
CybersecurityParkinson et al. Cybersecurity (2019) 2:14
https://doi.org/10.1186/s42400-019-0031-1

RESEARCH Open Access

Creeper: a tool for detecting permission
creep in file system access controls
Simon Parkinson* , Saad Khan, James Bray and Daiyaan Shreef

Abstract

Access control mechanisms are widely used in multi-user IT systems where it is necessary to restrict access to
computing resources. This is certainly true of file systems whereby information needs to be protected against
unintended access. User permissions often evolve over time, and changes are often made in an ad hoc manner and
do not follow any rigorous process. This is largely due to the fact that the structure of the implemented permissions
are often determined by experts during initial system configuration and documentation is rarely created. Furthermore,
permissions are often not audited due to the volume of information, the requirement of expert knowledge, and the
time required to perform manual analysis. This paper presents a novel, unsupervised technique whereby a statistical
analysis technique is developed and applied to detect instances of permission creep. The system (herein refereed to
as Creeper) has initially been developed for Microsoft systems; however, it is easily extensible and can be applied to
other access control systems. Experimental analysis has demonstrated good performance and applicability on
synthetic file system permissions with an average accuracy of 96%. Empirical analysis is subsequently performed on
five real-world systems where an average accuracy of 98% is established.

Keywords: Permission creep, Access control, Auditing, χ2 statistics

Introduction
File systems are integral part of computer operating sys-
tems, and from a user perspective their primary use is to
store files in an organised and accessible manner. Mod-
ern, multi-user computer systems contain high quantities
of data that require strong access control mechanisms to
restrict data access to intended users. Different operat-
ing systems provide different implementations of access
control. However, common to the most prevalent is that
they provide a customisable architecture for access con-
trol. This is implemented through the use of both coarse-
and fine-grained permissions (De Capitani di Vimercati
et al. 2003). Coarse-grained permissions are predefined
levels (e.g. read, write, full control) and fine-grained per-
missions are customised permissions created from a set
of predefined attributes to represent highly customised
access control policies.
Many organisations will implement and maintain access

control systems in respect to the different jobs roles that

*Correspondence: s.parkinson@hud.ac.uk
Department of Computer Science, School of Computing and Engineering,
University of Huddersfield, Queensgate, HD1 3DH, Huddersfield, UK

their staff undertake. Although role-based access control
systems do exist (Sandhu et al. 1996), many implemen-
tations are built by using group membership allocations
and discretionary access control models. A discretionary
access control model allows for a subject to be capable of
passing on permission to other subjects. More specifically
is its use of groups to pass on permissions to other groups
and users. This paper focuses on the discretionary model,
largely due to its vast use in real-world systems; how-
ever, the techniques developed in this paper are based on
the effective permission of each user. This means that the
techniques can be extended and used to analyse different
access control implementations.
Employees within organisations often change job role

as their career progresses. During a change of job role,
it is usual for ad hoc permissions changes (both addi-
tions and removal) to reflect the new required level. In
a similar scenario, where a user is assigned a temporary
organisational role (e.g. they are ‘acting up’), their per-
missions may not be revoked once they default back to
their original job role. Organisations are rigid in assign-
ing user permissions when creating new user accounts and
follow standard operating procedures. They often have a

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-019-0031-1&domain=pdf
http://orcid.org/0000-0002-1747-9914
mailto: s.parkinson@hud.ac.uk
http://creativecommons.org/licenses/by/4.0/

Parkinson et al. Cybersecurity (2019) 2:14 Page 2 of 14

structured (and possibly automated) process for enrolling
new users. On the contrary, elevating user privileges is
often done by system administrators who make changes
based on their experience and analysis to permit required
actions.
The manner by which privileges are managed, changed

and elevated as employees change role creates potential
for a user having many unnecessary and redundant per-
missions, which are gathered over time. In terms of file
system permissions, this could be that a user has access to
many resources that are no longer required under their job
role. The term associated with this phenomenon is per-
mission creep. The security concern with permission creep
is that a user can effectively end up with an accumulation
of permissions that have both depth and breadth within
the file system. Breadth is where the user has accumulated
permissions on a large number of directories and depth is
where they have acquired a high-level of permissions on a
set of directories through accumulating permissions from
many different group membership sources.
There are many potential ways to identify permis-

sion creep. For example, enabling logging mechanisms
that record when a user has been allocated permission.
Another solution maybe to take frequent snapshots of
user permissions and compare them periodically to deter-
mine differences and look for changes that need revoking.
These techniques should provide a skilled analyst with the
necessary information to determine permission change
over time. However, these mechanisms are heavily reliant
on expert knowledge and acquiring a rich history of per-
missions allocation for the underlying system. There is
a need to produce a mechanism capable of identifying
instances of privileged creep without human interaction
and prior knowledge or historical snapshots.
This paper investigates the hypothesis of: modelling file

system permissions on a per subject level creates poten-
tial to use statistical analysis to identify permissions that
appear irregular, and as such could be a result of privi-
lege creep. This allows for the identification of privilege
creep without historical allocation information. The aim
of this paper is to build on existing research in identi-
fying irregular permissions, where permissions are those
that are identified irregular compared to other allocations
Parkinson and Crampton 2016. This work includes sig-
nificant differences in the way that permissions are mod-
elled, processed and empirically evaluated. In earlier work,
research focused on the identification of permission allo-
cations for use when assigning new permissions.
Although there are many similarities in the implementa-

tion and configuration of different access control systems,
this paper focusses on the Microsoft’s New Technology
File System (NTFS). The motivation for this focus is two
fold: (1) the majority of infrastructure file systems are
usingNTFS, and (2) these systems are vulnerable to cyber-

based attacks, which may execute malware either under
user credentials or attempt to gain privilege elevation.
For example, malware such as Ransomware (Parkinson
2017; Parkinson et al. 2018) often executes under the
user’s credentials and therefore ensuring permissions are
correctly managed could help minimise the impact of ran-
somware by ensuring the user cannot access networked
resources where they do not require access. The primary
contributions presented in this paper are:

• Technique to extract an ‘effective’ permission
representation. This technique is capable of
extraction a subject effective permission
representation within discretionary access control
systems. The implementation presented in this paper
is for the Microsoft NT file system; however, it is
easily extensible to incorporate other file system
implementations.

• Application of statistical analysis to identify
instances of permission creep. A combination of
χ2 and Jenks natural break analysis is used to identify
instances of permission creep, unsupervised and in a
generic manner without encoding prior knowledge.
This is an important contribution as permission
creep is subjective to each implementations access
control model and it is it not possible to develop a
knowledge-base approaches that will work in all
instances.

• Software implementation. A C# application (named
Creeper) embedding the novel techniques presented
in this paper and capable of identifying instances of
permission creep in Microsoft NT file systems.

• Empirical testing performed through large-scale
synthetic instances of permission creep. Synthetic
testing allows for a systematic comparison through
the use of Creeper and ground-truth analysis.
Empirical analysis is then performed on 5 real-world
systems to establish Creeper accuracy using a
comparative study (manual expert, ntfs-r, and
Creeper).

