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Abstract

The National Institute of Standards and Technology (NIST) has identified natural language policies as the preferred
expression of policy and implicitly called for an automated translation of ABAC natural language access control policy
(NLACP) to a machine-readable form. To study the automation process, we consider the hierarchical ABAC model as
our reference model since it better reflects the requirements of real-world organizations. Therefore, this paper focuses
on the questions of: how can we automatically infer the hierarchical structure of an ABAC model given NLACPs; and,
how can we extract and define the set of authorization attributes based on the resulting structure. To address these

clustering deep learning

questions, we propose an approach built upon recent advancements in natural language processing and machine
learning techniques. For such a solution, the lack of appropriate data often poses a bottleneck. Therefore, we
decouple the primary contributions of this work into: (1) developing a practical framework to extract authorization
attributes of hierarchical ABAC system from natural language artifacts, and (2) generating a set of realistic synthetic
natural language access control policies (NLACPs) to evaluate the proposed framework. Our experimental results are
promising as we achieved - in average - an F1-score of 0.96 when extracting attributes values of subjects, and 0.91
when extracting the values of objects’ attributes from natural language access control policies.

Keywords: Attribute-based access control (ABAC) policy authoring natural language processing relation extraction

Introduction
The concept of access control mechanisms has been
around since Lampson’s access matrix was coined in the
late 1960s (Lampson 1974). Thereafter, dozens of mod-
els have been proposed upon the shortage of others. Most
of these models, however, have shown forms of inad-
equacy in withstanding the ever-increasing complexity
of today’s business environments or safeguard the com-
pliance demand of dynamic organizations. From within
this dilemma, attribute-based access control (ABAC) has
emerged as a good fit.

The National Institute of Standards and Technol-
ogy (NIST) Special Publication 800-162 “Guide to
attribute-based access control (ABAC) Definition and
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Considerations” testifies to ABAC’s potential to promote
information sharing among enterprises with a hetero-
geneous business nature (Hu et al. 2013). In fact, it
is predicted that “by 2020, 70% of enterprises will use
attribute-based access control... as the dominant mecha-
nism to protect critical assets” (Gartner 2013). Despite the
promising potential, the ABAC policy authoring task has
stood out, among other factors, as a costly development
effort. This is anything but a new challenge. In fact, the
complex syntax of what has become the standard ABAC
policy language, namely XACML (OASIS 2013), has been
well understood since the earliest days of ABAC. Hence, it
is known since 2003 that “XACML is intended primarily
to be generated by tools” (McCarthy 2003). This is where
the policy authoring tools come into play.

XACML is a generic policy language framework ratified
by OASIS to provide an abstraction layer for defin-
ing access control policies (ACPs) as machine-readable
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authorization rules (OASIS 2013). It promotes standard-
ization, expressiveness, granularity, interoperability, and
efficiency (Abassi et al. 2010). This flexibility, on the other
hand, has introduced implementation complexity. Solu-
tions proposed to aid in the ABAC policy authoring task
have ranged from GUI policy authoring tools to APIs
and plug-ins (Turner 2017; Axiomatics 2017). These tools
generally provide a higher abstraction level that obscures
much of XACML’s complex syntax. The former set of
tools, i.e., the GUI aids, are designed as fill-in forms
or spreadsheets that present policy authors with lists,
or other graphical formats, populated with valid options
of policy elements (i.e., subjects and objects attributes).
The assumption is that a non-IT specialist would easily
be able to construct a policy by selecting its constituent
attributes from drop-down menus (Turner 2017). The lat-
ter set of tools is mainly designed for developers as it
borrows much of its structure from common program-
ming languages (Axiomatics 2017). Either way, the goal
is to automatically generate XACML equivalent policies
with the help of the tools. While such aids can provide
a better authoring experience, they heavily rely on back-
end attribute exchange providers. This strong assumption
raises the question of: where do the required attributes
come from? Upon closer inspection of the ABAC autho-
rization policy lifecycle (Fig. 1), policies are introduced to
a system at the earliest stages of its development lifecycle
as use-cases. At this point, access control policies, as well
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as other security and functional requirements, are com-
ponents of specifications documents, which are almost
always written in natural language. To identify the policy
elements required to build the machine-readable autho-
rization rules, the current practice assumes that a security
architect or system analyst should manually analyze the
existing documentations to extract the relevant informa-
tion (Brossard et al. 2017). The fact that these require-
ments are often elicited from a pool of natural language
statements, e.g., interview transcripts, blurs the bound-
ary between the policies and other requirements. Hence,
manually deriving the attributes along with other policy
elements needed to feed the previously mentioned policy
authoring tools is rather a repetitive, time-consuming and
error-prone task.

The necessity to automate this manual process has
motivated several studies in developing automated tools
to derive elements of access control rules directly from
natural language policies (Xiao et al. 2012; Slankas and
Williams 2013; Slankas et al. 2014; Narouei et al. 2017;
Narouei and Takabi 2015a). Prior research efforts have
mostly been restricted to two areas: (1) automatic iden-
tification of the access control policy sentences from
natural language artifacts, and (2) automatic extraction
of the subject, object and action triples from these sen-
tences. In our previous work (Alohaly et al. 2018), we
took a step to address the automation task in the context
of a flat ABAC system, where the concept of hierarchy
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Fig. 1 The authorization policy lifecycle (adopted from Brossard et al. (2017)). *Asterisk marks the beginning of the cycle
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among subject or object elements was not considered.
Particularly, we designed a framework, consisting of
four modules, to extract authorization attributes from
NLACPs. However, we mainly focused on one module
of the proposed framework, namely attribute extraction,
which detects values of attributes in sentences defin-
ing policies. In this work, we present the functionali-
ties of other modules required to map attribute values
to attribute keys, i.e., to infer the attributes key/value
pairs, which entails identifying values that constitute a
value space of each attribute. In addition, in this paper
the extraction scenario is framed around the hierarchi-
cal ABAC model, as opposed to the flat model, to bet-
ter meet the requirements of real-world organizations.
Therefore, we extend the original framework to capture
the hierarchical structure of ABAC systems given the
NLACPs.

The remainder of this paper is organized as fol-
lows: “Background” section provides background infor-
mation. In “The proposed methodology” section, we
present the proposed framework and discuss our
methodology to automate the attributes extraction task.
“Corpus creation” section describes the procedure to
construct the required corpus. We report our experi-
mental results and discuss the limitations of the pro-
posed approach in “Experimental results and perfor-
mance evaluation” section. We review the related work in
“Related work” section. In “Conclusions and future work”
section, we conclude our study with the recommendations
for future work.

Background

In the following subsections, we define key termi-
nology used in this study. Then, we provide back-
ground information regarding ABAC policy authoring
process and the underlying techniques of our proposed
framework.

ABAC definition and terminology

In its basic form, ABAC is defined as “an access control
method where subject requests to perform operations on
objects are granted or denied based on assigned attributes
of the subject, assigned attributes of the object..” (Hu
et al. 2013). We refer to the basic form of ABAC as a
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flat ABAC model since it does not consider hierarchies.
Daniel et al. have introduced the concept of hierarchi-
cal groups to this basic definition of ABAC to enable
attributes inheritance through subject and object groups
(Servos and Osborn 2015). The following list provides a
high-level definition of terms relevant to our study. We
also exemplify each element using the illustrative example
shown in Fig. 2, whenever possible. For detailed explana-
tion of the basic and the hierarchical forms of ABAC, we
refer the reader to Hu et al. (2013); Servos and Osborn
(2015).

¢ Subject: is an entity that initiates access requests to
perform actions on objects, e.g. a user whose
“subject_type” is “nurse” (Hu et al. 2013).

e Subject group: is a set of subjects grouped according
to their domain (Servos and Osborn 2015). Using our
example in Fig. 2, “subject” represents a group of all
subjects or users in the system while “employee” is a
sub-group of the main group, “subject,” as indicated
using the fully qualified name. Similarly,
“health_professional” is a sub-group of “employee”.

¢ Subject attribute: is a characteristic of the subject,
e.g. “senior” as a value of the attribute “rank” (Hu et
al. 2013). In a hierarchical ABAC system, subject
attributes are assigned to individual subjects as well
as to subject groups and are allowed to be inherited
through the hierarchical group structure (Servos and
Osborn 2015). In our example, we have “rank” as an
attribute of the groups “employee” and
“health_professional” —by inheritance, as the latter is
a sub-group of the former— which also has the
attribute “working_hours”.

¢ Object: is anything upon which an action might be
performed by a subject, e.g., an object whose
“object_type” is “lab procedure.”

e Object group: is a set of objects, e.g., the group
“object” and its sub-group “lab_procedure” (Servos
and Osborn 2015).

¢ Object attribute: is a characteristic of the object,
e.g., “approved” as a value of the attribute “status”
(Hu et al. 2013). Similar to subject attributes, object
attributes are assigned to individual objects and
object groups.

subject.subject_type

subject.employee.rank

Fig. 2 Attribute identification scenario

subject.employee.health professional.working hours

object.lab_procedure. status

An on-call senior nurse may change the list of approved |ab procedure
—

object. object type
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Herein, we use the terms “authorization requirement’,
“access policy” and “access control policy” interchange-
ably to refer to natural language access control policy
(NLACP). We also use “policy elements” as well as “ele-
ments” to refer to subject and object elements of the
authorization requirement, while we use “attributes” to
refer to their corresponding characteristics.

