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Abstract

A main challenge of attribute-based access control (ABAC) is the handling of missing information. Several studies
have shown that the way standard ABAC mechanisms, e.g. based on XACML, handle missing information is flawed,
making ABAC policies vulnerable to attribute-hiding attacks. Recent work has addressed the problem of missing
information in ABAC by introducing the notion of extended evaluation, where the evaluation of a query considers all
queries that can be obtained by extending the initial query. This method counters attribute-hiding attacks, but a naïve
implementation is intractable, as it requires an evaluation of the whole query space. In this paper, we present a
framework for the extended evaluation of ABAC policies. The framework relies on Binary Decision Diagram (BDDs)
data structures for the efficient computation of the extended evaluation of ABAC policies. We also introduce the
notion of query constraints and attribute value power to avoid evaluating queries that do not represent a valid state
of the system and to identify which attribute values should be considered in the computation of the extended
evaluation, respectively. We illustrate our framework using three real-world policies, which would be intractable with
the original method but which are analyzed in seconds using our framework.

Keywords: Attribute-based access control, Policy evaluation, Missing attributes, Attribute power, Attribute-hiding
attacks

Introduction
Attribute-Based Access Control (ABAC) is emerging as
the de facto paradigm for the specification and enforce-
ment of access control policies. In ABAC, policies and
access requests are defined in terms of attribute name-
value pairs. This provides an expressive, flexible and
scalable paradigm that is able to capture and manage
authorizations in complex environments.
Although ABAC provides a powerful paradigm for

access control, ABAC systems require that all the infor-
mation necessary for policy evaluation is available to the
policy decision point, which might be difficult to achieve
in modern systems. Recent years have seen the emergence
of authorization mechanisms that go beyond the view of
a centralized monitor with full knowledge of the system.
Authorization mechanisms increasingly rely on external
services to gather the information necessary for access
decision making (e.g., Amazon Web Services rely on
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third-party identity providers and federated identity
systems, the OAuth 2.0 protocol enables delegation of
authorization). The use of external information sources
for attribute retrieval makes it difficult to guarantee and,
in some cases, even to check that all necessary informa-
tion has been provided. Moreover, in some domains like
IoT, it might be difficult and costly to gather (accurate)
information needed for policy evaluation. Missing infor-
mation can significantly influence query evaluation and
pose significant risks to a large range of modern systems.
To this end, existing ABAC models are often equipped

with mechanisms to handle missing attributes during pol-
icy evaluation.
However, thesemechanisms have some intrinsic drawbacks

(Crampton and Huth 2010; Tschantz and Krishnamurthi
2006). For instance, eXtensible Access Control Markup
Language (XACML) (OASIS 2013), the de facto standard
for the specification and evaluation of ABAC policies, pro-
vides a mechanism to deal with missing attributes. How-
ever, Crampton et al. (2015) showed that the evaluation
of a XACML query can yield a decision that does not
necessarily provide an intuitive interpretation on whether
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access should be granted or not due to the fact that some
information needed for the evaluation might be missing.
These drawbacks make the evaluation of ABAC policies
vulnerable to attribute hiding attacks where users can
obtain a more favorable decision by hiding some of their
attributes (Crampton and Morisset 2012).
To make the evaluation of ABAC policies robust against

attribute hiding attacks, previous work (Crampton et al.
2015) has proposed a novel approach that allows for an
extended evaluation of ABAC policies.
In a nutshell, the authors suggest that the evaluation of a

given query is calculated using the evaluation of all queries
that can be constructed from the initial query. This way,
the extended evaluation unveils the risks when informa-
tion could be, intentionally or not, hidden to the policy
decision point. However, this approach requires exploring
the state space for all possible queries, which is exponen-
tial in the number of attribute values, and therefore not
particularly efficient.
In this work, we present a formal framework for the

extended evaluation of ABAC policies that addresses this
drawback, extending our previous work (Morisset et al.
2018). Our framework includes several evaluation meth-
ods, as well as the notions of query constraint, which is
used to exclude those queries that are not possible within
the system from the query space. Our framework relies on
binary decision diagram (BDD)-based data structures for
the encoding ABAC policies. As shown in previous work
(Bahrak et al. 2010; Fisler et al. 2005; Hu et al. 2013), these
data structures provide a compact encoding for storing
the decisions yielded by an ABAC policy for every query
and for efficient policy evaluation. Moreover, the frame-
work is equipped with an efficient method to compute
the extended evaluation directly on the BDD structure. To
further optimize the computation of the extended evalua-
tion, we also introduce the notion of attribute value power,
which provides insights into the impact of attributes on
decision making. This can help determine which attribute
should be considered in the computation of the extended
evaluation by excluding attribute values when they have
no power (i.e., they have no impact on decision making).
To the best of our knowledge, this is the first work that
investigates the impact of attributes on the evaluation of
ABAC policies.
We demonstrate our approach on three complex case

studies, where a naïve approach would deal with a query
space comprising several millions of states, whereas our
approach compiles in a few seconds a compact decision
diagram. Compared to Morisset et al. (2018), we also ana-
lyze the time required for policy evaluation using BDD
data structures and we show that our framework out-
performs SAT-based policy frameworks. Moreover, we
present a quantitative analysis of the attribute value power
for the three case studies.

The remainder of this paper is organized as follows. The
next section presents preliminaries on ABAC and the no
tion of extended evaluation. “Problem statement” section
introduces a motivating example and provides a for-
mulation of the problem. “Query constraints” section
presents the notion of query constraint. “Attribute power”
section presents the notion of attribute value power.
“Efficient extended evaluation computation” section pres-
ents a novel algorithm to compute the extended query
evaluation. “Case studies” section provides a valida-
tion of our approach on three real-world policies.
Finally, “Related work” section discusses related work and
“Conclusion” section concludes the paper. We provide the
proofs of the theorems in appendix.

Preliminaries
This section presents a general view of how Attribute-
Based Access Control (ABAC) policies and queries are
evaluated using PTaCL (Crampton and Morisset 2012),
which provides an abstraction of the XACML standard
(OASIS 2013). We first present the syntax of PTaCL,
which encompasses two different languages: one for tar-
gets, which is used to decide the applicability of a policy
to a query, and another for policies, which is used to spec-
ify how policies are combined together. We then present
two evaluation functions proposed for PTaCL: the stan-
dard evaluation function, introduced in Crampton and
Morisset (2012) and the extended evaluation function,
introduced in Crampton et al. (2015).

ABAC syntax
In ABAC, queries and policies are defined in terms of
attribute name-value pairs (instead of the traditional triple
subject, object, access mode). More precisely, let A =
{a1, . . . ,an} be a finite set of attributes, and given an
attribute a ∈ A, let Va be the domain of a. The set
of queries QA is then defined as ℘(⋃n

i=1 ai × Vai), and
a query q = {(a1, v1), . . . , (ak , vk)} is a set of attribute
name-value pairs (ai, vi) such that ai ∈ A and vi ∈ Vai .
A query encompasses both a specific request for access,
and a current view of the world describing the different
entities concerned by that request.
The PTaCL language is tree-based, i.e. policies are recur-

sively constructed from atomic policies using operators.
This vision follows the traditional “separation of concerns”
principle: each policy might regulate accesses to a specific
sub-domain of an organization, or regulate accesses done
by a specific category of users or in specific contexts. In
order to identify which policies are applicable to which
targets, PTaCL introduce a target language TA, such that
a target t ∈ TA is defined as:

t = (a, v) ∣ op(t1, . . . , tn)
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where (a, v) is an attribute name-value pair and op is an n-
ary operator defined over the setD3 = {1, 0,�}, indicating
that the target matches the query, that the target does not
match the query, and that it is indeterminate whether the
target matches the query or not (the semantical evaluation
of targets is described below). Table 1 presents the oper-
ators provided by PTaCL as well as operators commonly
used in ABAC languages. It is worth noting that the set
of operators {¬,E1, ⊔̃} is canonically complete (Cramp-
ton and Williams 2016), i.e. any 3-valued operator can be
constructed using these three operators.
PTaCL also defines a policy languagePA, where a policy

p ∈ PA is defined as:

p = 1 ∣ 0 ∣ (t,p) ∣ op(p1, . . . ,pn)

where 1 and 0 represent the allow and deny decisions
respectively, (t,p) is a target policy and op is an n-ary
operator, also defined on the three-valued set {1, 0,�},
where � represents the not-applicable decision. Although
this set is syntactically equivalent to the one used for tar-
gets, the meaning of the values in the set depends on
whether it is used as a target or as a policy. This should
always be clear from the context in the remainder of this
paper.

ABAC evaluation
Given the set of policies PA, the set of queries QA and
a set of decisions D, an evaluation function is a function
�⋅� ∶ PA ×QA → D such that, given a query q and a policy
p, �p�(q) represents the decision of evaluating p against q.
PTaCL has two main policy evaluation functions, which
handle missing attributes in a different way. For the sake
of uniformity, hereafter we might use different notations
than those used in the original publications.

Standard evaluation
The standard evaluation consists in evaluating a target to
�when the attribute is completely missing from the query,
to 0 if the attribute is present in the query, but without

the appropriate value, and to 1 otherwise. A policy then
evaluates to a set of decisions within D7 = ℘({1, 0,�})/∅
where 1 and 0 indicate that access should be granted or
denied respectively, and � that the policy is not applicable
to a given query.
Non-singleton decisions are returned when the query

does not provide the information necessary to evalu-
ate a target (i.e., the target evaluates to �). Intuitively,
non-singleton decisions correspond to the indeterminate
decision in XACML (Morisset and Zannone 2014).
More formally, the semantics of a target t is given by the

function:

�⋅�T ∶ TA ×QA → D3

�(a, v)�T(q) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if (a, v) ∈ q
� if ∀v′ ∈ Va ∶ (a, v′) /∈ q
0 otherwise

�op(t1, . . . , tn)�T(q) = op (�t1�T(q), . . . , �tn�T(q))

The standard semantics of a policy p is given by the
function:

�⋅�P ∶ PA ×QA → D7

�1�P(q) = {1}
�0�P(q) = {0}

�(t,p)�P(q) =
⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

�p�P(q) if �t�T(q) = 1
{�} if �t�T(q) = 0
{�} ∪ �p�P(q) otherwise

�op(p1, . . . ,pn)�P(q) = op↑ (�p1�P(q), . . . , �pn�P(q))

where, given an operator op ∶ D3 ×D3 → D3 and any non-
empty sets X,Y ⊆ D3, op↑ ∶ D7 × D7 → D7 is defined as
op↑(X,Y) = {op(x, y) ∣ x ∈ X ∧ y ∈ Y}. Intuitively, op↑
corresponds to operator op extended in a point-wise way
to sets of decisions.

