
CybersecurityLi et al. Cybersecurity (2019) 2:17
https://doi.org/10.1186/s42400-019-0035-x

RESEARCH Open Access

Memory access integrity: detecting
fine-grained memory access errors in binary
code
Wenjie Li1,3,4,5* , Dongpeng Xu2, Wei Wu1,3,4,5, Xiaorui Gong1,3,4,5, Xiaobo Xiang1,3,4,5, Yan
Wang1,3,4,5, Fangming gu1,3,4,5 and Qianxiang Zeng1,3,4,5

Abstract

As one of the most notorious programming errors, memory access errors still hurt modern software security.
Particularly, they are hidden deeply in important software systems written in memory unsafe languages like C/C++.
Plenty of work have been proposed to detect bugs leading to memory access errors. However, all existing works lack
the ability to handle two challenges. First, they are not able to tackle fine-grained memory access errors, e.g., data
overflow inside one data structure. These errors are usually overlooked for a long time since they happen inside one
memory block and do not lead to program crash. Second, most existing works rely on source code or debugging
information to recover memory boundary information, so they cannot be directly applied to detection of memory
access errors in binary code. However, searching memory access errors in binary code is a very common scenario in
software vulnerability detection and exploitation.
In order to overcome these challenges, we propose Memory Access Integrity (MAI), a dynamic method to detect fine-
grained memory access errors in off-the-shelf binary executables. The core idea is to recover fine-grained accessing
policy between memory access behaviors and memory ranges, and then detect memory access errors based on the
policy. The key insight in our work is that memory accessing patterns reveal information for recovering the boundary
of memory objects and the accessing policy. Based on these recovered information, our method maintains a new
memory model to simulate the life cycle of memory objects and report errors when any accessing policy is violated.
We evaluate our tool on popular CTF datasets and real world softwares. Compared with the state of the art detection
tool, the evaluation result demonstrates that our tool can detect fine-grained memory access errors effectively and
efficiently. As the practical impact, our tool has detected three 0-day memory access errors in an audio decoder.

Keywords: Binary analysis, Fine-grained, Memory access error, Detection

Introduction
Memory access errors, e.g., stack/heap overflow, use
after free, use before initialization, have been the most
dangerous software vulnerabilities. A successful exploit
(Chen et al. 2005) of memory access error may lead
to arbitrary code execution or leak of sensitive data.
These errors usually hide in critical component of
software systems written in memory unsafe languages
such as C/C++. They are easy to be neglected but

*Correspondence: liwenjie@iie.ac.cn
1School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China
3Key Laboratory of Network Assessment Technology, CAS, Beijing, China
Full list of author information is available at the end of the article

severely threaten modern software security. In 2017,
users are still reporting blue screen errors caused by
“ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY”
when using Windows operating system (Maklakov 2017).
To tackle memory access errors, researchers have pro-

posed various methods to detect them in software sys-
tems. One category of detection methods (Serebryany
et al. 2012; Nagarakatte et al. 2009; Oleksenko et al. 2017)
check out-of-bounds memory access and dereference of
dangling pointers by leveraging source code level informa-
tion (e.g., type information) and compiler assisted instru-
mentation. Another category is binary level memory error
detector, such as Valgrind’s memcheck plugin (Nethercote
and Seward 2007b) and Dr. Memory (Bruening and Zhao

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-019-0035-x&domain=pdf
http://orcid.org/0000-0002-1410-2070
mailto: liwenjie@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Li et al. Cybersecurity (2019) 2:17 Page 2 of 18

