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Abstract

IP geolocation determines geographical location by the IP address of Internet hosts. IP geolocation is widely used by
target advertising, online fraud detection, cyber-attacks attribution and so on. It has gained much more attentions in
these years since more and more physical devices are connected to cyberspace. Most geolocation methods cannot
resolve the geolocation accuracy for those devices with few landmarks around. In this paper, we propose a novel
geolocation approach that is based on common routers as secondary landmarks (Common Routers-based
Geolocation, CRG). We search plenty of common routers by topology discovery among web server landmarks. We use
statistical learning to study localized (delay, hop)-distance correlation and locate these common routers. We locate
the accurate positions of common routers and convert them as secondary landmarks to help improve the feasibility of
our geolocation system in areas that landmarks are sparsely distributed. We manage to improve the geolocation
accuracy and decrease the maximum geolocation error compared to one of the state-of-the-art geolocation methods.
At the end of this paper, we discuss the reason of the efficiency of our method and our future research.
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Introduction

IP geolocation aims to determine the geographical loca-
tion of an Internet host by its IP address (Muir and
Oorschot 2009). Online devices are represented by IP
addresses since network layer, which means devices can
contact peer without constraints of physical world. On the
contrary, the Internet of Things expose devices” physical
information to peers on the Internet, which may cause
security risks. Determining the geographical location of
an Internet host is valuable for many applications, espe-
cially those of the Internet of Things. Location-aware
applications are widely used in business, science and infor-
mation security, e.g. location-aware content delivery, tar-
get advertising, online fraud detection, load balancing,
device protecting, attack tracing, etc. While there is no
direct relationship between geographical location and IP
address, locating a host by its IP is a challenging problem.
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In general, IP geolocation methods locate a host with
following procedures:

1. Data collection. Based on web data mining
techniques, one can gather location-aware
information from different data sources on the
Internet. Records maintained by official
organizations are ground truths for IP geolocation,
e.g. Domain Name System (DNS) records
(Padmanabhan and Subramanian 2001) from public
DNS servers, Registration Data Access Protocol
(RDAP) databases (Newton et al. 2015) maintained
by Regional Internet Registries (RIRs) and routing
tables (Meyer and et al. 2005; Route Server 2009)
from public routers. Open source landmarks can be
collected from PlanetLab nodes (Klingaman et al.
2006), perfSONAR (Hanemann et al. 2005) and
PingER (Matthews and Cottrell 2000). There exists
numerous web landmarks crawled from web pages
(Guo et al. 2009) and online map services (Wang et
al. 2011). Hosts with accurate geographical location
are considered to be ground truths.
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2. Data cleaning. Information from different sources
varies in format. These data are processed into two
datasets: landmarks and constraints. There are two
kinds of landmarks, vantage points that can be
controlled (e.g. looking glasses) and passive landmarks
that are visible by network measurement tools.

3. Constraint calculation. Network measurement
aims to infer geographical relationships between
nodes. The proportion of landmarks to the total IP
address space is small, so most nodes need to be
located by geographical constraints. They can be
extracted by data clustering (Padmanabhan and
Subramanian 2001), network measurements (Gueye
et al. 2006; Wang et al. 2011), etc.

4. Location estimation. Geographical position is
estimated by a reasonable model based on landmarks
and constraints calculated by step 2 and 3.

The efficiency of IP geolocation is constrained by two
main reasons. Depending on the user, IP addresses play
different roles in the network. Some hosts are stable and
with public geographical location information, such as
servers in colleges and organizations. Others are dynamic,
like mobile phones. Another reason is that network mea-
surements are badly affected by inflated latency and indi-
rect routes. A common and fine-grained IP geolocation
method is required to handle IP address from various
scenes and uncertain network environments.

In this paper, we propose a method that discovers
intermediate routers (stable but with few geographical
information) and uses them as secondary landmarks to
increase the granularity and stability of IP geolocation
results. Our contribution in this paper is to propose a
method that can find hidden routers with high informa-
tion gain independent to the distribution of landmarks.
We also study a statistical estimation method with region-
aware parameters. Our method manages to reduce posi-
tion error by about 25% in areas with sparse landmark
distribution.