ABAC policy authoring

Brossard et al. have designed a systematic approach for
implementing ABAC (Brossard et al. 2017). The authors’
proposed model is composed of the iterative sequence of
phases shown in Fig. 1. Several studies have researched
challenges and opportunities faced by natural language
processing (NLP) applications in the automation of the
second phase of the cycle, named “gather authorization
requirements” (Xiao et al. 2012; Slankas and Williams
2013; Slankas et al. 2014; Narouei et al. 2017; Narouei
and Takabi 2015a). Our work complements these prior
efforts to aid security architects in the process of deriving
required attributes from natural language authorization
requirements, which is the third phase of the lifecycle. We,
therefore, zoom into the details of this phase to establish
an understanding of the problem domain and to identify
key activities with the potential to be automated. This, in
turn, provides insights into the essential building blocks
needed to design a practical ABAC attribute identification
framework.

The goal of the “identify required attributes” phase (see
Fig. 1) is to identify attributes that jointly build up an
ABAC access control rule. Each attribute is defined by the
following pieces of information, as suggested by Brossard
etal. (2017):

— Short name: a key a security architect would use to
refer to an attribute while writing policy.
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— Namespace: the subject or object group to which an
attribute is assigned. In this work, we focus on the
hierarchical grouping of policy elements. Thus, this
property indicates the hierarchical path leading the
group of interest.

— Category: the class to which an attribute belongs.
The core categories are subject, action, and object
(OASIS 2013).

— Data type: the data type of an attribute. The most
common data types are: string, boolean, numerical,
and date and time.

— Value constraints: the values that can be assigned to
an attribute.

Running example
Suppose that a simplified health care system has estab-
lished the following set of policies:

— An on-call senior nurse may change the list of
approved lab procedures.

— A nurse (first-shift or second-shift) may not change
the list of approved lab procedures.

— A junior nurse may view the list of pending lab
procedures.

— An on-call senior lab technician may request
follow-up lab procedures.

— A senior employee may request long-term
compensation.

— A registered patient may view his full health record.

Given this set of policies, a security architect should first
define authorization attributes based on the previously
mentioned properties, as shown in Table 1. Then, infor-
mation in Table 1! is combined to build ABAC rules that
are necessary to enforce such authorizations. Figure 3,
for instance, presents a machine readable policy equiva-
lent to the first authorization requirement in the list. It is

Table 1 List of attributes needed to build ABAC authorization rules to enforce policies presented in the running example (see

“Running example” subsection)

Short name Namespace Category Data type Values

Subject_type Subject Subject_cat String Nurse, lab technician, employee, patient
Object_type Object Object_cat String Lab procedure, compensation, health record
Action_type Action Action_cat String View, change, request

Rank Subjectemployee Subject_cat String Senior, junior

Working_hours Subject.employee. health_professional Subject_cat String First-shift, second-shift, on-call

Status Subject.patient Subject_cat String Registered

Status Object.lab_procedure Object_cat String Approved, pending, rejected

Type Object.lab_procedure Object_cat String Follow-up

Status Object.health record Object_cat String Full

Period Object.compensation Object_cat String Long-term

The qualified name format, i.e, A.B, used in the namespace column denotes the hierarchical path leading the group that contains the respective attribute
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namespace subject{

attribute subject_type{

category = subject_cat

id = "subject_type”

type = string}

namespace employee{

attribute rank{

category = subject_cat

id = "rank”

type = string}

namespace health_professional
{

attribute working_hours{

category = subject_cat

id = "working_hours”

type = string }}}}

namespace object{

attribute object_type({

category = object_cat

id = "object_type”

type = string}

namespace lab_procedure{

attribute status{

category = object_cat

id = status

type = string}}}

of text correspond to attribute properties as obtained from Table 1

namespace action{

attribute action_type{

category = action_cat

id = "action_type”

type = string}}

policy change{

target clause subject.
subject_type

=="nurse” and

subject .employee.rank=="senior”

and

subject .employee.
health_professional.

working_hours =— "on—call”

and

object.object_type=="lab
procedure”

and

object .lab_procedure.status

=="approved” and

action.action_type =— ”change”

rule allow {permit}}

Fig. 3 The machine-readable form of a policy sentence “An on-call senior nurse may change the list of approved lab procedures.” Bold-ed portions

apparent that by having well-defined attributes, building
the machine-readable rule becomes a relatively simple
task.

In light of this description, an automated ABAC
attribute identification tool infers properties needed to
define each attribute. For this purpose, we design a frame-
work, shown in Fig. 4, using natural language process-
ing (NLP), relation extraction (RE) and machine learning
(ML) techniques.

Natural language processing techniques

This section provides an overview of the relation extrac-
tion, natural language processing and machine learning
techniques used in our framework.

Relation extraction (RE)

Relation extraction is a central task in natural language
processing. The aim of this task is to extract semantic rela-
tion between pairs of co-occurring entities, also known
as arguments, mostly within a sentence. Throughout the
literature, RE problem has been often addressed as a clas-
sification task where the goal is to assign a predefined
relation to pairs of arguments (Jiang 2012). This approach
is mainly organized in two stages. First is the identification
of candidate relation instances, and then the classification
of candidate instances into valid and invalid. As a stan-
dard classification task, classifiers are built upon training
corpus in which all relations and its arguments have been
manually annotated. The annotated relations are used as
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positive training examples, whilst the rest of co-occurring
pairs that are not labeled are deemed as negative training
examples. Traditional machine learning or deep learning
algorithms can then be used to train relation extraction
classifiers.

Natural language processing (NLP) in RE

Systems for relation extraction often have -as components-
four natural language processing techniques which are:
tokenization, Part of Speech (POS) tagging, named entity
recognition and syntactic parsing.

Tokenization is an essential starting point for almost any
NLP task. It splits text into tokens which are words or
punctuation marks (Webster and Kit 1992). Considering
English language, rule-based text tokenization, using
spaces or punctuations, is a straightforward task. How-
ever, abbreviation-like structures introduce a level of com-
plexity to this process.

POS taggers determine the corresponding POS tag for each
token in a sentence (Brill 1995). It is a sequential labeling
problem. In the context of RE, POS tagger is used to gen-
erate candidate instances by matching against predefined
POS patterns. POS are also useful in providing lexical
information needed to design RE models. In attribute rela-
tion extraction, for example, attributes are usually adjec-
tives and policy elements are nouns or combination of
nouns.

Named entity recognition (NER) aims to detect phrases
that express some real-world entities such as people, orga-
nizations, locations, concepts, times and events in a given
segment of text (Tjong Kim Sang and De Meulder 2003).
Oftentimes, this task requires more than simple match-
ing against predefined dictionaries or gazetteers. Real-
world applications, thus, combine heuristics, probabilistic
matching, and sequential learning techniques (Martin and
Jurafsky 2000). RE has adopted NER to identify arguments
of a relation and to encode semantic knowledge of these
arguments.

Syntactic parsing techniques provide a middle ground
between the lexical representation of a sentence and its
meaning. The two dominant syntactic parsing strategies
are constituency and dependency parsers (Zelenko et al.
2003; Zhang et al. 2006; Culotta and Sorensen 2004; Jiang
2012). Relation extraction studies have empirically shown
that patterns drawn from a dependency parse trees are
more resilient to lexical inconsistency among different
domains (Johansson and Nugues 2008).

Convolutional neural network (CNN) in RE

CNN has recently been used in solving a wide range
of applied machine learning problems. In RE, CNN can be
used to model syntactic and semantic relations between
words within a sentence while reducing the dependence
on manually designed features. Generally speaking, the
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use of CNN-based models in various NLP tasks has achieved
impressive results (Collobert et al. 2011; Kalchbrenner and
Blunsom 2013; Zeng et al. 2014).

The architecture of a typical CNN consists of a stack
of layers with (1) an input layer that encodes words in
each relation instance by real-valued vectors; (2) a convo-
lutional layer to capture contextual features, e.g., n-grams,
in the given input; (3) a pooling layer to determine the
most relevant features and, (4) an output layer which is
a fully connected layer that performs the classification.
“Classify candidate instances using CNN-based model”
subsection provides a detailed discussion of each layer as
well as the overall structure of our CNN.

Word embeddings and compositionality principle

In the last decade, there have been several proposals
to generate distributed representations of words often
referred to as words embeddings (Mikolov et al. 2013;
LeCun et al. 2015). In our work, we do not only need
vector representations of individual words, but also of
sequence of words, i.e., phrases, to account for multi-word
attribute values. Such representations can be obtained
using the concept of compositionality, which states that
the meaning of an expression is determined as a function
of the words it contains (Pelletier 1994). The combined
representation of words in a sequence can be obtained
using basic algebraic operations as discussed in Mikolov
et al. (2013). We have empirically shown that among dif-
ferent algebraic operations, the vector addition works the
best for our purpose. This goes in line with the find-
ings discussed in Banea et al. (2014). Therefore, we adopt
the additive composition to obtain a single representa-
tive meaning of multi-word policy element or attribute
values.

DBSCAN clustering algorithm

Density based spatial clustering of application with
noise (DBSCAN) is a density-based clustering algorithm.
It is a density-based algorithm in the sense that
it defines clusters as connected dense regions in
the data space (Ester et al. 1996). With this logic,
DBSCAN is capable of discovering cliques with arbi-
trary shape and size without a preset number of
clusters. However, it requires two other input parame-
ters, namely eps and MinPts. Epsilon (eps) specifies the
neighborhood distance cutoff while MinPts defines the
minimum number of points needed to create a clus-
ter (Schubert et al. 2017). DBSCAN labels the data
points as core points, border points, or outlier points
(Tran et al. 2013).

Definition 1 a core point is any point that has at least
MinPts points directly reachable within the neighborhood
distance of eps.
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Definition 2 a border point is a non-core point that has
at least one core in its neighborhood.

Definition 3 outliers are neither core points nor border
points.

