks
Ping Chen1*, Zhisheng Hu2, Jun Xu1, Minghui Zhu2 and Peng Liu1

Abstract

In the wake of the research community gaining deep understanding about control-hijacking attacks, data-oriented
attacks have emerged. Among data-oriented attacks, data structure manipulation attack (DSMA) is a major category.
Pioneering research was conducted and shows that DSMA is able to circumvent the most effective defenses against
control-hijacking attacks — DEP, ASLR and CFI. Up to this day, only two defense techniques have demonstrated their
effectiveness: Data Flow Integrity (DFI) and Data Structure Layout Randomization (DSLR). However, DFI has high
performance overhead, and dynamic DSLR has two main limitations. L-1: Randomizing a large set of data structures
will significantly affect the performance. L-2: To be practical, only a fixed sub-set of data structures are randomized. In
the case that the data structures targeted by an attack are not covered, dynamic DSLR is essentially noneffective.
To address these two limitations, we propose a novel technique, feedback-control-based adaptive DSLR and build a
system named SALADSPlus. SALADSPlus seeks to optimize the trade-off between security and cost through feedback
control. Using a novel feedback-control-based adaptive algorithm extended from the Upper Confidence Bound (UCB)
algorithm, the defender (controller) uses the feedbacks (cost-effectiveness) from previous randomization cycles to
adaptively choose the set of data structures to randomize (the next action). Different from dynamic DSLR, the set of
randomized data structures are adaptively changed based on the feedbacks. To obtain the feedbacks, SALADSPlus
inserts canary in each data structure at the time of compilation. We have implemented SALADSPlus based on
gcc-4.5.0. Experimental results show that the runtime overheads are 1.8%, 3.7%, and 5.3% when the randomization
cycles are selected as 10s, 5s, and 1s respectively.

Keywords: Data structure manipulation attack, Data structure layout randomization, Adaptive security, Feedback
control

Introduction
During the past two decades, control-hijacking attacks
have drawn tremendous attention from the computer
security research community. In a control-hijacking
attack, the adversary manipulates the control flow objects
and shifts the execution to malicious logics. The earliest
attacks hijack the control flow to execute injected code. To
defend against those code-injection attacks, Data Execu-
tion Prevention (DEP) (The PaX Team 2003a; Microsoft
2008) techniques were proposed. DEP ensures that a

*Correspondence: pzc10@ist.psu.edu; chenping19851@hotmail.com
1College of Information Sciences and Technology, The Pennsylvania State
University, University Park 16802, PA, USA
Full list of author information is available at the end of the article

memory page is either writable or executable, but not
both.
As a counteraction against DEP, adversaries switched

from code-injection attacks to code-reuse attacks such as
return-to-libc and Return-Oriented-Programming (ROP).
These code-reuse attacks have motivated a very large
amount of research on how to defend and how to counter-
attack. In the past 10 years, the research community has
gained deep understanding about the cost-effectiveness
of major defenses, including Address Space Layout
Randomization (ASLR)1 (Backes and Nürnberger 2014;
Bhatkar et al. 2003; Kil et al. 2006; Keromytis et al. 2012;
The PaX Team 2003b) and Control Flow Integrity (CFI)2
(Abadi et al. 2005).

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-018-0003-x&domain=pdf
mailto: pzc10@ist.psu.edu
mailto: chenping19851@hotmail.com
http://creativecommons.org/licenses/by/4.0/

Chen et al. Cybersecurity (2018) 1:3 Page 2 of 13

However, in the wake of the research community gain-
ing deep understanding about control-hijacking attacks,
data-oriented attacks (Chen et al. 2015, 2005; Hu et al.
2015, 2016) have emerged. Data-oriented attacks do not
modify control flow objects. Instead they read/write
security-sensitive data objects for malicious goals (Chen
et al. 2005; Hu et al. 2015). Recently, it has been shown
that data-oriented attacks are Turing-complete (Hu et al.
2016) and can result in arbitrary behaviors.
Among data-oriented attacks, data structure manip-

ulation attack (DSMA) (Chen et al. 2015) is a major
category. DSMA exploits memory corruption bugs to
manipulate multiple security sensitive fields in encapsu-
lated data objects (e.g., struct and class). For exam-
ple, the attack against openssh (CVE-2001-0144 2001)
(CVE-2001-0144) overwrites a particular instance of data
structure passwd to achieve privilege escalation. Pio-
neering research was conducted and shows that DSMA
is able to circumvent the most effective defenses against
control-hijacking attacks—DEP, ASLR andCFI. However,
the research community has quite limited understanding
on how to defend against DSMA.
Up to this day, only two defense techniques have demon-

strated their effectiveness: Data Flow Integrity (DFI)
(Castro et al. 2006; Song et al. 2016) and Data Structure
Layout Randomization (DSLR) (Chen et al. 2015; Lin et al.
2009; Stanley et al. 2013; Xin et al. 2010). DFI maintains
the definition-use relationship from the Data Flow Graph,
and checks whether the definition of each data object
is legal at run-time. By theory, DFI can defend against
DSMA. However, DFI introduces performance overhead
as high as 103% (Castro et al. 2006), making it impractical
for deployment. Comparing with DFI, DSLR has similar
defense effectiveness but substantially less cost.We, there-
fore, believe DSLR is much more promising in mitigating
DSMA. In this work, we seek to provide new insights into
and deeper understanding about the cost-effectiveness of
DSLR.

DSLR
Research in the early stage proposed static DSLR (Lin
et al. 2009; Stanley et al. 2013; Xin et al. 2010). At the
time of compilation, static DSLR randomly reorders the
fields or adds dummy fields in encapsulated data objects.
Static DSLR can prevent DSMA from correctly locating
target fields and further manipulating them. However, its
randomization is fixed at runtime and vulnerable to brute
force attacks. Further, static DSLR requires manual efforts
to determine which data structures can be randomized.
Recent research endeavored to develop dynamic DSLR

and produced a technique named SALADS (Chen
et al. 2015). SALADS aims to address the limita-
tions of static DSLR. It automatically determines the
randomization-feasibility of each data structure and

frequently re-randomizes/de-randomizes the layouts of
candidate data structures at run-time. The program
compiled by SALADS can self-randomize a set of of data
structures, the instrumentation replaces each statement
that contains data structure accesses. To avoid runtime
errors, SALADS inserts de-randomization routine before
any dangerous statement (e.g., pointer involved dangerous
statements).
While SALADS offers security advantages, it still has

two major limitations. L-1: When SALADS random-
izes a large set of data structures, it will significantly
affect the performance. This further leads to the sec-
ond limitation. L-2: For the consideration of perfor-
mance, SALADS cannot afford to randomize all the data
structures. Instead it randomizes a fixed sub-set of data
structures. In the case that the data structures targeted
by an attack are not covered, SALADS is essentially
noneffective.