The rest of this paper is organized as follows. In
“Related work” section we introduce related works of IP
geolocation. “Problem statement” section discusses the
problem and our solution. In “Geolocation model” section
we present the detail of the proposed geolocation model
and “ Analysis” section compares it with other models
in theory. “Datasets” section describes datasets we col-
lected. In “Performance evaluation” section, we perform
experiments on our datasets and evaluate the proposed
method. We conclude the strengths and weaknesses of our
algorithm in “Conclusion” section.

Related work
There are a variety of geolocation methods since it was
first openly discussed by Padmanabhan and Subramanian
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(2001). They assume that IP addresses within same
Autonomous System (AS) or with low latencies are geo-
graphically close to each other. It’s the prerequisite of the
methods they proposed: GeoTrack, GeoPing and Geo-
Cluster. GeoCluster extracts Border Gateway Protocol
(BGP) data from public routers and pins all hosts in subnet
to the location of the organization that owns the cor-
related AS. GeoTrack and GeoPing use traceroute and
ping to measure network constraints (delay and topology)
and convert them to geographical constrains. Inspired by
these methods, IP geolocation methods are divided into
two categories: network measurement-based and data
mining-based.

Network measurement-based

CBG. Gueye et al. (2006) propose a constraint-based
geolocation (CBG) based on GeoPing. GeoPing con-
structs latency vector to target host using vantage points.
It pins target host to the landmark with the nearest latency
vector. Instead of latency vector and pinning, CBG uses
geographical distance and multilateration to locate target
host. The idea of CBG extends geolocation result from
landmarks to continuous geographical space. CBG uses
“bestline” to reduce error introduced by inflated latency
and indirect routes when converting network constraints
to geographical distance. However, bestline estimation is
still too loose (Katz-Bassett et al. 2006) even compared to
speed-of-light constraint.

TBG. Katz-Bassett et al. (2006) believe that measurement
results vary with network environment, so they intro-
duce topology constraints and propose a topology-based
geolocation (TBG). TBG combines network topology with
latency constraints and computes locations of target and
intermediate routers simultaneously with global opti-
mization algorithm. TBG proves that topology improves
geolocation accuracy. However, the method requires more
computing time because it takes all nodes occurred in
paths.

Octant. Wong et al. (2007) propose a general framework,
called Octant, that combines latency measurement, topol-
ogy calculation and host name comprehension. Similar to
TBG, Octant locates intermediate nodes in the route to
target with multilateration and introduces these nodes as
secondary landmarks to help locate the following nodes.
Octant extends CBG’s multilateration with negative con-
straints and convex hulls which lead to better geolocation
accuracy. Octant achieves the lowest geolocation error by
using network measurements only, but it faces the same
problem that TBG has. They both take all nodes into con-
sideration, and they depend on adequate active hosts to
geolocate target hosts.
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Instead of direct distance constraints, some statistical
methods based on network measurement are proposed.
Youn et al. (2009) use maximum likelihood based on dis-
tance vectors to estimate target location. Eriksson et al.
(2010) choose Naive Bayes Classification instead.

Gill et al. (2010) attack delay-based geolocation sys-
tem by manipulating the network properties. The authors
reveal limitations of existing measurement-based geoloca-
tion techniques given an adversarial target. They find that
the more advanced and accurate topology-aware geoloca-
tion techniques are more susceptible to covert tampering
than the simpler delay-based techniques.

Data mining-based

Structon. Guo et al. (2009) find it feasible to collect
numerous landmarks using web mining. The authors pro-
pose a method that mines geographical information from
web pages and associate IP addresses of websites with
these data. Structon pins other hosts without geograph-
ical information to landmarks similar to GeoCluster, so
that most results are still coarse-grained. Though Struc-
ton geolocates hosts at city level, it’s an inspiration for us
to collect lots of landmarks.