Table 1 Operators on the setD3 = {1, 0,�}

d1 d2 ¬d1 ∼ d1 E1(d1) d1⊔̃ d2 d1 ⊓ d2 d1 △ d2 d1⊔̃ d2 d1 ⊔ d2 d1 ▽ d2

1 1 0 1 � 1 1 1 1 1 1

1 0 0 1 � 0 0 0 1 1 1

1 � 0 1 � � � 1 1 � 1

0 1 1 0 0 0 0 0 1 1 1

0 0 1 0 0 0 0 0 0 0 0

0 � 1 0 0 0 � 0 � � 0

� 1 � 0 1 � � 1 1 � 1

� 0 � 0 1 0 � 0 � � 0

� � � 0 1 � � � � � �
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Extended evaluation
The extended evaluation relies on a non-deterministic
attribute retrieval (Crampton et al. 2015)1. The funda-
mental intuition is to model the fact that a query might
represent a partial view of the world, whereby some
attribute values are missing.
The extended evaluation of an ABAC policy is com-

puted using two functions: the simplified evaluation func-
tion and the extended evaluation function. The simplified
evaluation function �⋅� ignores missing attributes,2 and
therefore always returns a single decision. Formally:

�⋅�B ∶ PA ×QA → D3

�1�B(q) = 1
�0�B(q) = 0

�(t,p)�B(q) = {
�p�B(q) if �t�T(q) = 1
� otherwise

�op(p1, . . . ,pn)�B(q) = op(�p1�B(q), . . . , �pn�B(q))

The extended evaluation function evaluates a query to
all possible decisions that can be obtained by adding pos-
sibly missing attributes. Hereafter, we represent a query
space as a directed acyclic graph (save for self-loops)
(QA,→), where QA is a set of queries, and →⊆ QA ×QA
is a relation such that, given two queries q, q′ ∈ QA, q → q′
if and only if q′ = q∪{(a, v)} for some attribute a ∈ A and
some value v ∈ A.
Note that some extensions of a query qmay not be pos-

sible. For instance, for a given Boolean attribute, it might
not make sense to have in the same query both true and
false for that attribute. Hence, Crampton et al. introduce
in Crampton et al. (2015) the notion of negative attribute
value to explicitly indicate that an attribute cannot have
a certain value in a given context and the notion of well-
formed predicate wf ∶ QA → B over queries to ensure that
a query does not contain both an attribute value and its
negation.
Based on these notions, the extended evaluation func-

tion �⋅�E is defined as follows:

�⋅�E ∶ PA ×QA → D8 = ℘({1, 0,�})
�p�E(q) = {�p�B (q

′
) ∣ q →∗ q′ ∧wf(q′)}

where →∗ denotes the reflexive-transitive closure of →.
With the restrictions imposed on →, the relation →∗
reduces to the subset relation on queries. It is worth
observing that �⋅�E returns the empty set for any query
that does not satisfy wf. In “Query constraints” section
we will refine predicate wf by introducing the notion
of query constraint to capture more complex domain
requirements.

Problem statement
We illustrate the drawbacks of the standard and extended
evaluation functions through a sample policy. Consider a
system wherein access is based on the nationality of users.
In particular, the system allows Belgians to access system
resources, whereas the Dutch are not. This policy can be
represented as follows:

p = ((nat,BE), 1)
�
((nat,NL), 0)

Standard evaluation function �⋅�P: Crampton et al.
(2015) have shown that the standard evaluation, which
is the one used by XACML, can yield a decision that
does not necessarily provide an intuitive interpretation on
whether access should be granted or not due to the fact
that some information needed for the evaluation might
be missing. In other words, given a policy, it is possi-
ble for a query to evaluate to a set of decisions D such
that there exists a decision d ∈ D for which the query
extended with additional attribute values would not eval-
uate to d, while there could be some decision d′ ∉ D for
which the query extended with some additional attribute
values would evaluate to d′. We exemplify these issues in
the following example.
Consider a user submitting the query q = {(nat,BE)},

stating that the user is Belgian. This query evaluates
�p�P({(nat,BE)}) = {1}, i.e. the access is granted. How-
ever, it is possible for a user to have multiple nation-
alities, and in some cases, it might be possible for a
user to hide some nationalities3. In our case, the user
might be hiding that she also has a Dutch nationality,
in which case the access should have been denied since
�p�P({(nat,BE), (nat,NL)}) = {0}.

Extended evaluation function �⋅�E: To overcome the
drawbacks of function �⋅�P, given a policy p and a query
q, a policy enforcement point (i.e., the point in the system
in charge of enabling an access query or not) can evaluate
�p�E(q) in addition to �p�B(q), to determine whether any
missing attribute could change the evaluation. In partic-
ular, we obtain �p�E({(nat,BE)}) = {1, 0} indicating that
there exists a query (i.e., a view of the world) reachable
from q that should be denied.
Computing �p�E(q), however, requires evaluating all

queries that can be constructed from the initial query q.
This leads to two main problems:

– A naïve implementation of �⋅�E requires exploring a
very large query space, making policy evaluation
inefficient.

– Not all queries that can be constructed from the
initial query might be a plausible view of the world.
The evaluation of those queries can lead to
misleading decisions.
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To visually represent these problems, consider (the por-
tion of) the query space in Fig. 1, which is explored in
the evaluation of query q. In the figure, nodes represent
queries (with q0 the empty query) and edges are annotated
with a label indicating how a query has been extended, i.e.
qiNL→ qj denotes qj = qi ∪ {(nat,NL)}.
Concerning the first problem, we have to account that

there are 206 sovereign states recognized by the United
Nations4, and users can have more than one nation-
ality. Therefore, computing �p�E(q) requires evaluating
2205 queries (i.e., the queries that can be constructed
from the initial query {(nat,BE)}), which is clearly
infeasible.
More importantly, ignoring domain constraints can

result in decisions that cannot be reached in practice, thus
providing misleading information for decision making.
We illustrate this using two examples.
Although there is no limit on the number of nationali-

ties individuals can hold according to international laws,
it is reasonable to assume that this number is limited. For
the sake of exemplification, let us assume that individuals
cannot hold more than three nationalities.
According to this domain constraint, no queries formed

by four or more attribute name-value pairs are reach-
able from the initial state (i.e., queries q12 to q16 in
Fig. 1) as they are not plausible views of the world. If
those queries are evaluated, the access control system can
return decision that cannot be reached in practice. For
instance, consider q10 = {(nat,BE), (nat,GB), (nat, FR)}.
The (simplified) evaluation of q10 against policy p returns
a permit decision, i.e. �p�B(q10) = {1}. However, ignor-
ing domain constraints, we have �p�E(q10) = {1, 0}. In
fact, the extended evaluation of q10 requires evaluating
q15 = q10 ∪ {(nat,NL)}, which however is not a plausible
view of the system according to the domain requirement.
As another example, one can consider that several

countries have constraints on double nationality. Suppose,

for instance, that Austria does not allow dual national-
ity with the Netherlands5. In this case, we should exclude
from the state space any query containing both attribute
name-value pairs (nat,NL) and (nat,AT) (i.e., queries q7,
q12, q14 and q16 in Fig. 1). Accordingly, given the query
{(nat,AT)}, we expect this request to be never denied,
even if some attribute is missing.
In contrast, if domain constraints are neglected, we

obtain �p�E({(nat,AT)}) = {1, 0,�}.

Contribution In the remainder of the paper, we will
exploit these observations to establish the foundations
for the design of practical policy frameworks supporting
the extended evaluation of attribute-based access control
policies. In particular:

– We introduce the notion of query constraint to
identify which views of the world are plausible based
on domain specific requirements and assumptions, thus
constructing a realistic query space (“Query constraints”
section).

– We introduce the notion of attribute value power to
determine how much an attribute value is capable
of triggering a specific decision (“Attribute power”
section).

– We investigate practical approaches for the
computation of the extended evaluation function
�⋅�E (“Efficient extended evaluation computation”
section).

Query constraints
A non-deterministic evaluation of ABAC policies requires
the construction of all possible views of the world from a
given query.
As shown above, many of these views may not be pos-

sible in practice. In fact, a system can be characterized
by domain requirements and assumptions that determine

Fig. 1 Portion of the query space
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which views of the world are plausible and which are not.
The main problem lies in the fact that domain require-
ments and assumptions are typically defined outside the
authorization mechanism and, thus, not available for pol-
icy evaluation.
It is worth emphasizing here that there is a fundamen-

tal distinction between queries that are not possible and
queries that should be denied. In the previous section, a
query including both Austrian and Dutch nationalities is
neither denied nor granted, but considered instead as not
possible.
To account for domain requirements within policy eval-

uation, we introduce the notion of query constraint. First,
we present a language for the specification of query con-
straints and then we define a function for their evaluation.
Syntactically speaking, the language for constraints CA

is such that a constraint c ∈ CA is defined as:

c = (a, v) ∣ op(c1, . . . , cn)

where (a, v) is an attribute name-value pair, and op is a
Boolean operator. Intuitively, a query constraint is used to
restrict the values that an attribute can assume in a query
(hereafter we refer to this type of constraints as value
constraints).
It is worth noting that the only difference between CA

and TA (defined in “ABAC syntax” section) is that we
do not consider three-valued operators for constraints.
We therefore have CA ⊆ TA, since any Boolean oper-
ator trivially corresponds to a three-valued operator.
The semantics of constraints is given by the following
function:

�⋅�C ∶ CA ×QA → B

�(a, v)�C(q) = {
1 if (a, v) ∈ q
0 otherwise

�op(t1, . . . , tn)�C(q) = op(�t1�C(q), . . . , �tn�C(q))

We say that a constraint c is monotonic (resp. anti-
monotonic) whenever, for every pair of queries q, q′ ∈ QA
such that q ⊆ q′, if �c�C(q) (resp. �c�C (q′)) holds then
�c�C (q′) (resp. �c�C(q)) also holds.

Example 1 Some countries such as Singapore, Austria
and India, do not allow dual nationality, leading to auto-
matic loss of citizenship upon acquiring another nation-
ality. Other countries restrict dual nationality to certain
countries. For instance, Pakistan allows double nationality
only with 16 countries and Spain allows only with certain
LatinAmerican countries,Andorra, Portugal, the Philippines
and Equatorial Guinea. These requirements can be mod-
eled using query constraints. For instance, the following
constraint indicates that it is not possible to have both
Austrian and Dutch citizenships: ¬((nat,AT)∧(nat,NL)).

