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Abstract

The interaction between gene loci, namely epistasis, is a widespread biological genetic phenomenon. In
genome-wide association studies(GWAS), epistasis detection of complex diseases is a major challenge. Although
many approaches using statistics, machine learning, and information entropy were proposed for epistasis detection,
the privacy preserving for single nucleotide polymorphism(SNP) data has been largely ignored. Thus, this paper
proposes a novel two-stage approach. A fusion strategy assists in combining and sorting the SNPs importance scores
obtained by the relief and mutual information, thereby obtaining a candidate set of SNPs. This avoids missing some
SNPs with strong interaction. Furthermore, differentially private decision tree is applied to search for SNPs. This
achieves the efficient epistasis detection of complex diseases on the basis of privacy preserving compared with
heuristic methods. The recognition rate on simulation data set is more than 90%. Also, several susceptible loci
including rs380390 and rs1329428 are found in the real data set for Age-related Macular Degeneration (AMD). This
demonstrates that our method is promising in epistasis detection.
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Introduction
The search for genetic markers significantly associated
with diseases within the genome-wide has become a
hot topic of life science in recent years (Chen et al.
2017). Researchers usually understand the pathogene-
sis of disease through epistasis detection of complex
diseases, and thus make decision for prevention, diag-
nosis and treatment. Many studies on GWAS show
that common human diseases (also known as com-
plex diseases such as hypertension, diabetes, rheumatoid
arthritis, etc.) are mostly caused by gene-gene interac-
tion and gene-environment interaction. The former is
called epistasis (Guo et al. 2011), a widespread bio-
logical genetic phenomenon. It is essential to explore
the epistasis detection by the interaction between SNP
loci. Unfortunately, a number of studies have shown
that it possible for attackers to breach genetic privacy
based on SNP data (Nils et al. 2008; Yaniv and Arvind
2014; Naveed et al. 2015). Therefore, it is important to
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take data privacy into account when analyzing genetic
data.
The application of advanced experiment techniques

leads to a rapid growth of gene data. At present, there have
been considerable efforts for epistasis detection, gener-
ally including four categories: statistics,machine learning,
information entropy and two-stage. They are successful
in exploiting the epistasis of weak marginal effects, and
improving the efficiency of epistasis detection. However,
they often overlook the potential privacy issue while ana-
lyzing the SNP data. Since the SNP data for epistasis
detection are based on the genome-wide case-control data
sets. They contain much individual sensitive information,
such as skin color, health status. If the personal data are
improperly used, it may lead to the privacy disclosure.
Therefore, privacy preserving has become a critical issue
in epistasis detection of complex diseases. The differen-
tial privacy method was first proposed by Dwork et al.
(2006) in the cryptography community. It is based on ran-
dom algorithm to perturb the query output. Compared
with the early anonymization preserving technology, dif-
ferential privacy defines a very strict attack model. In
general, it has a strict theoretical basis, a high degree of
privacy preserving in the case of less noise, and a low
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risk of privacy leakage (Dwork 2011). Recently, several
privacy-preserving methods based on differential privacy
have been applied to real GWAS data (Uhlerop et al. 2012;
Johnson and Shmatikov 2013; Yu et al. 2014; Simmons and
Berger 2016; Simmons et al. 2016).
A novel two-stage approach is proposed in this paper by

combing differential privacy technology with the decision
tree algorithm for epistasis detection of complex disease.
Two different strategies are used to score the importance
of SNPs (Chen et al. 2017). The derived scores are then
fused and sorted to extract the SNPs candidate set. The
fusion process guarantees SNP loci with weak marginal
effects but strong interaction are reserved. In contrast to
traditional two-stage method, the decision tree does not
need to find suboptimal solutions like greedy algorithms,
which is easy to fall into local optimum (Chen et al. 2016).
Unlike heuristic search algorithm (Wang et al. 2010), the
decision tree generated by the candidate set of SNPs is
applied to search for pathogenic SNPs. In particular, the
differential privacy is considered while constructing the
decision tree by adding the noise of the laplace distribu-
tion to the sample count at the non-leaf node and the class
count at the leaf node. The experimental results demon-
strate our method is prospective for epistasis detection
with privacy preserving.
The remaining of the paper is organized as follows.

