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Abstract

Adversarial examples revealed the weakness of machine learning techniques in terms of robustness, which moreover
inspired adversaries to make use of the weakness to attack systems employing machine learning. Existing researches
covered the methodologies of adversarial example generation, the root reason of the existence of adversarial
examples, and some defense schemes. However practical attack against real world systems did not appear until
recent, mainly because of the difficulty in injecting a artificially generated example into the model behind the hosting
system without breaking the integrity. Recent case study works against face recognition systems and road sign
recognition systems finally abridged the gap between theoretical adversarial example generation methodologies and
practical attack schemes against real systems. To guide future research in defending adversarial examples in the real
world, we formalize the threat model for practical attacks with adversarial examples, and also analyze the restrictions
and key procedures for launching real world adversarial example attacks.
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Introduction
Artificial intelligence (AI) is quickly permeating into our
daily life, snatching working opportunities from, but per-
forming better and more efficiently than human being.
Specifically, AI is blossoming in many and increasingly
more fields, from robotic trading to intelligent diagno-
sis, from advertisement recommendation to autonomous
driving. Unsurprisingly, it also has been applied to system
security related areas, like spam filtering, face authen-
tication, etc. AI intrudes those fields and emancipates
those professionals from brain works, but also outper-
forms the professionals in many ways, making it preferred
and increasingly more widely accepted.
Machine learning (ML), the de facto approach to achieve

artificial intelligence, provides a convenient way for AI
practitioners to rapidly implant intelligence to machines,
with the help of labeled data, and without needing tomake
clear the logics and theory behind data. All in a sudden,
the convenient approach was acquired by professionals in
nearly every fields. People continually collect data from
their users, train machine learning models using the col-
lected data and pack the trained models to their products
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to provide better service to their users. The intelligent ser-
vice, in turn, attracts more users and usages, and simulta-
neously provides more data to refine the machine learning
models, resulting in a virtuous circle that absorbing users
and practitioners.
Deep neural networks (DNN), an algorithm class for

machine learning with breakthrough in accuracy, gained a
great success in fields like image processing, natural lan-
guage processing etc, however has security risks. For a
lot of problems, solutions employing DNN outperform
human beings Sun et al. (2014), making DNNs so popular.
A key factor of such an achievement is that DNN fea-
tures a cascade of many layers, which makes the neurons
inside the network very hard to be understood even by
their designers. Though the indigestibility does not affect
its wide application, it indeed increased the difficulty for
researchers to analyze the vulnerabilities of DNN mod-
els and fortify the security. What’s worse, adversaries may
make use of those vulnerabilities to attack DNN models.
A huge risk results from crafted malicious inputs. An

assumption of DNN is that the test data fall to the same
distribution of the training data. Therefore, it is not
surprising that the output of a model for data from a
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deviated distribution is prone to be unpredictable, espe-
cially when the model is not specially treated for secu-
rity protections. This observation was be exploited by
adversaries to craft artificially generated inputs that mis-
lead DNN models to targeted outputs, in which case
the inputs were called adversarial examples. Adversar-
ial examples were firstly noticed and formally defined in
Szegedy et al. (2013), when the authors found that the
mappings of DNNs are so discontinuous. They designed
an optimization approach to search perturbations such
that a natural input adding a small perturbation together
can lead the model to output differently from when the
input is the natural input only. The perturbation can be
small enough, so human beings can barely notice the
existence of the perturbation.
Research around adversarial examples developed from

different directions, including defenses against adversar-
ial examples or attacks with the examples. Some works
focus on the defense mechanism to avoid the generation
of adversarial examples, while some others aim at design-
ing algorithms to generate examples satisfying all kinds
of requirements. Researchers defend adversarial examples
mainly by masking the gradient, through which adver-
saries’ optimizers are expected to fail to move toward
malicious. However, this mechanismwas proven to be null
and void, as a bunch of works got around this kind of
protection and successfully generated effective examples,
mainly by training substitutional models to remove the
mask. This is even true for recent works (Buckman et al.
2018; Ma et al. 2018; Guo et al. 2017; Dhillon et al. 2018;
Xie et al. 2017; Song et al. 2017; Samangouei et al. 2018).
For the second direction, researchers proposed different
norms to measure the conspicuousness of perturbation
(Papernot et al. 2015; Nguyen et al. 2015; Goodfellow et al.
2014).
There are still technical barriers between a generated