The paper is structured as follows: First a detailed
analysis of related research is provided. Following on, a
modelling section is provided detailing a generic model
of discretionary access control systems, as well as pro-
viding a technique for translating a Microsoft NT access
control implementation in to the provided model. The
next section then details how the acquired model can
be used to identify instances of permission creep using
statistical analysis techniques. Information is then pro-
vided on the software implementation (the Creeper appli-
cation) of the presented technique. Empirical analysis
section is presented providing and discussing both per-
formance and accuracy characteristics of the technique

Parkinson et al. Cybersecurity (2019) 2:14 Page 3 of 14

on synthetic systems where ground truth knowledge is
utilised for benchmark analysis. Following on, empirical
analysis is performed on five real-world systems where
Creeper is compared with a human expert and another
closely related technique (ntfs-r). A conclusion is finally
provided, suggesting future avenues of research.

Related work
Weak access control implementations and erroneous per-
missions management can introduce vulnerabilities in a
file system that can violate data confidentiality, integrity
and availability (Pfleeger and Pfleeger 2002). The threat
level increases where sensitive data is stored in a dis-
tributed network, where multiple users are accessing data
for business-critical operations. Weaknesses in control-
ling access can expose the system to insufficient or the
over privileged and incompetent permission administra-
tion (Fang et al. 2014). This increases the risk of various
attacks, such as aggregation of unauthorised computing
resource access, malicious data theft or modification, mal-
ware attacks (Parkinson 2017) and others (Benantar 2006).
Another type of threat, and that considered within this
paper, is permission creep (Vidas et al. 2011). It occurs
due to multiple privilege allocations that are accumu-
lated and often go unnoticed by system administrators.
Permission creep is challenging to detect due to their
inadvertent nature. However, if they go undetected, they
could present two significant security risk: (1) privileged
users can take illicit advantage, and (2) an attacker can
compromise a privileged user and perform a heightened
level of malicious activities.
There are many tools and frameworks available that

can be used to detect permission escalations and miscon-
figuration. One such framework is MulVAL (Multihost,
Multistage, Vulnerability Analysis) (Ou et al. 2005), which
is capable of identifying privilege escalation vulnerabilities
in access control configuration data. It uses a knowledge-
base containing definitions of security issue and incorrect
configurations in the form of rules. The tool has been
tested on large-scale systems, where it detected policy vio-
lations caused by software vulnerabilities. Another paper
presents the Baaz system (Das et al. 2010) that can anal-
yse underlying access control infrastructure to discover
potential problems. It is based on group mapping and
object clustering techniques that find possible inconsis-
tencies in permission datasets; however, it is focused on
analysing the relationship between groups and users, and
does not take any consideration to the implemented (or
the ‘effective’) permissions.
Other research presents a crowd-sourcing (knowledge

sharing) model for identifying and eliminating access con-
trol misconfiguration in home networks. The developed
tool, named as NetPrints (Agarwal et al. 2009), utilises a
decision tree algorithm to learn configuration information

from users, and automatically suggest solutions for the
given problems. In addition to these tools, software appli-
cations are available that can help in probing the permis-
sion management related issues, such as ‘AccessEnum’1,
‘Security Explorer’2 and ‘Permissions Reporter’3.
Many studies have proposed techniques to diagnose and

rectify permission controls for mobile environments and
applications. A static rule-based technique (Sbîrlea et al.
2013) has been developed for Android platform that can
detect three kinds of security vulnerabilities. The moti-
vation behind their work is to remove permissions that
can cause unauthorized access to sensitive mobile data.
This technique was applied to 313 applications, which
revealed several exploitable vulnerabilities. In a similar
work, an ontology-based framework was created that can
be used to regulate and verify the implemented privacy
permissions over sensitive data in Android applications
(Slavin et al. 2016). The ontology was manually crafted
from 50 known security policies. The empirical analysis of
the framework showed 341 permission violations in 477
applications. In another study, researchers study the 130
individual Android permissions and monitor how many
applications request a higher level of access from the user
than the application required (Vidas et al. 2011). Their
work comprehensively shows that the majority of appli-
cations have greater access than is necessary based on
monitoring API interaction. A key difference with work
presented in this paper is that they use API call informa-
tion as ground-truth knowledge of what the application
actually requires. Therefore, a rule-based approach of
identifying permission creep is possible, unlike in discre-
tionary access control implementations. Web servers are
also prone to a large array of attacks due to their exposed
(both internal and external) nature. However most of the
issues, such as malicious insiders, code injection and so
on, can be eliminated by implementing appropriate access
permissions. For this purpose, a scheme (Noseevich and
Petukhov 2011) is proposed for web applications that
applies use-case graph and differential analysis to conduct
black-box access control testing. The use-case graph con-
tains the definition of user access roles and dependencies,
and is constructed with the help of human assistance.
Previous research shows that performing a test of inde-

pendence over the access control data can reveal irregu-
lar permissions. In this study (Parkinson and Crampton
2016), the researchers used the χ2 technique to separate
out those permissions that failed the test of dependence
and applied k-nearest neighbours algorithm to propose
feasible access control rules based on the given system.
The research presented in this paper is built-upon and
motivated by this previous research. It should be noted
that although the research utilises the same χ2 technique,
the modelling and representation of the underlying per-
missions is fundamentally different. In previous work, an

Parkinson et al. Cybersecurity (2019) 2:14 Page 4 of 14

effective permission model was utilised to represent per-
missions mentioned explicitly in each Access Control List
(ACL). The aim of the research was to identify poten-
tial irregularities within permissions allocated in the ACL
alone. In this research we adopt a holistic model whereby
the effective permissions of all users are extracted. This
requires looking beyond the ACL, following group mem-
berships to calculate a complete set of effective permis-
sions. This ensures that permissions that are acquired
through a complex link of group memberships and ACL
entries are not missed.
In other research, association rule mining (ARM) meth-

ods have also been utilised to determine unnecessary
permissions. Initially the ARM technique was employed
to determine access-control misconfiguration and pre-
dict intended policies (Bauer et al. 2011). Following on,
another study used a matrix algorithm (Yuan and Huang
2005) to extract infrequent rules that have low sup-
port and confidence values (Parkinson et al. 2016). This
led towards the identification of anomalous and irregu-
lar permissions. Machine learning has also been used to
determine irregular permissions. A recent article Shaikh
et al. 2017 proposed decision tree and data classification
based algorithms to identify incomplete and inconsistent
(boolean allow or deny) policies within access control
datasets. A key point in these studies is the representation
of permission’s data in a uniform format, such as object-
based models, which helps in producing the useful results
specific to the underlying system.
Recent studies suggest that the identification of ele-

vated permissions is a complex task and requires extensive
expert auditing knowledge and diverse experience. How-
ever most of the existing solutions use static knowledge,
which is hard-coded and requires continuous addition
(Bartel et al. 2014). The lack of expert knowledge and
continuous investment of time and effort in encoding
and representing the knowledge is a significant limitation.
These issues motivate the need for an unsupervised clas-
sification techniques that can detect permission creeps in
real-world environments with good accuracy and with-
out manual acquisition and representation of expert
knowledge.

Modelling
In this section, a generic model is provided detailing how
discretionary access control mechanisms are structured
and how they can be represented using an effective per-
mission model. This model is utilised throughout the
technical developments presented in this paper.

