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Abstract

Malware detection has become mission sensitive as its threats spread from computer systems to Internet of things
systems. Modern malware variants are generally equipped with sophisticated packers, which allow them bypass
modern machine learning based detection systems. To detect packed malware variants, unpacking techniques and
dynamic malware analysis are the two choices. However, unpacking techniques cannot always be useful since there
exist some packers such as private packers which are hard to unpack. Although dynamic malware analysis can obtain the
running behaviours of executables, the unpacking behaviours of packers add noisy information to the real behaviours of
executables, which has a bad affect on accuracy. To overcome these challenges, in this paper, we propose a new method
which first extracts a series of system calls which is sensitive to malicious behaviours, then use principal component analysis
to extract features of these sensitive system calls, and finally adopt multi-layers neural networks to classify the features of
malware variants and legitimate ones. Theoretical analysis and real-life experimental results show that our packed malware
variants detection technique is comparable with the the state-of-art methods in terms of accuracy. Our approach can
achieve more than 95.6\% of detection accuracy and 0.048 s of classification time cost.

Keywords: Malware variants, Multi-layers neural networks, Principal component analysis, Sensitive system calls,
Sophisticated packers

Introduction
Malware is one of the major Internet security threats
today, anti-detection mechanisms such as code-morphism
make the malware evolved into many variants which make
signatured based detection schemes perform poorly.
Detecting malware variants improves signature based
detection methods. In recent years, researchers focus on
detecting malware variants by using machine learning
methods, which transform the malware variants detection
problem to a program similarity searching problem. When
a new program is sufficiently similar to any signatured
malicious program in a training data set, the program is
checked as a malicious program.

Since malware analysis includes two kinds of ways:
static analysis and dynamic analysis. Some researches,
such as (Santos et al. 2011; Cesare et al. 2014; Nataraj et
al. 2011; Zhang et al. 2016a; Zhang et al. 2016b; Yang et
al. 2015; Raman et al. 2012), propose to use static ana-
lysis which extracts features from binaries without actu-
ally executing programs, such as operation codes,
control flow graph, etc. to detect malware variants.
However, when the malware variants had already
packed, it prevents further analysis from disassembly
tools, synthesis tools and other static analysis tools.
Modern malware variants are always equipped with

sophisticated packers such as ASPack (2017), ASProtect
(2017), UPX (2017), VMProtect (2017), ZProtect (2017),
etc., which allow the malware variants bypass traditional
and modern detection systems. These packers include two
kinds of packers: encryption packers and compression
packers, which work by taking an existing application,
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packing it, and then wrapping an unpacking utility around
it, the unpacking utility works to unpack the inner execut-
able in memory and transfers execution to it. The problem
lies in the fact that there is nothing inherently malicious
about a packer or unpacking code (Treadwell et al. 2009).
When ignoring the packers, it is hard to detect if an exe-
cutable is malicious due to the encryption or compression
of the executable, which prevents detection systems from
getting original features, especially for static analysis.
Such situation forces researches to adopt unpacking

techniques or dynamic malware analysis to detect
packed malware variants. However, there still exists
some challenges. On one hand, some researches prefer
to unpack packed programs and then detect the
unpacked ones. But unpacking techniques cannot always
be useful since crackers can write their private packers
which are hard to be unpacked. On the other hand, an-
other researches, such as (Zhang et al. 2016c; Huang et
al. 2014; Xu et al. 2016; Kumar et al. 2012; Konrad et al.
2011; Bai et al. 2014; Santos et al. 2013), prefer to use
dynamic analysis which monitors running interactions
between operating system and programs in sandboxes or
virtual machines to collect the features such as system
calls, traffics, etc.. Although dynamic analysis can obtain
running behaviours of a packed executable, the running
behaviours not only include original behaviours but also
include behaviours of packers of the executable which
obfuscate the original behaviours. The existing methods
do not take the obfuscation caused by behaviours of
packers into considerations.
To overcome these challenges, in this paper, we aim to