Problem statement
In this paper, we explore to augment SALADS with feed-
back control to address the above limitations. Our insights
are as follows.
Limitation L-1 essentially indicates the necessity of

a trade-off between security and cost. The availabil-
ity of feedbacks about security and cost will facilitate
the defense to achieve an optimized trade-off. This
motivates us to employ the canary mechanism to col-
lect feedbacks. More details about it will be discussed
shortly. Those feedbacks in turn provide awareness of
the attacked data structures, which can be leveraged
to address limitation L-2. The intuition behind is that
such awareness can enable the defense to include the
attacked data structures and exclude the safe ones for
randomization.
The goal to optimize the above described trade-

off can be formulated as a feedback control prob-
lem — The defender (controller) uses the feedbacks
(cost-effectiveness) from previous randomization cycles
to adaptively choose the set of data structures to ran-
domize (the next action) such that the trade-off is
optimized.
In this paper, we are therefore deeply interested in the

problem: Can feedback control be leveraged to address the
two limitations of dynamic DSLR?

Our approach
Based on the above insights, we propose a novel tech-
nique, feedback-control-based adaptive DSLR and build a
system named SALADSPlus. SALADSPlus includes two
parts. The first part is a compiler extension, which trans-
forms a program into a Data Structure Self-Randomizing
(DSSR) program. The compiler extension mounts the
DSSR program into an adaptive strategy that utilizes

Chen et al. Cybersecurity (2018) 1:3 Page 3 of 13

the Upper Confidence Bound DSLR (UCB-D) algorithm
to select data structures for protection at each re-
randomization. Different from SALADS, the set of
randomized data structures are adaptively changed based
on the cost-effectiveness utilities of the previous cycles.
To obtain those utilities, SALADSPlus inserts canary in
each data structure at the time of compilation. At runtime
and the end of each defense cycle, SALADSPlus collects
the number of polluted canaries. Such information is then
used to calculate the utilities.
The second part of our SALADSPlus system is an adver-

sarial reasoning scheme. This scheme monitors the exe-
cution of a DSSR program and uses the observations to
reduce the uncertainty in detecting ongoing DSMA. In
addition, this scheme can help locate the program tar-
geted by the DSMA.
Our contributions in this work are summarized as fol-

lows:

• This is the first effort toward feedback-control-based
adaptive DSLR.

• A novel feedback-control-based adaptive defense
algorithm extended from UCB (Upper Confidence
Bound) algorithm (Auer et al. 2002) is proposed.

• An adversarial reasoning scheme is proposed. It
enables the defender to know more about the
attacker. It also helps locate the program targeted by
the DSMA.

• On average, the runtime overheads introduced by
SALADSPlus are 1.8%, 3.7%, and 5.3% for application
programs (SPECInt2006, openssh-2.1.1p4,
httpd-1.1.1, and openssl-0.9.6d), when the
defense cycles are 10s, 5s, and 1s, respectively.

Overview
Our work focuses on developing a specific defense against
DSMA (Chen et al. 2015), named SALADSPlus, before
any patches are generated and the zero-day memory
corruption bugs are located. This section presents the
motivation and overview of our defense system. Under
the protection of a defense action, the server uses
canary detection to identify the number of failed DSMAs
during a defense cycle and reports the number to the
defense decision maker (“Canary detection” section). The
feedback is used by the defense decision maker to cal-
culate the cost-effectiveness of previous defense action
(“Cost-effectiveness utility” section), and select defense
action for next defense cycle (i.e., a data structure whitelist in
“Dynamic data structure layout randomization” section).

Feedbacks and adaptive defense
During the vulnerability window, the defender has limited
knowledge of the attacks; e.g., the bug locations, target
data structures, etc. Under this limited knowledge, it is not

realistic for the defender to eliminate all attacks. Therefore
the defense goal is to increase the difficulty for the attacker
to succeed with low cost. As discussed, static DSLR is
fixed at runtime and vulnerable to brute force attacks. And
dynamic DSLR techniques (e.g., SALADS) have to face the
trade-off between security and cost. If a large set of data
structures are re-randomized, it will significantly affect
the performance. On the other hand, if the data structures
targeted by the attacker are not covered, it cannot provide
security. To achieve an optimized trade-off, we employ
the canary mechanism to collect feedbacks and periodi-
cally select a (small) set of data structures to randomize
at runtime based on the observable feedbacks. In par-
ticular, SALADSPlus utilizes memory forensic approach
to find the polluted canaries. The polluted canaries are
sent as the feedbacks to the defender. We will show in
“Evaluation” section that the polluted canaries reflect how
many DSMAs are blocked (failed DSMAs) and thus can
be used to evaluate the effectiveness of a defense action.
Those feedbacks can provide awareness of the attacked
data structures, which can be leveraged to include the
attacked data structures and exclude the safe ones for
randomization.
The key idea of SALADSPlus is trial-and-error learn-

ing. More specifically, SALADSPlus receives polluted
canaries, which reflect how many DSMAs are blocked
and evaluate how well the deployed actions are. On
one hand, SALADSPlus selects the optimal actions that
can block most DSMAs in the history (exploitation), on
the other hand, SALADSPlus also tires seemingly non-
optimal actions choices (exploration). So SALADSPlus is
particularly well suited to defend against DSMAs where
the defender is unaware of the targets of DSMAs but
can evaluate its previous actions via repeated interactions
with attackers. The details of how the defender updates
its actions by utilizing the feedbacks will be illustrated in
‘‘Cost-effectiveness utility and UCB-D algorithm’’ sections.
And the unique capability of the SALADSPlus, adversarial
reasoning, will be introduced in “Adversarial reasoning
scheme” section and evaluated along with the cost-
effectiveness in “Evaluation” section. The uniform time
interval between two consecutive updates of the defense
actions is denoted as a defense cycle and the whole vul-
nerability window is denoted as N defense cycles; i.e.,
T � {1, 2, · · · ,N}. Note that we do not specify the feed-
backs and the update frequency of the attacker. In the rest
of the paper, we evaluate the security from the point of
view of the defender.

System components
In the system model depicted in Fig. 1, we consider
two entities: the defender and the attacker. The attacker
launches the DSMA. In order to circumvent the defense,
the attacker uses brute force attacks to locate the target

Chen et al. Cybersecurity (2018) 1:3 Page 4 of 13

Fig. 1 Overview of how DSSR Binary defends against DSMA

data structures. The defender, named SALADSPlus, con-
sists of two components: defense decision maker and
defense actions.

Data Structure Manipulation Attack (DSMA) In this
paper, we consider one attacker with multiple DSMAs. In
general, an attacker launching DSMAs is associated with a
set of attack actions denoted by A � {a1, · · · , am}, where
each action is a combination of several attack scripts. One
attack script targets several data structure types (once a
script is fixed, the targets are fixed).

Data Structure Self-Randomization Binary (DSSR
Binary) SALADSPlus uses adaptive DSLR with
adversarial reasoning and generates Data Structure
Self-Randomization binary (DSSR Binary). The DSSR
binary maintains the metadata for all the data structure
instances, including the base addresses and relative posi-
tions of the fields in data structures. In addition, all the
data structure read/write operations are replaced with
a set of DSSR statements (Chen et al. 2015) to access
the randomized data structure layout. What’s more, all
the definitions of the data structures are randomized
at compile-time, and padding bytes are inserted into
the data structures (Lin et al. 2009). The DSSR binary
is equipped with a set of defense actions denoted by
D � {d1, · · · , dn}, where each defense action random-
izes a particular set of data structures at runtime. The
defense decision maker adaptively updates its actions.
The adaptive update rule will be briefly discussed in
Section Feedbacks and adaptive defense. In order to get
the feedbacks for the defender, canary detection inserts
32-bit specific values for each field into data structures
of a DSSR binary. Once DSSR binary detects a polluted
canary, it indicates an attacker has maliciously modified
the fields in a data structure; reports the program name
and the target data structure to the security officer.