2011). They recover coarse-grained memory boundary
(i.e., the size of memory chunk returned by malloc), and
enforces a set of security policies to detect various mem-
ory access errors (e.g., stack overflow, heap overflow, use
after free, use before initialization).
Unfortunately, existing detection methods suffer from

several limitations. First, these methods only check
coarse-grained memory access error, but they are not
able to detect memory access errors inside one mem-
ory chunk. Particularly, much complex software includes
their own memory management module, which usually
claims a large memory chunk from operating system and
then organizes their own data structure inside the mem-
ory chunk. Existing coarse-grained methods can only
detect memory access errors across the outermost mem-
ory chunk boundary. They cannot handle memory access
errors happened inside data structures within one chunk.
The fine-grainedmemory access information is critical for
locating where the memory access error happens and how
to fix it. Second, source code or debugging information
is missing or not available in many scenarios in practice,
e.g., when detecting vulnerabilities in third-party software
or checking legacy software. Existing methods utilizing
source code information do not directly work on binary
code. Moreover, existing methods using compiler assisted
instrumentation (Lattner and Adve 2004) introducemem-
ory layout differences, which results in false negatives or
the error location is not accurately reported.
To overcome the challenges above, we propose a novel

method called “Memory Access Integrity” (MAI) for
detection of fine-grain-ed memory access errors in binary
code without any source code or debugging informa-
tion. Our method tracks memory access patterns during
runtime. Based on the memory accessing information,
it infers and maintains accessing policy between point-
ers and memory objects. A warning is reported when a
memory access behavior conflicts with the rule.
The key insight is that a boundary of memory objects

and accessing policy can be inferred from instructions
by checking memory access patterns in binary code dur-
ing runtime. To be more specific, our method recognizes
the “base+offset” memory access pattern, which provides
strong evidence of the boundary and accessing policy. Our
method maintains a new memory model, Memory Range
Record, to describe the boundary and relation of memory
objects during the whole program execution. It reports a
memory access error when an instruction tries to access
a memory address that is out of the memory boundary
controlled by that based address.
Compared with existing methods, our approach facili-

tates detection of memory access errors from the follow-
ing aspects. First, the memory access policy is collected
via memory access patterns, which naturally reflect the
data structures inside memory. Therefore, our method

has the ability to handle fine-grained data structures.
Second, the inference and checking of memory access pol-
icy are purely on assembly instructions, so our method
can directly analyze binary code, requiring no help from
source code or compilers. To the best of our knowledge,
our method is the first one that can detect fine-grained
memory access errors in binary code.
To demonstrate the effectiveness of our method, we

apply MAI to a set of CTF challenges containing different
categories of memory access errors and MAI success-
fully detects all memory errors. We also apply MAI to
real world programs and compare the detection result
with Valgrind, the state of the art. Our result shows that
MAI effectively and efficiently detects all fine-grained and
coarse-grained memory access errors. Particularly, MAI’s
practical impact is demonstrated by finding three 0-day
memory access errors in an audio decoder.
In summary, thispapermakes the following contributions.
• We propose Memory Access Integrity (MAI), a novel

method for checking fine-grained memory access
errors in binary code. Our method infers memory
access policy based on memory access patterns, and
then check memory access errors during program
execution.

• We have implemented MAI as a prototype tool and
include it in a cross-platform binary analysis
framework for detecting and exploiting memory
corruption vulnerability.

• We evaluate MAI on various scenarios including CTF
challenges and real world software. The result
demonstrates MAI can effectively detect and
diagnose memory access errors. The practical impact
of MAI is demonstrated by the detection of three
0-day vulnerabilities in an audio decoder.

The rest of the paper is organized as follows.
Section Background describes the background and chal-
lenges. Section Overview presents the overview of MAI.
Section Memory range record-Error detection describes
the design of our method in detail. “Implementation”
section presents the implementation and “Evaluation”
section describes the evaluation result. We summarize
and discuss related work in Section Related work, and
finally conclude this work in Section Conclusion.

Background
Memory access error
A memory access error occurs when a program tries
to access an illegal memory location. Common mem-
ory access errors include: write across boundary, read
uninitialized memory, use after free, double free. These
errors are widely hidden in important software systems
written in memory unsafe programming languages such
as C/C++.