propose a novel approach which can detect packed malware
variants without unpacking process. Since dynamic analysis
can get running behaviours, we obtain a sequence of
running system calls by monitoring system interactions in a
sandbox.
Recently, there exist several related works on system

call based analysis. Some of them prefer to use n-gram
to represent the temporal sequential relationships of
system calls and adopt classifiers to classify malicious
executables and legitimate ones, such as (Konrad et al.
2011; Canzanese et al. 2015), etc.
However, to detect packed malware variants with these

system calls, we have to address several challenging
problems. One challenge is that the system calls of
packers obfuscate the original distribution and hide the
real malicious intention. In addition, as a high level rep-
resentative of executables, system call is coarse-gained
and sparse, which leads a bad generalization of features.
What’s more, this sharpens the obfuscation problem
caused by packers.
Since the system calls of malware variants which are in

the same families share similar distributions, and there exist
a significant difference of the distributions between malware

and benign (Jang et al. 2015), some system calls are used
more often in malware variants. We propose to extract a
series of sensitive system calls, embed their frequencies into
a vector and adopt deep learning method to solve these
problems. Some recent researches also used deep learning
for vulnerability or malware detection, which achieve better
accuracy, such as (Li et al. 2018; Kolosnjaji et al. 2016), etc.
We first extract a series of system calls which is more
sensitive to malicious behaviours based information entropy
theory. We call these system calls as sensitive system calls
which reduce a degree of obfuscation. Then we embed the
system calls to a vector by using occurrence frequency. The
sensitive system calls will later be sent to a neural network
for training or classification. Next we prefer to use
multi-layers neural networks to train a model. Finally we
use the model to detect and classify malware variants.
However, since such multi-layers neural networks exist

some problems such as gradient disappearance and
distributed representation, it is necessary to improve the
convergence ability of the neural networks to achieve
better performance. We propose a principal component
initialized multi-layers neural networks method to acce-
lerate the convergence rate and to improve the accuracy
rate. The principal component initialization transforms
the sensitive system calls to a few new column vectors
which are linear combinations of the system calls, the
new column vectors are linearly independent, which can
reduce the computation complexity and accelerate con-
vergence rate.

Contributions
The main contributions of this paper are summarized as
follows.

1. To reduce the obfuscation caused by packers, we
extract a series system calls from unpacked
instances which are more sensitive to malicious
behaviours by learning with information gain,
which do skip the unpacking knowledge.

2. To detect with sparse representation of sensitive
system calls, we propose our principal component
initialized multi-layers neural networks as an effi-
cient and effective classifier to classify the packed
malicious variants and packed legitimate ones.

3. The experimental results demonstrate that our
approach 95.6% of detection accuracy and 0.048 s
of classification time cost. What’s more, the
evaluation results show that our approach achieves
very low false positive rate which means it seldom
make mistake in packed benign instances detection.

Paper organizations
The remainders of this paper is organized as follows.
Section “Methodology” presents our packed malware
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variants detection technique. Section “Experiments”
shows the experimental results and Section “Related
Works” introduces the related works. Section “Limita-
tions” and Section “Conclusions” show the limitation
and conclusion.

Methodology
In this paper, we transform the packed malware variants
detection problem to a system calls classification problem.
To reduce the obfuscation which is caused by packers, we
first extract sensitive system calls and abandon obfuscated
system calls. Then we organize these sensitive system calls
as a vector which will be sent to our neural net- works
later. As system call is a coarse-gained and sparse repre-
sentation of executables, it causes bad training approxima-
tion and feature generalization. So we next propose our
principal component initialized multi-layers neural
networks to efficiently and effectively train and detect ma-
licious instance with these sparse vectors.
Our approach contains the following two phases, a

training phase and a detection phase. The work flow of
our approach is shown in Fig. 1, in training phase, we
monitor the system interactions of executables in Cuckoo
sandbox (Malwr 2018) to obtain the system calls. Each
profile of executables we got from Cuckoo sandbox con-
tains several fields: time-stamp, system call, base address,
file name, executing times, etc. We only consider system
calls since it can give us enough information to describe
characteristics of behaviours of malware while reducing
the noise and redundant. Then, based on information gain