Access mask
A directory, D, can have a set of child directories where
D = {d1, d2, . . . dn}. Each directory has an Discretionary
Access Control List (dACL) containing a series of Access

Control Entities (ACEs), dn = {acl}, such that acl =
{ace1, ace2, . . . acen}, which dictates the level of access
given to a subject, where a subject can be any user or
system component (e.g. software) that requires access.
Each ACE has several key parameters, but those neces-
sary in this paper are: a subject represents the subject
that the ACE is assigned to, an access mask which con-
tains information regarding the level of permissions and
the inheritance flags, ace = {s, p, i} where s is the subject,
p is the permission set, and i denotes the inheritance flags.
The permission p is a set of standard attributes from the
predefined set of attributes p ⊆ A,A = {a1, . . . , an}. NTFS
provides six levels (e.g., full control, modify, etc.) of stan-
dard coarse-grained permission that consist of a combina-
tion of predefined attributes. These attributes are drawn
from the standard set of fourteen permission attributes,
which detail that the subject can perform a fine-grained
task. For example, “create files”, “create folders”, and “read
permissions”. NTFS also allows for the creation of special
fine-grained permissions, consisting of any combination
of the fourteen individual attributes.

Propagation and inheritance
Within the dACL, there are two types of Access Con-
trol Entity (ACE); (1) Explicit and (2) Inherited. Explicit
entries are those that are applied directly to the object’s
dACL, whereas inherited are those that are propagated
from their parent object. The type of ACE allows to deter-
mine whether the permission was assigned directly to the
directory in question (explicit) or if it was inherited from
the directory that it resides within (inherited). For exam-
ple, an Explicit allocation would ensure that a parent,
dp and child directory dc have different ACLs (ACEp �=
ACEc), where p and c denote parent and child directories
and ACLs, respectively.

Groupmembership
As previously mentioned, a subject can be a user, group
or process within a system. The potential to assign a
group permission on a directory allows the possibility
for all the group’s members to automatically acquire the
same permission through group membership. There are
several motivating factors as to why this is useful and
widely used in real-world systems. The primary reason is
that managing file system permissions on a per-user basis
would be cumbersome and would result in large ACLs and
would introduce additional computation overheads dur-
ing processing. A secondary reason is that using group
memberships allows the users to implement and operate
a role-based access control system, whereby clear separa-
tions of duty are made within organisations and users are
allocated to roles depending on the requirements of their
job role. A subject s can either be a user or process, and
as such is modelled as s = ∅. Alternatively, it can be a

Parkinson et al. Cybersecurity (2019) 2:14 Page 5 of 14

group containing a set of other groups, users or processes,
s = {s1, s2, . . . sn}.
Accumulation
Accumulation is the possibility for the subject to receive
an effective permission acquired from multiple differ-
ent policies. This feature is prominent within the NTFS
resulting in the possibility for a subject to receive per-
missions from multiple different ACEs within the same
dACL. Furthermore, any subject that interacts with the
NTFS can be assigned to any number of groups, which can
be entered into the ACE. This means that the user does
not have to be directly entered into the ACE, they could
simply be a member of the group that is entered. This
makes managing permissions easier for an administra-
tor; however, it does introduce the potential for subjects
to gain permission on any resource where the group is
assigned.
Algorithm 1 details the process of how the effec-

tive permission is calculated from iteratively traversing a
directory structure. The algorithm provides functionality
beyond that of the operating systems standard mecha-
nisms of calculating the effective permission as it iden-
tifies the effective permission for all subjects within the
system. The algorithm takes as input an initial directory,
d, and a set of subject relationships (i.e., group member-
ships). The output of the algorithm is a set of effective
permissions, E = e1, e2, . . . , en, where each individual
effective permission is a triple tuple, en = {d, s, p}, where d
is the directory resource, s is the subject, and p is the per-
mission level. The complexity of the recursive algorithm
to determine effective permission is ofO(|d|×|acl|2×|R|).
Here is the number of directories (|d|) processed in total,
multiplied by the number of access control entities (|alc|2)
within each access control list, raised to the power two as
is necessary to perform nested recursion, and finally, the
number of members in each group (|R|).
The algorithm works by iterating over each access con-

trol entity, identifying the subject, s, and their level of
permission, p (line 4). Following on, the other ACE’s are
inspected to see if they contain another permission relat-
ing to the same subject or a group with which the subject
is inheriting group membership. The getAllGroups
function returns a set of groups that a specific subject is
a member of. If another ACE is identified with a subject
either matching the subject, or one that exists in the set
of groups that s is a member of, the permissions granted
to that ACE are accumulated with p (line 10). The out-
put of this technique is that the permission object will be
the union of all permission attributes allocated to s. After
the effective permission has been allocated, it is the nec-
essary to determine if subject s is a group or not (line
16). If they are a group, then effective permission entries
for each group member are added to the list of effective
permissions, E (line 18).

Algorithm 1: Depth-first recursive permission
extraction algorithm, returning an ordered list of
effective permissions for each object within the
directory structure.
Input: Initial directory d
Input: Subject relation set, S = {s1, s2, . . . , sn} where

sn = {s1, s2, . . . , sn} or sn = ∅
Output: Set of effective permissions

E = e1, e2, . . . , en where en = {d, s, p}. Here
d is the directory resource, s is the subject,
and p is the permission level,
p = {a1, a2, . . . , an}

1 Algorithm algo(directory d)
2 acl ← d(ACL)

3 foreach ace in acl do
4 {s, p, i} = ace
5 R ← proc(s)
6 foreach ace′ in acl do
7 {s′, p′, i′} = ace′
8 foreach sg in R do
9 if s′ = sg then

10 p = p ∪ p′
11 end
12 end
13 end
14 end
15 E ← {d, s, p}
16 if s �= ∅ then
17 foreach s′ in s do
18 E ← {d, s′, p}
19 end
20 end
21 foreach subdirectory c of d do
22 algo(c)
23 end
24 return E
25
1 getAllGroups proc(subject sin)
2 R = ∅
3 foreach s in S do
4 if s �= ∅ then
5 foreach s′ in s do
6 if s′sin then
7 R ← s′
8 getAllGroups(s’)
9 end

10 end
11 return R

Detecting creep
The next stage is to process the set of effective permis-
sions to identify permissions that are irregular and could
indicate an instance of permission creep. This section
describes how irregularities in permission allocation can

Parkinson et al. Cybersecurity (2019) 2:14 Page 6 of 14

be identified through a statistical test of independence.
A statistical test of independence approach has been
adopted due to many previous successful implementa-
tions within security analysis (Ye and Chen 2001). Using
statistical analysis to determine irregular permissions cre-
ates the potential to categorise irregular, but correctly
assigned, file system permissions. This is because in large
multi-user systems there are many file system permissions
which are customised for only a few people, where the all
remaining employees have permissions acquired by group
membership. However, identifying these permissions as
irregular is still useful as it is important that they are mon-
itored and removed when necessary. It is also important
to be aware of them when assigning new permissions as if
more users are requiring this custom permission, then it
would be sensible to form an access control group.
Previous research has seen the successful use of χ2

analysis to identify anomalies in file system permissions
(Parkinson and Crampton 2016). This research builds on
previous work by modelling file system permissions as a
collection of subject and effective permissions; however,
with the addition of exhaustively identifying all subjects
with permission over each resource. The below sections
detail how this representation, which is output from Algo-
rithm 1, is used by the presented analysis techniques to
identify an instance of permission creep.