Design and implementation
In this section, we first present dynamic data structure lay-
out randomization, and then demonstrate how the canary
detection generates cost-effectiveness utility values. Fur-
ther we illustrate the cost-effectiveness utility value and
the UCB-D algorithm.

Dynamic data structure layout randomization
As discussed in Section ref, dynamic DSLR techniques
(e.g., SALADS) are facing two limitations.Our solution
SALADSplus uses a novel UCB-D algorithm to dynam-
ically make decisions on “which data structures to ran-
domize”, while SALADS sticks to a fixed set of data struc-
tures. To solve the first limitation, we develop an adaptive
algorithm (in “UCB-D algorithm” section) to dynamically
decide “which set of data structures to randomize dur-
ing the next defense cycle” based on the cost-effectiveness
utility value (in “Cost-effectiveness utility” section) of the
previous decisions. The algorithm enables the defender to
choose better actions as time goes by. To reduce the over-
head, SALADSPlus re-randomizes data structures much
less frequently (i.e., once per defense cycle) but in a much
more adaptive certain sense (more adaptivity in general
provides more resilience to DSMA).
At the beginning of each defense cycle, DSSR binary

randomizes the data structures in the dynamic whitelist,
and de-randomizes the data structures that are not in
the dynamic whitelist. There are two challenges when we
design SALADSPlus: (1) changing the dynamic whitelist
of data structures at runtime without recompiling the
program (SALADS compiles the source code with a
static whitelist); (2) when DSSR binary randomizes data
structures, multiple DSSR statements are executed based
on the previous layout of the data structures. Without
concurrency methods, the DSSR statements may access
totally irrelevant fields.

Dynamic WhiteList To solve the first challenge, DSSR
binary maintains a dynamic whitelist. A dynamic whitelist
is a buffer which is allocated in the heap and inserted by
our customized compiler. It consists of the indices of the
data structures. If a data structure is in the whitelist, DSSR
binary will randomize it in a defense cycle. Otherwise, the
data structure will keep its pre-known layout. The only
code of DSSR binary that can access the dynamic whitelist
is an independent thread illustrated as follows.

Independent Thread Independent thread is a thread
which is inserted by our customized compiler at the entry
of DSSR binary. The thread will allocate the dynamic
whitelist and update the whitelist periodically. The thread
calls the UCB-D function, which we will present shortly
in “UCB-D algorithm” section, to “know" exactly how to
update the whitelist. Once the whitelist is updated, the
thread will de-randomize the data structures in the pre-
vious whitelist, and randomize the data structures in cur-
rent whitelist. In addition, the thread contains the canary
detection (in “Canary detection” section).

Write Preferring Lock To solve the second challenge;
i.e., avoiding the inconsistency between the DSSR

Chen et al. Cybersecurity (2018) 1:3 Page 5 of 13

statements and the independent thread, we propose
a write preferring lock method. We create a mutex
lock and a global counter which calculates how many
DSSR statements are currently executed. The thread will
require a lock before it randomizes/de-randomizes the
data structures, and release the lock after it finishes the
randomization/de-randomization. Before the thread does
the randomization/de-randomization, it waits until all
the concurrent DSSR statements are completed; i.e., the
global counter is 0. DSSR statements will check the lock
before accessing the data structure. If the lock is occupied
by the thread, the statements will wait. When DSSR state-
ments are executed, they will firstly increase the global
counter by 1, and after accessing the data structure, the
global counter decreases by 1.

Canary detection
The canary detection scheme generates cost-effectiveness
utility values. In particular, the canary detection is exe-
cuted in the thread at the end of each defense cycle based
on the memory forensic analysis. It scans the canaries in
the randomized data structures and compares current val-
ues with a random canary value (Crispin et al. 1998). The
random canary is chosen at the beginning of each defense
cycle through/dev/urandom. If a canary in a data struc-
ture is polluted, we regard it as one failed DSMA. To
quickly pinpoint the canary, we maintain an array to
record the addresses of the canaries and mark each ele-
ment as 0 or 1, where 1 indicates that the canary needs
to be checked. After DSSR statements complete the data
structure access, the canary detection checks whether the
data structure type is in the whitelist, and then DSSR
statements will update the array for the corresponding
canaries.

Cost-effectiveness utility
The UCB-D algorithm is a utility-based reinforcement
learning algorithm. As mentioned in “Feedbacks and
adaptive defense” section, the key idea of SALAD-
SPlus is to utilize feedbacks generated by the server in
history to evaluate the corresponding defense actions
and gradually identify the optimal actions. We define
utility to quantify the cost-effectiveness of a defense
action. In particular, the utility is in the form of u =
Wrr − Wcc, where r is the effectiveness and c is the cost.
And the constant weights Wr and Wc are chosen accord-
ing to the preference of the defender on security and
efficiency.
The most straightforward quantification of the effec-

tiveness is the number of failed DSMAs during a defense
cycle. It is mentioned in “Canary detection” section that
if a canary in a data structure is polluted, we regard it
as one failed DSMA. Therefore, we use the number of
polluted canaries to quantify the effectiveness in each

defense cycle. Note that the number of polluted canaries
is determined by both the attack action (the combination
of attack scripts) and defense action (randomized data
structures). Then the effectiveness can be represented as
a mapping from A × D to R, i.e., for defense cycle t, the
effectiveness is r(t) = r(a(t), d(t)).
If adaptive DSLR does not incur any cost, then the best

defense is to randomize all feasible data structures. How-
ever the study of SALADS (Chen et al. 2015) shows that
the performance overhead is proportional to the number
of randomized data structures. For example, SALADS
introduces 110%, 120% runtime overhead when random-
izing 20% of data structures in gzip and gap respectively.
We use the number of randomized data structures to
quantify the cost in each defense cycle. The number of
randomized data structures is only determined by the
defense action. Then the cost can be represented as a
mapping from D to R, i.e., for defense cycle t, the cost is
c(t) = c(d(t)).
Since the numbers of DSMAs and the numbers of data

structures in all defense cycles are finite, the utility val-
ues in all defense cycles are also bounded. More formally,
there are u− and u+ such that ∀t ∈ T , u(t) ∈[u−,u+].
Additionally, the defender knows the bounds. Note that
there might be some DSMAs that cannot achieve their
attack goal but bypass all canaries. Therefore, the util-
ity cannot precisely represent the cost-effectiveness of a
defense action because the effectiveness part r may con-
tain error. We introduce utility error to represent bypass-
ing DSMAs. More formally, the utility error for each
defense cycle t is denoted as ε(t) and u(t) = u∗(t) − ε(t),
where u∗(t) is the ground truth utility if all failed DSMAs
can be detected and ε(t) represents the number of failed
DSMAs which bypass the canary detection. Our canaries
are randomized by the adaptive DSLR and thus diffi-
cult to bypass. So ε(t) is small. This will be validated in
“Evaluation” section.