Definition 4 density-reachability captures the transi-
tive similarity between points. Two points, p1 and py, are
called density-reachable if there exists a chain of points p;,
Pi+1s - Pu Where i >1 and n >2 such that for all i < n, p; is
a core point and piy1 is a neighbor of p; while p,, is either a
core point or border point. On the basis of these definitions,
the goal of DBSCAN is to find some points which satisfy
the minimum density requirement of MinPts points within
the eps distance to be mareked as cores. Then, expand the
cores using tranmsitive similarity to include border points,
as illustrated in Algorithm 1 (Rehman et al. 2014). In
our work, constructing the value space of an attribute (see

Algorithm 1: Pseudo-code of the DBSCAN as dis-
cussed in Rehman et al. (2014)

Input : @dataset, @eps, @minPts

Output: Clusteres of Dataset

1 Function DBSCAN(dataset, eps, minPts )
2 clusterld =1
3 for p in dataset do
4 if p is classified then
5 ‘ continue
6 if count(epsNeighborhoods(p)) >= minPts
then
7 setClusterld (p, clusterId)
8 seeds = epsNeighborhoods(p)
9 while seeds is not empty do
10 point = seeds.pop()
11 setClusterld (point, clusterId)
12 if count(epNeighborhoods(point)) >=
minPts then
13 seeds.push(epsNeighborhoods
14 (point))
15 clusterld +=1
16 if count(epsNeighborhoods(p)) < minPts
AND core in epsNeighborhoods(p)) then
// these are the border
points
17 clusterld = 0
18 setClusterld (p, clusterld)
19 continue
20 else
// these are the outlier
points
21 clusterld = -1
22 setClusterld (p, clusterld)
23 continue
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“Constructing the value space of an attribute” subsection)
is modeled as an application of DBSCAN.

The proposed methodology

As mentioned earlier in the “Background” section,
attributes in ABAC model are defined with short name,
potential value(s), data type, category and namespace.
Out of these five dimensions, the property that is usually
expressed in a natural language authorization require-
ment is the attribute value. Looking back to our illustrative
example shown in Fig. 2, senior, for instance, refers to
the rank of the nurse. Similarly, approved describes the
status of the lab procedure that can be accessed by the
authorized subjects. From the natural language stand-
point, phrases that express such characteristics follow
certain grammatical patterns to modify particular ele-
ments of the policy sentence. Therefore, our approach
leverages the grammatical relations between policy ele-
ments and constituents that modify these elements, to
view this task as a relation extraction problem (GuoDong
et al. 2005; Jiang 2012). Extracting the value of an
attribute, e.g., senior, and associating this value with the
corresponding policy element, e.g. nurse, equates find-
ing the value and category properties of two attributes,
namely rank and subject_type as described later in this
section. However, deriving the short name, e.g., rank,
the data type, e.g., string, as well as the namespace,
e.g., subject.employee, requires further analysis.

Figure 4 shows an overview of our framework where
inner rectangles depict the five main modules and arrows
point in the direction of data flow. The framework
begins with analyzing the natural language authorization
requirement to locate modifiers of each policy element.
Then, it proceeds towards four other tasks of identify-
ing attributes’ category, their data type, suggesting an
attribute short name and assigning attributes to names-
paces hierarchically.

Module 1: Attribute extraction

We define two relations, named subject-attribute and
object-attribute. These relations exist between policy ele-
ments and a phrase or clause that expresses a character-
istic of this particular element. To capture these relations,
we first identify the grammatical patterns that encode
each relation. Using the most common patterns, we gen-
erate lists of candidate instances, which are then fed into
a machine learning classifier to determine whether or not
a candidate instance encodes the relation of interest. The
following subsections provide the details of each step. It
is worth mentioning that capturing relations of interest
can be addressed as a multi-class learning task. However,
results obtained from this experiment design were less
promising. This motivates our design decision of using
two separate binary classifiers, one for each relation.
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Identify patterns encoding the target relations

An authorization requirement is deemed to involve a
subject-attribute relation if it contains at least one mod-
ifier that describes a characteristic of an authorized sub-
ject. The same applies to object-attribute relation, but
with respect to the object element.

Identifying patterns encoding these relations requires
a structured representation of the textual authorization
requirement. The constituency parse tree and the depen-
dency tree are both valid options. However, relation
extraction studies have empirically shown that patterns
drawn from the dependency tree are more resilient to lex-
ical inconsistency among different domains (Johansson
and Nugues 2008). We, therefore, represent policy sen-
tences with the typed dependency tree as shown in Fig. 5
for the sentence “on-call senior nurse may change the list
of approved lab procedures” In this tree, each node rep-
resents a word from the sentence, whilst edges represent
the grammatical relationship between two words. Nurse,
for instance, functions as the nominal subject (nsubj) of
change. The paths that connect senior and on-call to nurse
are of special interest as they encode subject-attribute
relation. Similarly, the path between approved and proce-
dures encodes an object-attribute relation. In other words,
the shortest dependency path that links subject or object
elements with their attributes is deemed as a relation
pattern. To extract such patterns, we refer to our man-
ually annotated data in which we explicitly annotate the
authorization attributes of both subjects and objects as
described in corpus creation, “Corpus creation” section.
From the entire set of resulted patterns, we follow the
recommendation of Berland et al. to focus on the most
frequent ones (Berland and Charniak 1999).
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Generate candidate instances

After identifying the most frequent patterns for the target
relations, we search through our dataset to find all match-
ing instances. In this study, we target two relations that
are encoded with two different sets of patterns. Match-
ing against these patterns produces two lists of candidates
instances of subject-attribute and object-attribute rela-
tions. For both relations, instances are represented with
the tuple R(E,AV). R defines the overall relation. Depend-
ing on the pattern used for generating the instance, E,
which stands for element, could either be the subject or
object. AV is the value of an attribute associated with E.
The pair E and AV represent arguments of the relation R.
Note that candidate instances do not always encode a
valid relation. We, therefore, feed instances to a machine
learning classifier(s) to decide whether or not a candidate
instance encodes the relation of interest.

Classify candidate instances using CNN-based model

The extracted candidate instances are now used to build
the CNN-based classifiers for both relations. Particu-
larly, the concatenation of arguments in each candidate
instance along with the heads of arguments is what will be
fed to the model, as illustrated in Fig. 6. Since CNNs can
only accept fixed length inputs, we compute the maximum
length of entity arguments and choose the input width to
be more than twice as long as the maximum length (to
account for both arguments and the heads). Inputs longer
than the predefined length are trimmed, while shorter
inputs are padded with special tokens. Figure 6 shows
the overall architecture of our CNN. Further, in the fol-
lowings, we provide the rationale for each layer of the
model.

nsubj aux

nmod amod

Fig. 5 Dependency tree representation

7

dobj

det prep

pobj

/ \
amod comp




Alohaly et al. Cybersecurity (2019) 2:2

Page 9 of 25

Input sentence with marked entities of subject-att

v

An [on-call#elSA] [senior#el SA] [nurse#e2SA]

on
call
nurse
on
nurse

Table lookup

1

[

heads arguments

word embedding

ribute relation

may change the list of approved lab procedures.

CHEE
T =
G — 4
A —

> |

N
N

e

C

nput layer

~ L, o

convolutional layer

pooling Sigmoid

»

<
<

>

<
<

Fig. 6 The architecture of the CNN model. The marked (or annotated) arguments of a subject-attribute instance are obtained as discussed
in “Identify patterns encoding the target relations” section. The arguments and their heads are concatenated and fed to the network using word

embeddings representation

ayer” “Tayer

— Input layer: at the very first layer, the two relation
arguments as well as their heads are concatenated to
form the vector x = [x1, X9, . . ., x,] where x; is the
i-th word in this sequence, as seen in Fig. 6. Before
being fed into the CNN, each word #; in x must be
encoded in a real-valued vector e of m dimensions
using word embeddings table W. The embeddings
table W can either be learned as a part of the model
or loaded from a pretrained word embeddings.
Following the recommendation of Chen et al. (Chen
and Manning 2014), which calls for the latter
approach, we build our model using the GloVe
pretrained word embeddings (Pennington et al.
2017). The output of this layer is a matrix x = [x1, x2,
., %u]. The size of x is m x n where m is the
dimensionality of the word embeddings vectors, and
n is the length of the input sequence x.
Convolution layer: to learn a higher level syntactic
and semantic features, the matrix x, representing the
given input, is passed through a convolution layer
with filter f = [f1, f2, . . ., fw] of size m x w where w
is the width of the filter. The filter convolves over the
input sequence to learn the contextual features from
the w adjacent terms in the input. The convolution of
the two matrices, x and f, results in a “windowed”
average vector h = [hy, hy, . . ., hy—y+1] as defined in
Eq. 1:

w—1
hi=g| Y fixhi+b (1)
j=0

Here g is an optional activation function and b is a
bias term. The trained weights of f would then be
used to detect the features of the relations of interest.
Pooling layer: the pooling layer is mainly used for
dimensionality reduction purposes. Its two basic

types are the max and average pooling. Max pooling
is known to be useful in the relation extraction task as
it only passes the salient features of the vector h to
the subsequent layers, and filters out the less
informative ones (Shen et al. 2014). Hence, we apply
a max operation to the result of each filter in our
model. The application of the max pooling over the
vector h produces a scalar p = max(h) = max { hy,
hZ: e hn—W+1 }

Fully connected layer: in this step, the pooling
scores obtained from the previous layer are
concatenated into a single feature vector z. The
vector z is then fed into a sigmoid layer to perform
the classification task.