Chi-square analysis
χ2 statistics are used to measure the lack of independence
between a and sj, which can then be compared to the χ2

distribution with one degree of freedom to judge extreme-
ness (Greenwood 1996). The χ2 statistic is selected as it
is an established technique for measuring independence.
For example, it has been successfully used in text cate-
gorisation (Yang and Pedersen 1997; Aas and Eikvil 1999).
Other techniques are available for measuring indepen-
dence; However, χ2 is not only computationally easy to
compute, it is also a non-parametric test, which makes no
assumption regarding the distribution of the population
(Balakrishnan et al. 2013). This makes it a suitable candi-
date for the novel work presented in this paper. Using a
two-way contingency table for attribute a and subject sj
where: A is the number of times a and sj co-occur, B is the
number of times a occurs without sj, C is the number of
times sj occurs without a, D is the number of times nei-
ther sj or a occur, N is the total number of attributes to
examine. Here sj is the subject in each effective permission
entry, e = {d, sj, p}, and each a is an individual attribute
from the set of permissions, p.
From this a lack of independence measure between

attribute a and object sj by:

χ2(a, sj) = N(AD − CB)2

(A + B)(A + C)(B + D)(C + D)
(1)

The χ2 statistic has a natural value of zero if a and sj
are independent. Therefore, it can be assumed that any
permission attribute a that has been assigned to subject sj
with a χ2 value close to zero is either an anomaly or an
irregular permission attribute. Following the calculation
of χ2 scores, it is then useful to compute the mean χ2 for
each permission using the following equation where l is
the number of attributes specified for a permissions:

χ2
avg(p, sj) = 1

l

l∑

j=1
χ2(a, sj) (2)

Once the average for each permission allocation has
been calculated (χ2

avg(p, sj)), it is then necessary to calcu-
late an average permissions allocation for each subject, sj.
This requires calculating mean χ2 values that relate to the
same subject. The following equation is used to calculate
χ2
subject(sj) values where k is the number of χ2

avg for the
subject in question, sj:

χ2
subject(sj) =

k∑

j=1
χ2
avg(p, sj) (3)

This allows us to identify permissions that appear irreg-
ular. However, difficulty arises when deciding the cut-off
threshold for χ2

subject that should be treated as potentially
irregular and those the appear normal. Expert analysis
would help separate the anomalies from regular permis-
sions, but in many cases such expert knowledge is not
available. Therefore, in this paper a technique is presented
which attempts to classify χ2 scores which are most likely
to be anomalies or irregular. To perform this classification,
Jenks natural breaks classification method (Jenks 1967)
is used to determine the best arrangement of values into
different classes. This is performed by minimising each
class’s standard deviation, whilst maximising the standard
deviation between classes. The class with the minimum
standard deviation (i.e. lower χ2 scores) is the class of per-
missions which have failed the test of dependence and are
to be treated as potential irregularities. To perform this,
the following classification function is used:

I(x) : {1..n} �→ {1..k} (4)

where n is the number of data samples (χ2
subject values), and

k is the number of classes where k ≤ n. Sj are the set of
indices that map to class j. The minimal sum of the sums
of standard deviations (SDDn,k) is then calculated by:

SDDn,k = min
I

k∑

j=1
ssd(Sj) (5)

ssd(Sj) is the sum of the squared deviations of the values
of any index set S calculated using the following equation

Parkinson et al. Cybersecurity (2019) 2:14 Page 7 of 14

where O is an ordered set of χ2 scores.

ssd(S) =
∑

i∈S

[
O[i]−

(∑
i∈S O[i]
|S|

)]2
(6)

In the first instance of computing SDDn,k values, k =
|χ2

subject|. Here |χ2
subject| represents the count of unique ele-

ments in the set containing all χ2
subject values. k is then

decremented by 1 until there is no further improvement
between the current and previous SDDn,k value. At this
point it is assumed that the optimum set of classes has
been found. Following the classification of χ2 scores, it
can be assumed that the first class containing those χ2

scores close to zero (set S1) are likely to be irregular or
anomalous. However, the case may arise where multiple
classes (e.g. sets S1, S2) both contain permissions that are
irregular or anomalies. It is also possible that in the case
that no anomalies are detected, meaning the lowest class
(S1) will be contain χ2 values for correct permissions.
To aid understanding, an example is provided in Table 1.

In this example, a “Test user” is added to hold permission
on a computer’s C:\. The allocated permissions are the
default for all user groups (Users, System, and Admin) and
the Test user is a member of the Users group. In addition,
another permission entry has been entered for the Test
user of Full Control on a subdirectory structure within the
C:\. More specifically, C:\Users.
As evident in Table 1, the χ2

subject value for the Test user
is significantly less than the other three groups. In addi-
tion, it is evident that the Users group is less than both
System and Admin. This is because Users have a lower
level of permission, and therefore relationships to fewer
attributes, on a majority of the directory structure. On the
contrary, System and Admin have a high level of permis-
sion (Full Control) throughout the directory structure. It is
noticeable that the Jenks analysis technique has identifies
three classes for the χ2

subject values, and Test user is in the
lowest and has been identifies as an instance of potential
permission creep.

Table 1 Scores form analysing a directory structure where “Test
user” was deliberately modified to mimic an instance of
permission creep

Subject Permission χ2
subject Class No. Potential Creep

Test user Read & Execute, Full control 1 0 yes

Users Read & Execute 468 1 no

System Full control 1080 2 no

Admin Full control 1120 2 no

Implementation
The technique presented in this paper has been imple-
mented in a C# application, named Creeper. The moti-
vation behind using C# language is due to its native
integration with the Microsoft platform for extracting file
system permissions. As this work targets the Microsoft
NT file system, implementing the technique in C# – a
Microsoft proprietary language – is not at detriment to
both usability and impact.
Figure 1 provides a graphical overview of the process

implemented in Creeper. The first part of the process
is where the permissions are read using native system
functionality and stored using the model presented in
“Modelling” section. Following on, this acquired per-
missions information is the processed to establish
the effective permission representation for each sub-
ject within the system. The next stage is to cal-
culate χ2 values based on the effective permission
representation. Jenks natural breaks is then iteratively
performed until the optimal classing is identified. The
output of the software is the list of permission creep
instances.
Table 2 illustrate the results of Creeper software and

provides the interface shown to the user after analy-
sis has taken place on a specified directory. The three
columns represent the subject, χ2

subject scores, andwhether
or not that subject has been identified as “Of Interest”
through performing Jenks analysis. “Of Interest” refers
to the likelihood of an subject’s permissions being an
instance of permission creep and that they warrant further
investigation.

Empirical analysis
In this section, empirical analysis is performed to deter-
mine the Creeper’s ability to detect instances of permis-
sion creep. The empirical analysis is performed in two

Fig. 1 Process overview

Parkinson et al. Cybersecurity (2019) 2:14 Page 8 of 14

Table 2 Results from Creeper demonstrating user “Extra1” has
been identified as a potential instance of permission creep

User/Group Average Score Of Interest

CES000964708 \Extra1 98.267478318174 �
NT AUTHORITY \SYSTEM 1056936.28738905 ×
Administrator 1056936.28738905 ×
bakman 1056936.28738905 ×
bakman2 1056936.28738905 ×
cmsxajr 1056936.28738905 ×
cmsmig 1056936.28738905 ×
Domain Admins 1056936.28738905 ×
cmsxpjh 1056936.28738905 ×
Enterprise Admins 1056936.28738905 ×
Adminback 1056936.28738905 ×
momadion 1056936.28738905 ×
Glenlivet 1056936.28738905 ×
cmsxbak 1056936.28738905 ×
cmsxaps 1056936.28738905 ×
SVACHVCBK 1056936.28738905 ×

distinct phases. The first involves the generation of syn-
thetic datasets where ground truth knowledge is available.
The second includes the analysis on real-world datasets,
where comparison is performed from manual analysis as
well as a previous technique developed to autonomously
identify irregular permissions. A comparative analysis is
made to determine Creeper()’s ability to identify irreg-
ular permissions that are missed using more traditional
approaches.