(Peng et al. 2005), a selector is used for sensitive system
calls extraction which select a series of high frequency
system calls in malicious executables and abandon the
other system calls which are common used anywhere. The
selector output a vector organized by these sensitive sys-
tem calls. Finally, our principal component initialized
multi-layers neural networks train these sensitive system
calls and obtain parameters which will be used for classifi-
cation in the detection phase. In detection phase, our
neural networks are equipped with these parameters to
classify packed malware variants and packed benigns.

Information gain based sensitive system calls extraction
We obtain system calls of executables by monitoring their
running behaviours in Cuckoo sandbox. As modern mali-
cious executables always are equipped with sophisticated
packers, the system calls we got contain not only the
system calls of originals but also the system calls of packers
which obfuscate the distribution of original system calls. It
limits the detection accuracy. To retain detection accuracy,
in this paper, we first reduce the obfuscation from packers
by extracting sensitive system calls. At the beginning, we
give a definition of our sensitive system calls.

Definition 1
The sensitive system calls is a part of system calls which
highly frequently act in unpacked malicious executables
while not in unpacked legitimate ones.
This insight is based on an important observation that

the average distribution of sensitive system calls of

Fig. 1 The training and detection work flow

Zhang et al. Cybersecurity  (2018) 1:10 Page 3 of 13



unpacked malicious executables is nearly the same as
packed ones, which means that our sensitive system calls
also low frequently act in packers, as a deduction of our
approach. So based on this deduction, we use the
sensitive system calls as representation of malicious
executables.
In this paper, we use information gain which has been

widely used for feature selection. Let Y be the training
data sets, where y1 is the malware data set and y2 is the
benign data set. Let S be the set of total system calls,
where si is the ith system call in S. Let X be the set of
sensitive system calls extracted from S, where xj is the
jthsensitive system call in X. To extract the sensitive sys-
tem calls, we use information gain gain (si) as the weight
for each system call siaccording to Eq. (1), where p (si) is
the probability for each si, p (y1) is the probability of
malware variants, p (si|y1) is the probability for each siin
y1, and t is a constant value. The gain (si) is larger when
the siis more relevant to malicious executables.

gain sið Þ ¼ p si y1
��� � � log p sið yj 1

� �
p sið Þ � p y1ð Þ ð1Þ

Let fk be the k
th executable in Y, we calculate the prob-

ability p (xj|fk) for each xj in fk, where N (fk) is the total
count of all sensitive system calls in fk and N (xj|fk) is
the total count of xj in fk, according to Eq. (2).

p x j fkj� � ¼ N xj fkj� �
N fkð Þ ð2Þ

The p (xj|fk) as inputs will be sent to our principal
component initialized multi-layers neural networks to
detect malicious executables.

Principal component initialized multi-layers neural
networks for malware detection
Once we have extracted the sensitive system calls, in this
section, we now discuss how to detect packed malware
variants by using our principal component initialized
multi-layers neural networks.
As an efficient classifier, neural networks are widely

used for classification in many fields such as image rec-
ognition, natural language processing, etc. In this paper,
we use neural networks to classify malicious and legitim-
ate executables. Multi-layers neural networks (Fernán-
dezcaballero et al. 2003; Esmaily et al. 2015; Salai Selvam
et al. 2011; Salcedo Parra et al. 2014) as one of deep
learning methods achieve faster convergence rate and
higher accuracy rate by comparing with single hidden
layer neural networks, but also bring some drawbacks,
such as gradient disappearance, over-fitting, etc. To
overcome these drawbacks and further improve conver-
gence rate and accuracy rate, we propose our principal
component initialized multi-layers neural networks.