UCB-D algorithm
With the cost-effectiveness utility value, the defense
problem can be formulated as: how to choose a
sequence of defense actions to maximize the sum of
received utility values during the vulnerability window
T. For simplicity, we define the sum as the aggre-
gate utility. The UCB-D algorithm (an extension of
the UCB algorithm in Multi-armed Bandit problems
(Kuleshov and Precup 2014; Lai and Robbins 1985))
is proposed to solve the problem. A set of notations
will be introduced as follows before the steps of the
algorithm:

• 1{�} is an indicator function: 1{�} = 1 if � is true
and 1{�} = 0 if � is false.

Chen et al. Cybersecurity (2018) 1:3 Page 6 of 13

Algorithm 1 The UCB-D Algorithm
1: for d ∈ D do
2: Td(1) = 0;
3: μ̄d(1) = 0;
4: end for
5: for t = 1; t ≤ N ; t + + do
6: for d ∈ D do
7: if Td(t) == 0 then
8: Id(t) = +∞;
9: else

10: Id(t) = μ̄d(t) + (u+ − u−)

√
2 ln(t)
Td(t) ;

11: end if
12: end for
13: d(t) = argmax

d∈D
Id(t);

14: Td(t)(t + 1) = Td(t)(t) + 1;
15: for d ∈ D \ {d(t)} do
16: Td(t + 1) = Td(t)
17: end for
18: Defender receives u(t);
19: for d ∈ D do
20: μ̄d(t + 1) = 1

Td(t+1)

t∑
τ=1

(u(τ)1{d(τ)=d});

21: end for
22: end for

• Td(t) =
t−1∑
τ=1

1{d(τ)=d} is the number of times defense

action d has been chosen by the end of defense cycle
t − 1.

• ∀d ∈ D, μ̄d(t) = 1
Td(t)

t−1∑
τ=1

(
u(τ)1{d(τ)=d}

)
represents

the empirical average utility the defender actually
receives by choosing defense action d by the end of
defense cycle t − 1.

• ∀d ∈ D, Id(t) =
(
μ̄d(t) + (u+ − u−)

√
2 ln(t)
Td(t)

)

represents the upper confidence index of action d at
the beginning of defense cycle t.

In particular, at the beginning of the defense cycle t, the
defender updates Id(t) of each defense action (Line 6–11).
The indices of the actions that have never been chosen
are set to be far larger than others’. In this way, these
actions will be chosen with higher priorities (Line 7–8).
For the actions that have been chosen before, their indices
are updated based on their empirical average utility val-
ues (Line 9–11). The defender chooses the new action d(t)
with the largest index (Line 13) and updates the num-
bers of times each defense action has been chosen (Lines
14–17). At the end of the defense cycle t, the defender
receives utility value u(t) (Line 18) and then updates
the empirical average utility values of all defense actions
(Line 19–20).

An attractive feature of the UCB-D algorithm is that the
defender can maximize the aggregate utility value with
limited information of DSMAs. In particular, the algo-
rithm only requires the defender to know its previous
actions and their induced utility values. In contrast, it
does not require the defender to pinpoint the attacked
data structures. In the UCB-D algorithm, the defender,
on one hand, uses average utility value (the first term
of Id(t)) in the history predict how well an action might
work in the future and selects the most successful action,
and on the other hand, tries less successful actions by
the penalty term (the second term of Id(t)). Through
the repeated interactions with the attacker, the defender
gradually identifies the data structures which are more
likely attacked and randomizes them more often than
others.

Adversarial reasoning scheme
From the experiments in next section, we will see SAL-
ADSPlus can provide good effectiveness with low per-
formance overhead. In this section, we discuss another
capability of SALADSPlus: it can enable the security offi-
cer to do two-level adversarial reasoning in real time.
First, the security officer can determine whether a zero-
day attack is DSMA or not. Second, if a zero-day attack
is DSMA, the security officer can do program level rea-
soning to infer the target program of the DSMA. This
two-level adversarial reasoning is elaborated as follows.

First Level Adversarial Reasoning The basic idea of the
first level adversarial reasoning is to compare a zero-day
attack with some known attacks (including DSMAs and
non-DSMAs) at runtime and infer whether the zero-day
attack is DSMA or not. Note that the utility defined in
“Cost-effectiveness utility” section can be used to quantify
cost-effectiveness of our defense. Since our defense is only
effective when defending against DSMAs (determined by
the DSSR Binary), the aggregate utility values of DSMAs
and non-DSMAs are very different. Therefore by compar-
ing the aggregate utility of the zero-day attack with those
of known attacks, the security officer can tell whether
the zero-day attack is DSMA or not. The aggregate utility
values of the known attacks are achieved in Matlab simu-
lations. We simulate SALADSPlus and the known attacks
in Matlab because the simulations are much faster than
the real experiments in web servers. And the simulation
results are similar to the real experiment results. This sim-
ilarity is ensured by the following three aspects: (1) The
Matlab simulations have the same features as the real-
world vulnerable web servers in terms of data structure
types and instances. It is difficult to simulate the whole
servers in Matlab, but we simulate the data structures and
the related manipulations in Matlab. (2) The same UCB-
D algorithm is implemented in both the real-world web

Chen et al. Cybersecurity (2018) 1:3 Page 7 of 13

servers and the Matlab simulations. (3) The simulated
attacks have the same features as known CVEs in terms of
targets and attack frequencies.

Second Level Adversarial Reasoning If a zero-day attack
is a DSMA, the security officer can further infer which
program the DSMA is targeting. This adversarial rea-
soning capability is provided by the canary detection.
The canary detection reports two messages when some
canaries are polluted: (1) the type of polluted data struc-
tures; (2) the program name which is inserted into the
DSSR programs. With the program name and data struc-
ture type, the security officer can quickly pinpoint the
target program. This second level adversarial reasoning is
only meaningful when SALADSPlus is effective; i.e., the
zero-day attack does not succeed. For example, the attack
(CVE-2002-0656 2002) lasted several days against SAL-
ADSPlus but still failed3. This effectiveness, which will be
validated in “Evaluation” section, gives the security officer
sufficient time to locate the target program of the zero-
day attack. Note that the first level adversarial reasoning is
important because the security officer can quickly rule out
non-DSMAs and do second level adversarial reasoning.

Evaluation
In this section, we present the evaluation of SALAD-
SPlus. We first introduce the evaluation environment in
“Real-world environment” section. We then evaluate the
effectiveness of SALADSPlus in “Effectiveness” section
and its performance overhead in “Performance overhead”
section. We finally verify the adversarial reasoning capa-
bility of SALADSPlus in “Adversarial reasoning” section.

Real-world environment
We implement SALADSPlus on the top of gcc-4.5.0 with
12K lines of C code added. All evaluation experiments are
conducted on an Intel(R) Core(TM) i5 machine with 4GB
memory running Red Hat Linux 7.3 with Linux kernel
version 2.4.18.