SLG. Wang et al. (2011) present a fine-grained geolo-
cation method that combines web mining and network
measurement. The authors propose that the accuracy of
IP geolocation is heavily dependent on the density of land-
marks. SLG uses multilateration (same as CBG) to shrink
confidence region (around 100 km), which is convinc-
ing because delay is hard constraints (Katz-Bassett et al.
2006). Within narrowed region, it collects web servers as
landmarks from online map service. SLG uses traceroute
to measure relative delay between target and landmarks
as new constraints. Relative delay is the sum of two path
delays start from the last router of their common path.
With fine-grained landmarks and stronger constraints,
SLG manages to reduce the average magnitude of error
from 100 to 10 km. While SLG pins target to the “nearest”
(with the smallest relative delay to the target) landmark,
this can limit the accuracy of location estimation. There
are two reasons:

1. In the region with moderately connected Internet,
the correlation between network latency and
geographical distance doesn't fit the
“shortest-closest” rule which is proved to depend on
numerous samples (Li et al. 2013). It also introduces
heavy network traffic.

2. The rising of cloud services and content delivery
networks (CDN) reduces the quantity of qualified
landmarks and therefore influences the accuracy of
geolocation.
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DRoP. Huffaker et al. (2014) propose a DNS-based
method to search and geolocate a large set of routers with
hostnames. They assume that each autonomous domain
name that uses geographical hints (geohints) consistently
within that domain. They use data collected from their
global measurement system (Archipelago 2007) to gen-
erate geohints of nodes within the same domain. The
authors manage to generate 1711 rules covering 1398 dif-
ferent domains. While their method can only achieve
city-level accuracy because of the limit of geohints from
routers.

Summary
In addition to the above, many researchers also propose
their ideas. Liu et al. (2014) mine check-in data from social
networks. They manage to locate IP addresses used by
active users. Laki et al. (2011) propose a statistical model
that associates network latencies to geographical distance
range and use maximum likelihood to estimate most pos-
sible location. Gharaibeh et al. (2017) test accuracy of
router geolocation in commercial database with ground
truth dataset based on DNS and latency measurements.
The authors state that the databases are not accurate in
geolocating routers at neither country- nor city-level, even
if they agree significantly among each other. Weinberg et
al. (2018) use active probing to geolocate proxy servers.
The state-of-the-art methods are mainly based on accu-
rate and fine-grained landmarks (extracted by name com-
prehension, e.g. DNS, webpage, online map). However,
there are still some challenging problems:

1. Hosts with fine-grained results are mainly stable or
active, such as college servers and pc users. However,
geolocation errors of those dynamic/inactive hosts
are large. The reason is that most landmarks
collected from the Internet tend to be self-clustered
and close to active hosts. There is still a portion of
static but inactive hosts with low landmark
distribution, e.g. edge routers, backbone switches,
etc. While there are no existing methods to extend
landmark density, geolocation results of these hosts
still need improvement.

2. There is a dilemma between time overhead and
geolocation accuracy. If we introduce more
landmarks for higher accuracy, it will extend the time
overhead. Real time geolocation is more difficult
because of the need of numerous landmarks.

Problem statement

It is proved that confidence region can be narrowed by the
existing methods (Gueye et al. 2006; Wang et al. 2011).
Figure 1 serves as an example to illustrate the narrowed
region. Based on (Heidemann et al. 2008), we classify
Internet-accessible hosts into three categories:
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Fig. 1 An example of narrowed region using CBG

1. Static active hosts. Stable computers with rich
location-aware information and active network
communication. These hosts can be easily found and
tracked by web data mining or other techniques
(Muir and Oorschot 2009).

2. Static inactive hosts. Devices that are visible by few
protocols (ICMP, BGP, etc.) such as routers,
firewalls. These hosts are stable but hard to find.
Only few of them have host names that have finer
granularity than city-level.

3. Unreachable hosts. Devices that are frequently
off-line or invisible to ICMP.

In the narrowed region containing target host 7, one
needs to traceroute all landmarks in L and record paths.
Figure 2 illustrates the network measurement proce-
dure. Paths between vantage points (solid squares, V)
and V3) and landmarks (empty squares) are denoted
as solid lines, and those with unreachable routers are
denoted as dotted lines. In Fig. 2, (L1, L2, L3, L4, Ls) are
five landmarks sampled in target region. ICMP pack-
ages are transferred through routers and paths are
split from four intermediate routers, (R1, Ry, R3, Ry). We
ignore other routers because they only occur once in
all paths, so that we cannot get more information. We
denote paths split from these routers as relative paths,
eg. Pth(Ls3, Ry, Ly.).