The architecture of our neural networks is presented
in Fig. 2, which has several layers, one input layer (a
sensitive system call probability vector), principal com-
ponent initialized feature layer, four hidden unit layers
(consider the trade-of between accuracy and time cost,
we choose four hidden unit layers to improve accuracy
rate while retaining training and detection time con-
sumption) and one output layer. During the forward
pass, the neural networks first uses an orthogonal trans-
formation to convert a set of inputs into a set of features
of linearly uncorrelated variables called principal compo-
nents (PCA 2017). These principal components allow to
quickly converge our neural networks. Each principal
component initialized feature fully connect the units in
the next hidden layer and each unit in the hidden layer
fully connect the next layer. The output is a vector con-
sisted by 1 and 0 which separately represents the label of
malware or benign. During back propagation, the neural
networks use the gradient descent method (Gradient
descent 2017) to propagate the variance from the output
layer to the principal component initialized feature
layers and update weight matrixes of connections
between two layers.
We first assign the weight matrixes a set of random

values and calculate the average probability of sensitive
system call Savg in training datasets. For each executable,
push its p (xj|fk) as inputs into the neural networks. In
the principal component initialized feature layer, the net-
works first calculate variance vector Svar (fk) according
to Eq. (3). Then, the networks calculate the covariance
matrix and eigenvectors. Let cvmat be the covariance
matrix, according to Eq. (4), where ntrainingis the count
number of training samples.

Svar fkð Þ j ¼
p xj fkj� �

−Savg j

ntraining
ð3Þ

cvmat ¼
P

Svar fkð ÞT � Svar fkð Þ
ntraning

ð4Þ

Let eigenV be the column eigenvectors according to
cvmat, where eigenVi is the i

th eigenvector in eigenV order
by eigenvalue ai from maximum to minimum, according
to Eq. (5).

cvmatj −a � E ¼ 0j ð5Þ
We organized top t eigenvectors (column vectors, t is

50 as our principal component initialized feature dimen-
sion number) to generate a new matrix eigenM and calcu-
late the principal component initialized features pcj
according to Eq. (6). These features are the inputs for next
hidden layers which enlarge the contrast of the average
distribution between packed malicious executables and
packed legitimate executables.
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pc j ¼ Svar f k
� �

j � eigenM ð6Þ

Let ui
(1) be the ith unit in the first hidden layer, we

calculate the ui
(1) according to Eq. (7), where wj,i

(1) is the
weight matrix between the jth principal component ini-
tialized layer and the ith unit in the next hidden layer.

ui
1ð Þ ¼ 1

1þ e−
P

pc j�w j;i
1ð Þ ð7Þ

Let ui
(m + 1) be the ith unit in the (m + 1)th hidden layer,

we calculate the ui
(m + 1) according to Eq. (8), where

wj,i
(m + 1) is the weight matrix between the jth unit in the

mth hidden layer and the ith unit in the (m + 1)th hidden
layer.

ui
mþ1ð Þ ¼ 1

1þ e−
P

u j
mð Þ�w j;i

mþ1ð Þ ð8Þ

Let hi be the ith unit in the output layer, we calculate
the hi according to Eq. (9), where wj,i

(n) is the weight
matrix between the jth unit in the nth (last) hidden layer
and the ith unit in the output layer.

hi ¼ 1

1þ e−
P

u j
nð Þ�w j;i

nð Þ ð9Þ

To approach the target, the neural networks trains the
inputs and corrects weight matrixes through back
propagation by using gradient descent method (Gradient
descent 2017). The loss function we use in our method
is square loss function E (x) according to Eq. (10), where
H (x) which includes a set of hi is the output of the
neural networks and V is the real value.