Module 2: Suggesting attributes short names

Module 1 is designed to capture the element-value pairs,
denoted as (E , AV), given NLACPs. Thus, by run-
ning the subject-attribute relation extractor over our
running example (see “Running example” subsection)
the expected output would be: {(nurse, on-call), (nurse,
senior), (nurse, first-shift), (nurse, second-shift), (nurse,
junior), (lab technician, on-call), (lab technician, senior),
(employee, senior), (patient, registered)}. Each element of
these pairs indicates a value of an attribute. Since E always
expresses a policy element, i.e. subject or object, its short
name is predefined as either subject_type or object_type
depending on the type of the relation by which E is cap-
tured as shown later in Algorithm 3, lines 8-13. However,
to reach the goal of the automated or semi-automated
extraction of attributes, further analysis is necessary to
map attributes values represented with AV to appropriate
semantic units, e.g., mapping the values senior and junior
to the attribute rank. Due to the variability of values of
authorization attributes, it is challenging to map attribute
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values to attribute names in a one-step approach. Hence,
we divide this module into two major sub-modules: (1)
constructing the value space of an attribute, (2) and
assigning a key reference to attribute value space. The
intuition is that grouping relevant values that represent
one semantic unit would provide the context that facili-
tates predicting the respective short name. The details of
each step are discussed in the following subsections.

Constructing the value space of an attribute

The list of values obtained from Module 1 is passed
through this sub-module to find the mutually disjoint
groups of values that constitute the value space of each
potential attribute in the system. With this objective in
mind, it appears that the most suitable technique to
approach this problem is data clustering. For this purpose,
we adopt DBSCAN algorithm, a density-based clustering
method, for three reasons. First, it is difficult to predeter-
mine the number of clusters corresponding to the number
of attributes in the system without a priori knowledge of
the actual requirement specifications. DBSCAN does not
require the number of clusters to be known in advance.
Second, clusters formed by DBSCAN can be in arbitrary
shapes and therefore are more likely to be accurate clus-
ters. Third, it has the ability to detect outliers which is the
property that we need to distinguish attributes common
across policy elements from those that are element spe-
cific, as discussed later in this subsection. However, the
quality of the resulting clusters depends on several key
design decisions. Particularly important ones are those
pertaining to: (1) the specifications of the actual input
data and its representation, and (2) the choice of the input
parameters of DBSCAN, denoted as eps and MinPts. Next,
we provide a detailed discussion regarding these con-
cerns organized as two units of this sub-module, namely
pre-processing engine and clustering component.

— Pre-processing engine: We seek a representation
that captures the topical similarity between attribute
values. The intuition is that values that constitute a
value space of an attribute often occur in similar
contexts, e.g. the values “senior” and “junior”. Hence,
we expect them to end up as neighbours, forming
semantic cliques in the vector space. This in turn
facilitates grouping relevant values into meaningful
clusters that correspond to the attributes of the
system. Words embeddings are the most reliable
means to obtain such representation (Bengio et al.
2003; Collobert and Weston 2008; Mnih and Hinton
2009; Mikolov et al. 2013). Not only do word
embeddings capture the contextual similarity of
single-word values, but it also enables meaningful
representation of multi-word attribute values using
the principle of compositionality, as discussed in
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“Word embeddings and compositionality principle”
subsection. Therefore, we utilize the embedding
representation of each single-word value to encode
the input to our clustering component (and the
addition of the embeddings vectors in the case of
multi-word input).

Clustering component: given the embedding
representations of attribute values, clustering
methods can be used to discover cliques that
constitute the value space of attributes. DBSCAN
requires two parameters eps and MinPts to be tuned.
Of these parameters, MinPts is the easier to set.
Hence, the heuristic suggests tuning MinPts first and
then eps can be determined according to the value of
MinPts (Schubert et al. 2017). To be able to capture
attributes with values as few as two, e.g. senior and
junior as values of rank, we set MinPts to 2. If we set
MinPts to be more than 2, then attributes with only
two possible values would be overlooked. On the
other hand, when MinPts is set to 1, each value would
form a cluster on its own which is against the
intuition of this step.

To auto-tune eps, we should first draw the k-distance
graph for all the points, where k is equal to MinPts
(Schubert et al. 2017). Using the distance graph, we
compute the average distance that separates a point
from its k nearest neighbors (KNN) for all the points.
Then, the average is used to set the value of the
neighborhood distance cutoff, eps. The intuition is to
establish an estimate of the distance separating core
points from other points that are density-reachable
(see “DBSCAN clustering algorithm” subsection)
based on the density distribution obtained from the
KNN.

We run the DBSCAN algorithm, after tuning the
above-mentioned parameters, with attribute values as
input. The output of DBSCAN is a set of clusters.
Each cluster, besides the set of outliers, represents a
value space of an attribute which we want to capture,
as shown in Algorithm 2 lines 11-13. Outliers, on the
other hand, represent patterns with different density
distributions, with respect to the value of eps, and
therefore cannot be included in any cluster. With this
explanation, we consider outliers as element-specific
attribute values that have no semantic overlapping
with values belonging to other elements. In this case,
we collect the set of values marked as outliers by
DBSCAN and that belong to same policy element
according to the given element-value pairs, obtained
from Module 1. Then, we repeatedly run the same
process of tuning and clustering over the set of
element-specific outlier attribute values (see lines
14-23 in Algorithm 2). A sample output using
DBSCAN is shown in Fig. 7 with the colored clusters
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Algorithm 2: Construct the value space of potential
attributes
Input

: @elementValuePairs: a list of element and
value pairs, i.e. (E, AV), detected by relation
R (e.g. [(nurse, first-shift), (nurse, second-
shift), (nurse, junior), (lab technician,
on-call), (Iab technician, senior) etc.]

Output: @valueSpace: a list of lists each of which
corresponds to a value space of an
attribute, e.g. [[first-shift, second-shift,
on-call],[senior, junior]]

1 Function ConstructValueSpaceOfAt-

tributes(elementValuePairs)

2 values = []

3 clusteredValues = []

4 outliers = []

5 valueSpace = []

6 minPits = 2

7 for e, av in elementValuePairs do

8 ‘ values.add(av)

9 KNN = distanceGraph(minPits, values)
10 eps = average(KNN.distance)
11 clusteredValues = DBSCAN(minPits, eps,

values)

12 outliers = clusteredValues.getOutliers()
13 valueSpace.add(clusteredValues\outliers)

// returns a dictionary that maps
an element with the list of
values that it has in outliers

14 outliersElm= groupValuesByElement(outliers,

elementValuePairs)

15 for e, values in outliersElm do

16 do

17 KNN = distanceGraph(minPits,values)

18 eps = average(KNN.distance)

19 clusteredValues = DBSCAN(minPits,
eps, values)

20 outliers = clusteredValues.getOutliers()

21 valueSpace.add(clusteredValues\
outliers)

22 values = outliers

23 while size(values) > minPts;

24 return valueSpace

representing value space of two attributes potentially
named “working_hours” (the red cluster) and “rank”
(the blue cluster).

Assigning a key reference to the value space of an attribute

Each cluster obtained from the previous step represents
a value space of an attribute. At this point, we aim
at determining a suitable attribute name for each clus-
ter. Bakhshandeh et al. have suggested using nouns in
attribute value glosses or definitions to guide this naming
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process (Bakhshandeh and Allen 2015). Following their
approach, we propose using nouns common across the
definitions of all values in a cluster to generate a set of
candidate attribute names. For instance, using WordNet
(Miller 1995), the definitions of senior and junior are:

1. Senior: older; higher in rank; longer in length of
tenure or service

2. Junior: younger; lower in rank; shorter in length of
tenure or service

Thus, rank, length, tenure and service are all possible
names. To assign the actual short name, we assume a
human-in-the-loop scenario in which the human analyst
(i.e. security architect) selects or custom-defines the most
appropriate attribute name. It is worth mentioning that
the functionality of the subsequent steps is not affected by
the chosen name as long as it is unique for each cluster,
which is the default setting in our experiment.

Once the key is assigned to a value space, line 4 in
Algorithm 3, further processing is needed to group val-
ues within each value space by the element to which they
belong. Then, it proceeds to map the attribute key/value
pairs to their respective element (see Algorithm 3) lines
5-7. This order of execution allows defining a common
attribute name across different policy elements which in
turns facilitates inheritance analysis as discussed in the
next module. In the remaining of the Algorithm 3, lines
8-13, policy elements are assigned as values of the pre-
defined attributes “subject_type” or “object_type” of the
predefined element “subject” or “object”.

Module 3: Assigning attribute to namespaces hierarchically
Namespace is the subject or object group to which an
attribute belongs. It can trivially be specified as one-to-
one mapping with policy elements. Consider, for instance,
our running example (see “Running example” subsection).

Fig. 7 Example of clusters obtained with DBSCAN. Red cluster
represents a value space of an attribute potentially named
working_hours while the blue cluster contains value of an attribute
potentially named rank




Alohaly et al. Cybersecurity (2019) 2:2

Algorithm 3: Assign a key reference to each value
space

Input : @R: the relation e.g. subject relation.
@elementValuePairs: the list of element and
value pairs, i.e. (E, AV), detected by relation
R. @valueSpaces the output of Algorithm 2

Output: @keysValues: a list of triples where each
triple is represented as (key, values, policy
element), e.g. [(working_hours, [on-call],
lab technician), (working_hours,

[first-shift, second-shift, on-call ], nurse)]
1 Function suggestShortName(R, elementValuePairs,

valueSpaces)
2 elements = (]
3 for vs in valueSpaces do

// assigns a short name for
each cluster as discussed in
“Assigning a key reference
to the value space of an
attribute” subsection

4 key = getKeyReference(vs)

// returns a dictionary that
maps an element with the
list of values that it has
in vs

5 vsElm= groupValuesByElement(vs,

elementValuePairs)

// assigns key and value pairs
to the element to which it

belongs
6 for e, values in vsElm do
7 ‘ keysValues.append((key, values, €))

// adds policy elements as values
to the predefined key, e.g.
subject type, and assigns it
to the predefined group, e.g

subject, according to the
relation type.