Effectiveness
How DSSR applications are generated We generate
DSSR applications via using SALADSPlus to compile
open source programs, including apache-1.1.1,
openssh-2.1.1p4, openssl-0.9.6d, and
glibc-2.2.2. The DSSR applications contain 348, 47,
132, and 2329 data structure types, respectively. The fol-
lowing experiments are conducted on a vulnerable apache
web server (apache-1.1.1 compiled with openssl-0.9.6d
and glibc-2.2.2) and a vulnerable ssh server (openssh-
2.1.1p4 compiled with glibc-2.2.2). For the vulnerable
servers, we divide data structures to five groups, where
each group has 20% data structures. We choose the length
of the defense cycle as 1/5/10 seconds, respectively. At the

beginning of each defence cycle, we randomize the data
structures in one group based on the UCB-D algorithm.

How attacks are launched We launch six real world
attacks shown in Table 1. In the first attack, the buffer
overflow bug in openssl (CVE-2002-0656 2002) is
exploited to overwrite a data structure instance session
(of type ssl_session_st) and malloc_chunk,
whose details have been presented in “Data Structure
Manipulation Attack (DSMA)” section. In the second
attack, the integer truncation bug in (CVE-2001-0144
2001) is exploited to overflow the pw_uid in passwd
type and do privilege escalation. The third attack exploits
the heap overflow bug in (CVE-2015-0235 2015), which
will pollute malloc_chunk. In the fourth attack, the
stack overflow bug in (CVE-1999-0071 1999) is exploited
to overflow timeval. In the fifth attack, Heartbleed
bug (CVE-2014-0160 2014) is exploited to over-read 2-
bytes buffer and leak sensitive data. In the sixth attack,
the same bug in openssh (CVE-2001-0144 2001) is used
to modify an authentication flag (Chen et al. 2005)
and circumvent the authentication check. This attack
does not affect any data structure, and we denote it
as do_authentication attack. Both Heartbleed and
do_authentication attacks are non-DSMAs.

Effectiveness We compile the selected programs with
static DSLR and SALADSPlus, respectively. During our
experiments, we also enable ASLR in the execution envi-
ronments. We compare the defense results of static DSLR
and SALADSPlus by launching the six attacks respec-
tively. Defense results are also shown in Table 1. The
results demonstrate that in two hours, all six attacks
can succeed when static DSLR is deployed. When SAL-
ADSPlus is deployed, DSMAs cannot succeed within
two hours but the non-DSMAs; e.g., Heartbleed and
do_authenticated attack, can succeed.

Justification of Effectiveness Part in Utility The cost-
effectiveness is represented by the difference between
the number of failed DSMAs (effectiveness part) and
the number of randomized data structure instances (cost
part). As mentioned in “Cost-effectiveness utility” section,
SALADSPlus uses the canary detection to indicate the
failed DSMAs. Therefore we define the number of pol-
luted canaries as the effectiveness part in our utility.
Table 2 shows that the polluted data structures detected
by the canary detection can reflect failed DSMAs, which
justifies the effectiveness part of our utility.

Performance overhead
Runtime Overhead To evaluate the runtime over-
head introduced by SALADSPlus, we test a number
of programs, including SPECInt2006, httpd-1.1.1,

Chen et al. Cybersecurity (2018) 1:3 Page 8 of 13

Table 1 Defense results of DSSR applications in two hours

Programs CVE # Bugs Data Structure Static DSLR SALADSPlus

openssl-0.9.6d CVE-2002-0656 KEY ARG bug (CVE-2002-0656 2002) ssl_session_st × √

malloc_chunk

glibc-2.2.2 CVE-2015-0235 GHOST bug (CVE-2015-0235 2015) malloc_chunk × √

openssh-2.1.1 CVE-2001-0144 CRC-32 bug (CVE-2001-0144 2001) passwd × √

apache-1.1.1 CVE-1999-0071 Cookie bug (CVE-1999-0071 1999) timeval × √

openssl-1.0.1c CVE-2014-0160 Heartbleed bug (CVE-2014-0160 2014) N/A × ×
openssh-2.1.1 CVE-2001-0144 do_authentication (CVE-2001-0144 2001) N/A × ×

openssh-2.1.1p4 and openssl-0.9.6d. We insert
the instrumented code to calculate the number of ran-
domized data structure instances at runtime. Table 3
shows the results. The defense cycles are 1/5/10 seconds
and in each defense cycle, 20% data structures are ran-
domized. As Fig. 2 shown, the average runtime overheads
are 5.3%, 3.7%, 1.8% on average. The performance results
show that the runtime overhead is in parallel to the
randomized data structure instances.

Memory Overhead We compare the memory usage of
DSSR programs with original programs. As Fig. 3 shows,
the memory overhead is 1.8% on average. The memory
overhead is orthogonal to the defense cycle, and mainly
introduced by the paddings and canaries.

Adversarial reasoning
In this section, we verify that SALADSPlus enables the the
security officer to do adversarial reasoning in real time.

Simulation Settings First we simulate SALADSPlus and
the same six attacks inMatlab and get their corresponding
aggregate utility values. The Matlab simulations have the
same features as the vulnerable apache web server and ssh
server in terms of data structure types and instances. We
select 5 seconds as the length of one defense cycle. And
the simulated attacks have the same features as CVEs in
terms of targets and attack frequency.

Validation of the Similarity First we compare the aggre-
gate utility values in Apache and Openssh experiments

with those in Matlab simulations to validate the similar-
ity between results of the Matlab simulations and real-
world web server experiments. The results are shown
in Fig. 4. We can see that the aggregate utility values
of both the DSMAs and non-DSMAs (Heartbleed and
do_authentication) achieved in Matlab simulations
are similar to those achieved in Apache and Openssh
experiments respectively.

First Level Adversarial Reasoning We use mutations of
the attacks to simulate the zero-day attacks, and then
compare the aggregate utility values of the mutated
attacks achieved in Apache and Openssh experiments
with those of the known attacks in simulations to tell
whether the zero-day attacks are DSMAs or not. We
mutate the attack scripts in two ways: (1) changing the
attack target; (2) merging multiple attack scripts into one.
First, we change the attack script by exploiting CVE-
2001-0144 (CVE-2001-0144 2001): instead of modifying
pw_uid in passwd, we write an additional attack script
tomanipulate pw_passwd in passwd. Second, wemerge
the attack scripts that exploit openssl (CVE-2002-0656
2002) and apache (CVE-1999-0071 1999) into one attack
at the mixing ratio of 10 to 1. Figure 5 shows that the
curves of the mutated attacks are similar to original
DSMAs, but different from the non-DSMA, which verify
the first level adversarial reasoning.