E xð Þ ¼
X

V‐H xð Þð Þ2 ð10Þ

We update the weight matrix wj,i
(n + 1) between the last

hidden layer ui
(n) and the output layer hi according to

the Eq.(11), where vi is the real label value of an execut-
able in the training set and a is a const value.

w j;i
nþ1ð Þ ¼ w j;i

nþ1ð Þ þ α � uj
nð Þ � hi 1−hið Þ vi−hið Þ ð11Þ

Let wj,i
(n) be the weight matrix between the (n-1)th hid-

den layer and the ui
(n) hidden layer according to Eqs. (12

and 13), where var.(n) is the variance between the (n-1)th

hidden layer and the nth hidden layer.

w j;i
nð Þ ¼ w j;i

nð Þ þ α � uj
n−1ð Þ � ui nð Þ � 1−vi nð Þ

� �

� var nð Þ ð12Þ

var nð Þ ¼
X

vi−hið Þ � wj;i
nþ1ð Þ ð13Þ

Let wj,i
(m + 1) be the weight matrix between the mth

hidden layer and the (m + 1)th hidden layer according to
Eqs. (14 and 15), where var.(m + 1) is the variance between
the mth hidden layer and the (m + 1)th hidden layer.

w j;i
mþ1ð Þ ¼ w j;i

mþ1ð Þ þ α � uj
mð Þ � ui mþ1ð Þ

� 1−ui mþ1ð Þ
� �

� var mþ1ð Þ ð14Þ

var mþ1ð Þ ¼ var mþ2ð Þ � wj;i
mþ2ð Þ ð15Þ

Let wj,i
(1) be the weight matrix between the principal

component initialized feature layer and the first hidden
layer according to Eqs. (16 and 17), where var.(1) is the

Fig. 2 The architecture of our principal component initialized multi-layers neural networks
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variance between the principal component initialized
layer and the first hidden layer.

w j;i
1ð Þ ¼ wj;i

1ð Þ þ α � pc j � ui 1ð Þ � 1−ui 1ð Þ
� �

� var 1ð Þ ð16Þ

var 1ð Þ ¼ var 2ð Þ � wj;i
2ð Þ ð17Þ

After accomplishing training phase, we can obtain a set
parameters, with which the neural networks equip to
classify packed malware variants. The output is a vector
consisted by two confidence values, each value separately
represents the probability of malware or benign. When the
confidence value of malware is big enough, we deem this
detection is sufficiently believable and consider the target
instance as a malware variants for the next retraining. We
use a copy of our neural networks to retrain and generate
new parameters with which will be equipped the current
neural networks. To avoid poisonous data attack from
crackers, we first prepare a set of already known testing
cases and then use these cases to test the retrained neural
networks. We next equip the current neural networks with
these retrained parameters only if the testing accuracy do
not suddenly drop.

Experiments
In this section, we present several real-life experiments
to show the performance of our approach. In the follow-
ing, we first present the experiment setup, the data set
and the cross validation of our approach. Then, we
present several the state-of-art methods for comparison.
In the last, we give differential analysis, convergence
process analysis, accuracy evaluation and time cost
evaluation of our approach.

Experiment setup, data set and validation
We implement our approach on one computer. The
version of the CPU is i5–6500 @ 3.20GHz, the RAM is
16.0GB, the operation system is Windows 7. Our ap-
proach is developed by Java programming language with
Jre 1.6.
To validate our approach, we use two different data sets

to test our malware variant detection methodology: one is
for training, the other is for detection. The training data
set includes 3167 unpacked malware executables and
2894 unpacked benign executables. The detection data set
includes 2083 packed malware variants and 1986 packed
benign instances. We use several packers to pack the
malware variants and benign instances, such as ASPack,
ASProtect, UPX, VMProtect, Armadillo, ZProtect, etc.
Our malware instances are downloaded from the

VxHeavens (2017) website, which includes 5 large mal-
ware families such as Backdoor, Worm, Trojan Dropper,
Trojan Banker and Virus as shown in Table 1. These

malware had already been labelled with their families
and variant names by the website. For the benign in-
stances, we gathered them from our personal computers
as shown in Table 2.
To evaluate the performance of our approach, we use

k-fold cross validation in our experiments. In this way,
for each group of experiments, the training data set was
split into 10 groups. For each group, we randomly select
2000 unpacked malware executables and 2000 benign
executables for training, and the remained 2083 packed
malware variants and 1986 packed benign instances are
used for classification and detection. The benchmarks
we used for evaluation include classification accuracy,
true positive rate (TPR), false positive rate (FPR), preci-
sion, recall, training iterations, detection time cost.