SLG purely pins target host to the landmark with
the minimum relative latency, because geographical con-
straints are loose in narrowed region. Therefore, the
results are dependent on the distribution of landmarks.
As mentioned in previous section, most landmarks col-
lected from web servers tend to be self-clustered and close
to active hosts. It is obvious in Fig. 3 that the number of
landmarks in two circles are both 7. However, radiuses of

them are 2 and 0.3 km, which means that the landmark
density in the smaller circle is 44 times larger than that of
the larger one. This implies that host in large circle may be
located with average error of 2 km which is 7 times larger
than that in the smaller one.

This paper is going to solve these two problems:

1. Algorithms based on long distance calculation
cannot get more accurate results since there is no
more details about fine-grained information of the
network. Therefore, distance estimation method
within localized region needs to be studied.

2. Geolocation accuracy is heavily depended on both
vantage points and passive landmark distributions.
Most of the time, vantage points are far away from
target host because their locations are fixed. An
algorithm that is independent to the distribution of
vantage points and the density of passive landmarks
is needed.

Geolocation model

We first narrow the confidence region of the target with
coarse-grained geolocation method inspired by CBG and
SLG. Based on traceroute data collected from landmarks
in this region, we mine frequently occurred routers in
all paths. In theory, if there is a router in more than
three paths, it can be located by passive landmarks. As
intermediate routers are usually closer to landmarks than
vantage points, these routers are precisely located with the
following algorithm.

Feature selection

Previous methods choose network latencies as geographi-
cal distance constraints. However, in the narrowed region,
geographical distance constraints are loose. Therefore, we
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use both latencies (RTT) and hop counts (N) as network
environment constraints. Denote the set of intermediate
routers as R = {R,, | m € [0, M]}, vantage points as V =
{Vi | k € [0,K]} and landmarks as L = {L; | i € [0,1]},
where M, K, I are the amounts of routers, vantage points
and landmarks. For each pair of intermediate router R,,
and path Pth(Vy, L;), we calculate latency and hop count

RTT(Ry, Li) = RTT(Vi, Li) — RTT (Vi, Rin)

N Ry, Li) = N(Vi, Li) = N(Vi, Rp). "

Distance estimation maps measurement data to geo-
graphical distance. To find the best distance estimation
algorithm in the narrowed region, we use three differ-
ent ways to convert network constraints to geographical
constraints.

Linear estimation

As network environment is bound to its geographical
region, we assume that the inflated latency is small.
Therefore the geographical distance between two nodes

Fig. 3 Landmarks collected from websites
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is partially proportional to the propagation delay. Geolo-
cation methods usually measure the total delay (RTT)
because propagation delay cannot be directly measured.
We ignore detailed topologies among common routers
and end nodes and represent them by N-term. The reason
is that other delays (processing delay, queuing delay, trans-
mission delay, etc.) are positively correlated to the number
of intermediate nodes.

Denote latency and hop count between intermediate
router R,, and landmark L; as RTT,,; and N,,, then
linear estimated distance between two nodes can be
presented as:

Ami = ARy, L)
:fl(RTTmi; Nyi) (2)
=00+ 61 -RTT,,; + 62 - Nyyi.
We train coefficients 0(6g,601,02) with all rela-
tive paths between landmarks. Denote landmarks
as L = {L1,Ls,...,L,}, vantage points as
V = {V,Va,...,Vy}. For each pair of landmarks

Li,LjecL (with correlated vantage point Vi € V), we use
relative delay »RTT;; and hop count rNj; between L; and L;:

rRTTj; = RTT(Vy, L) + RTT (Vi, Lj) — 2RTT(Vi, Ryj)
rNj = N(Vi, Li) + N(Vi, Lj) — 2N (Vi, Ryj)
3)

as training data, use L1 distance:

L=>"|gsL) —dLyLy| (4)
i#j
as loss function. Where Rj, gy, dj denotes the com-
mon router, estimated distance and geographical distance
between L; and L;. We can describe the feature of network
in this region with existing linear regression methods (e.g.
gradient descent algorithm, least square regression).