Some constraints might be more complex to build. For
instance, we might want to have cardinality constraints
specifying the maximum number of values a particular
attribute can take. However, there is no Boolean opera-
tor expressing directly such constraints. Instead, given an
attribute a and a number k, we can generate the corre-
sponding constraint enumerating all possible cases. We
first writeA∣a = {(a, v) ∣ v ∈ Va} for the set of all attribute
name-value pairs for an attribute a. We then write Ca,k =
{s ⊆ A∣a ∣ ∣s∣ = k + 1} for the set of subsets of A∣a with a
cardinality equal to k+1. A cardinality constraint express-
ing that an attribute a can have at most k values can be
expressed as:

carda,k = ⋀
s∈Ca,k

¬ ⋀
(a,v)∈s

(a, v)

Any query containing more than k values for attribute a
would have at least one set s ∈ Ca,k for which the conjunc-
tion of the attribute values would be true, rendering the
whole conjunction carda,k false.

Example 2 Consider the scenario in “Problem statement”
section, such that, for the sake of exposition, we only con-
sider six possible nationalities: FR, AT, GB, DE, BE and
NL. The constraint that an individual cannot hold more
than three nationalities can be expressed by the con-
straint cardnat, 3, which consists of 30 conjunctions of
conjunctions:

cardnat,3 = ¬((nat, FR) ∧ (nat,AT) ∧ (nat,GB) ∧ (nat,DE))
∧ ¬((nat, FR) ∧ (nat,AT) ∧ (nat,GB) ∧ (nat,BE))
∧ . . .

∧ ¬((nat,GB) ∧ (nat,DE) ∧ (nat,BE) ∧ (nat,NL))

As demonstrated by the example above, the cardinality
constraint for an attribute a can only be constructed in
this form when the attribute domain Va is finite. In this
paper, our encoding of ABAC policies requires anyway
finite domains for attributes, and we leave the investiga-
tion of infinite attribute domains for future work.
Hereafter, given a set of query constraints C, we write

QA∣C for the set {q ∈ QA ∣ ∀c ∈ C �c�C(q) = 1}, and we
consider for the definition of �⋅�E in “Extended evaluation”
section that, given a query q, wf(q) if, and only if,
q ∈ QA∣C .

Attribute power
In this section, we introduce the notion of attribute power,
which, intuitively speaking, measures how often a given
attribute is responsible for the policy to return a specific
decision.
Our notion of power is inspired by the Banzhaf Power

Index (1966), which was created in the context of elec-
toral systems.While Banzhaf focused on the capability of a
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voter to swing an election (especially in the context where
different voters have different numbers of votes), we focus
here on the capability of an attribute value to change the
decision for a query. The first notion we introduce is the
one of critical pair.

Definition 1 (Critical pair) Given a policy p, a set of
query constraints C, and a decision d, a critical pair
(q, (a, v)) consists of a query q ∈ QA∣C and an attribute
name-value pair (a, v) such that the following conditions
hold:

1. �p�B(q) ≠ d,
2. q ∪ {(a, v)} ∈ QA∣C , and
3. �p�B(q ∪ {(a, v)}) = d.

Assuming the policy and the set of constraints are clear
from context, we write (q, (a, v)) ▷ d when (q, (a, v)) is a
critical pair for d.

Consider the example policy introduced in “Problem
statement” section: we can observe that (∅, (nat,BE)) is a
critical pair for decision 1. As a matter of fact, (nat,BE) is
the only attribute name-value pair for which a critical pair
exists for 1: no other attribute value can trigger decision
1 simply by adding them. Note that this does not mean
that any request with the attribute value (nat,BE) will
be allowed. For instance, the query {(nat,BE), (nat,NL)}
does not evaluate to 1.
The notion of critical pair expresses a notion of power:

if an attribute value is the only one associated with a
critical pair for a given decision, then only this attribute
value can trigger that decision. Conversely, if there is no
critical pair associated with an attribute value for a deci-
sion, then this attribute value will never be responsible
for triggering that decision. We therefore introduce the
notion of attribute value power, following the intuition
behind Banzhaf Power Index, whichmeasures the number
of times a coalition of voters is responsible for swinging a
vote across all possible configurations.

Definition 2 (Attribute Value Power) Given a policy p,
a set of query constraints C, an attribute name-value pair
(a, v) and a decision d, the power of (a, v) for d can be
computed as:

Pd
a,v =

∣ {q ∈ QA∣C ∣ (q, (a, v) ▷ d} ∣
∣ {q ∈ QA∣C ∣ ∃(a′, v′) s.t.(q, (a′, v′)) ▷ d} ∣

It is worth noting that the attribute value power for a
decision can only be defined when there is at least one
critical pair for that decision.
The notion of attribute value power is distributive,

meaning that the sum of the power of all attribute values

is equal to 1. In other words, the power of an attribute
value should be measured against that of other attribute
values rather than as a standalone measure. We provide in
“Case studies” section some examples of computation of
attribute value power.
In the example of “Problem statement section, we have

the following power distribution: P1
nat,BE = 1, P0

nat,NL = 1,
and the power of all other attribute values is equal to 0.
Since there is no critical pair for �, i.e., no attribute value
can change the decision 1 or 0 to �, the power cannot
be defined for �. Interestingly, the other attribute values
(FR,AT,GB and DE) have no power, even though they can
have an impact on the evaluation, since adding them to a
query might render that query no longer valid.
We are now in position to prove that if a query already

contains all attribute values with non-null power, then
the extended evaluation of that query is equivalent to its
simplified evaluation.

Theorem 1 Given a set of query constraints C and a
query q ∈ QA∣C, if C is monotonic or anti-monotonic and,
for any attribute name-value pair (a, v) ∉ q and any deci-
sion d, Pd

a,v = 0 or Pd
a,v is undefined, then �p�E(q) =

{�p�E(q)}.

It is worth noting that the theorem above applies to the
cases where domain requirements can be implemented
using monotonic or anti-monotonic query constraints.
We believe this is not a major limitation as many query
constraints used in practice fall in these categories. For
instance, the example constraints presented in the previ-
ous section are anti-monotonic.
Concretely speaking, the result in Theorem 1 is partic-

ularly important when the extended evaluation is used to
check against attribute-hiding attacks. Such attacks, intro-
duced in Crampton and Morisset (2012), occur when an
attacker hides some attribute values in order to get a dif-
ferent evaluation. From the perspective of the security
system, given a query q satisfying Theorem 1, we know
that no attribute value can change the evaluation of that
query. In other words, an attacker has no interest to hide
any value that is not already in q. Therefore, it is not
necessary to extend the query further.

Efficient extended evaluation computation
We now propose an algorithm for computing the
extended evaluation function �⋅�E along with the policy
representation used by the algorithm. We evaluate our
approach in “Case studies” section.

Policy representation
Our algorithm relies on the use of binary decision dia-
grams (BDDs) for the representation of ABAC policies,
query constraints and the query space. As shown in
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previous work (e.g., (Bahrak et al. 2010; Fisler et al. 2005;
Hu et al. 2013)), this formalism provides a compact repre-
sentation of ABAC policies and allows for efficient policy
evaluation. The effectiveness of these data structures is
also shown by our experiments (see “Evaluation” section).
Next, we first briefly review the essential concepts behind
BDDs. Then, we show how they are used to represent
ABAC policies. For a more in-depth treatment of the
underlying algorithmics for constructing and manipulat-
ing BDDs, we refer to Bryant (1992) and the references
therein.
Let Vars be a finite set of Boolean variables. A proposi-

tional formula over Vars can be efficiently represented by
a BDD. Formally, a BDD is a graph-based data structure
defined as follows:

Definition 3 A binary decision diagram (BDD) is a
rooted directed acyclic graph with vertex set V containing
the terminal vertices 0 and 1, and non-terminal vertices
that are labelled (using a function L) with variables from
Vars. Non-terminal vertices have exactly one outgoing high
edge (denoted hi) and one outgoing low edge (denoted lo).
Terminal vertices have no outgoing edges.

A BDD is said to be reduced if it contains no vertex
v with lo(v) = hi(v), nor does it contain two distinct
vertices v and v′ whose subgraphs (i.e., the BDDs rooted
in v and v′) are isomorphic. In this work, we are only
concerned with reduced BDDs.
We assume a fixed ordering < on the Boolean vari-

ables Vars. A propositional formula can be represented
uniquely (up-to-isomorphism) by a (reduced) BDD by
labeling each non-terminal vertex v with a Boolean vari-
able L(v), ensuring that each successor vertex v′ of v is
either a terminal vertex or a vertex labeled with a Boolean
variable L (v′) < L(v). The formula F(v), represented by a
BDD with root v, is obtained as follows:

Fv =
⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

false if v = 0
true if v = 1
(L(v) ⇒ F(hi(v))) ∧ (¬L(v) ⇒ F(lo(v))) otherwise

Checking whether a concrete truth-assignment to the
Boolean variables is such that the propositional for-
mula represented by the BDD holds reduces to checking
whether in the BDD, the path associated with the vari-
able assignment leads to terminal vertex 1. That is, the
runtime complexity for evaluating whether such a truth-
assignment makes a formula true is linear in the depth
of the BDD, which, in turn, is limited by the size of Vars.
BDDs can be used effectively for representing and com-
puting the extended evaluation; we explain how this is
done in the remainder of this section.
Given a policy p, we construct a triple (b1,b0,b�) of

propositional formulae representing sets of queriesQ1,Q0

and Q� such that d ∈ �p�B(q) exactly when q ∈ Qd. We
represent these propositional formulae using (reduced)
BDDs.
Henceforward, let (QA∣C ,→) be a fixed constrained

query space ranging over a set of attribute names A and
attribute domains Va with a ∈ A. We represent each
attribute name-value pair (a, v), with a ∈ A and v ∈ Va,
by a Boolean variable av. The set of all Boolean variables
is denoted VarsA. A truth-assignment to all Boolean vari-
ables represents a single query. A set of queries can be
represented as a propositional formula over these vari-
ables. For instance, the propositional formula ¬(natAT ∧
natNL) encodes the set of all queries except those queries
that contain both attribute name-value pairs (nat,AT)
and (nat,NL). A query q induces an interpretation I(q)
which is defined as I(q)(av) = true iff (a, v) ∈ q. Given
an interpretation I(q) and a propositional formula φ, we
write I(q) ⊧ φ iff the formula evaluates to true under
interpretation I(q).
The triple of propositional formulae (b1,b0,b�) repre-

senting �p�B is computed recursively using transforma-
tions τ and π employing the inductive definition of the
policy language.
More specifically, each bd is a propositional formula

representing a set of queries Qd ⊆ QA satisfying d =
�p�B(q) whenever q ∈ Qd. Hereafter, we write τd(t) and
πd(d) for the formulae representing decision d in the
transformation τ(t) and π(p), respectively. The transfor-
mation rules for τ (for targets) and π (for policies) given in
Table 2 explain the construction of the propositional for-
mula for decision 1 for all targets, (policy) constants and
all (policy and target) operators of Table 1. Tables 3 and 4
present the transformation rules for τ (for targets) and π

(for policies) for decisions 0 and �, respectively.
The correctness of the propositional formulae τd(t) and

πd(d) is stated by the following lemma.