Synthetic analysis
In order to empirical evaluate the proposed technique’s
ability to detect permission creep, an iterative approach of
using synthetically generated datasets has been adopted.
This technique takes as input the following:

• Number of roles is used to define the number of
roles within the directory structure, which represent
the number of organisational roles. For example,
Management, Human Resources, etc;

• Directory complexity represents the depth and
breadth of the synthetic directory structure. A
directory structure will be created to the specified
depth, with each directory containing the same
amount of subdirectories. For example, a directory
complexity of 4 would result in the creation of a
directory structure with a maximum depth of 4, and a
breadth of 4 for each subdirectory. This exponential
growth would create a directory size of 44 = 256;

• Total number of users within the entire system
would be equally distributed among the number of

roles. For example, in a system with 100 users and 5
groups would result in 20 users per role; and

• Number of users with artificially induced permission
creep represents those users where additional
privileges (i.e. adding to additional roles) have been
added to mimic an instance of permission creep.

A process has been created to automate the construc-
tion of the synthetic directory structures that are utilised
in this empirical analysis. In this work, the process was
implemented in a Microsoft Powershell script. In addition
to creating the synthetic directory structure, the script will
also output the users that have be assigned permissions
representative of a user experiencing permission creep.
This provides the necessary ground-truth knowledge for
analysing Creeper’s ability to accurately detect permission
creep. The following ordered list details the process of
creating a synthetic file system as used in this research:

1 Setup the file system structure, which includes
creating the directories, users and groups within the
system. At this point the necessary components have
been created; however, no group and permission
allocations have yet been made.

2 Assign users to groups is where users are allocated
to permissions groups, which are used to represent
user roles. In this allocation, an even distribution is
made whereby the number of users is divided by the
number of groups.

3 Assign permissions is where file system permissions
are assigned to each group. In this research, the
permission is assigned as combination of individual
attributes where the first group gets the full set of
attributes (i.e., Full Control) and subsequent groups
get less expressive combinations. More specifically,
the number of permissions and the power they hold
on the file system is decreasing, which ensures each
group has a different permission level.

4 Assign creep instances implements additional
permissions directly to users (not their group) by
pseudo-random selection. A user is first selected
along with a directory. The next stage is to select a
pseudo-random combination of permissions
attributes and for the selected user and directory, and
finally, the allocation is applied to the file system.
This information is also written to a text file to be
used as group truth knowledge when analysing the
output from using Creeper.

The above process is iterative and executed using the
minimum andmaximum values for each parameter in this
empirical analysis, as well as the incremental step size for
each parameter provided in Table 3. These synthetic sys-
tems allow for a systematic empirical analysis of Creeper’s
performance.

Parkinson et al. Cybersecurity (2019) 2:14 Page 9 of 14

Table 3 Experimental analysis parameter variation (minimum,
maximum and stepsize)

Parameter Min Max Stepsize

Number of roles 2 4 1

Directory complexity 2 5 1

Total number of users 100 500 100

Percentage of creep users 0 10 2

It is worth noting at this point that there is no guar-
antee that any inserted anomaly will be detected. More
specifically, it could be that the random allocation made
to represent an instance of permission creep is actu-
ally less expressive than those the user already has, and
therefore would fail to represent an instance of permis-
sion creep. The use of synthetic directory structures is
exploring the impact on the number of roles, directory
size, number of users, and number of creep permis-
sion instances. In doing so, the implemented technique
is inserting the instances of permission creep in the file
system configuration and then detecting them in the set
of extracted effective permissions. The interpretation (by
the Operating System) of the file system configuration
into the effective permission set is what is being explored.
All test data sets, scripts, software and results are avail-
able for further research and details are provided in
“Conclusion” section.

Scalability
Figures 2 and 3 illustrate performance characteristics of
the implemented technique, in terms of performing χ2

analysis (Fig. 2) and in performing iterative Jenks anal-
ysis for classing the results (Fig. 3). In both figures, the

Fig. 2 Examination
(
χ2

)
time

Fig. 3 Analysis (iterative Jenks) time

amount of time required is shown against the number of
permissions processes. In both figures there are clusters
of data points which represent each directory complexity
(2, 3, 4, and 5 in order of left to right). In addition, a lin-
ear line of best fit is included to show the rate at which
time increases along with the number of permissions. This
allows for the visual identification of the increase in com-
putation time with the increase on the total number of
permission entries. As demonstrated in both Figs. 2 and 3,
the increase is linear and indicates good scalability as the
number of permissions increases.
From analysing both Figs. 2 and 3, it is evident that

the quantity of time required for extracting permissions
and performing χ2 analysis is significantly greater than
required to perform Jenks classification. On average, a
total of 4,650 seconds is required to complete the entire
process, of which 92% is for χ2 and 8% for Jenks clas-
sification. This is to be expected as χ2 analysis as the
calculation of χ2 scores is quadratic and so has a com-
plexity of O(n2), where n is the number of permissions to
analyse.

Identifying permissions creep
To assess the performance in this empirical analysis, the
following measures are considered:

1 True Positive Rate (tpr): the fraction of creep
permissions correctly identified as being part of an
instance of permission creep;

2 False Positive Rate (fpr = 1 - tnr): the fraction of
regular permissions incorrectly identified as being
part of an instance of permission creep;

3 True Negative Rate (tnr): the fraction of regular
permissions correctly identified as regular;

Parkinson et al. Cybersecurity (2019) 2:14 Page 10 of 14

Table 4 Results from performing experimental analysis

No. of Roles Dir Complexity fpr tpr fnr tnr Avg.

2 2 0.02 0.84 0.16 0.98 0.97

3 2 0.02 0.88 0.12 0.98 0.96

4 2 0.02 0.73 0.27 0.98 0.94

2 3 0.00 0.69 0.31 1.00 0.97

3 3 0.00 0.64 0.36 1.00 0.97

4 3 0.00 0.65 0.35 1.00 0.96

2 4 0.00 0.68 0.32 1.00 0.97

3 4 0.00 0.64 0.36 1.00 0.96

4 4 0.00 0.70 0.30 1.00 0.98

2 5 0.00 0.66 0.34 1.00 0.96

3 5 0.00 0.64 0.36 1.00 0.95

4 5 0.00 0.64 0.36 1.00 0.97

Average 0.00 0.70 0.30 1.00 0.96

4 False Negative Rate (fnr = 1 - tpr): the fraction of
creep permissions incorrectly classified as regular;
and

5 Accuracy is reported as the fraction of all samples
correctly identified. More specifically,
Accuracy = tpr+tnr

tpr+tnr+fpr+fnr .

Figure 4 presents the trp and fpr. Table 4 provides the
more detailed results, which are averages for the number
of roles and directory complexity combinations. Although
there are slight variations within each combination due
to differences in number of users and instances of per-
mission creep, differences in the number of permissions
changes significantly with any increase in directory com-
plexity and number of roles.