Non-linear estimation

Noticing that hop counts between landmarks in moder-
ately connected Internet are usually large, we filter out
paths that are above the thresold of hop count. The choice
of threshold varies with different network environments.
Another solution is statistical estimation. We still use d;
as training data, (rRTTj;,7Nj) as training features and
L1 as loss function. Instead of linear regression, we use
truncated normal distribution:

1 1 (d — w?
d|RTT,N) = . . _
pidi )= W) Vi o exP( 2072 )

o =o(d|RTT,N)
u = u(d|RTT,N)

(5)
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as the kernel function to estimate geographical distance
with maximum likelihood probability, where ®(u/0) is
the cumulative distribution function of normal distribu-
tion. We choose normal distribution because it is well
defined. We also use gamma distribution:

R S S—
p(d|RTT,N) = 5 T'(@) x exp
o = fo(RTT,N) (©)
B =fp(RTT,N)

as the kernel function to get a more general result.

Maximum likelihood estimation

As shown in Fig. 4, we use maximum likelihood estimation
with landmarks to geolocate target router R,. Likelihood
function depends on distance estimation method. The
main purpose of maximum likelihood estimation is to find
a point (x/,y’) that maximize target likelihood function.
Assuming that we have K landmarks with geographical
locations (x1,¥1), (*2,%2), ..., (xx, yx), when locating an
intermediate router, we search landmarks that connect to
it. Denote them as (L1, Ly, - - - Lyuk)-

Linear estimation . Geographical distances can be calcu-
lated by coefficient @ trained before. Maximum likelihood
results meet the following equations:

Ry L) = ARy, Lin1)
g(Rm; LmZ) = d(Rm: LmZ)

&R Link) = d(Rys L)

Great circle distance gj; is written as
g&i=R- arcsin(sin X; sinx;j + Cos y; Cos yj Cos(x; — x,»))

~ R i — ) + 01— )2

(8)
With this prerequisite, we can simplify Eq. 7

1 — %m)? A+t — ym)? = (d /R)?
. 9)
@k — %m)> + Gk — Ym)? = (dui/R)?

Note that geographical distance between two point
doesn’t precisely meet Eq. 9 unless they are close to each
other. Our algorithm is localized so that this approxima-
tion is acceptable. We can reduce Eq. 9 to a linear function

AX = b, (10)
where
206m1 — Xmk)  20Vm1 — Ymk)
A= (11)

2mk—1 — %mr) 2Vm1 — Ymk)
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Fig. 4 Reverse locate intermediate router by landmarks
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The least square estimation of X can be easily calculated
by

X = T4 ATp. (14)
Non-linear estimation . As discussed before, linear esti-
mation loses network structure. We use log likelihood
function
K
Li =3 log (P(dx L) (RT Ty, Ny) ). (15)
i=1
Target location x,, is the point that maximize the likeli-
hood function

Xy = argmax L;(x). (16)
xeC

Location target host

Previous works usually focus on geolocating target host,

while the fact is that intermediate routers are usually more

stable than end hosts. As long as we locate these routers,

we can easily find the nearest intermediate router which

is usually closer than other landmarks. As shown in Fig. 5,
when geolocating reachable target T' or unreachable host
U, we find the nearest router by searching traceroute data
without any further calculation.

Analysis

Portion of intermediate routers

The theoretical support of our method is that we can find
a considerable portion of intermediate routers compared
to the amount of passive landmarks. For mesh network
(most commonly used), we assume that the number of
routers is large enough. To verify our assumptions, we
sample 200 landmarks in Beijing. We use a vantage point
located in Beijing and collect routes by traceroute. Figure 6
presents the portion of intermediate routers occurred in
more than 3 paths. As shown in the figure, more than 20
routers were found among 200 landmarks. In this conven-
tion, we assume that the amount of secondary landmarks
takes more than 10% of web based landmarks.