“Related work” section is a brief introduction of previ-
ous work and our contributions. “Preliminaries” section
offers the theoretical basis of decision trees and differ-
ential privacy. The detailed explanation of the research
methods is described in “Epistasis detection by decision
tree” section. “Experimental results” section shows the
data sources and a detailed analysis of the experimental
results. “Conclusion” section is a summary of the paper.

Related work
In recent years, researchers have studied epistasis detec-
tion mainly in four ways. Statistical method calculates the
pathogenic SNP loci based on the statistical characteris-
tics of disease data, and is appropriate for small-scale data.
They include logistic regression (Marchini et al. 2005),
multi-factor dimensionality reduction (MDR) (Ritchie
et al. 2003), SNPRuler (Wan et al. 2010). Machine learning
method views the epistasis detection as a feature selection
problem, and selects the SNP set with the strongest corre-
lation as the final results (Chen et al. 2016). For example,
genetic programming optimization neural network algo-
rithm (GPNN) (Motsinger-Reif et al. 2008) and TEAM
algorithm (Zhang et al. 2010). Nevertheless, the results
are hard to interpret. Information entropy method aims to
describe the relationship between SNP combination and
disease. The SNPs that are significantly associated with
disease are found by amplifying the frequency differences
between the SNP combinations in the case and control

data sets. For example, ESNP2 by Dong et al. (2008),
the contingency table of phenotype and genotype by Yee
et al. (2013), and the two-order epistasis by Anunciacao
et al. (2013). Although these methods promote the study
of epistasis detection to some extent, the large compu-
tational overhead owing to massive genomic data makes
the model too complicated to realize in many cases. Thus,
the two-stage method was developed. Those irrelevant
and redundant features are eliminated by screening out
the important SNP loci, by which to determine a sig-
nificantly correlated SNP combination. Representatives
of such method are SNPHarvester (Yang et al. 2009),
AntEpiSeeker (Wang et al. 2010), and BOOST (Wan et al.
2010).
A number of studies have been applied to the privacy

and security of SNP data (Johnson and Shmatikov 2013;
Simmons and Berger 2016; Uhlerop et al. 2012). Johnson
and Shmatikov (2013) proved that differential privacy is
a suitable basis for privacy-preserving query mechanisms
in GWAS. Simmons and Berger (2016) proposed a convex
analysis algorithm satisfying differential privacy to realize
SNP data privacy protection. Uhler et al. (2012) deep-
ened the application of differential privacy for SNPs data
in GWAS. These technical methods guaranteed genetic
privacy in common ways. However, their privacy research
on SNP data is based on data publishing, instead of data
mining. And they mainly discuss the effects of indepen-
dent SNP loci on the disease. The effects of interactions
between multiple SNP loci on complex diseases are not
fully considered. Fei Yu et al. (2014) using penalized logis-
tic regression with elastic-net regularization satisfying
differential privacy to identify disease-causing gene com-
bination. This method filters out a large number of SNP
loci with weak main effect, so that the recognition rate of
epistasis is not high. Moreover, it is only applied to the
multiplicative model.
Recently, there are also many cross-researched algo-

rithms in machine learning with differential privacy tech-
niques, such as logistic regression, SVM, Bayesian, and
decision trees, such as SuLQ-based ID3 (Blum et al. 2005),
DiffP-C4.5 method (Friedman and Schuster 2010), and
DiffGen method (Mohammed et al. 2011). These meth-
ods mainly consider how to select the splitting attribute
of each node of the decision tree, and are similar to ID3
method in the construction of classifier. SuLQ-based ID3
method suffers from a large number of attributes and
needs to divide the privacy budget into several parts, and
then calculate the information gain value of each attribute.
This results in extra privacy budget. However, DiffP-
C4.5 uses the exponential mechanism to select splitting
attributes for the disadvantages of SuLQ-based ID3 and
effectively reduces noise. The disadvantage of the DiffP-
C4.5 algorithm is that in each iteration, the exponential
mechanism has to be called twice.
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Unlike SuLQ-based ID3 and DiffP-C4.5 algorithms, Dif-
fGen uses information gain and max operator as scoring
function to construct decision tree from top to bottom,
and finally adds Laplace noise to the calculation value
of released leaf nodes. But, for each recursion of Diff-
Gen algorithm, it is necessary to assign a certain privacy
budget to the continuous attribute. It uses the exponen-
tial mechanism to select a subdivision scheme from the
continuous attribute, and then invokes the exponential
mechanism together with the discrete attribute. Zhu et al.
(2013) improved DiffGen algorithm. In each iteration of
subdivision, all continuous attribute subdivision schemes
were multiplied by corresponding weights and then com-
bined with discrete attribute subdivision schemes to form
a candidate scheme set. This algorithm reduces the num-
ber of calls to the exponential mechanism, thus increasing
the utilization rate of privacy budget and improving the
accuracy of classification model.
Our method is partially adapted from DiffGen algo-

rithm, but there is no continuous attribute allocation pri-
vacy budget. Furthermore, our algorithm applies the data
mining process and does not need to generalize the orig-
inal data. Therefore, data privacy preserving can achieve
better results in epistasis detection. There are three main
contributions in this paper:

– A fusion strategy is designed to select the features of
SNP data. It avoids removing SNP loci with weak
main effect but strong interaction.

– Applying decision tree and differential privacy to
identify association between SNP loci and disease to
achieve privacy preserving of SNP data.

– Using decision tree to search for pathogenic SNP loci
to achieve epistasis detection with low time
consumption.

Preliminaries
In this section, the background knowledge of decision
trees and differential privacy preserving are presented.
The main symbols are used in this paper and their inter-
pretations are shown in Table 1 below.

Decision tree
Decision tree is a tree structure consisting of root node,
internal node (decision node), and leaf node. Each of its
non-leaf nodes represents an attribute. Each branch indi-
dates the output of the attribute over a range of values, and
each leaf node stores a category. The decision tree is con-
structed to obtain a classificationmodel. Furthermore, the
model is validated by using the test data and then pruned
until the desired classification accuracy is reached.
The decision tree is generated based on splitting

attribute nodes. The commonly used splitting criteria
includes Information Gain and Gini Index. They select

Table 1 Main symbols and their meanings

Symbols Meanings

D Data set

A Attribute set

�q Sensitivity of the scoring function q

ε The privacy budget

H Information entropy

I Mutual information

W Attribute weights

Score The score of SNP loci

Power The recognition rate of epistasis detection

the splitting attribute by making each splitting subset as
“pure” as possible, so that a splitting subgroup is classified
into the same category.

Differential privacy
Differential privacy is an emerging privacy preserving
technology (Dwork 2006). Unlike traditional privacy pre-
serving relying on anonymized concealment processing of
raw data, differential privacy uses a random algorithm to
interfere with the query output. It is a privacy preserving
model with strict mathematical proof that has been widely
used (Dwork 2006).

Definition 1 (ε-Differential Privacy) A random algo-
rithm M satisfies ε-differential privacy. If there is only
one different record between the datasets D and D′(called
neighboring dataset). And for all testable sets S ∈
Range(M), we have:

Pr(M(D) ∈ S) ≤ exp(ε)Pr
(
M

(
D′) ∈ S

)
(1)

where ε is the privacy budget.

In Definition 1, ε is used to control the probability ratio
of algorithm M to obtain the same output on two neigh-
borhood datasets. It reflects the level of privacy preserving
that M can provide. The closer ε is to 0, the higher the
privacy is, but the lower the data availability. Obviously,
in terms of privacy preserving, we hope to set ε as small
as possible. Unfortunately, this is at the expense of useful
information for the data. Thus, the selection of a suitable
ε is important (Zhu et al. 2017).
According to Definition 1, we know that differential pri-

vacy implements privacy preserving by adding an appro-
priate amount of perturbation noise to the return value of
the query function. However, the sensitivity of the algo-
rithm is a key parameter to determine the noise size. It
expresses the maximal possible change in its value due
to the addition or removal of a single record (Nissim and
Raskhodnikova 2007).
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Definition 2 (Sensitivity) Given a function f : D → R
in any neighboring datasets D and D′, its sensitivity can be
defined as:

�f = max
D,D′

∥∥f (D) − f
(
D′)∥∥

1 (2)

Suppose the sensitivity of the function f on the dataset
D is known. We only need to add the noise obey-
ing the Laplace distribution to the calculation result of
the function f. The Laplace mechanism (Dwork et al.
2006) that satisfies the differential privacy preserving is
achieved. The probability density function of the Laplace
distribution is:

P(x) = 1
2b

exp
(

−|x|
b

)
(3)

Definition 3 (Laplace Mechanism) Given a function
f : D → R, the mechanism F provides the ε-differential
privacy if the following equation is true:

F(D) = f (D) + Lap
(

�f
ε

)
(4)

From the above observation, the Laplace mechanism is
only suitable for numerical data. However, most of the
data in real life is stored in non-numeric form. Thus,
researchers have proposed an exponential mechanism
(Mcsherry and Talwar 2007) for differential privacy pre-
serving.