8 for e, av in elementValuePairs do

9 ‘ elements.add(e)

10 if R.type() is subject-attribute then

11 keysValues.append(("subject_type",
elements, "subject"))

12 if R.type() is object-attribute then

13 keysValues.append(("object_type", elements,
"object"))
14 return keysValues

Grouping the attributes obtained from Module 2 by pol-
icy elements would result in a total of five namespaces
(subject groups), namely:
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1. subject

— {subject_type: nurse, lab technician, employee,
patient }

2. nurse

— {rank: senior, junior}
— {working_hours: on-call, first-shift, second-shift}

3. lab technician

— {rank: senior}
— {working_hours: on-call}

4. employee
— {rank : senior}
5. patient
— {status: registered}

However, this method vyields a flat representation of
ABAC system which contains several redundancies of
attributes across namespaces. On the other hand, defining
a hierarchical structure among these groups uncovers
redundant groups and allows multiple attributes to be
assigned with a single attribute assignment. This reduces
the overall cost required to tag similar elements with a
common attribute and value pairs (Servos and Osborn
2015). Inspired by the work of (Stoller and Bui 2016),
we define a two-steps heuristic approach to capture the
implicit hierarchical structure among namespaces given
the flat representation. These steps are to (1) compute
inheritance and (2) compute assigned attributes. The corre-
sponding details are discussed in the rest of this subsection.

— Compute inheritance: The goal is to determine
inheritance relationships between namespaces. An
ABAC model is said to meet the requirements of full
inheritance if the inheritance relation holds between
every two namespaces in the system. Guo et al. have
referred to this property as completeness in the
context of RBAC (Guo et al. 2008). On the basis of
the property of full inheritance, we define an
isAncestor(nsy, nsy) function. This function compares
two namespaces ns; and nsy with respect to their
attributes; ns1 is an ancestor of unss if the attributes of
nsy is a subset of the attributes of nsy. The intuition is
to define a parent-child relation between elements,
i.e., namespace, such that a parent namespace
contains attributes common between its children.
Here, attributes comparison is done according to
their short names and values. For strict inheritance,
attributes a; and a, are considered equivalent if they
have identical name and value set. On the other hand,
under simple inheritance, a; and ay are considered as
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Algorithm 4: Compute inheritance between elements

Input : @inheritanceMode: a flag that specifies the
inheritance mode as strict or simple.
@mainNsID: the name of the predefined
super group, i.e. subject or object.
@keysValues: the output of Algorithm 3.

Output: @parents: dictionary that maps each
namespace to its parents. @consNss: a list of
consolidated subject/object groups. Each
group has a name and is assigned with the
attributes key/value pair

1 Function Computelnheritance (inheritanceMode,

mainNsID, keysValues)

// returns a list of namespaces
representing the flat represe-
ntation of ABAC. Each namespace
has a name and is associated with
set of attributes.

2 flatNamespaces =
groupAttributesByElement(keysValues)

// returns the main namespace i.e.
subject or object

3 mainNamespace = getElement(flatNamespaces,

mainNsID)

parents =new Dictionary()

equivalents =new Dictionary()

for ns in flatNamespaces do

parents(ns) = new Set()

equivalents(ns) = new Set()

for us; in flatNamespaces do

10 for nsjinflatNamespaces\ns; do

11 if equals(ns;, ns;, inheritanceMode) then

12 ‘ equivalents(ns;).add(ns;)

13 consNs = consolidate(equivalents)

14 for us; in consNs do

15 for ns; in consNs \ ns; do

16 if isAncestor(ns;, ns;, inheritanceMode) then

// checks if ns; is a parent
or an ancestor of us;

=R Y

17 if ! 3 nsy in parents(ns;) s.t. isAncestor
(nsj, nsy,inheritanceMode) then

18 parents(#s;).add(zs;)

19 for nsy in parents(ns;)\ns; do

// checks if ms; has a
parent that is also
an ancestor of us;

20 if isAncestor
(nsy, nsj,inheritanceMode) then
21 ‘ parents(us;).remove(nsi)
22 if parents(ns;) is empty then
23 ‘ parents(ns;).add(mainNamespace)

24 return parents, consNs
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equivalent if they have a common name and
overlapping value set. To generate a graph-like ABAC
structure, each namespace is mapped to its parents
using the function, isAncestor, as shown in
Algorithm 4 lines 16-25. The predefined element , i.e.
“subject” (or “object” in the case of object groups) is
referred to as main namespace and is assigned as a
parent of namespaces that have no parents, lines
24-25 in Algorithm 4. All other elements —e.g.,
nurse, lab technician, employee etc. in this example—
are descendants of this element. In the special case
where two elements are equivalent, i.e., have similar
sets of attributes, the elements are consolidated on
one namepace, lines 8-12 Algorithm 4. The assigned
name of the new namepace is the least common
Hypernym? of the two underlying elements, obtained
using WordNet (Miller 1995).

Under the assumption of simple inheritance, “nurse”
and “lab technician” are examples of this special case
as they represent two distinct subject groups with the
equivalent set of attributes. After consolidation, these
two groups are merged into one logical unit referred
to as “health_professional” and to which the
attributes of the redundant groups are assigned.

— Compute assigned attributes: This step computes
the directly assigned attributes of each namespace by
removing the attributes inherited from its parent as
shown in Algorithm 5. An illustration of subject
group hierarchy under the assumption of simple
inheritance is shown in Fig. 8.

Module 4: Identifying the category of an attribute

A straightforward method to determine the attribute cat-
egory is to refer to the type of relation by which the
attribute is detected. The categories subject and object

Algorithm 5: Compute directly assigned attributes

Input : @parents and @consNs as obtained from
Algorithm 4
Output: @namespace: a list of subject or object
groups each with the directly assigned
attributes
1 Function ComputeAssignedAttributes (parents,
consNs)
namespaces = []
for us in consNs do
inheritedAtt = Uparents(ns).attributes
assignedAtt =
ns.attributes.removeAll(inherited Att)
6 namespaces.add(ns.name, assignedAtt)
7 return namespaces

s WN
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subject
[subject type: patient,
employee, nurse, lab technician]

N

employee
[rank: senior, junior]

patient
[status: registered]

health professional
[working_hours: on-call, first-
shift, second-shift]

Fig. 8 Example of subject group hierarchy represented as a graph.
Below each group name is the list of directly assigned attributes

correspond the relations subject-attribute and object-
attribute, respectively.

Module 5: Identifying an attribute’s data type

We employ a heuristics-based approach to infer
the data type of an attribute. The heuristics are
direct mapping from each NE type to a data
type. Consider, for instance, the policy sentence:

ANUrSe copcepyttheMayoClinic (orgam,wion)canvzewtherelemnt

labtests copcepy)” A named entity tagger (Dandelion api
2018) assigns the type of each entity as shown in the
subscripts . In this example, “concept” and “organization”
are mapped to string. A limitation of this approach is that
it can infer a data type of an attribute only if NE tagger
successfully captures the NE type of its value, i.e. E or AV.

Once all information pertaining the five properties of
attribute are collected, new attributes can be defined as
shown in Algorithm 6.

Corpus creation

While the advancements of ML and NLP techniques can
provide ABAC security architects with powerful tools
to address requirements analysis and attributes extrac-
tion tasks, the effective adoption of these techniques is
restricted by the lack of appropriate datasets. One reason
for this dearth of data is that the requirement speci-
fications in general, and authorization requirements in
particular are meant to be proprietary except for a few
software projects for which requirements are publicly
available. However, the majority of available requirements
documents often express authorization rules by the means
of roles, actions and resources, e.g., “a patient chooses
to view his or her access log” While these elements are
considered as attributes, they mainly capture the core pol-
icy elements. Hence, these are not enough to train an
automated attribute extraction model. To remedy the lack
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Algorithm 6: Define attributes of the hierarchical
ABAC system

Input : @R: relation e.g. subject-attribute.
@parents: the output of Algoritm 4,
@namespaces: the output of Algoritm 5.

Output: List of attributes defined with the short
name, namespace, category, data type and
values as illustrated in Table 1

1 Function addNewAitributes (R, parents,
namespaces)

category = R.type()

for ns in in namespaces do

for att in ns.attributes() do

shortName = att.key()

values = att.values()

nsName = getHierarchicalPath(att, ns,

parents)

dataType = getDataType(values)

9 attributes.add(shortName, nsName,

category, dataType, values)

10 return attributes

NS GoRs WN

o

of appropriate data, we construct a synthetic natural lan-
guage policy dataset such that the authorization rules are
expressed with attributes. We then use this dataset to
evaluate the proposed approach.

Two information sources have been used to fuel the syn-
thetic data generation framework. The first is the datasets
obtained from prior efforts in natural language access
control policy (NLACP) collection. These datasets were
constructed to study various aspects of the automated
translation of NLACPs to machine-readable form. The
most representative examples of these datasets are :

1. iTrust: is a patient-centric application for maintaining
an electronic health records (Meneely et al. 2011).

2. IBM Course Management App: is a registration
system for colleges (IBM 2004).

3. CyberChair: is a conference management system
(Van De Stadt 2012).

4. Collected ACP: is a dataset consists of combined
access control policy sentences collected by Xiao
et al. (2012).

Herein we refer to these documents collectively as ACP
dataset?. The authoring style of the authorization require-
ments in the ACP dataset is tuned more towards the role-
based access control than attribute-based access control.
Hence, these datasets do not have enough attributes for
the purpose of our study. To address this limitation, we
augment either the subjects or objects elements of the
policies with additional descriptive context derived from
a general purpose textual data, namely Common Crawl
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(Common crawl 2018), which composes our second infor-
mation source. The purpose of injecting this additional
context is to change the tone of the policy so it reads as
if it was written with ABAC model in mind. For example,
before injecting the descriptive context, a policy sentence
might be written as “faculty can access library materials’,
while after injection, it becomes “retired USD faculty can
access the unrestricted library materials” The latter sen-
tence ties together the core policy elements with their
attributes, i.e. USD, retired and unrestricted, to mimic the
type of authorization requirements ABAC model is meant
to capture.