Choice of training parameters

No matter linear or non-linear estimation, we both use
relative latencies generated by passive landmarks instead
of round-trip time from vantage points as training data.
We think it is more reasonable than using vantage points,
because vantage points are sparsely distributed at a large
scale and usually far away from target. While landmarks
are dense and close to the target, parameters trained by
these measurements are more convincing and suitable to
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Fig. 5 Geolocate target host based on intermediate routers
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local environment. Though relative paths are more com-
plex than direct paths, as long as we limit the hop count,
the corresponding error is acceptable.

Compared to TBG and Octant

It is proved in TBG and Octant that introducing network
topology into geolocation may achieve higher accuracy.
TBG controls all vantage points to measure routes to
target host. It takes each node in these routes as a vari-
able. Distance constraints between these nodes can be

represented by inequalities with transmission delays and
dynamic errors. TBG minimizes the sum of errors by
solving the existing math problem and the location of tar-
get host is therefore calculated. TBG relies on a global
optimization that minimizes average location error for
all nodes. This can introduce extra error when locating
target host by reducing errors on those of intermedi-
ate routers. Octant also geolocates all nodes appeared
in routes. It uses multilateration with vantage points to
geolocate intermediate node. Once an intermediate node

percentage
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Fig. 6 Portion of intermediate routers
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is geolocated, it’s used as another vantage point to geolo-
cate the following nodes. There are some improvements
of our methods:

1. These methods cannot be accurate in most situations
because of the restriction of vantage points. The
situation is quite rare that we cannot depend our
system on the unchanging vantage points. Even if we
can find adequate vantage points in some situations,
our method won’t perform worse. TBG and Octant
calculate all routers’ location constraints in paths
that takes more computation time and introduces
more calculation error. To decouple measurement
data from vantage points, we survey landmarks in
target region and only choose routers that appear in
more than three routes. These routers have higher
information and are much closer to target host than
vantage points.

2. We use “reversed measurement” to locate these
nodes. Both TBG and Octant use around 20 or more
vantage points that are distributed at a large scale.
However, Hu et al. (2012) have proved that
geolocation results is heavily dependent on the
distribution of vantage points. Long distance latency
measurement will introduce large positioning error.
The problem can be revealed by the long tails of
graphs of existing methods. While our “reversed
measurement” take landmarks as vantage points to
geolocate intermediate nodes with multilateration. In
this way, we manage to perform topology discovery
independent to the distribution of vantage points.
We also reduce the geolocation errors in regions that
are lack of passive landmarks.

Our method works without the constraints from the
locations of vantage points and the densities of passive
landmarks. It manages to improve existing topology-
based methods. It may introduce more time overhead
because of the number of landmarks, but they can be
solved by parallelization.

Datasets

We use web page crawler and POI data from online map
service to find landmarks. We collect 3839 landmarks in
Beijing and check their visibilities by ping. We get 1124
visible landmarks. In order to validate performances of
our method on different landmark densities, we split the
dataset into three subsets.

University dataset

Landmarks from scholar institutions are stable and pre-
cise (Klingaman et al. 2006). However, we find that nodes
from PlanetLab are invisible in China. Therefore, we man-
ually collect web servers of universities in Beijing because
most universities host their web servers locally. We
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validate these landmarks with their RDAP information
and mail server addresses and finally get 48 accurate
university landmarks.

City dataset

City dataset consists of hotels, organizations and other
web servers from online map service. While there are
thousands of landmarks, we cannot validate all of them
manually. Therefore, we access their websites using their
IPs and domain names. If the contents returned by the
two sources are the same, we confirm that the correspond-
ing landmark is valid. After the validation, we collect 1079
city landmarks. To validate the performance on coarse-
grained dataset, we randomly select a circular region with
radius of 25 km and lower landmark density compared to
common dataset. These landmarks constitute only around
5% of total landmarks.

Partition

We randomly choose 30% of each dataset as test dataset
to evaluate accuracy improvement. We analyze accuracy
improvement of our method especially in localized region
(with sparsely distributed landmarks).