Lemma 2 For all q ∈ QA:

(a) I(q) ⊧ τd(t) iff d = �t�T(q),
(b) I(q) ⊧ πd(d) iff d = �p�B(q).

Example 3 Let us reconsider policy p introduced in
“Problem statement” section. By applying transformations
τ and π in Tables 2, 3 and 4 to p, we obtain (after minor
simplification) the following propositional formulae:

π1(p) = natBE ∧ ¬natNL
π0(p) = natNL
π�(p) = ¬natBE ∧ ¬natNL

The corresponding BDDs are shown in Fig. 2a (π1(p)),
Fig. 2b (π0(p)) and Fig. 2c (π�(p)). In the figures, solid
arrows indicate that the path of the BDD in case a given
attribute value is present in the query (i.e., the hi-edge),
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Table 2 Transformation rules for τ (for targets) and π (for
policies) for decision 1

τ1((a, v)) = av

τ1(¬t1) = τ0(t1)

τ1(∼ t1) = τ1(t1)

τ1(E1(t1)) = τ�(t1)

τ1(t1⊓̃ t2) = τ1(t1) ∧ τ1(t2)

τ1(t1 ⊓ t2) = τ1(t1) ∧ τ1(t2)

τ1(t1 △ t2) = (τ1(t1) ∧ ¬τ0(t2)) ∨ (τ1(t2) ∧ ¬τ0(t1))

τ1(t1⊔̃ t2) = τ1(t1) ∨ τ1(t2)

τ1(t1 ⊔ t2) = (τ1(t1) ∧ ¬τ�(t2)) ∨ (τ1(t2) ∧ ¬τ�(t1))

τ1(t1 ▽ t2) = τ1(t1) ∨ τ1(t2)

π1(1) = true

π1(0) = false

π1((t, p1)) = τ1(t) ∧ π1(p1)

π1(¬p1) = π0(p1)

π1(∼ p1) = π1(p1)

π1(E1(p1)) = π�(p1)

π1(p1⊓̃ p2) = π1(p1) ∧ π1(p2)

π1(p1 ⊓ p2) = π1(p1) ∧ π1(p2)

π1(p1 △ p2) = (π1(p1) ∧ ¬π0(p2)) ∨ (π1(p2) ∧ ¬π0(p1))

π1(p1⊔̃ p2) = π1(p1) ∨ π1(p2)

π1(p1 ⊔ p2) = (π1(p1) ∧ ¬π�(p2)) ∨ (π1(p2) ∧ ¬π�(p1))

π1(p1 ▽ p2) = π1(p1) ∨ π1(p2)

whereas dashed arrows indicate that the attribute value
is not present (i.e., the lo-edge); terminal nodes are repre-
sented using a double line rectangle. These BDDs show that
any query including attribute name-value pair (nat,NL)
evaluates to 0 and any query including attribute name-
value pair (nat,BE) (and not (nat,NL)) evaluates to 1; if
both (nat,BE) and (nat,NL) are not present, the query
evaluates to �.

We also construct a propositional formula S represent-
ing the constrained query space QA∣C . This formula can
be readily constructed by reusing transformation τ , since
the constraint language CA is essentially a subset of the
target language TA (see “Query constraints” section). The
constrained query space can therefore be represented by
the following propositional formula:

S = ⋀{τc1 ∣ c ∈ C}

Example 4 Figure 2d shows the BDD encoding the con-
strained query space for our example. Specifically, it is
obtained by applying transformation τ to the cardinal-
ity constraint in Example 2 (i.e., cardnat,3) in conjunction
with a query constraint imposing that individuals having
an Austrian nationality cannot have dual nationality.

Table 3 Transformation rules for τ (for targets) and π (for
policies) for decision 0

τ0((a, v)) = ¬av ∧⋁{av′ ∣ v
′
∈ VA}

τ0(¬t1) = τ1(t1)

τ0(∼ t1) = τ0(t1) ∨ τ�(t1)

τ0(E1(t1)) = τ0(t1)

τ0(t1⊓̃ t2) = τ0(t1) ∨ τ0(t2)

τ0(t1 ⊓ t2) = (τ0(t1) ∧ ¬τ�(t2)) ∨ (τ0(t2) ∧ ¬τ�(t1))

τ0(t1 △ t2) = τ0(t1) ∨ τ0(t2)

τ0(t1⊔̃ t2) = τ0(t1) ∧ τ0(t2)

τ0(t1 ⊔ t2) = τ0(t1) ∧ τ0(t2)

τ0(t1 ▽ t2) = (τ0(t1) ∧ ¬τ1(t2)) ∨ (τ0(t2) ∧ ¬τ1(t1))

π0(1) = false

π0(0) = true

π0((t, p1)) = τ1(t) ∧ π0(p1)

π0(¬p1) = π1(p1)

π0(∼ p1) = π0(p1) ∨ π�(p1)

π0(E1(p1)) = π0(p1)

π0(p1⊓̃ p2) = π0(p1) ∨ π0(p2)

π0(p1 ⊓ p2) = (π0(p1) ∧ ¬π�(p2)) ∨ (π0(p2) ∧ ¬π�(p1))

π0(p1 △ p2) = π0(p1) ∨ π0(p2)

π0(p1⊔̃ p2) = π0(p1) ∧ π0(2)

π0(p1 ⊔ p2) = π0(p1) ∧ π0(p2)

π0(p1 ▽ p2) = (π0(p1) ∧ ¬π1(p2)) ∨ (π0(p2) ∧ ¬π1(p1))

It is easy to observe in the BDD that queries including
attribute name-value pair (nat,AT) and any other nation-
alities are invalid (left part of Fig. 2d); queries that contain
four nationalities are invalid as well and thus all map to
terminal vertex 0.

Policy evaluation
We now present our algorithm to compute the extended
evaluation function �⋅�E efficiently. Themain idea is as fol-
lows. Given a policy p, we construct a triple (e1, e0, e�)
of propositional formulae representing sets of queries Q1,
Q0 and Q� such that d ∈ �p�E(q) exactly when q ∈
Qd. As we do for the propositional formulae (b1,b0,b�)
representing �p�B, we represent these propositional for-
mulae using (reduced) BDDs. For computing the triple
of propositional formulae (e1, e0, e�), we use the triple of
propositional formulae (b1,b0,b�) and the propositional
formula S encoding the constrained query space QA∣C ,
along with a propositional formula R encoding relation→∗
on QA∣C .
For representing the relation →∗, we introduce a set

of copies of all Boolean variables; that is, for each vari-
able av, we introduce a unique copy a′v representing the
value of av in a reachable query. We denote the set
of variables consisting of these copies by Vars′A. Since



Morisset et al. Cybersecurity             (2019) 2:6 Page 10 of 21

Table 4 Transformation rules for τ (for targets) and π (for
policies) for decision �

τ�((a, v)) = ⋀{¬av′ ∣ v
′
∈ VA}

τ�(¬t1) = τ�(t1)

τ�(∼ t1) = false

τ�(E1(t1)) = τ1(t1)

τ�(t1⊓̃ t2) = (τ�(t1) ∧ ¬τ0(t2)) ∨ (τ�(t2) ∧ ¬τ0(t1))

τ�(t1 ⊓ t2) = τ�(t1) ∨ τ�(t2)

τ�(t1 △ t2) = τ�(t1) ∧ τ�(t2)

τ�(t1⊔̃ t2) = (τ�(t1) ∧ ¬τ1(t2)) ∨ (τ�(t2) ∧ ¬τ1(t1))

τ�(t1 ⊔ t2) = τ�(t1) ∨ τ�(t2)

τ�(t1 ▽ t2) = τ�(t1) ∧ τ�(t2)

π�(1) = false

π�(0) = false

π�((t, p1)) = τ0(t) ∨ τ�(t) ∨ (τ1(t) ∧ π�(p1))

π�(¬p1) = π�(p1)

π�(∼ p1) = false

π�(E1(p1)) = π1(p1)

π�(p1⊓̃ p2) = (π�(p1) ∧ ¬π0(p2)) ∨ (π�(p2) ∧ ¬π0(p1))

π�(p1 ⊓ p2) = π�(p1) ∨ π�(p2)

π�(p1 △ p2) = π�(p1) ∧ π�(p2)

π�(p1⊔̃ p2) = (π�(p1) ∧ ¬π1(p2)) ∨ (π�(p2) ∧ ¬π1(p1))

π�(p1 ⊔ p2) = π�(p1) ∨ π�(p2)

π�(p1 ▽ p2) = π�(p1) ∧ π�(p2)

→
∗ is in essence the subset relation, the proposition R

encoding this relation is constructed by conjunctively
composing the propositional formulae av ⇒ a′v. The
correctness of this encoding is given by the following
lemma.

Lemma 3 Let q, q′ ∈ QA. Let I(q) denote the inter-
pretation for Vars and I′ (q′) the interpretation for Vars′,
defined as I′ (q′) (a′v) = true if and only if (a, v) ∈ q′. We
then have I(q) ∪ I′ (q′) ⊧ ⋀{av ⇒ a′v ∣ av ∈ Vars} if and
only if (q, q′) ∈→∗.