Second Level Adversarial Reasoning For zero-day
DSMAs, we infer their target programs. From the experi-
mental results, all the four DSMAs mentioned in Section

Table 2 Justification of Effectiveness in Utility

Programs CVE # Bugs # Polluted ds in 5s # Attacks in 5s

openssl-0.9.6d CVE-2002-0656 KEY ARG bug (CVE-2002-0656 2002) 10 10

glibc-2.2.2 CVE-2015-0235 GHOST bug (CVE-2015-0235 2015) 16 16

openssh-2.1.1 CVE-2001-0144 CRC-32 bug (CVE-2001-0144 2001) 10 10

apache-1.1.1 CVE-1999-0071 Cookie bug (CVE-1999-0071 1999) 50 50

Chen et al. Cybersecurity (2018) 1:3 Page 9 of 13

Table 3 The number of randomized data structure instances at runtime

Programs httpd-1.1.1 openssh-2.1.1 openssl-0.9.6d astar bzip2 gcc h264ref

Instances 114 89 245 12 1093 689 47

Programs libquantum omnetpp sjeng gobmk hmmer mcf perlbench specrand

Instances 19 24 13 15 14 23 98 0

Effectiveness can be detected by the canary detection.
The correct target programs’ names and the polluted data
structures are reported to the security officer.

Discussion
Our adaptive defense can perform adversarial reasoning
to tell whether the attack is DSMA or not. However, if
the attacker knows the defense, it can tailor the attack
actions; e.g., extending the duration of an attack try to
several defense cycles. As such, the canary detection may
not be able to detect the DSMA in some defense cycles,
and cost-effectiveness utility values in these defense cycles
may be very close to non-DSMA.Nonetheless, the defense
can still get the feedbacks from the server and adaptively
update its actions. As time goes by, the defender will
gradually choose better actions so the long term aggre-
gate utility will improve and be different from that of the
non-DSMA.
Our adaptive defense is deployed before any patches are

generated and the zero-day memory corruption bugs are
located. During the vulnerability window, the defender
has limited knowledge of the attacks. Under this limited
knowledge, it is not realistic for the defender to guaran-
tee that no DSMA can succeed. However, as one form
of moving target defense, our goal is to increase DSMA
costs and make it harder for the attacker to succeed. In
particular, a DSMA might succeed in one defense cycle.
But when the same attack is launched the next time,
the attacker still has to spend a very large price to suc-
ceed. In addition, a failed attack could tamper with some
data and have some side effects. But due to randomiza-
tion, the attacker should have no idea of the locations of
the tampered data in a short period. So the probability

of facilitating following attack attempts should be
very small.
The canary detection can detect continuous buffer over-

write attacks, which are the main form of buffer overflow.
There are several methods to bypass the canary detec-
tion (Litchfield 2003; Team C 2009). However, most of
the bypass canary methods are focused on stack cookie
(TeamC 2009). Somemethods (Litchfield 2003) even need
to hook the data structures (e.g., exception handler reg-
istration structure) to bypass. In contrast, our adaptive
DSLR can raise the bar for this kind of bypassing. In addi-
tion, discrete write approaches, which use bugs like format
string (OWASP 2009), can modify target data objects
without changing the value of the canary. As such, dis-
crete write can circumvent the canary detection. What’s
more, to circumvent the canary detection, an attacker can
resort to memory content leakage (e.g., memory disclo-
sure (Snow et al. 2013), uninitialized memory tracking
(Chen et al. 2011), side channel (Bittau et al. 2014; Seibert
et al. 2014; Zhang et al. 2012)). At client-side, the canaries
may be easier to be read than sever-side, because just-in-
time compilers (e.g., Javascript and Actionscript engines)
may help the attacker to poke around memory (Blazakis
2010). State-of-the-art protection CFI (Abadi et al. 2005;
Bletsch et al. 2011; Egele et al. 2012; Zhang and Sekar
2013) and ASLR (Backes 2014; Bhatkar et al. 2003, 2005;
Hiser et al. 2012; Kil et al. 2006; Keromytis et al. 2012;
Paleari et al. 2009; The PaX Team 2003b; Wartell et al.
2012; Bigelow et al. 2015; Davi et al. 2015; Giuffrida et al.
2012; Lu et al. 2016) raise the bar for the attacker to get
the information of memory layout.
When the canary detection discovers the DSMAs, it is a

malicious/unsafe event clearly. If the point is that attackers

Fig. 2 Runtime overhead

Chen et al. Cybersecurity (2018) 1:3 Page 10 of 13

Fig. 3Memory overhead

may continue poking around in a brute-force fashion, then
blocking the attack after the detection of several consec-
utive crashes/canary overwrites seems to be a good idea.
However, this kind of defense (stopping the process) actu-
ally has the same results under DDoS attacks. In addition,
merely stopping cannot prevent the next but the same
DSMAs.

Related work
In this section, we focus on two potential defenses
against DSMAs: Data Flow Integrity and Data-Plane
Randomization.

Data Flow Integrity DFI was first proposed by Miguel
Castro et al. (2006). By using static analysis, DFI computes

Fig. 4 a- b: Comparisons among the aggregate utility values in Matlab simulations and Apache experiments when defending against openssl
(CVE-2002-0656), glibc (CVE-2015-0235), apache (CVE-1999-0071), and Heartbleed (CVE-2014-0610); c - d: the comparison among the aggregate
utility values in Matlab simulations and Openssh experiments when defending against glibc (CVE-2015-0235), openssh (CVE-2001-0144), and
do_authentication (CVE-2001-0144)

Chen et al. Cybersecurity (2018) 1:3 Page 11 of 13

Fig. 5 a- b Compare the aggregate utility values of apache + openssl (CVE-2002-0656 & CVE-1999-0071), and Heartbleed (CVE-2014-0610) in real
server experiments with the aggregate utility values in Matlab simulations; c - d compare the aggregate utility values of openssh mutation
(CVE-2001-0144) and do_authentication (CVE-2001-0144) in real server experiments with the aggregate utility values in Matlab simulations

a Data Flow Graph and checks whether the definition
of each data object is legal at run-time. A tailored DFI
(Song et al. 2016) was proposed to solve the privilege esca-
lation attack in the kernel. A complete enforcement of
DFI can defend against DSMAs, however, complete DFI
suffers from performance overhead as high as 103% (Cas-
tro et al. 2006). Tailored DFI (Song et al. 2016) focusing
on privilege escalation attacks in the kernel can defeat
small parts of DSMAs, but the majority of DSMAs are
out-of-scope of that work. Recently, researchers leverage
hardware to assist the DFI and improve the runtime over-
head (Song et al. 2016). However, the techniques heavily
depend on new features of the newest CPU (processor
tracing), which is not in use by the majority of web ser-
vice providers. By comparison, our method not only has
reasonable performance overhead, but also is hardware
independent.

Data-Plane Randomization Data Space Randomization
(DSR) (Bhatkar and Sekar 2008; Cadar et al. 2008) was
proposed to prevent non-control-flow attacks by XOR-
ing data with random masks. However DSR introduces
high performance overhead since all the data objects
need to be randomized. Static DSLR (Lin et al. 2009;
Stanley et al. 2013; Xin et al. 2010) was proposed to
prevent data structure manipulation attacks, via modi-
fying the definition of a data structure to reorder the
fields. However, static DSLR has several limitations. First,
the layout randomized by static DSLR is determined at
compile time, and it is vulnerable to brute force attacks
(Stacham et al. 2004). Second, static DSLR requires man-
ual efforts to determine which data structure can be ran-
domized. Xin et al. (Xin et al. 2010) extend static DSLR
and propose to use a constraint set to select randomizable
data structures. But their technique cannot handle nested

Chen et al. Cybersecurity (2018) 1:3 Page 12 of 13

data structures and ignores all data structures associated
with pointer operations. Recently, SALADS (Chen et al.
2015) was proposed to achieve dynamical data structure
layout re-randomization. However, the set of randomized
data structures selected by an expert is fixed through-
out the whole lifetime of a process. In addition, SALADS
suffers from high runtime overhead.