Figure 9 shows the overall synthetic data generation
framework. We start the process with the subject and
object elements of access control sentences in ACP
dataset as they were identified by the original authors.
Next, we search through the Common Crawl web con-
tent to retrieve segments of text that contain the elements
of interest, i.e. the subject and the object. We limit the
language of the retrieved segments to English. Intuitively,
not all of the matching segments appropriately fit with the
semantic of policies in ACP dataset. To filter irrelevant
matches, we first build a language model using the ACP
dataset. Then, we use the conditional probability of each
segment under the computed language model to deter-
mine the semantic fitness of a segment to the context of
ACP dataset. Next, we manually augment policy sentence
with the relevant portion of text from the matching seg-
ment and make necessary changes. The injection process
ends once we collect as much of the relevant segments
as needed to inject sentences of ACP dataset with the
synthetic attributes.

One might argue that the data generation process can
be done entirely manually, by recruiting individuals to
do so. An obvious motivation for the semi-automation is
to generate the synthesized policies as natural as can be.
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This is to say that data generated manually by individu-
als in a controlled experiment settings might be biased
by the individuals’ writing styles, their background knowl-
edge as well as their comprehension of the data generation
instructions. However, using content drawn from a gen-
eral purpose content repository, such as Common Crawl,
captures the natural contexts that normally contains the
elements of interests. Scalability, in terms of the volume
of data and the variety of domains, is another motivation.
The reason is that an automated means of data genera-
tion is designed to at least partially eliminate the need of
domain experts. Table 2 shows examples of the synthe-
sized policies which if generated manually would require
a certain level of domain-specific knowledge.

To this end, we introduce our synthetic natural
language policy dataset of four different domains. It
contains a total of 851 sentences with manual annota-
tions of 867 subject-attribute and 932 object-attribute
instances. Table 3 summarizes the number of elements
along with their attributes in our dataset. To capture
the subject and object elements of ABAC policy along
with their attributes, we develop the following annotation
scheme:

1. e2SA: stands for element#2 in Subject Attributes
Relation. A segment of the sentence that is tagged
with this label corresponds to a value of a core policy
element named subjectType

2. elSA: stands for element#1 in Subject Attributes
Relation. This label is used to tag the part of the
sentence that expresses a value of an attribute that
modifies e2SA

We similarly define e20A, elOA to label objects and
object attributes, respectively. Listing 1 presents the for-
mat for an annotated ACP sentence.

‘ ACP dataset |

Subject & object
policy elements

ACP dataset

Retrieve segments of
the textual Web content

containing policy
elements

Filter the non-
| English segments

Examine the semantic
appropriateness of
segments and to the policy
context

Web textual content I

[

Common Crawl
data

Synthesized and
attributes-rich ACP

Fig. 9 Synthetic data generation framework. The dashed box indicates the manual task in this process

|

| Augment policy inACP |
«——| dataset with attributes from |
| the matching segments |
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Table 2 Examples of the synthesized natural language policies
A B

A full-time first shift lab technician
can update the status ...

A lab technician can update the
status ...

Professor, of economics at
University of NSW, must be able to
access the system ...

Professor must be able to access
the system to ...

Program Committee (PC) must be
selected to review the papers.

Program Committee (PC) must be
selected to review the "borderline"
papers.

Column A contains the original policies as obtained from ACP datasets, and B shows
the policies after being augmented with attributes

Experimental results and performance evaluation
We next present the evaluation we conducted to assess the
effectiveness of our approach in extracting attribute values
and in constructing the value space of potential attributes
of each policy element, i.e., “Module 1: Attribute extraction”
and “Module 2: Suggesting attributes short names” sub-
sections, respectively. In our evaluation, we focus on two
main research questions:

— RQ1I: How effectively —in terms of precision, recall
and F;-score— does our approach extract attributes
of subjects and objects?

— RQ2: How effectively —in terms of precision, recall
and F;-score— does our approach construct the
value space of potential attributes?

To answer RQ1, we first generate the dependency tree
representation of each sentence. We augment the resulted
representation with annotations needed to explore pat-
terns encoding either subject-attribute or object-attribute
relations. Our analysis shows that there exist 125 unique
patterns encoding subject-attribute relation, while the
object-attribute relation is encoded with 240. Table 4
shows the five most frequently occurring patterns for
each relation as per our corpus. The remaining patterns
account for very few valid instances individually. Thus,
we only consider the 5 most occurring ones. Matching
against these 5 patterns generates two sets of candidate
instances, one for each relation. It is worth mentioning
that identifying these patterns is not only valuable to the
purpose of this study, but also to collect seeds to estab-
lish an inductive approach to semi-automate the process

Table 3 The corpus built for the experiment
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of learning patterns of our target relations (Jurafsky and
Martin 2009).

Listing 1 Annotated ACP sentence

An [on—call#elSA][senior#elSA][nurse#
e2SA] may change the list of [
approved#elOA] [lab procedures#e20A]

Next, we build our CNN model with a total of 4 lay-
ers of which two are convolution layers with dropout of
0.2 followed by one max pooling layer and the sigmoid
layer. Throughout the experiments, we utilize the pub-
licly available GloVe pretrained word embeddings of 300
dimensions. GloVe embeddings are trained on 42 billion
words of Common Crawl data using the global word-word
co-occurrence statistics (Pennington et al. 2014, 2017). For
the convolutional layer, we use Relu as an activation func-
tion and 128 filters with a window of size 2. We use default
values for other parameters, e.g., batch size and kernel
initializer, are left as default. The models (i.e. subject-
attribute and object-attribute) are trained for 10 epochs.
To evaluate the performance of our CNN, we employ
a 3-fold stratified cross-validation as well as document
fold validation. In the document fold, the models are
trained on three documents,i.e., datasets, and tested on
the sample of the fourth. The rationale of such evalua-
tion setting is to evaluate how the system will perform on
out-of-domain data. The evaluation measures are recall,
precision and F1-score as shown in Table 5 and defined as
follows:

TP
Recall = ———— (2)
TP + FN
. TP
Precision = ——— (3)
TP + FP
Precision x Recall
F =2 (4)

Precision + Recall

Where TP, FP and FN are the true positives, false positives
and false negatives which are discussed in Sokolova and
Lapalme (2009).

Table 4 Five most occurring patterns in each relation (for more
information regarding components of each pattern, e.g., nsubj,
see De Marneffe and Manning (2008))

Dataset ACP sentences # Subject-attribute  # Object-attribute  Subject-attribute Object-attribute
iTrust 466 511 534 nsubj,amod dobj,amod
Collected ACP 112 144 100 nsubj,prep pobj,amod

IBM App 163 140 195 nsubjpass,amod dobj,prep
CyberChair 110 72 103 nsubj,compound dobj,compound
Total 851 867 932 nsubj,ROOT,amod nsubjpass,amod
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Table 5 Performance results of extracting attribute values using
subject-attribute and object-attribute models (P, R, F; represent
precision, recall and Fy-score, respectively)

Dataset Subject-attribute Object-attribute

P R Fr P R Fi
iTrust 0.97 0.99 0.98 091 0.90 0.90
Collected ACP 093 093 0.93 093 0.95 0.94
IBM App 0.95 0.96 0.96 092 092 0.92
CyberChair 0.97 0.98 0.97 0.88 0.87 0.88
Document fold 0.91 0.80 0.85 0.75 0.69 0.71

The first four rows show the performance of the model when tested on in-domain
data whilst the last row represents how the system would perform on
out-of-domain data

A general observation with regard to the performance
behavior is that the subject-attribute relation extrac-
tion model surpasses the performance of object-attribute
model. A possible interpretation of the overall strength of
the subject-attribute relation (see Table 5) is rooted in the
nature of the instances of this relation. More specifically,
the subject-attribute relation is meant to link system’s
users, which are mostly human entities, with their corre-
sponding attributes. This introduces a level of semantic
consistency between instances belonging to this partic-
ular relation. However, this is not the case with the
object-attribute relation due to the high variability of its
instances. This makes it less likely to be learned from a
relatively small data size. We, therefore, expect that the
accumulation of more labeled instances can substantially
improve the performance.

The first four rows of Table 5 show the means of the
3-fold cross validation across 10 runs. Scores represent the
performance of the model in detecting the valid instances
of both relations, i.e. the performance over the positive
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class. The variance of these means ranges between 0.01
to 0.1. This experiment, the n-fold, represents the perfor-
mance of the model on in-domain data. The high score of
the precision and recall indicates model’s ability to infer
the semantic consistency among candidate instances. To
evaluate how the model would perform when tested on
out-of-domain data, we conduct a document fold exper-
iment. Here, the model is trained on 3 documents and
tested with instances that belong to the fourth domain.
The results of this experiment have shown an expected
drop in the values of precision and recall. However, the
loss is more significant in the case of object-attribute
relation. A potential justification for this behaviour is
that despite the domain differences, there are common
attributes of subjects, e.g. location, age .. etc. that are
shared across domains. Such similarity is less likely to
occur between objects across domains. For instance, a
model trained on data from a medical domain would not
be certain about the attributes of, say, courses and class as
does with medical records. It is also worthy to note that
we have experimented with several other classical learning
algorithms, e.g. SVM and Naive Bayes, trained on manu-
ally engineered features; but, the CNN outperforms other
models.

In addition, we examined how would different per-
centage of labeled data affect the performance of the
attributes extraction model. As shown in Fig. 10, the
performance of subject-attribute relation begins in the
range Of 0.60 to 0.77 Fl-score with just 25% of the
labeled instances per dataset. Then, the performance on
the four datasets improves as the amount of available
data increases. The same observation holds for object-
attribute relation. Due to the space limit, we only show
the results of scalability test on subject-attribute relation
(see Fig. 10).