Note that we also need to ensure that only queries from
the set represented by S are considered. We achieve this
by strengthening the transition relation using the proposi-
tional formula S. This leads to the following propositional
formula for the transition relation R:

S ∧ S [VarsA ∶= Vars′A] ∧⋀{av ⇒ a′v ∣ av ∈ VarsA}

The substitution notation we use in this formula is short-
hand for replacing each unprimed variable by its primed
counterpart in the propositional formula.
Using the triple (b1,b0,b�), the constrained query space

encoded by S and the transition relation encoded by R, we
can compute a triple of propositional formulae (e1, e0, e�)
representing �p�E using a backwards reachability analy-
sis. Since our transition relation R is transitively closed,
it essentially suffices to use R to compute all immedi-
ate predecessors of b1,b0 and b�. The computation of
predecessors can be performed effectively on the level
of BDDs using a standard encoding of the existential
quantification over all primed variables. For e1, this boils
down to computing the (reduced) BDD for the following
formula:

(S ∧ b1) ∨ ∃Vars′A. (R ∧ (b1 [VarsA ∶= Vars
′
A]))

The computation of e0 and e� proceeds analogously. We
summarize the steps we take to compute the extended
evaluation in Algorithm 1. The correctness of the algo-
rithm is stated in the following theorem.

a b c d
Fig. 2 BDDs (b1, b0, b�) and constrained query space for the policy in “Problem statement” section. a b1. b b0. c b� . d Constrained query space
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Algorithm 1 Computing the extended evaluation for a policy p and constrained query space (QA∣C ,→).
1: procedure COMPUTEEXTENDEDEVALUATION
2: (b1, b0, b�) ∶= (π1(p), π0(p), π�(p))
3: S ∶= ⋀{τc1 ∣ c ∈ C}
4: R ∶= S ∧ S [VarsA ∶= Vars′A] ∧ ⋀{av ⇒ a′v ∣ av ∈ VarsA}
5: for d ∈ {1, 0,�} do
6: ed ∶= (S ∧ bd) ∨ ∃Vars′A. (R ∧ (bd [VarsA ∶= Vars

′
A]))

7: end for
8: return (e1, e0, e�)
9: end procedure

Theorem 4 Procedure COMPUTEEXTENDEDEVALUA-
TION computes, for a given policy p and a constrained
query space (QA∣C ,→), a triple (e1, e0, e�) of BDDs rep-
resenting sets (Q1, Q0, Q�) satisfying, for each q ∈ QA,
q ∈ Qd iff q ∈ QA∣C ∧ d ∈ �p�E(q).

As we explained above, testing whether a truth-
assignment to all variables makes a propositional formula
true can be done in worst-case time O(∣Vars∣). As a
consequence, the BDDs (e1, e0, e�) that are computed by
Algorithm 1 can be used to simply and efficiently evaluate
a policy p for a concrete query q using the extended evalu-
ation �⋅�E: for each d ∈ {1, 0,�}, one evaluates at run-time
whether d ∈ �p�E(q) by inspecting BDD ed, in worst-case
timeO(∣Vars∣).

Example 5 Figure 3 illustrates the BDDs (e1, e0, e�)
encoding the extended evaluation of the policy in Exam-
ple 4 augmented with the constrained query space in
Fig. 2d. The BDD in Fig. 3a shows that a query will never
be evaluated to 1 if it contains attribute name-value pairs
(nat,NL) and (nat,AT). In fact, any query containing
(nat,NL) is always evaluated to 0 as shown in Fig. 2b
and a query containing (nat,AT) cannot be extended

as imposed by query constraints. The other paths in the
BDD indicate that a query not including those attribute
name-value pairs can potentially be evaluated to 1 as
the query can be extended with attribute name-value pair
(nat,BE) unless the query already includes three nation-
alities (the maximum number of nationalities allowed in
our scenario). Similar observations hold for the other BDDs
in Fig. 3.

Case studies
In this section, we demonstrate our framework for
the extended evaluation of ABAC policies using three
real-world policies, namely the CONTINUE policy, the
KMarket policy and the SAFAX policy. The framework
has been implemented in Python using the dd library6
(v. 0.5.2).
The experiments were performed using a machine with

2.30GHz Intel Xeon processor and 16 GB of RAM.

Datasets
This section provides an overview of the policies used
for our demonstration. The CONTINUE and SAFAX poli-
cies are specified in XACML v2 (OASIS 2005) whereas
the KMarket policy is expressed in XACML v3 (OASIS

a b c
Fig. 3 BDDs (e1, e0, e�) for the policy in “Problem statement” section. a e1. b e0. c e�
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2013). XACML (both v2 and v3) has several common-
alities with PTaCL; in particular, it has been shown in
previous work (Morisset and Zannone 2014) that XACML
policies can be encoded in PTaCL. For the sake of space,
we refer to Morisset and Zannone (2014) for the details
of the encoding. A summary of the policies and datasets
constructed from them is given in Table 5. In the table,
we report the size of the policies (in terms of number of
policysets (#PS), policies (#P) and rules (#R)), the num-
ber of variables used to encode the policy (#Var) and the
number of cardinality and value constraints (i.e., query
constraints excluding that two different attribute values
can be present at the same time).

CONTINUE: CONTINUE is a conference manager system
that supports the submission, review, discussion and noti-
fication phases of conferences. The CONTINUE policy7
consists of 111 policysets that, in turn, consist of 266 poli-
cies comprising 298 rules. The target of policysets, poli-
cies and rules are defined over 14 attributes ranging from
the role of users (role) within the conference management
system, the type of resource accessed (resource_class) and
the action for which access is requested (action_type)
to attributes used to characterize the existence of con-
flicts of interest (isConflicted) and the status of the review
process (isReviewContentInPlace, isPending, etc.). Some
of these attributes are Boolean, whereas others, such
as role and resource_class, take values from a more
complex domain. In total, the union of the attribute
domains for the CONTINUE policy consists of 47 attribute
values.
Together with the policy, we specified 10 value con-

straints. In particular, 9 constraints were used to enforce
that Boolean attributes can be either true or false.
The other value constraint was used to impose that

subreviewers cannot be PC members as required by
CONTINUE (Fisler et al. 2005). Moreover, we defined two
cardinality constraints to restrict the values that attributes
resource_class and action_type can take as suggested in
Fisler et al. (2005).

Table 5 Overview of the datasets used for the experiments

Policy size #Var #Value #Cardinality
constraints constraints

#PS #P #R

CONTINUE 111 266 298 47 10 2

SAFAX (10) 5 18 35 54 36 5

SAFAX (20) 5 18 35 84 36 5

SAFAX (50) 5 18 35 174 36 5

KMarket (10) 0 3 12 46 0 5

KMarket (20) 0 3 12 86 0 5

KMarket (50) 0 3 12 206 0 5

SAFAX: SAFAX (2015) is an XACML-based framework
that offers authorization as a service. SAFAX provides a
web interface through which users can create, manage and
configure their authorization services. The SAFAX policy
is used to regulate the action users can perform on the web
interface.
The SAFAX policy consists of 5 policysets, 18 policies

and 35 rules. The target of these policy elements are built
over 8 attributes ranging from the group(s) a user belongs
to (group), the type of object to be accessed (type) and the
action to be performed on the object (action) to the num-
ber of objects a user has already created (count-project,
count-demo, count-ppdp) and the relation of the user
with the object (isowner, match_project). The last two
attributes are Boolean, whereas the others have a more
complex domain. In particular, three attributes range over
integer numbers. To test the scalability of our approach,
we varied the size of the domain of these attributes. In par-
ticular, we generated three datasets – SAFAX (10), SAFAX
(20) and SAFAX (50) – where the number in paren-
theses represents the size of the domain of numerical
attributes.
We also defined a number of query constraints that

reflect the functioning of the system. Besides introducing
constraints for Boolean attributes and cardinality con-
straints for numerical attributes, we restricted the number
of object types and actions that can occur in a request.
This is motivated by the fact that, in SAFAX, an object can
have only one type and access requests are triggered to
determine whenever a user attempts to perform an action.
Moreover, certain actions can be performed only on cer-
tain types of objects. We modeled these domain require-
ments using value constraints.We also defined constraints
to restrict the groups a user can belong to simultaneously.
Users should register to SAFAX to use the web applica-
tion and can be assigned to multiple groups. Nonetheless,
SAFAX also provides a guest account (with limited func-
tionalities) that allows the use of the application without
registration. Guest users are assigned to a special group
that is incompatible with every other group. We cap-
tured this requirement using value constraints. In total, we
complemented the policy with 36 value constraints and 5
cardinality constraints.

KMarket: KMarket is an online trading company that
offers their customers to three types of subscriptions. The
items that a customer can buy depend on her subscrip-
tion. The KMarket policy8 is used to check whether the
purchase is authorized. The KMarket policy consists of 3
policies and 12 rules. The target of these policy elements
are built over 6 attributes ranging from the subscription
a user has (group) and the type of item to be pur-
chased (resource) to the number of items a user wants to
purchase (totalAmount, amount-drink, amount-medicine
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and amount-liquor). The last four attributes range over
the integers. Similarly to what done for the SAFAX pol-
icy, we varied the size of the domain of these attributes.
In particular, we generated three datasets – KMarket (10),
KMarket (20) and KMarket (50) – where the number in
parentheses represents the size of the domain of numer-
ical attributes. We also defined cardinality constraints
for numerical attributes and for the number of groups
a user belongs to. The latter is motivated by the fact
that a user can have only one type of subscription. In
total, we complemented the policy with 5 cardinality
constraints.

Evaluation
This section presents an evaluation of our framework
using the CONTINUE, SAFAX and KMarket policies. First,
we analyze the BDDs obtained using the extended evalua-
tion function �⋅�E and its feasibility in real scenarios. Then,
we evaluate the query evaluation time using a BDD repre-
sentation of the extended evaluation and compare it with a
SAT-based approach. Moreover, we investigate the use of
attribute value power for an understanding of the impact
of attributes on the decision making process. Finally, we
present lessons learned from our experiments and discuss
the limitations of the approach.