adversarial example and a successful exploit to a sys-
tem. Even for commercially deployed models, it is not
difficult for an attacker to generate effective adversarial
examples with the help of gradient descending optimizers.
However, there are only several works where real world
systems were cracked because of adversarial examples,
mainly because that only little research concerned how an
example can be input to the target model, which usually
resides inside the target system without direct interface
to attackers. To have a successful and practical attack,
attackersmustmount the worked out perturbation to con-
struct an example, which is usually difficult for different
scenarios.
The largest challenge for practical adversarial exam-

ple attackers lie in that the input interface of the target
model does not expose to adversaries. The adversarial
examples calculated by adversaries require pixel modifi-
cations to input images. However, in a lot of practical

cases, it is impossible for the attacker to find an inter-
face to inject the perturbed image to the model inside the
target system, so the adversarial examples though can be
generated while cannot be directly used for attacks. For
example, one can calculate perturbation of only some pix-
els for a face image, but an attacker does not know how
to make up herself to feed such an pixel level modified
image to the target face authentication system. It is obvi-
ously less practical to find an interface to directly inject
the image to the model behind the face authentication
system.
To shed light on future working direction, we completed

a comprehensive survey on existing physical and practical
adversarial example attacks, including two attacks against
face recognition models, one for road sign models. The
only existing works against real systems concerning adver-
sarial example share a lot in their assumptions, meth-
ods and restrictions, and nonetheless conquered different
challenges when facing different systems. In this survey,
we summarize their works and abstract the threat model
their attacks shared in common, and formalize the key
techniques a success adversarial example attack should
have. We also propose possible future work direction in
our opinion.
In this survey, we firstly introduce some background

knowledge about adversarial examples. Then we compare
the theoretical adversarial example attack model and that
of the practical one. Following we introduce the routines
existing practical adversarial example attacks mainly fol-
low. At last, we show some existing practical adversarial
example works.

Adversarial example
The concept of adversarial example was first men-
tioned and defined in Szegedy et al. (2013). In that
paper, the authors found two counter-intuitive proper-
ties of neural networks. One of the properties is that
the input-output mappings of DNN is fairly discontinu-
ous to a significant extent. Therefore, the author made
the network misclassify the images by applying cer-
tain hardly perceptible perturbations. And the mixture
of original inputs with a little perturbation in order to
maximize the prediction error is so-called adversarial
example.
Figure 1 illustrate an adversarial example that mislead

a machine learning model to recognize a photo of a dog
with mixture of perturbations as a cat.

Generating methods of adversarial examples
Finding such adversarial examples for a given model is a
key step. In early times, researchers proposed to use only
one iteration to generate adversarial examples Goodfellow
et al. (2014). Nowadays, the adversarial example search-
ing problem can be reduced to the following optimization
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Fig. 1 Adversarial example illustration

problem, with the objective function defined for malicious
purpose.

argmin
r

J(f (x + r), y) + QualityPenalty(r) (1)

Where J is the loss function measuring the distance
between outputs of the model. f represents the model and
y is the target output. r is the perturbation and x + r is
the adversarial example. Quality Penalty is usually a kind
of norm of r, which will be introduced later.
The optimization problem can be solved with a gradient

optimizer. After an optimizer havingminimized the objec-
tive, the example x + r could be regarded as adversarial if
only the loss fall below a given threshold, indicating that
the output of the model is close enough to the attacker’s
target when she inputs the adversarial example to the
model. The state of the art adversarial example generat-
ing method is C&W’s Carlini and Wagner (2017b). There
are also adversarial example generating methods without
the help of gradient optimizers (Su et al. 2017). Even when
there is no details about the target model, adversaries can
still generate adversarial examples Bhagoji et al. (2017).
The author of Yuan et al. (2017) summarized main

stream adversarial example generating method.