Differential analysis of distributions of system calls
between malware and benign
In this subsection, we analyze the difference of system
calls between malware variants and benigns to demon-
strate the effectiveness of our sensitive system calls. As
shown in Fig. 3, the distribution comparison of original
system calls between unpacked malware and unpacked
benign shows that a part of system calls high frequently
act in unpacked malicious executables while not in
unpacked legitimate ones, which demonstrates the intui-
tive of sensitive system calls.
For our extracted sensitive system calls, we use

Kullback-Leibler Divergence (KLD) to metric the differ-
ence of distributions of the sensitive calls between
packed malware/benign and unpacked malware/benign,
according to (Kullback-Leibler divergence 2018). The
KLD between packed malware variants and unpacked
ones is 0.4277 and the KLD between packed benigns
and unpacked ones is 0.3032. It is so small to mean that
our sensitive system calls reduce the noise of original
system call caused by packers. To intuitively show the

Table 1 The malware data set

Malware family Number

Backdoor 1045

Worm 795

Trojan Dropper 908

Trojan Banker 1522

Virus 980

total 5250

Table 2 The benign data set

Benign Source Number

Windows System 3080

Personal Application 1800

total 4880
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difference of distributions, we present histograms of the
average distributions of sensitive system calls between
packed executables and unpacked ones, as shown in
Fig. 4. In this paper, we select several system calls as our
sensitive system calls, such as LdrGetProcedureAddress,
RegOpenKeyExW, RegQueryValueExW, RegCloseKey,
FindFirstFileExW, NtDelayExecution, RegOpenKeyExA,
RegQueryValueExA, RegEnumValueW, GetCursorPos, etc.
We further improve the feature by extract principal

component initialized features. These features not only
enlarge the average distribution contrast between
unpacked malicious executables and unpacked legitimate
executables, but also enlarge the average distribution
contrast between packed malicious executables and
packed legitimate executables, as shown in Fig. 5, by
comparing with Fig. 4. The contrast is large enough to
distinguish malware and benign, which demonstrates
that our principal component initialized feature is an ef-
fective and optimal features for classification.

Convergence process analysis of different layers of our
neural networks
In this subsection, we analyze the convergence process of
our principal component initialized multi-layers neural
networks and show the efficiency of the neural networks.
Since multi-layers neural networks always bring draw-

backs such as gradient disappearance, over-fitting, etc.,
which have bad effect on convergence rate, we overcome
these drawbacks and further improve convergence rate and
accuracy rate, To demonstrate that our approach is effi-
cient, we compare our approach with the other methods

during convergence process, as shown in Fig. 6 and Fig. 7.
In Fig. 6, it shows the convergence process of our neural
networks with 1 hidden layer comparing with normal
neural networks with 1 hidden layer and Fig. 7 shows the
convergence process of our neural networks with 4 hidden
layers comparing with normal neural networks with 4 hid-
den layers. From the experimental results, we can easily
find out that no matter with 1 hidden layer or 4 hidden
layers, our approach can significantly reduce the gap be-
tween training accuracy and detection accuracy, which
means that our approach can depress over-fitting. In
addition, our neural networks can rapidly converge.
For neural networks, as multi-layers can further improve

convergence rate by comparing with single hidden layer, we
also compare with different layers and demonstrate that
multi-layers can further improve the convergence rate of
our neural networks. The experimental results, as shown in
Fig. 8, demonstrate that 4 hidden layers of our networks
can significantly improve the convergence speed by com-
paring with 1 hidden layers.
When we append more hidden layers (more than 4

layers) to our networks, the detection accuracy increases
slower while the detection time cost grows rapidly. So
considering the trade-of between accuracy and time con-
sumption, we choose 4 hidden layers as the best layers of
our approach to improve detection accuracy rate while
retaining training and detection time consumption.