Analysis of extended evaluation function �⋅�E: For each
dataset, Table 6 shows the size of the BDDs obtained
using the simplified evaluation function �⋅�B presented
in “ABAC evaluation” section, and the size of the BDDs
obtained using the extended evaluation function �⋅�E with

and without constraints. In particular, for each BDD, the
table reports the number of vertices and the depth of the
BDD. The depth of BDDs is particularly important as it
affects policy evaluation (see “Efficient extended evalu-
ation computation” section). Table 7 reports the size of
the BDDs encoding the constrained query space for the
datasets, which represent the set of valid queries (i.e.,
the queries that satisfy the constraints) along with the
number of valid queries. This latter information provides
an indication of the size of the constrained query space.
Moreover, the table reports the percentage of queries that
evaluate to 1, 0 and � for �⋅�B and �⋅�E. One can observe
that, for �⋅�E, the sum of percentages is greater than 100%.
Recall from “Preliminaries” section that �⋅�E is defined
overD8 = ℘({1, 0,�}).
The reported statistics were obtained after applying the

garbage collection and reordering functions provided by
the dd library. The garbage collector function deletes
unreferenced nodes. Reordering is used to change the
variable order to reduce the size of the BDD represen-
tation. In particular, it uses Rudell’s sifting algorithm
(1993), a widely used heuristics for dynamic reordering,
to search for a better (fixed) order of variables compared
the one currently used. Note that the reordering function
is nondeterministic in the sense that it can return differ-
ent orders of variables for the same input set of BDDs.
This explains the differences in the number of nodes
between the BDDs encoding the simplified evaluation of
the SAFAX policy (top-left block of Table 6)9.
In Table 6 (top-right block), we can observe that, when

constraints are not considered, the BDDs encoding the

Table 6 Overview of the BDDs encoding the simplified �⋅�B and extended �⋅�e evaluation with/without constraints

Simplified �⋅�B Extended �⋅�e

BDD1 BDD0 BDD� BDD1 BDD0 BDD�

#Vertex Depth #Vertex Depth #Vertex Depth #Vertex Depth #Vertex Depth #Vertex Depth

No constraints CONTINUE 1085 31 496 29 579 29 1 0 147 24 579 29

SAFAX (10) 347 24 370 24 7 6 1 0 430 24 7 6

SAFAX (20) 369 24 407 24 7 6 1 0 450 24 7 6

SAFAX (50) 343 24 366 24 7 6 1 0 427 24 7 6

KMarket (10) 38 15 38 15 4 3 37 15 1 0 4 3

KMarket (20) 87 36 87 36 4 3 86 36 1 0 4 3

KMarket (50) 326 125 326 125 4 3 325 125 1 0 4 3

Constraints CONTINUE 1156 46 510 46 846 46 594 44 672 46 830 46

SAFAX (10) 513 54 455 54 108 54 255 54 497 54 108 54

SAFAX (20) 949 84 920 84 188 84 375 84 762 84 188 84

SAFAX (50) 1587 174 1551 174 428 174 735 174 1540 174 428 174

KMarket (10) 207 46 246 46 76 43 206 46 137 43 76 43

KMarket (20) 408 86 510 86 156 83 407 86 277 83 156 83

KMarket (50) 889 206 1260 203 396 203 888 206 667 203 396 203
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Table 7 BDD encoding constrained query space and percentage of queries that evaluate 1, 0,� for �⋅�B and �⋅�E

#Vertex Depth #Queries Simplified �⋅�B Extended �⋅�E

BDDD1 BDD0 BDD� BDD1 BDDD0 BDD�

CONTINUE 63 44 134,631,720 20.09% 32.28% 47.52% 59.10% 41.48% 47.52%

SAFAX (10) 128 54 7,331,148 55.43% 28.39% 16.18% 97.10% 41.87% 16.18%

SAFAX (20) 188 84 51,009,588 55.36% 28.49% 16.18% 97.06% 43.03% 16.18%

SAFAX (50) 368 174 730,641,708 55.27% 28.55% 16.18% 97.04% 42.14% 16.18%

KMarket (10) 77 43 468,512 26.41% 48.59% 25.00% 43.15% 90.08% 25.00%

KMarket (20) 157 83 6,223,392 20.03% 54.97% 25.00% 34.09% 92.35% 25.00%

KMarket (50) 397 203 216,486,432 6.48% 68.52% 25.00% 11.18% 98.70% 25.00%

extended evaluation of the CONTINUE and SAFAX poli-
cies for decision 1 and the extended evaluation of the
KMarket policy for decision 0 consist of only one ver-
tex. This vertex is the terminal vertex true, indicating
that all queries can be potentially evaluated to 1 for the
CONTINUE and SAFAX policies and to 0 for the KMar-
ket policy. This is due to how these policies are defined.
For instance, in the CONTINUE policy positive authoriza-
tions have a higher priority than negative authorizations,
i.e. all XACML policy elements are combined using the
first-applicable combining algorithm and Permit rules
always occur at the top, thus yielding permit whenever
they are applicable. On the other hand, the SAFAX pol-
icy specifies positive authorizations and employs Deny
rules only as default rules. Similarly, the KMarket pol-
icy specifies negative authorizations and employs Permit
rules only as default rules. Thus, if all attribute values
are provided in the query, the CONTINUE and SAFAX
policies evaluate 1 and the KMarket policy evaluates 0.
This demonstrates the importance of constraints. By look-
ing at Table 7, we can observe that only 59% of queries
could actually yield decision 1 for the CONTINUE policy
and 97% for the SAFAX policy. We can also observe that
the percentage of queries that evaluate 0 for the KMar-
ket policy ranges between 90% (KMarket (10)) and 98.70%
(KMarket (50)). Thus, neglecting constraints can result in
misleading decisions.
We can also observe from Table 6 that the BDDs encod-

ing the simplified evaluation and the extended evaluation
without constraints (top-left and top-right blocks, resp.)
for � are the same. This is expected as the applicability
of both the CONTINUE, SAFAX and KMarket policies is
monotonic; if they apply to a query, they also apply to
all queries that can be constructed from it. Thus, it is
not possible that a query evaluates to � according to �⋅�E
but not according to �⋅�E. We can also observe that, for
the SAFAX and KMarket policies, these BDDs are rela-
tive small (7 nodes and depth equal to 6 for SAFAX, and
4 nodes and depth equal to 3 for KMarket) and, from
Table 7, that they cover about 16% and 25% of the query

space, respectively. This is due to the use of default rules
mentioned above. Actually, these rules map most of the
queries for which a positive authorization is not specified
to 0 for SAFAX; similarly for KMarket, most of the queries
for which a negative authorization is not specified are
mapped to 1.
As discussed in “Efficient extended evaluation computa-

tion” section, the depth of a BDD is upper bounded by the
number of variables. We can observe in Table 6 (bottom-
left and bottom-right blocks) that, for the SAFAX policy
with constraints, the depth of BDDs is exactly equal to
the number of variables. This is due to the fact that the
constraints defined for this policy involve all attribute
values.
This is also visible by observing in Table 5 that the depth

of the BDDs representing the constrained query space
is equal to the number of variables, indicating that all
variables are needed to determine the validity of queries.

Feasibility of extended evaluation function �⋅�E: To
assess the feasibility of the approach, we considered the
time needed to generate the BDDs encoding the extended
evaluation of the CONTINUE and SAFAX policies along
with the corresponding query constraints and the mem-
ory required to store the generated BDDs. Table 8 reports

Table 8 Time needed to construct the BDDs encoding the
extended evaluation on the constrained query space and
average BDD size

Time (sec) Avg. BDD size (KB)

CONTINUE 1.506 20.33

SAFAX (10) 0.673 7.33

SAFAX (20) 0.985 12.33

SAFAX (50) 2.957 34.33

KMarket (10) 0.371 4.00

KMarket (20) 0.728 8.00

KMarket (50) 3.831 22.00
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the time required to generate the BDDs encoding the
extended evaluation on the constrained query space. From
the table, we can observe that the construction of BDDs
for the CONTINUE policy required about 1.5s, whereas
less than one second was required for the SAFAX (10),
SAFAX (20), KMarket (10) and KMarket (20) datasets;
SAFAX (50) required slightly less than 3 s and KMar-
ket (50) required less than 4 s.
To estimate the memory required to store the generated

BDDs, we exploited the functionalities of the dd library.
In particular, the dd library makes it possible to dump a

BDD to a pickle file.
The average size of the dump files is reported in Table 8.

These results suggest that the precomputed BDDs can be
stored and evaluated in resource-constrained devices, like
IoT devices, to determine whether a user is allowed to
access a device’s resources.

Query Evaluation Time: The BDDs constructed by our
algorithm can be used straightforwardly to compute the
decision for a concrete query. In essence, each BDD is no
more than a large, nested if-then-else clause. Computing
the decision for a concrete query thus amounts to evalu-
ating a number of elementary Boolean conditions. Table 9
provides the minimal, mean and maximal time (in sec-
onds) it takes to compute the decision for a query for all
seven datasets we considered in this paper. The timings
were obtained by generating 100 (valid) queries.
We compare and contrast our BDD approach to a

SAT approach for computing the extended decision; the
approach is similar to that of Turkmen et al. (2017). Given
the similarities with the BDD approach, we only sketch
how SAT solving can be used to compute the extended
decision. Using the encodings τ and π , we can construct
a formula φ1 encoding all valid queries that evaluate to 1.
For a concrete query q, the formula ψ1 used to compute
whether 1 ∈ �p�E(q), is then obtained by adding the clause
⋀{av ∣ (a, v) ∈ q} as a conjunction to φ1, ensuring that
we only consider queries reachable from q. Note that ψ1 is

Table 9 Time (in seconds) needed to compute the decision for a
concrete query using BDDs and using SAT formulae; the minimal,
mean and maximal time are taken from a sample of 100 valid
queries

BDD SAT

min mean max min mean max

CONTINUE 0.0001 0.0002 0.0003 0.0370 0.0419 0.0483

SAFAX (10) 0.0001 0.0002 0.0004 0.0341 0.0383 0.0487

SAFAX (20) 0.0002 0.0004 0.0005 0.0581 0.0652 0.0727

SAFAX (50) 0.0005 0.0007 0.0009 0.2140 0.2298 0.2522

KMarket (10) 0.0001 0.0001 0.0002 0.0241 0.0268 0.0388

KMarket (20) 0.0001 0.0002 0.0003 0.0579 0.0687 0.0817

KMarket (50) 0.0002 0.0003 0.0004 0.2840 0.3011 0.3247

satisfiable if and only if 1 ∈ �p�E(q). The formulae ψ0 and
ψ� are constructed analogously.
The timings reported on in Table 9 are obtained using

the CVC4 solver (Barrett et al. 2011). As far as the query
evaluation time is concerned, BDDs clearly outperform
the SAT approach. However, theremay be cases in which a
SAT-like approach may be more suited; e.g. when consid-
ering attributes ranging over an infinite set of values, one
may use SMT solvers to deal with the infinite domains.

Attribute Value Power: Thanks to the BDD encoding,
it is relatively straightforward to compute the power of
attribute values. Given a decision d and an attribute name-
value pair (a, v), the power can be computed by first
computing the set of queries

Qd
a,v = (¬bd ∧ (bd[av ∶= true]) ∧ S ∧ S[av ∶= true])

where bd is the BDD for the simplified evaluation and S is
the BDD encoding the constrained query space. Qd

a,v cor-
responds to all queries q such that (q, (a, v)) is a critical
pair. It follows that Pd

a,v = ∣Qd
a,v∣ . ∣∑(a′,v′)Qd

a′,v′ ∣
−1
.