Definition 4 (Exponential Mechanism) Let q(D,ψ) be a
scoring function of dataset D. The exponential mechanism
F is ε-differential privacy if

F(D) =
{
ψ : |Pr(ψ ∈ �) ∝ exp(

εq(D,ψ)

2�q)

}
(5)

where �q is the sensitivity of the function q.

Epistasis detection by decision tree
In this paper, decision tree is used to search for pathogenic
SNP loci. Differential privacy and decision tree are com-
bined to realize the privacy preserving of SNP data in
the process of epistatsis detection. This section consists
of dimensionality reduction, selection of a few important
features (SNP loci), and epistasis detection in combination
with differential privacy preserving.

Candidate feature selection by fusion strategy
Feature selection is prevalent in two-stage method to
remove redundant and unrelated features. However, the
previous filtering criteria are based on a single main effect.
Some features (SNP loci) that have weak main effect but
strong interaction might be pruned. Thus, the relief and
mutual information are applied to score and sort the SNP

loci, respectively. It tries to reserve the features with weak
main effect but obvious interaction effect as much as
possible. The importance scores of SNPs are merged to
generate the candidate set of SNPs.
Relief algorithm (Kira and Rendell 1992) was first pro-

posed by Kira et al. The features are assigned different
weights W = {w1,w2, ...,wn} according to the correla-
tion between the corresponding features and categories.
A threshold δ can be specified by the data characteris-
tics. If δ < wk , the feature is removed. The correlation is
based on the ability of features to distinguish between the
nearest distance samples. A random sample R is chosen
from the training set D-train. It is used to find the nearest
neighbor sample NH(called Near Hit) of the same class as
R and the nearest neighbor sample NM(called Near Miss)
of a different class from R. The weight of each feature is
then updated according to the Eqs. 6 and 7. Note, only the
discrete features are considered here.

w(k)i+1 = w(k)i− diff (k,R,NH)

m
+ diff (k,R,NM)

m
(6)

diff(k,R1,R2) =
{
0 if R1(k) = R2(k)
1 if R1(k) �= R2(k)

(7)

If the distance between R and NH is less than the
distance between R and NM on the k-th feature, it indi-
cates that the feature is useful to distinguish the nearest
neighborhood samples of different categories. Thus, a
higher weight should be assigned to the feature. The above
process is repeated m times, and eventually the aver-
age weight of each feature can be obtained. The greater
the weight is, the stronger the classification ability of the
feature.
Mutual information (Li et al. 2013) is used to measure

the degree of association between two variables by scor-
ing the correlation between random variables SNPs and
disease. Mutual information is defined as:

I(X,Y ) = H(X) + H(Y ) − H(X,Y ) (8)

where H(X) is the information entropy of X, and H(X,Y )

is the joint entropy of random variables X and Y. X and
Y represent different SNP locus and a disease state(i.e.,
control or case), respectively.
Let X = {x1, x2, ..., xn}. p(X = xi) denote the frequency

of xi appearing in X. Thus, H(X) = −
n∑

i=1
p(xi) log p(xi)

is to measure the degree of uncertainty of the random
variable X. p(xi) indicates the distribution frequency of
different alleles at a SNP locus. I(X,Y ) is the degree of
association between the SNP locus X and the disease
state Y. The larger the value, the higher the degree of
association between X and Y.
Two feature importance scores W and I(I = I(X,Y ))

are obtained by the aforementioned relief algorithm and
mutual information. The initial scores are normalized to
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W ′ and I ′. They are summed by weights to obtain the final
merged feature ranking score. The fusion is defined as

Score = p1 · W ′ + p2 · I ′ (9)

where p1 and p2 are the weights of the two methods, and
Score represents the final feature ranking score. The SNPs
candidate set is decided by Score.

Decision tree based on differential privacy
The decision tree is constructed by selecting the combina-
tion of features (SNPs) from the derived candidate feature
set. However, the counting information of the SNP data
may lead to a risk of personal privacy breach. The dif-
ferential privacy is thus merged into the construction of
decision tree as below:

– Add noise obeying the laplace distribution to the
sample count of the data set;

– Use the exponential mechanism to select splitting
attributes from the attribute set;

– Add the noise of the laplace distribution to the
sample count of the split node. If the node satisfies
the splitting termination condition, the noise is added
to the sample count of the leaf node in the same way,
and the class with the largest leaf node class count is
retured. Otherwise go to the second step.