Distance metrics of adversarial perturbations
The quality of the generated perturbations can be
weighted by the norms of the perturbation. When search-
ing adversarial perturbations, researchers mainly use
three distance metrics L0, L2, L∞ to weight the quality.
Minimizing different distances results in different per-

turbations. For example, minimizing L0 can get perturba-
tions withminimumnumber of pixels differing from those
on the original input. And Jacobian-based Saliency Map
(JSMA) Papernot et al. (2015) is an instance for it. Mini-
mizing L2 helps adversaries obtain perturbations that have
theminimum norm, in terms of Euclidean distance, across
all pixels. Using this metric, Nguyen et al. (2015) proposed
an interesting attack that adds perturbations on a blank
image to fool recognition systems. Besides, L∞ helps find-
ing perturbations with the smallest maximum-change to
pixels. Under this metric, the adversary is allowed to

freely make changes to pixels if only no change exceeds
the L∞ distance. An example of this kind of attack is
Fast Gradient Sign Method (FGSM) Goodfellow et al.
(2014), which iteratively updates perturbations by step-
ping away a small stride along with the direction of the
gradient.

Detecting adversarial examples
Realized the consequences of adversarial examples,
researchers proposed to detect adversarial examples.
People proposed to detect adversarial examples by

introducing an extra classifier to pick out adversarial
examples, which is called adversarial training, recent
related works include Gong et al. (2017). In this kind of
defense, people should generate a set of adversarial exam-
ple for the model to be protected, and then train an adver-
sarial example detector with the generated adversarial
examples.
People also proposed to remove the gradient of the

model to be protected Papernot et al. (2016), which is
called defensive distillation. This method prevents adver-
saries from generating adversarial examples with gradient
optimizers.
Recent researches also uses the noise levels of the given

input to pick out adversarial examples Meng and Chen
(2017). The authors found that adversarial examples carry
a higher recovery error when passing through an auto-
encoder trained with all normal examples. Or, for some
other cases, the noise removed example results in a totally
different model output.
These methods, however, all turned to not effective

enough by Carlini and Wagner (2017a), mainly because
adversaries can adapt their adversarial example generating
methods accordingly.

Practical adversarial example attacks
Although it’s hard to defend adversarial examples, limited
effort has been made on practical adversarial learning.
The reason is that the attacker usually can only change the
input on a limited degree to the system, which accounts
for attacker’s little access to the system device.
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However, it is easy to imagine that it would be very
dangerous if real world systems can be compromised
by attackers with adversarial examples, if only the sys-
tems employs ML models,especially when the attacker
didn’t break into the system. For instance, attackers may
freely pass face authentication based entrance access
doors if the face authentication models were compro-
mised. Autonomous vehicles may overspeed if the road
sign recognition models inside were compromised.

Threat models
An adversarial example generated by the aforementioned
methods cannot be directly used to attack a real world
system, because of their utterly different threat models.
In this section, we compare the their models in detail
and hight light the model used for practical adversarial
example attacks.

Threat model for theoretical attacks
White box attacks.
As shown by Fig. 2, for theoretical attacks, it is assumed
that the model to be attacked is trained, fixed and directly
exposed to attackers. Therefore, an attacker can gener-
ate perturbations by minimizing the loss over the model
between the target (the cat) and the sum of the attacking
object (the dog) and the perturbation.
The attack is thought to be successful when the output

of the model is indeed the target in stead of the attacking
object, regardless of how the perturbation is added into
the image of attacking object.

Black box attacks.
In some cases, the model is not transparently exposed to
attackers, in which case the attacker can only query the
model with images input and get the result returned. In
this setting, the attacker still only needs to work out a per-
turbation for the target, such that the model outputs the
target Bhagoji et al. (2017).