Figure 4 displays the power of all attribute values for the
CONTINUE policy. We can observe that the power is rel-
atively distributed, with only three attribute values with
a power higher than 0.10 for decision 1 (including role
PC Chair, which is a good indicator of the importance
of such an attribute value). There is a notable propor-
tion of attributes with non-null power for either decision,
although some attribute values (the bottom 9 on Fig. 4)
have a null power for both decisions.
On the other hand, the power distribution for SAFAX

(10) and KMarket (10), presented in Fig. 5a and b (where,
for the sake of presentation, we aggregate the power for
all values for each attribute), respectively, are much less
balanced. Indeed, for SAFAX there is a small number of
attribute with non-null power for 0, which is consistent
with the use of default Deny policies. On the other hand,
many attribute values have non-null power for decision 1,
indicating that they can trigger decision 1 by adding them.
KMarket adopts an opposite power profile behavior, with
a small number of attribute values with a non-null power
for 1, which is consistent with the use of default Permit
policies.
Although there is no right or wrong power profile, the

power analysis can help a policy designer to understand
which attribute values are the most critical. For instance,
in the case of SAFAX, as long as the type attribute is fully
controlled (i.e., an attacker cannot hide the value for that
attribute), we know no attribute hiding attack is possible.

Discussion
The evaluation presented in the previous section show
the feasibility and applicability of our framework in real
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Fig. 4 Power distribution for the CONTINUE policy: the plain green bar indicate the power for the decision 1 for each attribute value, while the
patterned red bars indicate the power for the decision 0

scenarios. Moreover, we showed in Morisset et al. (2018)
that the extended evaluation function �⋅�E provides a
more accurate evaluation of ABAC policies compared to
standard evaluation function �⋅�p.
Nonetheless, our evaluation reveals that query con-

straints have a significant impact on the extended evalu-
ation function �⋅�E. On the one hand, query constraints
improve the accuracy of policy evaluation by removing
queries that cannot occur in practice. On the other hand,
they affect the size of the BDDs representing policy evalu-
ation because invalid queries have to be explicitly encoded
in the BDDs. This is particularly the case for the SAFAX

policy, where the depth of the obtained BDDs is equal to
the number of variables used for the encoding of the pol-
icy, thus representing the worst case scenario. This result
is due to the fact that domain constraints involve all vari-
ables used for the encoding of the policy, indicating that
all attribute values are needed to determine the validity of
queries.
Another factor that largely influences the BDD size

is the size of attributes’ domains (in combination with
query constraints). This is particularly evident for the
SAFAX and KMarket policies, which contain numerical
attributes. In particular, we observe that, in these policies,
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a b

Fig. 5 Power distribution for the SAFAX (10) and KMarket (10) policies aggregated per attribute: the plain green bar indicate the power for the
decision 1 for each attribute (as the aggregation of the power for all values for that attribute), while the patterned red bars indicate the power for
the decision 0. a SAFAX (10). b KMarket (10)

the number of vertices forming the BDDs increases with
the size of attributes’ domains.
Nevertheless, the experiments show that our approach

remains tractable and it is able to handle such types of
policies.
Although in the worst case the number of vertices

in a BDD is exponential in the number of variables,
in practice the number of vertices is often polynomial
(Fisler et al. 2005). In this respect, the BDD represen-
tation used has an impact on the BDD size. The dd
library uses a fixed order of variables, which is com-
mon for all BDDs. This BDD representation can affect
the size of the generated BDDs. To reduce the size of
BDDs, we used the optimizations offered by the library,
namely garbage collection and reordering. Although the
use of these optimizations provides some benefits in
terms of BDD size, we believe that the size of BDDs
can be further reduced using different representations,
which for instance use a variable order of variables,
or by optimizing the order of variables for each BDD
independently.
Another approach to reduce the size of the represen-

tation of the extended evaluation would be to use some
variant of BDD. For instance, one may consider using
Multi-valued Decision Diagrams (MDD) (Srinivasan et al.
1990). The idea underlying the use of MDD is that vari-
ables encode attributes rather than attribute values. This
way, the depth of the decision diagram is bounded to the
number of attributes instead of to the number of attribute
values. To give a concrete example, for the SAFAX pol-
icy we would obtain an MDD with depth of at most 7
(i.e., the number of attributes used in that policy) regard-
less of the size of domain of numerical attributes. Based
on this observation, we converted the BDDs encoding the
extended evaluation in the corresponding MDD using the
facilities provided by the dd library. We observed that,
although the number of nodes in the MDDs is signifi-
cantly reduced, the overall size of the representation of

the extended evaluation was not. In particular, the num-
ber of edges increases exponentially in the size of attribute
domains. Since attributes can take multiple values, when
using MDDs edges have to account for all possible com-
binations of values for every attribute. This, together with
the fact that all attribute values are needed to determine
the validity of queries (see above), leads to an exponen-
tial number of edges. For instance, the SAFAX policy uses
an attribute action, whose domain comprises 10 values.
Representing all possible combinations of values for this
attribute requires 1024 edges.

Related work
Attribute-based access control has gained increasing pop-
ularity in the last years due to its flexibility and expressive-
ness.
Several mechanisms for the evaluation and enforce-

ment of ABAC policies have been proposed in both
academia and industry, especially for XACML (OASIS
2005; 2013). Examples of these mechanisms are SUN-
XACML10, HERAS-AF (Dolski et al. 2007), XEngine (Liu
et al. 2011), enterprise-java-xacml11 and WSO2 Balana12.
These mechanisms implement the standard evaluation of
ABAC policies. As discussed previously, the way in which
missing information is handled within the standard eval-
uation is flawed, making ABAC policies vulnerable to
attribute-hiding attacks.
Tschantz and Krishnamurthi introduced in Tschantz

and Krishnamurthi (2006) the problem of missing infor-
mation, and Crampton and Morisset developed in
Crampton and Morisset (2012) the notion of attribute-
hiding attacks for PTaCL and proposed different restric-
tions on the definition of a target to prevent such attacks.
A different approach to address the problem of missing
information is presented in Crampton et al. (2015), where
all queries that can be constructed from the initial query
are evaluated to account that attributes could have been
hidden, using the PRISMmodel-checker. Model-checking
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has been used in the past for access control; for instance,
Zhang et al. (2005) propose a tool checking whether a
particular goal can be reached within an access control
policy, but not in the context of missing information for
ABAC. However, the query space could potentially con-
sist of a huge number of states and its exploration at
evaluation time is not practical in real settings. In this
work, we improve on Crampton et al. (2015) by study-
ing how to efficiently compute the extended evaluation
of policies while considering more expressive domain
constraints.
Recently, Turkmen et al. (2017) have proposed a pol-

icy analysis framework for XACML policies based on
SMT. The framework supports the verification of a large
range of properties including the robustness of XACML
policies against two types of attribute hiding attacks,
namely partial attribute hiding and general attribute hid-
ing. Partial attribute hiding analyzes the case where a user
hides a single attribute name-value pair, whereas general
attribute hiding extends partial attribute hiding by assum-
ing that a user completely suppresses information about
one attribute. However, this work only allows verifying
whether a policy is vulnerable to attribute hiding attacks.
In contrast, the notion of attribute value power introduced
in this work also provides a means to assess the impact
of missing information on policy evaluation and thus to
quantify the risks of attribute hiding attacks.
In this work, we have adopted binary decision dia-

gram (BDD)-based data structures for the representation
of ABAC policies. We are not the first that use such
data structures in the context of ABAC. For instance, Hu
et al. (2013) use BDDs to determine the applicability of
policies, whereas other researchers (Bahrak et al. 2010;
Fisler et al. 2005) propose an encoding of ABAC policies
using Multi-Terminal BDDs (MTBDDs). Although the
use of BDD-based data structures presented in our work
shares several similarities with these works, there also sev-
eral differences. Similarly to our work, these proposals
construct BDDs (or MTBDDs) from the policy specifica-
tion. However, they encode policy evaluation according to
the standard evaluation function, which, as discussed in
“Preliminaries” section, is not able to handle miss-
ing information properly. Moreover, these approaches
typically neglect domain constraints. As shown in
“Case studies” section, this can result in misleading
decisions.
To the best of our knowledge, the only approach that

address this issue is Margrave (2005), a formal frame-
work for the analysis of XACML policies. In Margrave,
domain constraints are incorporated by introducing a ter-
minal node representing queries that do not satisfy the
constraints.
In our work, we encoded constraints in a separated

BDD, which is combined with the BDDs encoding the

simplified evaluation of a policy when computing the
extended evaluation of ABAC policies.

Conclusion
The ABAC paradigm is gaining more and more atten-
tion due to its flexibility, scalability and expressiveness.
However, the approach for handling missing information
adopted by existing standard ABAC mechanisms (e.g.,
based on XACML) is flawed, making the evaluation of
ABAC policies vulnerable to attribute hiding attacks. Pre-
vious work (Crampton et al. 2015) has addressed this
issue by providing a novel approach to the evaluation
of ABAC policies. However, a naïve implementation of
this approach would require exploring the state space for
all possible queries, which is exponential in the num-
ber of attribute values, and therefore not feasible in
practice.
In this work, we have presented a framework for the

extended evaluation of ABAC policies. Our framework
uses a BDD representation of the policies to efficiently
compute the extended evaluation directly on the BDD
structure. Moreover, we have investigated the use of query
constraints to obtain more accurate decisions, and the
notion of attribute value power. We have demonstrated
our approach using three real-world policies. The evalua-
tion shows that the extended evaluation can be computed
in a few seconds and the corresponding BDDs only require
limited memory for storage.
As future work, we plan to extend our approach to

support a probabilistic evaluation of ABAC policies. Intu-
itively, we would like to determine the probability that a
certain decision can be reached through the exploration
of the (constrained) query space. Moreover, we plan to
investigate approaches to reduce the size of the repre-
sentation of the extended evaluation to improve query
evaluation at run-time. In this work, we explored the use
of MDDs, which however did not prove suitable in our
case. In future work, we want to explore the use of other
BDD variants like Multi-Terminal BDDs (MTBDDs). In
particular, MTBDDs would allow traversing a single deci-
sion diagram encoding all decisions in order to evalu-
ate a given query, instead of traversing three separated
BDDs, one for each (singleton) decision. Our experiments
show that query constraints have a significant impact
on the computation of the extended evaluation both in
terms of the accuracy of policy evaluation and size of
the obtained BDDs. In future work, we plan to conduct
additional experiments to perform quantitative analysis of
their impact.