Fig. 4 TPR & FPR

As it can be identified in the Fig. 4 and Table 4, Creeper
has a high tpr and a low fpr. This is of significance as it
demonstrates the technique is able to correctly identify
instances of permission creep, whilst not incorrectly clas-
sifying correct permissions as instances of creep, which
was specified to fit to the sixth degree. The Area Under
Curve (AUC) calculated from Fig. 4 is 0.76. The AUC is
calculated through applying using a best-fit polynomial
curve fitting function. There are many instances that have
a high tpr and have a fpr beyond zero and no greater than
0.18 (18%). Instances that have a low tpr do not have a high
fpr. This demonstrates that the system is conservative, and
is less likely to not identify instances of permission creep
than incorrectly identifying regular permissions.
Table 4 details that smaller directory structures have a

higher fpr, indicating that Creeper incorrectly identifies
some normal users as being those indicative of permis-
sion creep. From analysing the results it is evident that
those with a directory complexity of 2 (22 = 4 directories)
have a fpr or 0.02 (2%). In the example, the average num-
ber of permissions (Access Control Entities) for directory
structures with a complexity of 2 is 240. Although the
number of directories is low (4), the number of per-
missions reflects each user within the system that can
access a specific directory. The algorithm presented in
Algorithm 1 creates a permission entry for each sub-
ject that has access on the directories, acquired through
group memberships. This approach is adopted as Creeper
is seeking to identify subjects with irregular permission
creep, which in many file systems permissions are man-
aged through group membership allocations.
Furthermore, the fpr decreases to 0 with a directory

complexity greater than 3 (27 directories), which demon-
strates that the accuracy improves as the directory struc-
ture increases. This improvement is due to the fact that
the number of permissions increases proportional to the
number of directories, and that irregular permissions will
become increasingly statistically insignificant as the num-
ber of directories increases.
The tpr as shown in Table 4 details that Creeper has a

good ability to correctly identify instances of permission
creep. The average tpr for all experiments is 0.7 (70%). The
rate is higher on smaller directory structures, greater than
0.7 for directory structures of complexity 2. All experi-
ments with a directory complexity of 3, 4, and 5 have an
tpr is greater than 0.6 (60%). Although the average tpr of
0.7 does mean that 0.3 (30%) of instances of permission
creep are not correctly identified, it is worth noting that
the system has a low fpr and the system is operating in a
conservative nature.
The false negative rate (fnr) details the fraction of reg-

ular normal that are incorrectly identified as instances of
permission creep. As evident in Table 4, directory struc-
tures with a complexity of 2 have the lowest fnr of less than

Parkinson et al. Cybersecurity (2019) 2:14 Page 11 of 14

0.3 (30%). All other experiments with a larger directory
structure size have a tpr of between 0.30 and 0.36 (30%
to 36%). This demonstrates that the Creeper has a high
false positive rate, and as such does fail to identify instance
of permission creep and reports to the user that they are
normal.
The true negative rate (tnr) is also high, with only

results from a directory complexity of 2 being 0.98 (98%)
and all other results 1 (100%). This is of significance as
it demonstrates the ability of the technique to correctly
identify permissions that are normal as not being part of
an instance of permission creep.
Table 5 demonstrates average results for the number of

users with permission creep, irrespective of directory size.
As evident in the table, the fpr is 0 until the number of
users with permission allocations representative of per-
mission creep reaches 8, and at this point the average fpr
increases to 0.01 (0.1%).
It is also evident that the tpr decreases along with

the number of users, indicating that as the number of
users with synthetic permissions increase, the ability for
Creeper to correctly identify instance of permission creep
decreases. This is because as the number of users with
permissions increases, the difference between average χ2

class values for class 0 (those determined to have poor
dependence) and class 1 (containing regular permissions)
decreases.
The fnr increases as the number of users with creep

permissions increases. The fnr is at 0% with 0 users with
creep permissions, rising to 40% with 10 users represent-
ing instances of permission creep. The fnr represents the
number of users that are incorrectly identified as normal,
when they actually represent an instance of permission
creep. This is of significance as it demonstrate that there is
a significant potential to miss users with permission creep
should the underlying system has many instances of per-
mission creep. In terms of the practical use of Creeper,
the system would need to be run after each identified
instance of permission creep is rectified, and thus allow-
ing those that are incorrectly identified as normal to be
more distinguishable.

Table 5 Average results based on number of users with
permission creep

No. of users
with Creep

Avg. fpr Avg. tpr Avg. fnr Avg. tnr Avg. Accuracy

0 0.00 1.00 0.00 1.00 1.00

2 0.00 0.75 0.25 1.00 0.99

4 0.00 0.61 0.39 1.00 0.97

6 0.00 0.63 0.37 1.00 0.96

8 0.01 0.61 0.39 0.99 0.94

10 0.01 0.60 0.40 0.99 0.93

The tnr –fraction of permissions correctly identified as
normal– is consistently high (100%) until when there are
8 users with and instance of permission creep, and at this
point it decreases to 99%. Finally, the average accuracy is
displayed for the number of users representing permis-
sion creep. It is noticeable that that accuracy is 100% with
0 instance of permission creep, and gradually decreases
to 93% with 10 instances of permission creep. This shows
good accuracy and validates the suitability of the technical
approach to identify instances of permission creep.

Real-world analysis
In the previous Section, an average accuracy of 96% has
been established on synthetic datasets. Although these
datasets are realistic and are generated to align with com-
mon access control implementations, it is still necessary
to test the capabilities of Creeper on real-world systems.
This is particularly important as the diversity of imple-
mented permissions within real-world systems may be
different from those in synthetic systems. As well as
analysing Creeper’s ability to detect instances of permis-
sion creep in real-world systems, we have created the
possibility to make a direct comparison between Creeper
and a human expert. Furthermore, a comparison is made
with a previous implementation of a similar technique
(names ntfs-r), presented in (Parkinson and Crampton
2016), which models the underlying permissions differ-
ently to search for statistically irregular permissions. As
previously mentioned, this earlier version only analyses
permissions which are those directly allocated in the ACL
and the technique does not calculate effective permissions
for those receiving permissions through group member-
ships, meaning that there is a potential to miss users with
an instance of permission creep. During this analysis, the
following methodology is used:

• A human expert with extensive experience (greater
than 10 years) in performing security audits will
analyse the file systems using only traditional analysis
method of examining access control rules using
built-in operating system functionality;

• ntfs-r is used to identify irregular permissions, based
on a previous implementation of χ2 and Jenks
analysis that utilises effective permissions from users
and groups explicitly in the ACL;

• Creeper is used to extract and analyse permissions,
which specifically aims to identify for instances of
permission creep; and

• Irregularities identified are evaluated by a separate
human expert, and they are regarded as ground truth
i.e. correct identifications used to determine the
accuracy of other techniques irrespective of which
technique identified them as a valid instance of
permission creep.