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30

0.20
25 50

—@— iTrust

y-axis shows the performance using the F; score

—@— Collected ACP

Fig. 10 Scalability test results of the subject-attribute relation.The x-axis indicates the percentage of data used during the experiment while the

75 100

IBM App CyberChair
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In order to address the question RQ2 pertaining the perform
ance of our approach in constructing the value space of subject
and object attributes, we run Algorithms 2 and 3 as dis-
cussed in “Module 2: Suggesting attributes short names”
subsection. Using our dataset, we repeated this experi-
ment twice, once with the values of subject attributes as
input and the other with the values of object attributes.
The count of the attribute values is shown in Table 3.
We again utilized the GloVe pretrained word embeddings
of 300 dimensions for transforming the textual attribute
values to numerical vectors. This experiment resulted in
clusters of values as exemplified in the rows of the last col-
umn in Table 7. For evaluation, the corresponding class
label of each cluster (i.e., the short name) is determined
according to the concept that makes up the majority of
values in a cluster. Then, the goodness of each cluster is
measured using the notion of recall, precision and F;-
score. In the context of clustering, recall, precision and
Fi-score of cluster j with class label i are defined in Karol
and Mangat (2013); Steinbach et al. (2000) as follows:

oy
Recall(i,j) = (5)
nj
oy
Precision(i,j) = (6)
i

Precision(i, ) x Recall(i,j)

FiGij) =2
1)) Precision(i, j) + Recall(i, j)

(7)

Where 7; is the number of attribute values in cluster j,
n; is the number of values in class i and #;; is the number
of attribute values belonging to class i in cluster j. Table 6
shows the average precision, recall and Fj-score across
resultant clusters that represent value spaces of attributes
in our data. In the majority of cases, the performance is
promising.

To demonstrate the capabilities of our approach, Table 7
presents examples of clusters detected in our experiment.
As can be seen, our approach successfully defines rea-
sonable attributes of various policy elements by clustering
relevant values into value spaces. For instance, we were
able to automatically capture five attributes of a profes-
sor and four for a lab technician and the same applies on
other elements in Table 7. To further understand the suc-
cess and failure factors that affect the quality of clusters,

Table 6 Performance results of constructing the value space of
subject and object attributes

Dataset Subject attributes Object attributes

P R F P R F
iTrust 0.82 0.84 0.81 0.80 0.79 0.78
Collected ACP 0.89 0.90 0.89 0.82 0.85 0.82
IBM App 0.89 0.87 0.88 0.88 0.86 0.85
CyberChair 0.85 0.87 0.85 0.79 0.85 0.80
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Table 7 Sample results of attributes key/value pairs of several
subject elements in our dataset

Policy element (dataset) Attribute

Short name/cluster label Value space

Professor (IBM App) Employment_type

Track
Department

Full-time, part-time

Tenure, non-tenure
Of economics,
department

of informatics, at the
college

of information
sciences,

at the department of
finance

College At the business school

At the university of
newcastle,

At the university of
nsw

University

Rank
Affiliation

Lab technician (iTrust) Senior, junior

At the cancer
research lab

On - call, first - shift,
second - shift

With a bachelor’s
degree,

with IHC certificate

Working_hours

Qualification

Administrator (iTrust) Rank Senior, junior,

associate

Affiliation General hospital,

children’s
Hospital weman'’s
hospital

Authorization Licensed, unlicensed

Author (CyberChair) Corresponding,

contributing

Type

The value space of each attribute is detected as discussed in the “Module 2: Suggesting
attributes short names” subsection

we performed a manual inspection of the experimental
results. Building upon this analysis, we made two main
observations. First, forming quality clusters requires com-
plete requirements specification. Note that the idea of
using clustering techniques to construct value spaces of
attributes is built upon the assumption of the presence
of related values. This is a fair assumption since, for example,
defining an authorization requirement that targets, say,
“senior lab technicians” implies that different consider-
ations are made for the “juniors” The presence of both
attribute values, i.e., senior and junior, in the NLACPs
enables the discovery of meaningful clusters and vice
versa. Second, a general purpose word embeddings, e.g.,
embeddings trained on Common Crawl data, might be
inadequate in capturing the semantics of domain sensitive
attribute values. The fact that could justify the perfor-
mance drop when experimenting with object attributes of
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iTrust and CyberChair datasets. Consider for instance the
following sentences from CyberChair document:

— Program Committee (PC) must be selected to review
the borderline papers.

— Program Committee Chair (PCC) must inform the
maintainer about the rejected papers.

— The corresponding authors of accepted papers must
submit the brushed-up versions of the papers.

Unlike the words “accepted” and “rejected’; that have a
more or less a consistent semantic regardless the con-
text, the semantic of the word “borderline” is context
dependant and domain sensitive. In such a case, a general
purpose embeddings, similar to the one we used, might
not capture the relatedness among the words (i.e., the
attribute values). One technique to address this issue is to
utilize a domain-specialized embedding representation of
words as discussed in Dingwall and Potts (2018).

It is worth mentioning that, aside from the DBSCAN
algorithm, we have also explored the use of K-means
(Hartigan and Wong 1979) and affinity propaga-
tion (AP) (Frey and Dueck 2007) as representative
techniques of the partition-based clustering and
exemplar-based clustering, respectively. However, for our
purpose DBSCAN performs better than other two the
algorithms.

Limitations

Evaluating the proposed approach with real-world
requirements would be ideal. Hence, the use of the
synthetic data might impose a limitation on this work.
However, acquiring the real data from real organizations
might not be feasible considering the privacy-sensitive
nature of the data. We, therefore, develop our synthetic
data that, while not real, is intended to be realistic. Partic-
ularly, to ensure that our synthetic data preserves the key
characteristics of real data, we made the following design
decisions: (1) the data was built upon real requirement
documents, (2) the injected attributes were obtained from
the Web content in an attempt to capture the real-world
context of a particular policy element, and (3) the manual
part of the injection process was conducted by Ph.D.
students with expertise in access control domain. Hence,
we believe that our synthetic data is representative of
the real-world data and so is the performance. Gener-
ally speaking, the nature of privacy-sensitive content
is a major challenge in devising data-driven securi-
ty/privacy solutions, such as insider threat detection or
clinically-relevant text analysis tools, to name few. In such
situations the synthetic content has been considered as an
alternative (Glasser and Lindauer 2013; Oak et al. 2016).
Another limitation of the current work is that it captures
the attributes if their values are explicitly mentioned in
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the NLACPs. However, situations exist where authoriza-
tion attributes are implicitly mentioned and need to be
understood from the context. This is likely to occur when
a pair of subject and object attributes need to match for a
rule to be applicable. Consider for example the following
sentence:

— To be able to protect the reviews from outsiders, each
reviewer gets his or her own directory

The bold portion of the sentence implies the pres-
ence of two attributes, namely ID and owner, that are
required to assert the condition; reviewer.ID == direc-
tory.owner. Since the values of these attributes are not
explicitly expressed in the sentence, the current system
cannot recognize them.

Related work

We categorize the related work into two different research
lines: (1) automated or semi-automated transformation
of natural language access control policy to machine-
executable form ( referred to as top-down policy engi-
neering) and (2) policy mining (known as the bottom-up
approach of policy engineering).

Natural language and access control policy
Several studies researched various aspects of the auto-
mated analysis of natural language ACPs. In order to
review these prior efforts, we introduce six compari-
son dimensions along which each related work has been
characterized: (1) the building blocks of the proposed
framework; (2) the underlying techniques used for each
component; (3) indicators or features used if learning
approach is employed; (4) the dataset used for the evalu-
ation; (5) size of the dataset (measured by the number of
sentences), and (6) the average of available performance
metrics. Table 8 presents a summary of the findings, while
the rest of this section discusses each study separately.
Xiao et al. (2012) were the first to introduced an auto-
mated approach, named Text2- Policy, to construct access
control policy rules out of natural language project arti-
facts. They built their approach upon matching against 4
predefined patterns to discern ACP sentences from other
types of sentences. Then, they defined heuristics based on
the same set of patterns to extract instances that jointly
compose ACP rules. The extraction task is followed by a
transformation process in which a formal representation
of the extracted rule is generated. The reported results
achieved an average recall of 89.4% with a precision of
88.7% in the identification phase and an accuracy of 86.3%
on the extraction. Evaluation results of the transformation
phase were not reported. However, their approach cannot
capture ACP sentences that do not follow the predefined
patterns; and, it has been shown that only 34.4% of ACPs
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Table 8 ACP extraction from natural language artifacts in the related work
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Study Proposed Underlying tech Indicators Dataset Size Performance
framework
(Xiao et al. 2012) ACP sentence Semantic N/A iTrust, BMApp 927 Prec:88.7%
identification patterns Rec:89.4%
matching
ACP elements Heuristics over N/A Access control 241 Accu:86.3%
extraction the patterns (AC) sentences in:
iTrust, IBM App,
and collected
ACP
Transformation Heuristics N/A N/R N/R N/R
to formal model
(Slankas and Williams 2013)  ACP sentence Majority vote of Words,synonyms,PO$rust 1159 Prec:87.3%
identification KNN, Naive Bayes  named entities, & Rec:90.8%
(NB) and SVYM Levenshtein
classifiers distance in the
case of KNN
ACP elements RE using N/A ACsentencesin: 409 Prec:46.3%
extraction bootstrapping; iTrust Rec:53.6%
seeding patterns
are derived from
dependency tree
NB classifier of were not clearly
candidate reported
instances
(Slankas et al. 2014) ACP sentence KNN Levenshtein iTrust,IBM App, 2477 Prec:81%
identification distance Cyberchair, Rec:65%
collected ACP
ACP elements RE using N/A AC sentences in: 1390 N/R
extraction bootstrapping; iTrust,IBM App,
seeding patterns Cyberchair,
are derived from collected ACP
dependency tree
NB classifier of Pattern itself,
candidate relationships to
instances resource and
subject, POS of
subject and
resource
(Narouei et al. 2017) ACP sentence NB and SVM A total of 821 Trust, IBM App, 2477 Prec:90%
identification classifiers features Cyberchair, Rec:90%

(Narouei et al. 2017)

(Narouei and Takabi 2015a)

(Narouei and Takabi 2015)

ACP sentence
identification

ACP elements
extraction

ACP elements
extraction

Deep recurrent
neural network

SRL

SRL

categorized into:
pointwise mutual
information,
security,syntactic
complexity, and
dependency
features

Words
embeddings

N/A

N/A

collected ACP

ACPData, 5137
iTrust,IBM App,
Cyberchair,

collected ACP

AC sentences in: 726
iTrust, IBM App,
Cyberchair,

collected ACP

ACsentencesin: 841
iTrust, IBM App,
Cyberchair,

collected ACP

Prec:81.28%
Rec:74.21%

Prec:58.3%
Rec:86.3%

Prec:63.5%
Rec:86.25%

In this table, N/A stands for not applicable while N/R means not reported
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can be captured with Text2Policy’s patterns (Slankas et al.
2014).