State-of-art approaches for comparison
To demonstrate that our approach is efficient and effect-
ive, we compare our approach with the other state-of-art

Fig. 3 The distribution comparison of system call between unpacked malware and unpacked benign
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methods, such as (Konrad et al. 2011; Canzanese et al.
2015). Konrad Rieck et al. (2011) proposed to embed-
ding system calls to a vector and adopt clustering and
classification methods to detect malware. Raymond
Canzanese et al. (2015) proposed to use a vector of sys-
tem call n-gram frequencies and several classifiers such
as Support Vector Machine, Logistic regression, etc. to
detect malware.

Accuracy evaluation
We demonstrate that our approach is highly accurate by
comparing with the other state-of-art methods in this
subsection. The accuracy results are presented in Fig. 9.
It shows that our neural networks with 4 hidden layers
can achieve higher accuracy than the other methods.
The Receiver Operating Characteristic (ROC) curves
(2018) in Fig. 10 shows that our approach performs

Fig. 4 The Average distribution comparisons of sensitive system calls between packed executables and unpacked ones

Fig. 5 The Average distribution comparisons of principal component initialized features between packed executables and unpacked ones
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outstanding in both of true positive rate and false
positive rate. As a useful fact, since client users more
concern on false positive rate, the false positive rate of
our approach is nearly 0% while the true positive rate is
more than 90%, which means that it wouldn’t make mis-
take when detecting packed benigns.
After detecting packed malware variants, we also

further classify their families by using our neural
networks with the sensitive system calls. We classify
them to their families in the next. The neural net-
works which we used for malware family classifica-
tion is similar to the neural networks we used for

malware detection. We only change the output layer
in the architecture of our neural networks for mal-
ware detection. The output layer is a one-hot vector
consisted by 1 and 0 which separately represents the
label of each malware family. According to
pre-labeled family-labels of malicious samples, we
train a model by our networks and use it to classify
malicious executables to their families after detecting
of malware. As shown in Fig. 11, the results show
that our approach achieves an average classification
accuracy rate of 85.68% and the accuracy rates of
most of families are more than 84%, which means

Fig. 6 The Convergence process comparison between our neural networks and normal neural networks with 1 hidden layer

Fig. 7 The Convergence process comparison between our neural networks and normal neural networks with 4 hidden layers
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our approach can not only precisely detect packed
malicious executables, but can also classify most of
them to their families.

Time cost analysis
As shown in Table 3, from the comparisons of training
iterations, our neural networks with 4 hidden layers
achieve less iterations because of higher convergence
speed than the other layers. Although Konrad Rieck et
al.’ method does not need training phase, their methods

need more detection time cost which is more sensitive
to client users. By comparing with Raymond Canzanese
et al.’ approach, our approach is competitive in terms of
training iterations and detection time cost because of
the higher convergence speed and less feature dimen-
sions of our approach.
From the comparisons of detection time cost, we find

that our approach can significantly improve the detec-
tion speed by comparing with the other state-of-art
methods. Because in detection phase, our neural

Fig. 8 The Convergence process comparison between our neural networks with 1 hidden layers and 4 hidden layers

Fig. 9 The comparisons of accuracy
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networks only need to forward pass the inputs with the
already trained parameters which cost only a little time,
while the other methods need to search similarities in a
serial manner which cost a longer delay.

Related works
Malware is a pervasive problem in distributed computer
and network systems today. Many approaches were pro-
posed to detect malware by using machine learning.
Some of them prefer to use static analysis, the rest prefer
to use dynamic analysis. However, when facing varied

packers, these methods cannot always perform well. In
this section, we review some of them below.

Static analysis
I. Santos et al. (2011) proposed a data mining technique
to mine the relevance of each op-code and assess the
frequency of each opcode sequence, and then used
Euclidean space (Euclidean Space, (2017) to measure the
distance between software instances. S. Cesare et al.
(2014) proposed a technique that performs similarity
searching of sets of control flow graphs. L. Nataraj et al.