Endnotes
1Crampton et al. Crampton et al. (2015) also consider a

probabilistic attribute retrieval, which however is beyond
the scope of this paper.
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2 In XACML, this would correspond to no attribute
indicated asmust-be-present.

3 For instance illustrated in 2017 with the Australian
parliament, where seven members of parliament were
revealed to hold dual nationalities and therefore were not
eligible.

4 https://en.wikipedia.org/wiki/List_of_sovereign_
states

5Actual rules for dual-nationality tend to be very com-
plex, and we do not go into any detail here.

6 https://github.com/johnyf/dd
7 http://www.margrave-tool.org/v1+v2/margrave/

versions/01-01/examples/continue/
8 https://svn.wso2.org/repos/wso2/people/asela/xacml/

sample/kmarket/resources/
9 Recall that these BDDs only encode the evaluation

of the given policy and, thus, only constrain the values
occurring in the policy, which are the same in all three
datasets.

10 http://sunxacml.sourceforge.net
11 http://code.google.com/p/enterprise-java-xacml
12 http://xacmlinfo.org/category/balana

Appendix
Proof of Theorem 1
Lemma 1 A.1 Given a set of query constraints C, a deci-

sion d and a query q ∈ QA∣C such that �p�B(q) ≠ d, if C
is monotonic or anti-monotonic, d belongs to �p�E(q) then
there exists an attribute name-value pair (a, v) ∉ q such
that Pd

a,v ≠ 0.

Proof Let d be a decision and q a query such that
�p�B(q) ≠ d. Let us first assume that d ∈ �p�E(q), and
let us show that there exists (a, v) ∉ q such Pd

a,v ≠ 0. By
definition of �⋅�E, we know there exists a non-empty set
of query Q′ ⊆ QA∣C such that for each query q′ ∈ Q′, we
have q′ ⊃ q and �p�B(q′) = d. Let qm be a minimal query
of Q′ with respect to subset inclusion (i.e., there exists no
q′ ∈ Q′ such that q′ ⊂ qm). Let (a, v) be an attribute name-
value pair in qm ∖ q, and let q−m equals qm ∖ {(a, v)}. It is
worth observing that (a, v) must exist, since by assump-
tion, �p�B(q) ≠ d, meaning that q does not belong to Q′.
Since C is monotonic or anti-monotonic by assumption,
and both q and qm satisfy C, and q ⊆ q−m ⊂ qm, it fol-
lows that q−m also satisfies C. Since qm is minimal, we know
that that q−m is not in Q′, meaning that �p�B(q−m) ≠ d.
By definition, it follows that (q−m, (a, v)) is a critical pair
for d, meaning that Pd

a,v ≠ 0, and since, by construction,
(a, v) ∉ q, we can conclude.

Proof Follows from Lemma 1.

Proof of Theorem 4
Note that the semantics of a propositional formula is given
in the context of an interpretation η ∶ Vars → B, assign-
ing meaning to variables. Let η ∶ Vars → B be such an
interpretation. We write η ⊧ φ for propositional formula
φ ranging over Vars iff φ holds under interpretation η. A
query induces an interpretation I ∶ QA → (Vars → B),
given by I(q)(av) = true iff (a, v) ∈ q.
The correctness of Algorithm 1 essentially hinges on

two lemmata, which we present next. The first one
states that transformation τ faithfully characterizes sets
of queries, whereas the second one states that transfor-
mation τ correctly encodes the simplified evaluation of
the policy language. Note that using a simple structural
induction, one can easily show that τt� = ¬(τt1∨ τt0) and
π�(p) = ¬(π1(p) ∨ π0(p)). Thus, in our proofs, we can
focus on the cases d = 1 and d = 0.

Lemma 2 (a) For all q ∈ QA, I(q) ⊧ τtd iff d = �t�T(q).

Proof By structural induction on t. Let q ∈ QA be
arbitrary.

– Base case: t≡(a, v). We prove correctness for each
d∈{1,0} separately (Recall that case d=� follows
from d=1 and d=0).

– Case d = 1. Suppose I(q) ⊧ τ(a,v)1. By
definition, τ(a,v)1 = av. From this, it follows
that I(q) ⊧ av which, by definition means that
I(q)(av) = true and, thus, (a, v) ∈ q. By
definition of �⋅�T we also have �(a, v)�T(q) = 1.

– Case d = 0 follows identical reasoning using
Table 3.

– Induction hypothesis: suppose that, for all d′,
I(q) ⊧ τtid

′ iffd′ = �ti�T(q) with i ∈ {1, 2}. We need
to consider all unary and binary operators and prove
each equivalence for all d ∈ {1, 0}. We provide details
for negation ¬ and strong conjunction ⊓̃; the proofs
for all remaining operators are analogous and
therefore omitted.

– Suppose t ≡ ¬t1. We compute:

I(q) ⊧ τ¬t11
iff {by def.} I(q) ⊧ τt10
iff {by induction} 0 = �t1�T(q)
iff {by def. of ¬} �¬t1�T = 1

I(q) ⊧ τ¬t10
iff {by def.} I(q) ⊧ τt11
iff {by induction} 1 = �t1�T(q)
iff {by def. of ¬} �¬t1�T = 0

– Suppose t ≡ t1 ⊓̃ t2. We compute for d = 1:

I(q) ⊧ τt1⊓̃t21 iff {by def.} I(q) ⊧ τt11 ∧ τt21
iff {by def.} I(q) ⊧ τt11andI(q) ⊧ τt21
iff {by induction (2x)} 1 = �t1�T(q) and1 = �t2�T(q)
iff {by def.} 1 = �t1 ⊓̃ t2�T(q)

https://en.wikipedia.org/wiki/List_of_sovereign_states
https://en.wikipedia.org/wiki/List_of_sovereign_states
https://github.com/johnyf/dd
http://www.margrave-tool.org/v1+v2/margrave/versions/01-01/examples/continue/
http://www.margrave-tool.org/v1+v2/margrave/versions/01-01/examples/continue/
https://svn.wso2.org/repos/wso2/people/asela/xacml/sample/kmarket/resources/
https://svn.wso2.org/repos/wso2/people/asela/xacml/sample/kmarket/resources/
http://sunxacml.sourceforge.net
http://code.google.com/p/enterprise-java-xacml
http://xacmlinfo.org/category/balana
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Case d = 0 follows the same reasoning,
employing the encodings of Table 3.

Lemma 3 (b) For all q ∈ QA, I(q) ⊧ πd(p) iff d =
�p�B(q).

Proof The proof of this lemma proceeds by induction
on the structure of the policy. Since the proof bears many
similarities to that of the previous lemma, we only high-
light the interesting case, which is the case p ≡ (t,p1).
Assume, as our induction hypothesis, that for all d′, I(q) ⊧
πd′(p1)iffd′ = �p1�B(q).
We separately prove the statement for d ∈ {1, 0}. We

reason as follows:

I(q) ⊧ π1((t, p1))
iff {by def.}

I(q) ⊧ τ1(t) ∧ π1(p1)
iff {by def.}

I(q) ⊧ τ1(t) andI(q) ⊧ π1(p1)
iff {by induction}

I(q) ⊧ τ1(t) and1 = �p1�B(q)
iff {by Lemma 2}

�t�T(q) = 1 and1 = �p1�B(q)
iff {by def.}

1 = �(t, p1)�B(q)

I(q) ⊧ π0((t, p1))
iff {by def.}

I(q) ⊧ τ1(t) ∧ π0(p1)
iff {by def.}

I(q) ⊧ τ1(t) andI(q) ⊧ π0(p1)
iff {by induction}

I(q) ⊧ τ1(t) and0 = �p1�B(q)
iff {by Lemma 2}

�t�T(q) = 1 and0 = �p1�B(q)
iff {by def.}

0 = �(t, p1)�B(q)

Finally, we observe that the proposition R̄, defined as
⋀{av ⇒ a′v ∣ av ∈ VarsA}, indeed encodes the subset rela-
tion on QA. We introduce an interpretation I′ ∶ QA →
(Vars′ → B), which is given by I′(q) (a′v) = true iff (a, v) ∈
q. We write η ∪ η′ ⊧ R̄ iff R̄ holds under interpretation
η ∶ Vars → B for variables from Vars and η′ ∶ Vars′ → B

for variables from Vars′.

Lemma 4 For all q, q′ ∈ QA, I(q) ∪ I′ (q′) ⊧ R̄ iff
(q, q′) ∈→∗.

Proof First, observe that→∗ is in fact equivalent to ⊆ on
QA.

– Implication from left to right. Suppose I(q)∪ I′ (q′) ⊧
R̄. Then, I(q) ∪ I′ (q′) ⊧ ⋀{av ⇒ a′v ∣ av ∈ VarsA},
and, therefore, for all av ∈ VarsA, we find that
I(q) ∪ I′ (q′) ⊧ av ⇒ a′v. But then if I(q)(av) holds,
then so does I′ (q′) (a′v). By definition, this means
(a, v) ∈ q implies (a, v) ∈ q′ for all (a, v) ∈ QA. But
then q ⊆ q′, or, equivalently (q, q′) →∗.

– Implication from right to left. Suppose (q, q′) ∈→∗,
or, equivalently, q ⊆ q′. Pick some arbitrary
(a, v) ∈ QA, and assume (a, v) ∈ q. By definition, we

then have I(q)(av) holds. Since q ⊆ q′, also (a, v) ∈ q′;
but then also I′(q)(av) holds. So we have I(q)(av)
implies I′(q) (a′v). But then I(q) ∪ I′ (q′) ⊧ av ⇒ a′v.
Since we picked (a, v) ∈ QA arbitrary, we find that
I(q) ∪ I′ (q′) ⊧ ⋀{av ⇒ a′v ∣ av ∈ VarsA}.

The correctness of procedure COMPUTEEXTENDEDE-
VALUATION (Theorem 4) directly follows from the next
proposition, where R = R̄ ∧S ∧ S [VarsA ∶= Vars′A] and
S = ⋀{τc1 ∣ c ∈ C}:

Proposition B.1 For all d ∈ {1, 0,�},
q ∈ QA∣C ∧ d ∈ �p�E(q) iff I(q) ⊧ (πd(p) ∧ S) ∨
∃Vars′A. (R ∧ (πd(p)) [VarsA ∶= Vars′A]).

Proof Follows from Lemmata 2, 3 and 4.
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