Conclusion
We present SALADSPlus, a new adaptive DSLR with
adversarial reasoning, that automatically translates a pro-
gram to a data structure self-randomizing (DSSR) pro-
gram. At runtime, a DSSR program periodically selects
and randomizes a set of data structures based on the
UCB-D algorithm. Besides, SALADSPlus could perform
adversary reasoning to indicate whether there is DSMA or
not, and further locate the target program of the attack.
SALADSPlus is the first effective defense with low over-
head against DSMA. Moreover, adversarial reasoning is
a unique feature of our defense. We have implemented
SALADSPlus based on gcc-4.5.0. Experimental results
show that the runtime overheads are 1.8%, 3.7%, and 5.3%
when the defense cycles are selected as 10s, 5s, and 1s
respectively.

Endnotes
1ASLR randomizes the base addresses of both data and

code in the memory.
2CFI disables deviations from the being-protected pro-

gram’s original control-flow graph.
3We used brute force attacks to guess the layout of

ssl_session_st when we did the experiments.

Acknowledgements
This work was supported by ARO W911NF-13-1-0421 (MURI), NSF
CNS-1422594, and NSF CNS-1505664.

Authors’ contributions
PC carried out the background, idea proposal, system implementation and
evaluation, ZH designed the UCB-D algorithm, participated in the experiments
and drafted the manuscript. JX carried out the improvements of the
manuscripts. MZ participated in the problem formulation, designed the UCB-D
algorithm and drafted the manuscript. PL conceived of the study and
participated in its design and coordination. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1College of Information Sciences and Technology, The Pennsylvania State
University, University Park 16802, PA, USA. 2The School of Electrical
Engineering and Computer Science, The Pennsylvania State University, State
College, University Park 16801, PA, USA.

Received: 4 January 2018 Accepted: 17 April 2018

References
Abadi M, Budiu M, Erlingsson U, Ligatti J (2005) Control-flow integrity. In: ACM

Conference on Computer and Communications Security (CCS ’05). ACM,
New York

Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed
bandit problem. Mach Learn 47(2-3):235–256

Backes M, Nürnberger S (2014) Oxymoron: Making fine-grained memory
randomization practical by allowing code sharing. In: USENIX Security
Symposium (Security ’14). USENIX Association, San Diego

Bhatkar E, Duvarney DC, Sekar R (2003) Address obfuscation: an efficient
approach to combat a broad range of memory error exploits. In: USENIX
Security Symposium (Security ’03). USENIX Association, San Diego

Bhatkar S, Sekar R (2008) Data space randomization. In: International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA ’08). Springer-Verlag, Berlin

Bhatkar S, Sekar R, DuVarney DC (2005) Efficient techniques for comprehensive
protection from memory error exploits. In: USENIX Security Symposium
(Security ’05). USENIX Association, San Diego

Bigelow D, Hobson T, Rudd R, Streilein W, Okhravi H (2015) Timely
rerandomization for mitigating memory disclosures. In: Proceedings of the
22nd Conference on Computer and Communications Security (CCS ’15).
ACM, New York

Bittau A, Belay A, Mashtizadeh A, Mazieres D, Boneh D (2014) Hacking blind. In:
IEEE Symposium on Security and Privacy (Oakland ’14). IEEE Computer
Society, Washington

Blazakis D (2010) Interpreter exploitation. In: USENIX Conference on Offensive
Technologies (WOOT ’10). IEEE Computer Society, Washington

Bletsch T, Jiang X, Freeh V (2011) Mitigating code-reuse attacks with
control-flow locking. In: Annual Computer Security Applications
Conference (ACSAC ’11). ACM, New York

Cadar C, Akritidis P, Costa M, Martin J-P, Castro M (2008) Data randomization.
In: MSR-TR-2008-120. Microsoft Research, Cambridge

Castro M, Costa M, Harris T (2006) Securing software by enforcing data-flow
integrity. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI’06). USENIX Association, Berkeley

Chen H, Mao Y, Wang X, Zhou D, Zeldovich N, Kaashoek MF (2011) Linux kernel
vulnerabilities: State-of-the-art defenses and open problems. In:
Asia-Pacific Workshop on Systems (APSys ’11). ACM, New York

Chen P, Xu J, Lin Z, Xu D, Mao B, Liu P (2015) A practical approach for adaptive
data structure layout randomization. In: Proceedings of the 20th European
Symposium on Research in Computer Security (ESORICS’15). Springer,
Switzerland

Chen S, Xu J, Sezer EC, Gauriar P, Iyer RK (2005) Non-control-data attacks are
realistic threats. In: Proceedings of the 14th Conference on USENIX
Security Symposium (Security ’05). USENIX Association, San Diego

Crispin C, Calton P, Dave M, Heather H, Jonathan W, Peat B, Steve B, Aaron G,
Perry W, Qian Z (1998) Stackguard: automatic adaptive detection and
prevention of buffer-overflow attacks. In: USENIX Security Symposium
(Security ’98). USENIX Association, San Diego

CVE-1999-0071 (1999) Apache-cookie bug. http://seclab.cs.ucdavis.edu/
projects/testing/vulner/39.html

CVE-2001-0144 (2001) SSH CRC-32 compensation attack detector. http://www.
securityfocus.com/bid/2347/discuss

CVE-2002-0656 (2002) Apache openssl heap overflow exploit. http://www.
phreedom.org/research/exploits/apache-openssl/

CVE-2014-0160 (2014) Heartbleed Bug
CVE-2015-0235 (2015) Ghost: glibc gethostbyname buffer overflow.

https://www.qualys.com/2015/01/27/cve-2015-0235/GHOST-CVE-2015-
0235.txt

Davi L, Liebchen C, Sadeghi A-R, Snow KZ, Monrose F (2015) Isomeron:
Code randomization resilient to (just-in-time) return-oriented
programming. In: Annual Network and Distributed System Security
Symposium (NDSS ’15). NDSS Symposium, San Diego

Egele M, Fischer T, Holz T, Hund R, Nurnberger S, Sadeghi AR, Davi L,
Dmitrienko A (2012) Mocfi: A framework to mitigate control-flow attacks
on smartphones,. In: Annual Network and Distributed System Security
Symposium (NDSS’12). NDSS Symposium, San Diego

http://seclab.cs.ucdavis.edu/projects/testing/vulner/39.html
http://seclab.cs.ucdavis.edu/projects/testing/vulner/39.html
http://www.securityfocus.com/bid/2347/discuss
http://www.securityfocus.com/bid/2347/discuss
http://www.phreedom.org/research/exploits/apache-openssl/
http://www.phreedom.org/research/exploits/apache-openssl/
https://www.qualys.com/2015/01/27/cve-2015-0235/GHOST-CVE-2015-0235.txt
https://www.qualys.com/2015/01/27/cve-2015-0235/GHOST-CVE-2015-0235.txt