Untergeted attacks
For some scenarios, attackers do not have a specific tar-
get that must be output by the victim model. Instead, they
only want the output is not correct, i.e., output whatever
rather than dogs. This kind of attack was called untargeted
attacks.

In this case, attackers need only maximize the distance
between the perturbed output and the authentic label.

Practical adversarial example attack threat model
Different from the threat model of theoretical adversar-
ial example attacks, in practical attack scenarios, a model
should be assumed with more restrictions.
As shown by Fig. 3, the biggest difference lies in that

the input of model is not directly exposed to attackers.
Instead, the system using the model exposes its capture
interfaces to attackers. In this case, attackers cannot break
the integrity of the system to directly inject input data to
themodel inside. Attackers can onlymanipulate the object
in front of the camera (the dog). The goal is still the same:
wanting the output of the system to be the target chosen
by the attacker (cat).
For this scenario, attackers even face more challenges:

the system may impose detection modules between the
model and the front end input camera to detect poten-
tial attacks. For instance, in a face authentication system,
there exists liveness detection modules to examine if the
object in front of the camera is a live human being or a
printed photo. Considering those mechanisms, attackers
usually firstly place a object that can pass the detection
and then apply small perturbations that won’t fail the front
end examinations.
Similar to theoretical attacks, practical attacks may

also differ in black box and white box settings. usually,
researchers assume white box settings first where the
model structure and weights are known to attackers and
come up with supporting black box extension to ease
the assumption. For instance, attackers may firstly train
a substitutional model by querying the black box. Then
they can generate adversarial examples for the substitu-
tional mode, which by expectation will also be valid for the
model inside the black box Papernot et al. (2016).

Attack routines
The known practical adversarial example attacks also
employ optimizers to work out perturbations, but with
more restrictions related to implementation considera-
tions. A practical adversarial example attack consists of
several steps: 1) Constructing loss function for optimizers.
2) Adversarial example Searching and implementation.

Fig. 2 Threat model for theoretical adversarial example attack
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Fig. 3 Threat model for practical adversarial example attack

We first introduce the restrictions should be taken
into consideration in a practical attacking setting and
then illustrate how attackers can construct schemes to
work out and implement perturbations that under those
restrictions.

Attack restrictions
We firstly introduce some restrictions that may met in
practical scenarios but was not considered in theoretical
adversarial example cases.

Printability.
The first issue the attacker should pay attention to is how
perturbations can be presented on the attacking object. In
theoretical settings, perturbation pixels are assumed to be
directly laid over the image of the attacking object. How-
ever, attackers cannot overlay skins with arbitrarily color
on the attacking object, when launching attacks in the real
world. As a result, adversarial example generating method
not limiting the color of perturbation cannot be directly
borrowed to launch practical attacks.
To counter the color issue, attackers must restrict the

perturbations generated to be printable on the attack-
ing object. The restriction is also tightly related to the
method the attacker is going to deploy perturbation. For
instance, the colors a perturbation has must be inside
the color triangle of the printer, if the attacker is plan-
ing to print the perturbation into a sticker and paste the
sticker on the attacking object. The perturbation should
be of the specific color if the attacker is going to modulate
perturbations by using mono color light source.
To restrict the perturbation to be printable. The attacker

could add to the loss an item representing the difficulty
of printing the perturbation, which is firstly defined and
called in Sharif et al. (2016) as NPS (non-printability
score), shown in Eq. 2. According to its definition ,
the value will be low when the pixel p̂ is close to a
printable color p chosen from the printable color set P.
Evtimov et al. (2017) later upgraded it to generate smooth
road sign adversarial example.

NPS(p̂) =
∏

p∈P
|p̂ − p| (2)

With the item in loss, the optimizer will try its best to
generate perturbations that is prone to printable.