Algorithm 1 offers the pseudo-code of the decision
tree algorithm based on differential privacy. D(i) and
Dc represent samples at non-leaf nodes and leaf nodes,
respectively. STC is the splitting termination condition, as
follows:

– The classification attribute of all records of the node
are consistent;

– Or reaches the depth h of the decision tree;
– Or the allocated privacy budget ε is exhausted.

Pruning decision tree
To classify the training samples as accurately as possible
in decision tree, some features unique to the training set
are considered as general attributes of the data set, thereby
over-fitting. In addition, it is no longer possible to identify
a leaf with pure class values due to the application of extra
noise in this paper. The splitting attribute will continue
to split until the instances are insufficient and the depth
constraint is not reached. It is thus important to trim the
decision tree.
Some methods implement pruning by a validation set

(mutually exclusive with the training set and the test data),
such as the minimal cost complexity pruning and reduced
error pruning. However, the validation set reduces the size
of the training set. This would increase the size of relative

Algorithm 1 Decision Tree Based on Differential Privacy.
Require: Data set D, attribute set A = {a1, a2, ..., at},

privacy budget ε, decision tree depth h;
Ensure: Decision tree that satisfies differential

privacy:DP-DTree;
1: ε

′ = ε/2h;
2: repeat
3: N(D(i)) = |D(i)| + lap

(
�f /ε′);

4: if the attribute node satisfies STC then
5: Nc = |Dc| + lap

(
�f /ε′). Return c =

argmax(Nc);
6: else
7: Using the exponential mechanism to pick a by

p(a);

p (a) =
exp

(
ε
′q(Di,a)
2�q

)

∑
a∈A exp

(
ε
′q(Di,a)
2�q

)

8: Splitting a into two child nodes, A = A − a;
9: end if

10: h = h − 1;
11: until h = 0 or A = {};
12: return DP-DTree.

noise in this paper. Therefore, the following formula 10 is
used to trim the tree.

H (Di) ≥
∑

v∈a

|Di,av |
|Di| H

(
Di,av

)
(10)

where H is the information entropy and Di,av is the leaf
node. Information entropy calculates the average purity of
all leaf nodes. They are compared to their parent nodes. If
the above formula is satisfied, all leaf nodes ofDi is deleted
and Di become a new leaf node (Fletcher and Islam 2015).

Scoring Function
The scoring function of the exponential mechanism is also
the splitting criterion of the decision tree. It directly deter-
mines the quality of the splitting attribute selection. In this
paper, Information Gain and Max operator is chosen as
the scoring function. d = |D| is the number of records in
the data set, ra and rC represent the values of attribute a
and classC, respectively.Da

j = {r ∈ D : ra = j}, daj =
∣∣∣Da

j

∣
∣∣,

dc = |r ∈ D : rC = c|, dc = |r ∈ D : rC = c|.

Information Gain. The greater the information gain, the
simpler the decision tree and the higher the classification
accuracy. The information entropy of the class attribute
C is defined as HC(D) = −∑

c∈C
dc
d log

dc
d , where dc and d

are the number of records belonging to class c and the
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total number of records, respectively. If the sample setD is
divided by using the attribute a, the obtained information
gain is:

InfoGain (D, a) = HC (D) − HC|a (D) (11)

where HC|a (D) = ∑

j∈a
daj
d · HC

(
Da
j

)
is the weighted sum

of the information entropy of all subsets. Since the max-
imum of HC(D) is log|C| and the minimum of HC|a(D) is
0, the sensitivity �q of q(D, a) = InfoGain (D, a) is equal
to log|C|. Due to C = {control, case} in the SNP data, so
|C| = 2, and �q = log2 = 1.

Max Operator. Max operator (Breiman et al. 1984) is
used to select the class with the highest frequency as the
score value of the corresponding node:

Max (D, a) =
∑

j∈a

(
max
c

(
daj,c

))
(12)

According to the formula 12, the sensitivity �q of
q(D, a) = Max (D, a) is equal to 1.

Privacy analysis
We apply two composite properties of privacy budget:the
sequential and the parallel composition (Mcsherry and
Talwar 2007) to analyze privacy. The two lemmas are as
follows:

Lemma 1 (Sequential Composition) Suppose each Gi
provide ε-differential privacy. A sequence of G =
{G1,G2...,Gn} over the data set D privides (n · ε)-
differential privacy.