Li et al. Cybersecurity (2019) 2:17 Page 3 of 18

Figure 1 shows an example of write across boundary, a
common memory access error. When the function fun
copies buf to array a[10], no boundary checking is per-
formed, so the integer variable flag could be overflowed.

Detection of memory access error
Memory access errors are not only bugs that may lead
to a program crash, but also severe vulnerabilities that
could be exploited by attackers. Many attacking meth-
ods like ROP (Checkoway et al. 2010; Roemer et al. 2012;
Buchanan et al. 2008) rely on memory access errors, such
as buffer overflow or dangling pointers, to trigger the first
step. Therefore, researchers have been working on vari-
ous detection methods to check memory access errors in
software.
One group of detection methods aim to help software

developers find and correct memory access errors in soft-
ware development, so these methods require support
from compilers and other tool chains. AddressSanitizer
(ASan) (Serebryany et al. 2012) is an open source compiler
extension developed by Google. It is based on redzone
instrumentation in compilers. Redzone is a technique that
adds various types of special memory segment between
memory areas. When out-of-bounds access happens, the
memory operation will first access the redzone memory
areas, which will trigger a warning. In the hardware field,
Intel MPX (Memory Protection Extensions) (Oleksenko
et al. 2017) is a set of extensions to the x86 instruction set
architecture. Intel MPX brings increased security to soft-
ware by checking pointer references. It checks if pointer
references casuse a buffer overflow at runtime. MPX can
detect the intra-object-overflow vulnerability, but it also
needs source code.WIT (Akritidis et al. 2008) uses points-
to analysis at compile time to compute the control flow
graph and the set of objects that can be written by each
instruction in the program. Then it generates code instru-
mented to prevent instructions from modifying objects
that are not in the set computed by the static analysis.

Fig. 1 An example of memory access error

Softbound (Nagarakatte et al. 2009) is a compile-time
transformation for enforcing spatial safety of C. It records
base and bound information for every pointer as dis-
joint metadata based on the static analysis of the source
code. However, all these methods rely on source code
information. They are not suitable for analyzing binary
code.
Another group aims to detect memory access errors

in a binary environment. These methods get necessary
information from binary and do not need source code
assistance. Memcheck plugin of Valgrind (Nethercote and
Seward 2007b) aims to recover memory bounds at run-
time and enforce a set of security policies to detect
various memory corruption bugs. Memcheck monitors
heap memory allocation/deallocation to infer the bounds
between heap chunks. Valgrind also leverages redzone
technology to do memory error detection. However, Val-
grind only inserts redzones between coarse-grainedmem-
ory chunks, so it is not able to detect fine-grainedmemory
access errors inside one memory chunk.
Dr. Memory (Bruening and Zhao 2011) is a method

introducing a feature called “nudge” to allow users to
request a leak scan at any point. it mainly utlizes shadow
memory to maintain the status of each memory bytes and
cannot detect fine-grained memory access errors.

Fine-grainedmemory access error
A fine-grained memory access error happens when a
member variable inside a data structure is overflowed.
An attacker can use this overflow vulnerability to control
another member variable to exploit the program. Usually,
this type of overflow does not exceed the memory chunk
boundary and does not lead to a program crash.
Figure 2 illustrates a fine-grained memory access error

in a link list node. First, a large memory chunk is allo-
cated for storing one link list node. Next, member vari-
ables are initialized as shown in Fig. 2b. The object has
a buffer which is prone to be overflowed. When an over-
flow happens, the out-of-bounds-write will write in other
members such as next. If the overflowed member vari-
able can be exploited to control program execution, the
vulnerability is very dangerous.
Because fine-grained memory access errors happen

inside data structures, detection of this type of vulnera-
bility requires more information about the data structures
inside memory chunks. Unfortunately, because this infor-
mation is implicit and challenging to be recovered from
binary code, many existing works including Valgrind only
do coarse-grained analysis (Castro et al. 2006; Jim et al.
2002; Nagarakatte et al. 2009; Dhurjati et al. 2006). Other
existing methods (Austin et al. 1994; Dhurjati and Adve
2006; Condit et al. 2007; Lam and Chiueh 2005; Necula
et al. 2005; Patil and Fischer 1997; Xu et al. 2004; Yong
and Horwitz 2003) rely on type information from source