Perturbation precision
In theoretical adversarial example generating schemes,
example pixels can be independently modified. However,
in real world, when launching attacks, attackers can hardly
precisely control the perturbed image captured by cam-
eras in a pixel level accuracy without breaking the integrity
of the victim system. Usually, the attackers must restrict
the smoothness (precision) of the perturbation generated
by the optimizer.
To get around the pixel level precision issue, attacks

may introduce Smoothing restrictions to the examples to
be generated. This can be achieved by also adding a fac-
tor measuring the variance of the perturbations, which
is called and defined as TV in Mahendran and Vedaldi
(2015). Sharif et al. (2016) employed this value to restrict
the smoothness of their perturbations.

TV (r) =
∑

i,j

(
(ri,j − ri+1,j)

2 + (ri,j − ri,j+1)
2) 1

2 (3)

The adversary may employ a model to produce fully
smooth perturbation without pixel precision problem. For
example, Zhou et al. (2018) designed an infrared dot
model to make sure the perturbation is Gaussian smooth.
This may be extended to help attackers to bypass more
restrictions. Specifically, attackers may also construct a
model describing the printable perturbations with param-
eters outlet to optimizers. In this way, the optimizers will
no longer optimize the loss over the pixels of an attack
image. Instead, it will optimize over the parameters of the
model. The model should guarantee that the generated
perturbations are always implementable if only the param-
eters are in the correct range. The idea is pretty similar
with C&W’s clipped and smooth function i.e., tanh Carlini
and Wagner (2017b).

r = model(position, shape, ...) (4)

Attack procedures
1. To design a practical adversarial example attack

against a real world system, the attacker should firstly
design a perturbation mounting scheme. For
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instance, he can print perturbation on stickers and
paste the sticker on attacking object. He can also use
a projector to project perturbations on attacking
object.

2. Then he need construct a loss function that fools the
target model while at the same time measures the
implementability.

argmin
r

J(x + r, y) +
∑

i
Penaltyi(r) (5)

Where the function J represent the loss (or distance)
between the adversarial example and the target from
the perspective of the target model. Each penalty
function weights the difficulty of implementing the
perturbation under each restriction.

3. The attack chooses an attacking object x and his
target y, after which he can run a gradient optimizer
to work out a perturbation r.

4. The attacker can print the solved perturbation into
using his mounting method and start to attack the
system.

Existing practical attacks
Adversarial examples worked out by optimizers were
firstly found to be also recognizable by models in phys-
ical world in 2016 Kurakin et al. (2016), where a photo
of washer was printed on a paper and the paper was rec-
ognized by a classification model as safe or loudspeaker.
Figure 4 illustrates this kind of attack.
Though it is not an attack to a real world system, it did

inspire researchers to explore ways to attack real systems
using adversarial examples. We introduce some attacks
using physical adversarial examples according to their
perturbation mounting methods.

Eyeglasses frame
Sharif et al. proposed a scheme to attack face classification
system Sharif et al. (2016) in 2016 for both targeted and
untargeted, white box and black box. They have two goals:

Fig. 4 Physical adversarial illustration

dodging and impersonation. For the dodging, the classifi-
cationmodel fails to class the attacker as the attacker while
for the impersonation, the model classes the attacker as
another someone who is specified by the attacker.
For the dodging attacks, they used a gradient descend

algorithm to maximize the softmaxloss between the per-
turbed attacker and himself, while for the impersonation,
they minimize the loss between the attacker and the
victim target. The loss was also added penalties for print-
ability, smoothness, robustness.
With the help of the gradient descend algorithm, An

attacker can easily get the values of the pixels on the frame,
which can then be printed on paper frames by a com-
mercial printer. In theory, the attacker gets a successful
attack when the cross entropy part of the loss is opti-
mized to below (for impersonation) or over (for dodging)
a threshold. The attacker needs only wear the frame like
wearing glasses and sitting in front of the camera of the
target system. The system will take photos for the attacker
and pass the photo to back end photo for prediction. The
photo with no doubt contains not only the attacking object
but also perturbations, which results to the model’s mis-
leading. By expectation, the model will classify the photo
with the attacker’s willing, as the expected cross entropy
is already satisfied. Figure 5 illustrate this kind of attack.
As a extension of their main work, they proposed a

query based method and employed a Particle Swarm opti-
mizer to attack classification model in a black box model.