Fig. 10 The ROC curve of several methods

Fig. 11 The accuracy evaluation of malware family classification
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(2011) proposed a method for visualizing and classifying
malware binaries as gray-scale images. J. Zhang et al.
(2016a; Zhang et al. 2016b) proposed to convert opcodes
into 2-D matrix and used image processing method to
recognize the malware executables. W. Yang et al. (2015)
proposed an approach of static analysis that extracts the
contexts of security-sensitive behaviors to assist app
analysis in differentiating between malicious and benign
behaviors. However, a number of malware authors use
packing techniques to compress and encrypt the mali-
cious codes, which make these approaches cannot work
if the packers cannot be identified or unpacked.

Dynamic analysis
R. Konrad et al. (2011) proposed to automatically identify-
ing novel classes of malware with similar sequential system
calls and assigning unknown malware to these discovered
classes. H. Bai et al. (2014) proposed to identify malware
variants by using support vector machine with malicious
behaviours which are triggered with their resulting
outcomes. C. Kumar et al.’s (2012) check whether a target’s
system call dependency follows the same dependency of
signatured malware. H. Zhang et al. (2016) proposed
discoverd the underlying triggering relations of a amount of
network events which detected malware activities on a host.
J. Huang et al. (2014) analyzed the user interface compo-
nent associated with the top level function and find the
mismatch of the two to detect stealthy behaviour. L. Xu et
al. (2016) implemented graph-based representation for sys-
tem calls, then used the graph kernels to compute pair-wise
similarities and feed these similarity measures into a sup-
port vector machine for classification. I. Santos et al. (2013)
proposed a hybrid malware variant detector called OPEM,
which utilizes a set of features obtained from both static
and dynamic analysis of malicious code. However, these
mentioned approaches do not consider packers’ behaviours
which obfuscate original behaviours of executables.

Packed analysis
G. Suarez-Tangil et al.’s work (2016) proposes to analyze
the behavioral differences be- tween the original app and

some automatically repackaged versions of it, however,
when a new variant was packed by an unknown tool,
their approach can no longer work because it has not
analyzed the differences yet. Z. Shehu et al.’s work
(2016) proposes to compute a execution fingerprint of
an obfuscated app, and compare it to an available
database of fingerprints of known malwares to discover
possible matches, however, this matches can be easily
confused by varied packers and benigns. J. Calvet et al.’s
work (2012) proposes a method for identifying crypto-
graphic functions, K. Coogan et al.’s work (2009) pro-
poses to identify the transition points in the code where
execution transitions from unpacker code to the
unpacked code, P. Royal et al.’s work (2006) proposes a
tool named PolyUnpacker which observes the sequences
of packed or hidden code in a malware can be made
self-identifying when its runtime execution is checked
against its static code model. However, these unpacking
techniques cannot always be helpful since not all packers
can be unpacked.

Limitations
As our approach is based on deep learning method which
might be attacked by adversaries, this causes another secu-
rity problem. Although we design a retraining and testing
process to avoid poisonous data attack from crackers and re-
tain the detection performance (in Section “Methodology”),
a persistent attack could disable a further updation of our
neural networks brought retraining with new detected
samples.

Conclusions
In this paper, we propose a novel approach which can
detect packed malware variants without unpacking. To
achieve our approach, we propose a sensitive system call
based principal component initialized multi-layers neural
networks, which can highly perform well in terms of
classification accuracy and speed. Theoretical analysis
and real-life experimental results show that our packed
malware variants detection technique is comparable with
the the state-of-art methods.
As a future work, besides of system calls, we will take

more running behaviours such as connections, user op-
erations, etc. into consideration to strength our detec-
tion. In addition, we will focus on protecting our
malware detection system from poisonous data attack.
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Our approach (1 hidden layers) 4510 0.025 s
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Our approach (4 hidden layers) 2360 0.048 s
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