Li et al. Cybersecurity (2019) 2:17 Page 4 of 18

(a) (b) (c)
Fig. 2 An example of fine-grained memory access error. buffer
overflows next inside the same memory chunk

code to do fine-grained detection. These methods are still
not feasible for detection of fine-grained memory access
errors in binary code.

Challenges
For detection of fine-grained memory access errors as
shown in Fig. 2c in binary code, necessary information
regarding boundaries of memory ranges have to be col-
lected. The most important challenges are summarized as
follows.
Missing boundary. To detect out-of-bounds memory

write, the boundary information for memory access oper-
ations is necessary. Although it is possible to build up
some coarse-grained boundary for memory chunks by
tracking heap allocation and deallocation, the accurate
boundaries that separate sub-fields inside a data object is

still missing. For example, the boundary information of
buffer and list node in Fig. 2c is lost in the binary code.
Lack of pointer information. Suppose the necessary

boundary information is available, it still remains chal-
lenging to judge wheth-er a pointer based memory access
is valid due to the lack of pointer information, e.g., which
pointer is valid for accessing a memory range. In other
words, we need an accessing policy to check wheth-er a
pointer is legally accessing memory blocks.

Overview
In order to overcome the limitations, we propose Mem-
ory Access Integrity (MAI), a novel dynamic method for
detection of fine-grain-ed memory access errors in off-
the-shelf binaries. Our method monitors memory access
behaviors during runtime and reports warnings when ille-
gal memory access happens. This is done by building and
maintaining a fine-grained memory model to describe the
relation between pointers (memory access location) and
the range of memory objects. Figure 3 shows a typical
step-by-step workflow of our method.
As shown in Fig. 3a, no memory chunk is allocated on

the heap at the beginning of program execution. Next,
when the program requests a memory chunk and the
address is stored in pointer P, we create a policy showing
P is feasible to access the range of the memory range MR
as shown in Fig. 3b. When the program uses P to access
a member variable inside this memory chunk, we record
the new memory access address and the related memory
range. As shown in Fig. 3c, P2,P3, P4 point to different
memory sub-regions inside this memory chunk and dif-
ferent gray blocks represent the memory range they can
access. The policy is also updated accordingly. In Fig. 3d,
when the pointer P2 is used for out-of-bound accessing the
memory block, it violates the policy so our system reports
a memory access error.

(a) (b) (c) (d)
Fig. 3 An overview of the workflow of MAI

Li et al. Cybersecurity (2019) 2:17 Page 5 of 18

Memory access integrity
Design principle
As the key method in our work, we introduce the con-
cept of “Memory Access Integrity” (MAI) to describe and
check whether a memory access is legal or not. The key
idea is inferring the boundary of memory objects from
the relation between pointers and memory chunks on the
fly. With this information, we recover the memory access
policy and use it to check memory access behaviors.
Memory Access Integrity is guaranteed by policy check-

ing. More specifically, policy in this paper refers to a set of
rules. Each rule is a pair defined as follows. It restricts a
memory range to be legally accessed by any pointers inside
a pointer set.

Definition 1 A rule is a pair (PS, MRR), where PS is a set
of pointers and MRR, Memory Range Record, is a memory
model for describing memory range and state.

The rules in a policy are inferred from program execu-
tion. We achieve this by monitoring pointers dynamically,
maintaining a new memory model to describe the bound-
ary and life cycle of memory objects, and inferring the
relation between pointers and the memory model. Before
digging into the details of how we complete these tasks
in our method, we provide an intuitive example to walk
through these steps. The example presents the following
two key insights into our method.