Parkinson et al. Cybersecurity (2019) 2:14 Page 12 of 14

Table 6 presents the characteristics of the five different
file systems (referred to as datasets) analysed in this work.
The number of directories provided in the second column
is the total number of directories analysed. The number
of ACLs examined in column three is significantly lower
as it only contains permissions that are unique from their
parent directory. More specifically, they are not inheriting
their permissions from their parent directory. It should
be noted that unlike in earlier synthetic analysis, ground
truth knowledge is not available and thus the ‘correct’,
‘incorrect’ and ’missed’ results are determined through
expert interpretation of the results to identify those that
are correct. For example, a correct instance of permis-
sion creep identified by the human expert would count
as 1 correct classification, otherwise their incorrect count
would be incremented by 1. Should any technique (includ-
ing human expert) fail to identify a valid instance of creep
which was identified by another technique, then their
missed classification score will be incremented.
All directories used in this analysis have been acquired

from real-world, multi-user and multi-device systems
being used within commercial organisations and they are
not part of the research infrastructure used in the devel-
opment of the presented technique. All systems are hosted
by organisations collaborating with the authors of this
research; however, due to the security sensitivity of the
data, we are unable to publicly make available the datasets
or acknowledge the organisations. The file systems dis-
played in Table 6 are presented in size order and the
number of different permission levels are also presented.
Although this work is identifying instances of creep on
a per user basis, it is interesting to note the number of
unique permission levels used throughout the system. For
example, Dataset 2 only has three unique levels whereas
dataset 4 has 23. A higher number of unique permission
level might be an indication that some users are obtain-
ing an irregular set of permission attributes. Furthermore,
an assumption can be made here that file systems with a
higher degree of unique permissions levels will become
more complex to manage.
For the purpose of aiding the reader in understanding

an example instance of permission creep discovered, an

Table 6 Characteristics of the real-world file systems acquired for
empirical analysis

Dataset No. of Directories No. of ACLs examined No. of Permis-
sion levels

1 168 42 8

2 254 24 3

3 570 74 6

4 3,517 499 23

5 11,654 870 15

excerpt from dataset number 4 is presented. This dataset
has been extracted from a large organisation, and as such
there are many users frequently changing their job roles
within the organisation. One instance of permission creep
identified and verified was that of user10 (annonomysed
due to commercial sensitivity) having full control on direc-
tory structures associated with human resources depart-
ment (\\shared\HR) and the remainder of the user’s
permissions were allocated through the finance group.
After further analysis, it was discovered that the user was
undertaking maternity cover for an employee within the
Human Resource department and gained new directly
allocated permissions, which were never removed once
their temporary role had finished. The allocation had not
previously been discovered as the company has a policy of
not making direct allocations; however, it was noted that
the temporary allocation of job role coincided with the
start of a new IT administrator, who it is believedmade the
allocation when new to their role and had not gained a full
understanding the host organisation’s security policies.
This demonstrates the ability of the technique to discover
instances of permission creep within an organisation that
have not yet been discovered.
Table 7 presents the results from performing manual,

ntfs-r, and Creeper. The first thing to highlight from the
results is that all analysis techniques agree that there
are no instances of permission creep in datasets 1 and
3. The results from calculating the average percentage
of correctly identified instances of permission creep for
manual analysis, ntfs-r, and Creeper, are 55%, 60%, and
98%, respectively. This demonstrates that Creeper has
the best accuracy and was able to correctly identify the
most instances of permission creep. It should be noted
that as there is an absence of ground truth knowledge,
there is potential that there are instances of permission
creep that are not identified by any technique. This is
because auditing real-world access control implementa-
tion to determine the correctness of each individual per-
mission would require significant human effort. However,
it should be noted that the identified 98% accuracy is
consistent with synthetic analysis using Creeper where an
average accuracy of 96% is achieved. The remainder of this
section discusses the results presented in Table 7 to gain
an understanding of why Creeper’s accuracy is high when
compared to other analysis techniques.
Human analysis is accurate in terms of not making

incorrect classification; however, there are many instances
where the expert has missed to identify valid instances
of permission creep. This is most likely due to time con-
strains when performing manual analysis using standard
operating system functionality. More specifically, when
analysing permissions in Microsoft NT systems, the user
has to inspect permissions on the individual object (e.g.
directory or file) level. This is time consuming and the lack

Parkinson et al. Cybersecurity (2019) 2:14 Page 13 of 14

Table 7 Comparison of techniques

Dataset No. of users with Creep (Manual) No. of users with Creep (ntfs-r) No. of users with Creep (Creeper)

Directory C I M C I M C I M

1 0 0 0 0 0 0 0 0 0

2 8 0 7 8 7 7 14 1 0

3 0 0 0 0 0 0 0 0 0

4 2 0 8 6 0 4 10 0 0

5 0 0 3 3 79 0 3 0 0

C = Correct, I = Incorrect, andM = Missed

of an ability to retain and view a user’s permission across
multiple objects makes it challenging to identify permis-
sions that are statistically irregular and could potentially
indicate an instance of permission creep.
The ntfs-r implementation did correctly identify a

higher number of creep instances than the expert; how-
ever, not only did it miss some instances, but it incorrectly
identified many instances, particularly in dataset 5. After
cross analysing with Table 6, it has been determined that
a contributing factor to this high incorrect classification
could be down to the large number of ACLs examined
and the diverse usage of permission levels. An even distri-
bution of permissions will occur if the system has a high
number of permission allocations using the the same set of
permission level. If the system has a relatively small num-
ber of permissions using different permission levels, then
they will be identified as irregular as they do not fit the
normal distribution and are statistically irregular.
Creeper identifies more correct instances of permission

creep than other techniques. It does however incorrectly
identify an instance of permission creep in dataset 2. After
further analysis, it is identified that the technique has been
too sensitive in this instance and the incorrectly identified
effective permission is actually normal (a false positive),
although it is statistically different and therefore could
have represented a valid instance of permission creep.
This demonstrates that Creeper can incorrectly classify
permissions in some instances and still requires human
expertise to analyse the results. The reason for this incor-
rect identification is because the correct permission is
statistically different from the normal distribution and
thus is identified as an instance of permission creep. How-
ever, it should be noted that it was able to correctly classify
permission with a higher degree of accuracy than all other
techniques, and thus demonstrates Creeper’s capabilities.
Table 7 illustrates that ntfs-r identifies a higher num-

ber of permissions as potential instances of permission
creep. In the analysis these are determined as incorrect
classifications of permission creep; however, it is worth
noting that these allocations have been identified by ntfs-
r as they appear to be irregular and anomalous with
the directory structure. Although Creeper uses a similar

underlying technical approach, the significant difference
and improvement in accuracy is down to the difference
in the way that effective permissions are modelled for all
accessible users and not just those specified in the ACL.
As discovered through this analysis, datasets 2, 4 and 5

all have instances of permission creep. In terms of statisti-
cal significance, dataset 2, 3 and 5 have 6%, 0.2% and 0.02%
of their permissions representing instances of permis-
sion creep, respectively. The percentage of permissions
that represent instance of permission creep are within the
range of those tested in the synthetic analysis presented
in this paper. More specifically, in the synthetic analysis,
the percentage of permission creep instances ranges from
100% to 0.3%. These percentages are calculated based on
the fraction of normal permissions against the instances
of permission creep. A contributing factor to the accu-
racy of the technique on real-world dataset is that the
percentage of permission creep instances is lower than in
the synthetic analysis. This contributes to the improve-
ment in accuracy as it has previously been established
that Creeper’s accuracy is greater when fewer instances of
permission creep exists. It also became apparent that the
instances of permission creep have been identified due to
the similarity of the user’s permission distribution with
users of similar roles; however, irregular differences were
discovered in the additional permissions that are estab-
lish to be instances of permission creep. This validates
the approach adopted in this paper whereby it is assumed
that permission creep can be identified through statistical
analysis.