Lemma 2 (Parallel Composition) Suppose each Gi
provide εi-differential privacy. The parallel of G =
{G1,G2...,Gn} over a set of disjoint data sets Di will pro-
vides max{ε1, ε2, ..., εn}-differential privacy.

Each layer of the decision tree is the same data set.
According to the Lemma 1, the privacy budget assigned
to each layer is E = ε/h. The splitting of nodes at each
level is on disjoint data sets. According to Lemma 2, each
node is assigned a privacy budget that is less than or equal
to this layer’s privacy budget. Here, we assume that the
privacy budget of each node is equal to the privacy bud-
get of this layer. Then half of the privacy budget assigned
to each node, ε

′ = E/2 = ε/2h, is used to estimate the
instance count of the node (adding Laplacian noise), and
the other half of the privacy budget

(
ε

′ = ε/2h
)
is used by

the exponential mechanism to select the optimal splitting
node or added Laplacian noise to the leaf node instance
count. Consequently, the total privacy budget consumed
by the algorithm is not greater than h∗ (ε/2h+ ε/2h) = ε.
It satisfies ε-differential privacy.

Time complexity analysis
In order to generate a decision tree, we need to scan
the entire data set D. Then use the exponential mech-
anism to select an attribute to split, the time complex-
ity of this process is O(t|D|log|D|) (t is the number of
attribute set). After the exponential mechanism selects
the splitting attribute, the data set needs to be divided
once. In the worst case, the entire data set needs to
be scanned, and the time complexity is O(|D|). Since
the decision tree depth is h, the time complexity of the
algorithm is O(h|D|log|D|) under a certain number of
attributes.

Experimental results
In this section, the generation process of the simulation
data sets, the source and preprocessing of real data are
introduced. In addition, the performance evaluation and
parameter configuration of our algorithm are explained.
Finally, we analyzed and summarized the experimental
results.

Experiment data
Two kinds of data are applied to evaluate the performance
of our method, including the simulation data sets and a
real disease data.

Simulation data
The simulation data sets are generated by three com-
mon disease models, namely additive model, multiplica-
tive model and threshold model as shown in Table 2. The
disease models contains both the marginal effect (main
effect) of the single locus and the interaction of multiple
loci. Each model generates 100 data sets according to dif-
ferent parameters. Each data set contains 2000 samples,
of which includes 1000 case samples and 1000 control
samples. Each sample has 1000 SNP loci, including 2
pathogenic SNP loci (SNP11 and SNP21) and 998 non-
pathogenic SNP loci. The values of the gene effect θ and

Table 2 Three common disease models

Model BB Bb bb

1 AA α α(1 + θ) α(1 + θ)2

Aa α(1 + θ) α(1 + θ)2 α(1 + θ)3

aa α(1 + θ)2 α(1 + θ)3 α(1 + θ)4

2 AA α α α

Aa α α(1 + θ) α(1 + θ)2

aa α α(1 + θ)2 α(1 + θ)4

3 AA α α α

Aa α α(1 + θ) α(1 + θ)

aa α α(1 + θ) α(1 + θ)
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the baseline effect α can be calculated by the minor allelic
frequency MAF, linkage disequilibrium (LD) r2, main
effect λ and disease penetrance p(D). The two values are
to generate the corresponding simulation data set.
In this paper, the simulation data (Wang et al.

2012) (http://compbio.ddns.comp.nus.edu.sg/~wangyue/
public_data/) used three disease models. We set MAF ∈
{0.2, 0.5}, λ ∈ {0.3, 0.5}, r2 = 1 and p(D) = 0.1. Therefore,
there are 3∗2∗2 = 12 sets of data sets, including 020301_i,
020501_i, 050301_i, 050501_i. i ∈ {1, 2, 3} represents the
model 1, 2, 3.

Real data
Age-related Macular Degeneration (AMD) (Klein et al.
2005) is real disease data containing 116,204 SNP loci
genotyped with 96 cases and 50 controls. This data set has
proved that two SNP loci, rs380390 and rs1329428, are
significantly associated with this disease(AMD).
Data preprocessing of the AMD data is performed:

– SNP loci that do not satisfy the polymorphism and
Hardy-Warmbert equilibrium conditions are
excluded.