Road sign
Evtimov et al. proposed a white box adversarial exam-
ple attack against their own trained road sign recognition
models Evtimov et al. (2017). They trained several CNN
models, including LISA-CNN and GTSRB-CNN models,
to recognize road signs, which then were used as target
models. They proposed two kinds of perturbation mount-
ing methods for the road sign scenario, i.e., poster and
sticker, which are both proved as effective, according to
their experiments. They followed Sharif et al. (2016)’s
method to construct loss functions which also considered
printability and restricted the mounting positions.
Their scenario slightly differs from previous works

because they need consider the varying viewing angles for
their drive-by requirements. Surprisingly, their evaluation
results showed that they got a 100% attack success rate
for the drive-by experiments with the poster mounting
method, as Fig. 6 shows.

Infrared
Another interesting practical adversarial example attack
was researched by Zhou et al. (2018). They discovered
that infrared, which is totally invisible to human beings,
can also be used to mount perturbations. As shown by
Fig. 7, attackers can mount some infrared LEDs on the cap
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Fig. 5 Impersonation attacks with eyeglasses

peak, which can light the attacker’s face with some dots
from the perspective of cameras, but cannot be noticed
by nearby people. With this technique, they successfully
attacked face authentication system in a white box setting.
Different from previous two works, they didn’t directly

optimize perturbation. they built a model describing the
infrared dot produced by LED lights with positions, radius
and brightnesses as parameters. Therefore, optimizers can
optimize over the parameters to precisely search pertur-
bations close to real infrared dots.
They also developed a real time feedback system for

attackers to adjust the positions of the LEDs to help
them better implement perturbations. This work also dif-
fers from previous two in that they don’t need to print

Fig. 6 Adversarial road signs valid in different view of angle

perturbation for each target. Instead, attackers need only
adjust the device to attack different targets.

Future work directions
We believe that practical adversarial example attacks will
outbreak in the near future, with the permeation of
machine learning into our life. We think future research
could be conducted through the following two directions.

Mountingmethods
In different scenarios, attackers need different methods to
deploy perturbations, which is the key step for practical
adversarial example attacks. It’s mainly due to the lack of
a kind of generic perturbation mounting method.

Fig. 7 The cap mounting LEDs to launch attacks
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To avoid future outbreak of physical adversarial exam-
ple attacks, researchers could make clear the possible
perturbation mounting methods, and thereby can devise
countermeasures accordingly.

Detection methods
Defending adversarial examples from the model side is
still an unsolved problem. Researcher tried all kinds of
method but they rarely take effect Athalye et al. (2018),
because of the nature of machine learning.
We believe methods less relying on machine learn-

ing could be useful in detecting adversarial examples.
Therefore, people can put the detection in between the
image capturing and the model to tick out adversarial
example attacks. For instance, liveness detection method
may help systems employing face recognition model to
find unusual stuffs on face like the frames or other printed
objects.

Conclusion
Protections on systems with AI are still far from enough,
as recent three pieces of attack we surveyed showed.
Attackers can easily generate perturbations by upgrad-
ing theoretical adversarial example generating methods.
More importantly, they can devise perturbation mount-
ing schemes for specific scenarios, so that attackers can
mount the generated perturbations to attack real world
systems. We surveyed their works, abstracted their mod-
els and proposed direction for future works.
We believe the consequences of practical adversarial

example attacks would be severe if the principles behind
the attacks are not made clear. To avoid so, researchers
must untangle all possible perturbation mounting vec-
tors and system designers must attach enough attention to
adversarial examples when integrating AI models.
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