Conclusion
In this paper, a novel mechanism is presented to iden-
tify instances of permission creep in discretionary access
control implementations. The paper presents the use of
statistical analysis on an extracted model of subject effec-
tive permissions. This analysis includes the use of χ2

analysis alongside Jenks natural breaks for the unsuper-
vised identification of permission creep instances. The
technique is presented, discussed and empirically tested
on Microsoft’s NTFS permissions. Empirical analysis has
demonstrated good scalability, as well as good accuracy

Parkinson et al. Cybersecurity (2019) 2:14 Page 14 of 14

on synthetic systems of different characteristics. Key find-
ings have demonstrated better accuracy where there are
fewer instances of permission creep amongst a bigger file
system. This is as instances of permission creep become
more irregular and statistically easier to identify.
A key finding of this research is that Creeper demon-

strates an average accuracy of 96% on synthetic datasets
and then an average accuracy of 98% on real-world
systems. Furthermore, the real-world system analysis
demonstrated the significant improvement in accuracy
over two other analysis techniques; the first being a
human expert, and the second being an earlier analysis
technique using a similar, yet distinctly different, techni-
cal approach as presented in (Parkinson and Crampton
2016). Although this work provides a novel technique
for detecting instances of permission creep in Microsoft
NTFS systems, there are limitations and other significant
opportunities of research which motivate future work.
For example, the use of alternative unsupervised learning
techniques to further improve performance and accuracy.
Another key area of research is in applying the technique
to other widely used access control implementations,
including other desktop and server implementations as
well as those implemented on mobile platforms.

Endnotes
1 https://docs.microsoft.com/en-us/sysinternals/

downloads/accessenum
2https://www.quest.com/products/security-explorer/
3 http://www.permissionsreporter.com/

Funding
This work was undertaken during a project funded by the UK’s Digital Catapult
Researcher in Residency Fellowship programme (Grant Ref: EP/M029263/1).
The funding supported the research, development, and empirical testing
presented in this paper.

Availability of data andmaterials
All experimental datasets, scripts and software are available from the
corresponding author upon request.

Authors’ contributions
SP performed the underpinning research and development presented in this
paper. SK contributed towards to empirical analysis and paper writing. JB and
DS contributed toward technical development (software testing and bug
fixing) throughout this project. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 11 May 2018 Accepted: 29 March 2019

References
Aas K., Eikvil L. (1999) Text categorisation: A survey. Technical Report 941,

Norwegian Computing Center

Agarwal B., Bhagwan R., Das T., Eswaran S., Padmanabhan V. N., Voelker G. M.
(2009) Netprints: Diagnosing home network misconfigurations using
shared knowledge. In: Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2009. USENIX
Association 2009. p 16

Balakrishnan N., Voinov V., Nikulin M. S. (2013) Chi-squared Goodness of Fit
Tests with Applications. Elsevier Science, Amsterdam

Bartel A., Klein J., Monperrus M., Le Traon Y. (2014) Static analysis for extracting
permission checks of a large scale framework: The challenges and
solutions for analyzing android. IEEE Trans Softw Eng 40(6):617–632

Bauer L., Garriss S., Reiter M. K. (2011) Detecting and resolving policy
misconfigurations in access-control systems. ACM Trans Inf Syst Secur
(TISSEC) 14(1):2

Benantar M. (2006) Access Control Systems: Security, Identity Management
and Trust Models. 1st edn. Springer, Cham

Das T., Bhagwan R., Naldurg P. (2010) Baaz: A system for detecting access
control misconfigurations. In: USENIX Security Symposium. USENIX
Association, Washington DC. pp 161–176

De Capitani di Vimercati S., Paraboschi S., Samarati P. (2003) Access control:
principles and solutions. Softw: Pract Experience 33(5):397–421. https://
doi.org/10.1002/spe.513

Fang Z., Han W., Li Y. (2014) Permission based android security: Issues and
countermeasures. Comput Secur 43:205–218

Greenwood P. E. (1996) A Guide to Chi-squared Testing, vol 280. Wiley,
Hoboken

Jenks G. F. (1967) The data model concept in statistical mapping. Int Yearb
Cartogr 7(1):186–190

Noseevich G., Petukhov A. (2011) Detecting insufficient access control in web
applications. In: SysSec Workshop (SysSec), 2011 First. IEEE. pp 11–18

Ou X., Govindavajhala S., Appel A. W. (2005) Mulval: A logic-based network
security analyzer. In: USENIX Security Symposium. USENIX Association is
the Advanced Computing Systems Association, Baltimore. pp 8–8

Parkinson S. (2017) Use of access control to minimise ransomware impact.
Netw Secur 2017(7):5–8

Parkinson S., Crampton A. (2016) Identification of irregularities and allocation
suggestion of relative file system permissions. J Inf Secur Appl 30:27–39.
https://doi.org/10.1016/j.jisa.2016.04.004

Parkinson S., Crampton A., Hill R. (2018) Guide to Vulnerability Analysis for
Computer Networks and Systems: An Artificial Intelligence Approach.
Computer Communications and Networks. Springer, Cham. https://doi.
org/10.1007/978-3-319-92624-7

Parkinson S., Somaraki V., Ward R. (2016) Auditing file system permissions using
association rule mining. Expert Syst Appl 55:274–283. https://doi.org/10.
1016/j.eswa.2016.02.027

Pfleeger C. P., Pfleeger S. L. (2002) Security in Computing. 4th edn.. Prentice
Hall Professional Technical Reference, Upper Saddle River

Sandhu R. S., Coyne E. J., Feinstein H. L., Youman C. E. (1996) Role-based access
control models. Computer 29(2):38–47

Sbîrlea D., Burke M. G., Guarnieri S., Pistoia M., Sarkar V. (2013) Automatic
detection of inter-application permission leaks in android applications. IBM
J Res Dev 57(6):10–1

Shaikh R. A., Adi K., Logrippo L. (2017) A data classification method for
inconsistency and incompleteness detection in access control policy sets.
Int J Inf Secur 16(1):91–113

Slavin R., Wang X., Hosseini M. B., Hester J., Krishnan R., Bhatia J., Breaux T. D.,
Niu J. (2016) Toward a framework for detecting privacy policy violations in
android application code. In: Proceedings of the 38th International
Conference on Software Engineering. ACM, New York. pp 25–36

Vidas T., Christin N., Cranor L. (2011) Curbing android permission creep. Proc
Web 2:91–96

Yang Y., Pedersen J. O. (1997) A comparative study on feature selection in text
categorization. In: International Conference on Machine Learning (ICML).
pp 412–420

Ye N., Chen Q. (2001) An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems. Qual Reliab Eng
Int 17(2):105–112. https://doi.org/10.1002/qre.392

Yuan Y., Huang T. (2005) A matrix algorithm for mining association rules. Adv
Intell Comput 3644:370–379

https://docs.microsoft.com/en-us/sysinternals/downloads/accessenum
https://docs.microsoft.com/en-us/sysinternals/downloads/accessenum
https://www.quest.com/products/security-explorer/
http://www.permissionsreporter.com/
https://doi.org/10.1002/spe.513
https://doi.org/10.1002/spe.513
https://doi.org/10.1016/j.jisa.2016.04.004
https://doi.org/10.1007/978-3-319-92624-7
https://doi.org/10.1007/978-3-319-92624-7
https://doi.org/10.1016/j.eswa.2016.02.027
https://doi.org/10.1016/j.eswa.2016.02.027
https://doi.org/10.1002/qre.392

	Abstract
	Keywords

	Introduction
	Related work
	Modelling
	Access mask
	Propagation and inheritance
	Group membership
	Accumulation

	Detecting creep
	Chi-square analysis

	Implementation
	Empirical analysis
	Synthetic analysis
	Scalability
	Identifying permissions creep
	Real-world analysis

	Conclusion
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