Slankas et al. (Slankas and Williams 2013) proposed
Access Control Relation Extraction (ACRE), a machine
learning based approach for ACP elements extraction
from natural language documents. ACRE can be bro-
ken down to an ACP sentence identification phase fol-
lowed by ACP elements extraction. In the identification
phase, the authors investigated whether words, words’
synonyms, POS and named entities could be used as
indicators to identify ACP sentences. In the elements
extraction phase, a bootstrapping technique built upon
patterns drawn from dependency tree representations of
sentences has been adopted to extract ACP instances.
Slankas et al. empirically validated the proposed approach
on a version of iTrust that contains 1159 sentences.
Their approach achieved a recall of 90.8% with a preci-
sion 87.3% in the identification phase, whereas in ACP
rule extraction authors reported 46.3% precision with
a recall of 53.6% as the best performance they can
achieve.

Slankas et al. (2014) extended ACRE, which was first
introduced in Slankas and Williams (2013). The main
components of the framework, as well as the underlying
techniques, are similar to their original proposal with only
subtle modifications. What clearly distinguishes this work
from its predecessor is the evaluation. In Slankas et al.
(2014), Slankas et al. validated their proposed approach
against larger datasets collected from 5 sources of policy
data that were previously used in the literature. For the
identification phase, K-nearest neighbor (KNN) learning
approach was employed to discern ACP sentence from
other types of sentences. Further, the authors achieved an
average classification precision and recall of 81% and 65%,
respectively. For elements extraction phase, on the other
hand, performance was reported per dataset, meaning the
overall average scores were not reported.

Narouei et al. (2017) designed a new set of features
to distinguish ACP from non-ACP sentences. Using the
proposed feature set and following the classical machine
learning pipeline, the authors reported an average preci-
sion and recall of 90%.

Narouei et al. (2017) proposed a top-down policy
engineering framework to particularly aid ABAC policy
authoring. They adopted the following pipeline: ACP sen-
tence identification followed by policy elements extrac-
tion phase. For the identification task, the authors used
a deep recurrent neural network that uses pre-trained
word embeddings to identify sentences that contain access
control policy content; and, they achieved an average pre-
cision of 81.28% and 74.21% for recall. For policy elements
extraction, the authors suggested the use of semantic role
labeler (SRL), but no evaluation results were reported
(Narouei et al. 2017). Using the language of ABAC model,
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the authors regarded the arguments of SRL tagger as the
attribute values while argument definitions were seen as
the keys or what are so called short names. Consider for
instance the two ACPs sentences : (1) A registered patient
can access his/her full health record and (2) A registered
patient can read his/her full health record. Following the
approach of Narouei et al. (2017), attributes would be
represented as follows:

— accessor = patient
— reader = patient

where reader and accessor are the arguments definition
obtained from the SRL tagger. Such a direct mapping
from the SRL output (i.e. arguments and argument def-
initions) to attribute values and short names of ABAC
model is insufficient. This is mainly because of two rea-
sons. First, SRL labels arguments only with respect to
the predicate, e.g. access and read. Therefore, attributes
of subjects and objects such as registered and full will
not be captured using this approach. Second, from the
SRL perspective, an argument definition, e.g. accessor and
reader, describes the semantic relation between an argu-
ment and a predicate in a sentence. This description,
however, might not be an appropriate short name of an
attribute as can be seen in the above-mentioned exam-
ple. That is from ABAC standpoint, patient is a value of
one attribute called subjectType, or any semantically sim-
ilar attribute name, rather than the two attribute names
—reader and accessor— suggested by the SRL tagger.
Narouei and Takabi (2015a, b) proposed a new approach
for extracting policy elementls from ACP policy sen-
tences using semantic role labeler (SRL). The authors
reported that they were able to achieve higher extrac-
tion recall (88%) when compared to ACRE (Slankas et al.
2014). This boost of recall, however, comes at the cost
of precision. While we are aware that the lack of bench-
mark dataset makes the comparison task non-trivial, the
reported results suggest that a combination of policy
extraction approaches by Slankas et al. (2014) and Narouei
and Takabi (2015a) can potentially balance both precision
and recall values. Further, Narouei et al. (2018) inves-
tigated the idea of improving SRL performance using
domain adaptation techniques. The authors reported that
they were able to identify ACP elements with an average
F1 score of 75%, which bested the previous work by 15%.
Turner designed an ABAC authoring assistance tool
that allows a security architect to configure an ABAC
expression as a sequence of fields, namely subject, sub-
ject attributes, object, and object attribute, etc. (Turner
2017). The natural language ABAC policy will then be
provided to the tool according to the predefined fields.
The aim is to create an ABAC authoring environment
of business-level user experience while delegating the
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transformation of the provided input to machine-readable
ABAC rules to the application. Unlike our proposal, fol-
lowing Turner’s approach, information relevant to ABAC
attributes is still extracted manually. Although they men-
tioned that this task could be automated, their approach
is manual. Additionally, Turner’s approach constrains the
NLACP’s context-free grammar while we consider unre-
stricted natural language policies.

In comparison with the above-mentioned studies, our
work is the first to evaluate the automation task in the
context of ABAC.

ABAC policy mining
Policy mining algorithms were proposed to automate
(or semi-automate) the migration from traditional access
control mechanisms to a target access control model, be it
ABAC or role-based access control (RBAC). In the context
of ABAC, the mining task is mostly a two-phase process:
(1) generating the candidate rules and (2) consolidating
the resulting rules to optimize policy goodness measures.
In this field of research, studies could be grouped into
three main themes: heuristic-based, machine learning-
based and evolutionary-based algorithms. Xu et al. pro-
posed several heuristic-based policy mining algorithms
to construct ABAC rules given various forms of access
control models (Xu and Stoller 2013; 2014; 2015). Later,
Gautam et al. proposed to model the ABAC mining prob-
lem as Constrained Weighted Set Cover Heuristic to bet-
ter optimize the mined policy (Gautam et al. 2017). While
Xu and Gautam focused on mining affirmative ABAC
authorization rules, Padmavathi et al. proposed a more
systematic, yet heuristic, approach to mine both posi-
tive and negative rules (Iyer and Masoumzadeh 2018).
Mocanu et al. first designed and evaluated an ABAC
candidate rules generation framework using machine
learning techniques. This approach benefits from the
capabilities of the generative learning algorithms to gen-
erate samples of candidate rules, given information of
user and resource attributes as well as the input policy
(e.g. access control list) (Mocanu et al. 2015). Benkaouz
et. al. used KNN to cluster the candidate rules into
groups of similar rules. Then, the representative rules of
each cluster are selected to form the mined ABAC sys-
tem (Benkaouz et al. 2016). ABAC mining problem has
also been addressed using an evolutionary approach with
which each individual in the population is a candidate rule
(Medvet et al. 2015). To grow the set of initial rules, the
authors defined mutation and crossover operations to be
operated over the initial set. The resulted rules are associ-
ated with fitness value that quantifies the goodness of the
rules.

With this, it is clear that ABAC policy mining is similar
to the spirit of our work as both targets the automated
development of ABAC rules. The primary downside of
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applying mining solutions is its significant lack of seman-
tics. Further, mining algorithms often require prior knowl-
edge of the target model, e.g., the attributes of subjects
and objects, to define the set of rules. Contrary to that,
our work follows a top-down engineering approach which
is preferred for establishing a more representative model.
It is also worthy to mention that our approach does
not assume any external knowledge regarding the pol-
icy. Instead, it initiates the process directly on natural
language requirement specifications.

Conclusions and future work

A practical framework was proposed to analyze natu-
ral language ACPs, and automatically identify the core
properties needed to define the attributes contained in
those policies. To the best of our knowledge, we present
the first evaluated effort to solve this problem. Our pro-
posed approach is built upon natural language process-
ing and machine learning techniques and in addition to
identifying attributes, maps attribute values to attribute
keys. When extracting the values of subject and object
attributes, our approach achieved an average F1-score of
0.96 and 0.91, respectively. We also obtained an average
F1-score of 0.85 and 0.81 in the task of constructing the
value space of subject attributes and object attributes,
respectively. The relatively high values of the F1-measure
indicate that our proposed method is promising. While
the current results are encouraging, further data collec-
tion effort is needed to improve the performance over
out-of-domain data. Our future research directions are
focused on devising automated means in order to better
support the overall ABAC policy authoring experience.

Endnotes

L Action attribute has been added for the sake of com-
pleteness of our example though it was not particularly
part of this work. Extending the current framework to
include action element is feasible in the presence of
required data

2Hypernym is an expression of a more generic concept
compared with a given word (see http://www.nltk.org/
howto/wordnet_Ich.html)

3 These documents can be downloaded from:
https://sites.google.com/site/accesscontrolruleextraction/
documents
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