Chen et al. Cybersecurity (2018) 1:3 Page 13 of 13

Giuffrida C, Kuijsten A, Tanenbaum AS (2012) Enhanced operating system
security through efficient and fine-grained address space randomization.
In: USENIX Conference on Security Symposium (Security ’12). USENIX
Association, San Diego

Hiser J, Nguyen-Tuong A, Co M, Hall M, Davidson JW (2012) Ilr: Where’d my
gadgets go?. In: IEEE Symposium on Security and Privacy (Oakland ’12).
IEEE Computer Society, Washington

Hu H, Chua ZL, Adrian S, Saxena P, Liang Z (2015) Automatic generation of
data-oriented exploits. In: Proceedings of the 24th USENIX Security
Symposium (Security ’15). USENIX Association, San Diego

Hu H, Shinde S, Adrian S, Chua ZL, Saxena P, Liang Z (2016) Data-oriented
programming: On the expressiveness of non-control data attacks. In: IEEE
Symposium on Security and Privacy (Oakland ’16). IEEE Computer Society,
Washington

Keromytis AD, Pappas V, Polychronakis M (2012) Smashing the gadgets:
Hindering return-oriented programming using in-place code
randomization. In: IEEE Symposium on Security and Privacy (Oakland ’12).
IEEE Computer Society, Washington

Kil C, Jim J, Bookholt C, Xu J, Ning P (2006) Address space layout permutation
(aslp): Towards fine-grained randomization of commodity software. In:
Annual Computer Security Applications Conference (ACSAC ’06). IEEE,
Miami Beach

Kuleshov V, Precup D (2014) Algorithms for multi-armed bandit problems. In:
Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm, Society for Industrial and Applied Mathematics
Philadelphia, PA, USA. pp 928–936. CVE-2014-0160 (2014) https://cve.
mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160

Lai TL, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Adv
Appl Math 6(1):4–22

Lin Z, Riley RD, Xu D (2009) Polymorphing software by randomizing data
structure layout. In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA ’09). Berlin,
Springer-Verlag

Litchfield D (2003) Defeating the stack based buffer overflow prevention
mechanism of microsoft windows 2003 server. https://www.blackhat.com/
presentations/bh-asia-03/bh-asia-03-litchfield.pdf

Lu K, Nurnberger S, Backes M, Lee W (2016) How to make aslr win the clone
wars: Runtime re-randomization. In: Proceedings of the 2016 Network and
Distributed System Security Symposium (NDSS ’16). NDSS Symposium, San
Diego

Microsoft (2008) A detailed description of the Data Execution Prevention (DEP)
feature in Windows XP Service Pack 2. http://support.microsoft.com/kb/
875352

OWASP (2009) Format string. https://www.owasp.org/index.php/Format_
string_attack

Paleari R, Roglia GF, Martignoni L (2009) Surgically returning to randomized
lib(c). In: Annual Computer Security Applications Conference (ACSAC ’09).
ACM, New York

Seibert J, Okhravi H, Söderström E (2014) Information leaks without memory
disclosures:remote side channel attacks on diversified code. In: ACM
Conference on Computer and Communications Security (CCS ’14). ACM,
New York

Shacham H, Page M, Pfaff B, Goh E-J, Modadugu N, Boneh D (2004) On the
effectiveness of address-space randomization. In: ACM Conference on
Computer and Communications Security (CCS ’04). ACM, New York

Snow KZ, Monrose F, Davi L, Dmitrienko A, Liebchen C, Sadeghi A-R (2013)
Just-in-time code reuse: On the effectiveness of fine-grained address
space layout randomization. In: IEEE Symposium on Security and Privacy
(Oakland ’13). IEEE, Berkeley

Song C, Lee B, Lu K, Harris WR, Kim T, Lee W (2016) Enforcing kernel security
invariants with data flow integrity. In: Proceedings of the 2016 Network
and Distributed System Security Symposium (NDSS ’16). NDSS
Symposium, San Diego

Song C, Moon H, Alam M, Yun I, Lee B, Kim T, Lee W, Paek Y (2016) Hdfi:
Hardware-assisted data-flow isolation. In: Proceedings of IEEE Symposium
on Security and Privacy (Oakland ’16). NDSS Symposium, San Diego

Stanley DM, Xu D, Spafford EH (2013) Improved kernel security through
memory layout randomization. In: International Performance Computing
and Communications Conference (IPCCC ’13). IEEE, San Diego

Team C (2009) Exploit writing tutorial part 6 : Bypassing stack cookies, safeseh,
sehop, hw dep and aslr. https://www.corelan.be/index.php/2009/09/21/

exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-
and-aslr/

The PaX Team (2003a) PaX non-executable pages design & implementation.
http://pax.grsecurity.net/docs/noexec.txt

The PaX Team (2003b) Pax address space layout randomization (ASLR). http://
pax.grsecurity.net/docs/aslr.txt

Wartell R, Mohan V, Hamlen K, Lin Z (2012) Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on
Computer and Communications Security (CCS ’12). ACM, New York

Xin Z, Chen H, Han H, Mao B, Xie L (2010) Misleading malware similarities
analysis by automatic data structure obfuscation. In: International
Conference on Information Security (ISC ’10). Springer-Verlag, Berlin

Zhang Y, Juels A, Reiter MK, Ristenpart T (2012) Cross-vm side channels and
their use to extract private keys. In: ACM Conference on Computer and
Communications Security (CCS ’12). ACM, New York

Zhang M, Sekar R (2013) Control flow integrity for cots binaries. In: USENIX
Conference on Security (Security ’13). USENIX Association, San Diego

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf
https://www.blackhat.com/presentations/bh-asia-03/bh-asia-03-litchfield.pdf
http://support.microsoft.com/kb/875352
http://support.microsoft.com/kb/875352
https://www.owasp.org/index.php/Format_string_attack
https://www.owasp.org/index.php/Format_string_attack
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
https://www.corelan.be/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://pax.grsecurity.net/docs/noexec.txt
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

	Abstract
	Keywords

	Introduction
	DSLR
	Problem statement
	Our approach

	Overview
	Feedbacks and adaptive defense
	System components
	Data Structure Manipulation Attack (DSMA)
	Data Structure Self-Randomization Binary (DSSR Binary)

	Design and implementation
	Dynamic data structure layout randomization
	Dynamic WhiteList
	Independent Thread
	Write Preferring Lock

	Canary detection
	Cost-effectiveness utility
	UCB-D algorithm

	Adversarial reasoning scheme
	First Level Adversarial Reasoning
	Second Level Adversarial Reasoning

	Evaluation
	Real-world environment
	Effectiveness
	How DSSR applications are generated
	How attacks are launched
	Effectiveness
	Justification of Effectiveness Part in Utility

	Performance overhead
	Runtime Overhead
	Memory Overhead

	Adversarial reasoning
	Simulation Settings
	Validation of the Similarity
	First Level Adversarial Reasoning
	Second Level Adversarial Reasoning

	Discussion
	Related work
	Data Flow Integrity
	Data-Plane Randomization

	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