Performance evaluation

We perform our experiments on datasets mentioned in
previous section. As described in Fig. 3, we will prove that
our method manage to solve this problem.

Traceroute is conducted to collect paths from vantage
points to 699 landmarks. We study conditional probability
distribution of geographical distance with given round-
trip time latency and hop count. As shown in Fig. 7,
the conditional probability distribution is approximately
gamma distribution.

Gamma distribution can be converted to normal distri-
bution when « is high. In consideration of computational
complexity, we take normal distribution as the kernel
function.

University dataset

Firstly, we conduct the experiment on university dataset.
13 (30%) landmarks are randomly chosen as test data and
the rest 35 are training data. We measure relative paths
and delays between target and landmarks with traceroute.
Examples of measurement data are shown in Table 1. We
find common routers in these paths to help geolocate tar-
get. One example is shown in Table 2, it’s connected by 2
landmarks (219.239.107.9 and 210.75.250.212). We man-
age to geolocate 7 common routers with the test set, which
means we can extend our available landmarks by 20%.

To evaluate the efficiency of our method, we compare
the geolocation errors to SLG, one of the latest geoloca-
tion methods. Figure 8 compares the cumulative distribu-
tion of the proposed common router-based geolocation
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(CR@) and SLG, shown by solid curve and dashed curve
respectively. As shown in Fig. 8, the largest geolocation
error of the proposed algorithm is 18 km, but for SLG, the
number is 37 km. The details are listed in Table 3. There
are about 25% of geolocation results require common
routers as landmarks. Especially, when using common
routers as secondary landmarks, the results are signif-
icantly more accurate than those of SLG. We evaluate
the proposed algorithm by cross-validation because the
amount of university landmarks is too small. The results
show that we manage to reduce error of geolocation by
about 10% compared to SLG.

City dataset

We find 492 intermediate routers that appear in at least
three paths. They constitute around 70.43% of the amount
of landmarks. We denote these routers by upside-down
triangle and plot then on Fig. 9. Dotted circle in Fig. 9
shows the narrowed confidence region after we take inter-
mediate routers into consideration. We manage to reduce
error radius by about 25% (from 2 to 1.5 km) in the larger
circle. Figure 9 also implies that our method performs
better when landmarks are sparsely distributed.

Table 1 Measurement results of 61.135.242.71 and

123.127.108.188

Target IP Landmark IP Hop Count  Relative Delay/ms
61.135242.71 114.251.217.179 9 7.054
61.135.242.71 61.49.8.144 10 2678
61.135.242.71 123.127.108.188 9 1.02
61.135.242.71 202.106.171.134 10 447
123.127.108.188 202.106.171.134 9 3.244

We perform the same experiment on city dataset and
the 5% one. As shown in Fig. 10, though the median error
distance of these methods are similar, the largest error
distance of CRG is 31 km and that of SLG is more than
45 km. This means that convergence speed of CRG is
faster than SLG. It meets our expectation that the pro-
posed method performs better in regions with sparsely
distributed landmarks.

Eventually, a city-level experiment is performed and the
comparison of cumulative probability is shown in Fig. 11.
The proposed method still performs better than SLG at
the rate of convergence.

Overall, average positioning error on city dataset is
larger than that on university dataset, which is reasonable.

Result analysis

In general, the proposed method gets the best result on
university dataset with the median error distance of 9
km and the largest error distance of 18 km. City-level
result performs the worst. As shown in Table 3, we man-
age to reduce geolocation errors for most of the targets,
except for some nodes, such as 124.42.73.141. The reason
is that our method prefers intermediate routers. SLG has
proved its efficiency when there’re fine-grained landmarks
and well-connected network, while our method covers the
opposite situation. Node 124.42.73.141 has a nearby land-
mark while our method chooses to geolocate it with the

Table 2 Convert common router (202.96.12.13) as landmarks

Router IP Landmark [P Hop Count Relative Delay/ms
202.96.12.13 219.239.107.9 10 727

202.96.12.13 210.75.250.212 7 6.996
202.96.12.13 111.204.219.194 3 3.0
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closest router. However, we find that there’s no nearby
intermediate routers around this node in Table 3. There-
fore, our method introduces higher geolocation error in
this situation. We cannot always find a closer node than a
nearby landmark especially in area with moderately con-
nected network and fine-grained landmark density (simi-
lar to situation of L3 and L4 simulated in Fig. 2). However,
most of them need intermediate routers to fix the lack
of landmarks. Note that university dataset is sparsely dis-
tributed in the city, our method is more suitable in this
situation.