– The genotypes aa, Aa, AA in the SNP data are coded
as 0, 1, 2 (AA is dominant homozygote; Aa is
heterozygote; aa is recessive homozygote),
respectively. The case and control labels in the
attribute class are coded as 0, 1.

– The missing values in the processed data: SNP loci
with data missing rates above 10% in SNPs are
deleted; otherwise the three alleles at the SNP loci are
counted and the missing values are filled with the
most count allele.

Search strategy based on decision tree
The decision tree obtained in “Decision tree based on dif-
ferential privacy” section is used to search for pathogenic

SNP loci. All non-leaf nodes from the root node to the
L-th layer of the decision tree represent SNP loci that
may be pathogenic, namely SL. Here, two scenarios are
considered. Scenario A: if SNP11 and SNP21 exist in SL
simultaneously, this disease model is a disease-causing
model. Considering that both SNP11 and SNP21 may be
loci with weak main effects and strong interactions, some
disease models cannot simultaneously detect them. Thus,
we have Scenario B: if SNP11 or SNP21 exists in SL, this
disease model is also a disease-causing model. The experi-
ments in “Results on simulation data” section compare the
performance of our algorithm on each simulation data set.

Performance evaluation
To evaluate the performance of the proposed algorithm,
the power of an epistasis detection method is evaluated
based on Eq. 13.

Power = #TP/#D (13)

Power is a measure of the capability of all data sets
to detect disease-causing models, also known as the the
recognition rate. Where #TP is the number of disease-
causing models from all #D datasets (there are 100 data
matrices for each disease model). Here, the disease model
that can search for SNP11 and SNP21(labeled as a disease-
causing locus) in SL is called a disease-causing model.

Parameter configuration
In the simulation experiments of the Figs. 1, 2, 3 and 4,
the parameters is adjusted through multiple experiments
to obtain the depth of the tree h = 10, privacy budget
ε = 0.5. The scoring function used by the exponential
mechanism in this experiments are based on information
gain. At the same time, we set layer L of the decision tree
is 2,3,4, respectively. In the simulation experiments of the
Figs. 5, and 6, according to the results of the parameter
adjustment, h = 10. The disease model 050301_2 and

Fig. 1 020301(MAF = 0.2, λ = 0.3, r2 = 1)

http://compbio.ddns.comp.nus.edu.sg/~wangyue/public_data/
http://compbio.ddns.comp.nus.edu.sg/~wangyue/public_data/
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Fig. 2 020501(MAF = 0.2, λ = 0.5, r2 = 1)

020501_3 are used to verify the impact of the privacy bud-
get on the recognition rate, and in 050301_2 and 020501_3
the level L is seted to 3,2 respectively. Information Gain
and theMax Operator are applied as the scoring function
of the exponential mechanism respectively. In the simu-
lation experiment of Fig. 7, the disease model 020501_3
and 050301_2 were selected to perform experiments in
Scenario A, and the level L = 2. The privacy budget ε con-
sidered in this experiment is 0.01,0.05,0.1,0.5 and 1, and
the information gain as the splitting criterion of the deci-
sion tree. In the AMD data experiments, the parameters
were seted as h = 10, ε = 0.5, L = 3.

Results on simulation data
In this section, the effects of MAF and MainEffect on
the detection of pathogenic SNP loci are compared in the
same disease model. With the sameMAF andMainEffect,

the performance of the proposed algorithm in detect-
ing pathogenic SNP loci in different disease models is
compared. And in the case of the same disease model, the
impact of the privacy budget on the epistasis detection is
verified.
As you can see in Figs. 1, 2, 3 and 4, our algorithm

is suitable for model 3, more suitable for model 2, and
unsuitable for model 1. This is because the two pathogenic
SNP loci in the disease model 1 independently contribute
to the disease risk, making the main effect account for
a high proportion. However, when using the relief and
mutual information to select the candidate sets of SNPs
from different angles, the independent effect of single
locus is weakened. This makes the importance scores of
disease-causing SNPs in model 1 lower. Therefore, it is
difficult to screen disease-causing SNP loci into the can-
didate sets. Model 3 is the opposite of model 1, with a