Above conclusion implies that the lower landmark den-
sity of target region, the better results our method can

Table 3 Geolocation results compared to SLG

achieve. The results prove our approach suitable for situ-
ations that existing methods cannot handle. Though our
method doesn’t perform better with fine-grained land-
marks (most of them are close to each other in city dataset
in Fig. 3), we cannot always find sufficient landmarks
especially in well protected regions.

Security concerns

Geolocation security is the foundation of physical secu-
rity. It’s important to geolocate target host when we
are attacking or been attacked. However, IP Geolocation
is hard to detect. There is still no real-time geoloca-
tion method with feasible results. Public and commercial

Target IP Landmarks Measurable? Router IP Error/km Error of SLG/km
60.247.18.3 >3 Yes — 8.9083 82077
60.247.71.76 <3 Yes 202.96.12.13 18.3087 36.8540
61.49.8.144 >3 Yes — 6.9247 124402
61.135.242.71 >3 Yes — 7.8619 8.9480
106.39.22.3 >3 Yes — 8.9564 21.9041
114.251.253.101 >3 Yes — 6.8061 16.0934
123.124.147.249 >3 Yes — 14.8038 16.8981
123.127.108.188 <3 Yes 219.158.6.42 7.7740 11.7482
124.42.73.141 >3 Yes — 14.3019 1.7059
166.111.4.100 >3 No — 9.6442 194731
202.112.192.195 >3 Yes — 94504 5.5522
211.71.1.44 <3 No 202.96.12.13 1.8874 15.2620
222.249.130.141 >3 No — 5.3785 226918
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geolocation services provide real-time results, so they are
most commonly used. However, geolocation accuracies of
these services are not acceptable (Gharaibeh et al. 2017).
To achieve higher accuracy and lower response delay,
geolocation results based on measurements and data min-
ing are used as caches. They are conducted at preparation
phase. One must keep itself from delay-based measure-
ments and information exposure at any time in order to
protect itself from being located. While common delay-
based measurements are simple and benign, it is hard to
detect. Delay-based measurements can be evaded by long
distance dialup, proxy servers, remote sessions, etc (Muir
and Oorschot 2009). It’s also possible to attack geolocation
system by manipulating network delays and hops (Gill et

al. 2010). Our method focuses on the limit of information
exposure. Lack of landmarks may be caused by protection
(which is a security problem) or the functional area that
target host lies in. Our method proposes distributed nodes
around the target, so that network manipulations (Gill et
al. 2010) won't influence our method unless it takes con-
trol of all routers to landmarks in the area. As shown in
the experiment results, our method manages to improve
the geolocation accuracy despite the lack of landmarks.

Conclusion

Towards existing problem that geolocation result is
heavily dependent on landmark density and vantage
point position, a novel IP geolocation method based on
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Fig. 10 Comparison of cumulative probability of SLG, CRG and CRG with linear estimation in 5% dataset
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discovering intermediate routers as secondary landmarks
is presented in this paper. The proposed method takes
advantage of passive landmarks to perform topology mea-
surements without the limitation of the distribution of
vantage points. It finds frequently appeared common
routers. Most of them can be geolocated by existing land-
marks and routes. These common routers have more
information than other nodes. The proposed method
chooses these routers as secondary landmarks to help
increase landmark density. This method works well in
regions with sparsely distributed landmarks. We have
evaluated our method in Beijing on university and city
dataset with different landmark densities. Experimental
results show that we manage to reduce long tail effect on
all datasets, especially on university dataset by about 50%.

Our work manages to decouple geolocation result from
vantage points and landmark densities. The proposed
method can be further improved by replacing maximum
likelihood estimation to other methods that take network
structures into consideration.
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