Fig. 3 050301(MAF = 0.5, λ = 0.3, r2 = 1)
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Fig. 4 050501(MAF = 0.5, λ = 0.5, r2 = 1)

larger proportion of interaction. Only the proportion of
interaction to main effect in model 2 is more suitable for
the screening rules of the relief and mutual information
methods. From Figs. 1 and 2 or Figs. 3 and 4, we can see
that the model 1 has a lower recognition rate when the
main effect is increased, while the models 2 and 3 are
correspondingly increased. This exactly confirms that the
disease-causing SNP loci were not screened to the candi-
date sets of SNPs. Moreover, it can be seen from Figs. 1
and 3 or Figs. 2 and 4 that only model 2, in the case of
increased MAF, the recognition rate increases, and mod-
els 1, 3 are reduced. This can be a secondary evidece for
the advantages of our method in detecting pathogenic loci
on model 2.
In Figs. 5 and 6, the privacy budget ε is larger and the

recognition rate is higher. This is because in the interval

of [0.01, 1], when the privacy budget ε is larger, the prob-
ability that the better attribute is selected as the splitting
attribute is higher. When the privacy budget ε is small,
the information gain is more suitable as a scoring function
for the exponential mechanism in this experiment than
Max Operator. However, if the privacy budget ε reaches
0.5, the recognition rate of both cases are the highest.
This shows that there is a good trade-off between data
privacy preserving and the performance of epistasis detec-
tion. Although the performance of data privacy preserving
is better when ε is smaller, the damage degree of epistasis
detection is also higher.
From the above experimental results, we can see

that our method can complete the data privacy
preserving when detecting the epistasis on the sim-
ulation dataset. In order to further illustrate the

Fig. 5 050301_2(MAF = 0.5, λ = 0.3, r2 = 1),L = 3
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Fig. 6 020501_3(MAF = 0.2, λ = 0.5, r2 = 1),L = 2

effectiveness of the proposed method, we compare the
non-privacy decision tree(DTree) with our method(DP-
DTree). The experimental results are shown in Fig. 7
below:
As the privacy budget is varied from 0.01 to 1, the

degree of data perturbation becomes smaller. Accord-
ing to Definition 1 data availability becomes higher and
higher. At this point, in Fig. 7, Power is increasingly higher,
indicating that data availability and Power are positively
correlated. As a result, the data availability is increas-
ingly stronger, and the experimental results obtained by
DP-DTree are getting better. If the privacy budget ε is
close to 0.5 and is increased to 1, the performance of the
DP-DTree algorithm is close to DTree. This shows that

our algorithm can achieve a good tradeoff between data
privacy preserving and epistasis detection.

Results on AMD data
Our method is also used to analyze AMD data. Through
experiments, we detected disease-causing SNP loci of the
AMD data in the top 3(L = 3) layer non-leaf nodes of the
decision tree. They are shown in Fig. 8 and Table 3.
In Table 3, the top 10 pathogenic SNP loci on the real

disease data AMD are detected. Among them, rs380390
and rs1329428 are in the first and second layers of the
tree, respectively, and have been shown to be associ-
ated with AMD disease. In the third layer, rs10507949
(Tang et al. 2009) and rs786358 (Jiang et al. 2009) are also

Fig. 7 Experimental results on DTree and DP-DTree(ε=0.01,0.05,0.1,0.5,1)
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Fig. 8 Epistasis results on the dataset AMD

detected in other literatures as having a strong associa-
tion with this disease. In addition, other loci are detected
in this paper are rs912304, rs1161343. Although they
have not been found to be associated with the disease in
related works. According to the experimental results, they
has a high possibility to be associated with the disease.
Therefore, the method of this paper is also effective in
real data.

Conclusion
In this paper, we present a novel two-stage method for the
epistasis detection of complex disease. A fusion strategy
was proposed to select a small number of important SNP
loci. SNPs with weak main effects but significant inter-
action effects are reserved. Furthermore, a decision tree
was used to search for pathogenic SNP loci. In particu-
lar, differential privacy technology is applied in decision
tree to ensure that the SNP data privacy information is not
leaked during the epistasis detection. The experimental
results from both simulation data and real data demon-
starte our methods is able to perform epistasis detec-
tion of complex diseases with high accuracy and privacy
preserving.

Table 3 Epistasis results on the dataset AMD

Rank(DTree layer) SNP locus Chromosome location

1 (1) rs380390 1

2 (2) rs912304 14

3 (2) rs1161343 5

4 (2) rs1329428 1

5 (3) rs10507949 13

6 (3) rs2344627 4

7 (3) rs2344627 3

8 (3) rs922388 4

9 (3) rs7863587 9

10 (3) rs8048037 16
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