1 The first write operation associated with a pointer
can help us know the “point-to” relation between a
pointer and a memory chunk.

2 The “base+offset” addressing scheme can be
leveraged to infer the ownership between memory
chunk and pointers.

An example for walk-throughMAI
We use a concrete example to quickly walk through MAI.
Figure 4 presents the source and assembly code related to
the motivating example in Fig. 2.
The example shows operations on a linked list. We will

elaborate on how we build the relation between pointers
and memory chunks and the relation between memory
chunks. At line 7 of the left hand side of Fig. 4,the program
allocates a node object and we obtain its address and size.
From the instruction at Line 9, the node pointer is used as
the base address to calculate the address of node->next
and write 8 bytes in this space. So we know that an 8-
byte sub-region begins at the offset 0x88 is used in this
memory chunk. Similarly, at line 11, the node pointer is
used as the base address to get its sub-region, buffer.
Figure 5 shows the relation between pointers and memory
chunks and the relation betweenmemory chunks after the
program execution.

Memory range record
As the core part to support memory access integrity,
we design a new memory model called “Memory Range
Record” (MRR) to record the fine-grained boundary and
life cycle of memory objects. In this section, we first
present the concept of MRR and then elaborate vari-
ous types of actions on MRR, including generation, range
setting, and deletion. Specifically, we introduce how we
gradually divide a memory chunk into sub-regions in a
fine-grained way based on the memory access pattern of
executed instructions.

MRR andMRR tree
In this paper, a Memory Range Record (MRR) is a tuple
defined as follows. It describes a memory range and the
state of the range. For every MRR, we assign a unique ID
number.

Definition 2 A MRR is a tuple (id, start, end, state),
where id is a unique number, start is the starting address of
the range, end is the ending address of the range, and state
is one of uninit, used, or free.

MRR is constructed during program execution. In gen-
eral, our method creates a new MRR by capturing two
types of memory access patterns as follows. These pat-
terns reveal information such as the location of memory
objects and pointers to access them. More details of MRR
generation is elaborated in Section MRR generation.

1 A new memory chunk is allocated, e.g., malloc is
called.

2 A memory object is accessed by base+offset
pattern.

In real world software, memory access patterns are com-
plex. A very common situation is data structures, which
usually have various levels of nested memory ranges. In
order to tackle this problem, we organize MRRs as a tree
structure. The child MRR is a sub-range of its parent
MRR. Our system generates child MRRs by capturing the
base+offset pattern. When the base pointer is the
starting address of the parent MRR, the base+offset is
the starting address of the child MRR.
For example, Fig. 6 is a linked list node structure. We

will build a multi-level MRR model like Fig. 7. MRR
node covers all 22 bytes of this linked list structure. MRR
buffer addressed by node address has the child MRR of
node’s and covers 14 bytes of this structure. MRR name
addressed by buffer address has the level 2’s MRR and
covers 10 bytes of this structure.

MRR generation
This section describes how to generate a MRR. Overall,
there are two types of MRR in a MRR tree, root MRR

Li et al. Cybersecurity (2019) 2:17 Page 6 of 18

Fig. 4 The source code and assembly code of the linked list example

and child MRR.We have different generation methods for
them. A root MRR describes a memory block allocated by
the system. e.g., a memory chunk returned by malloc.
When the system allocates a block of memory, the start-
ing address and block length are known. We generate a
new MRR tree and set the root MRR node according to
the information of the newly allocated memory block.
The root MRR generation rules also apply to stack mem-
ory. We identify the stack subtraction operation(e.g., sub
rsp, 0x20) near the entry point of each function as
the allocation operation of the stack memory block and
generate a new MRR tree for stack memory block.
We generate child MRR based on the “base+offset”

memory access pattern. Base-pointer addressing (e.g.,
newptr=ptr+index) assigns a new pointer that is the
sum of an offset value and a base pointer. This operation
reveals fine-grained boundary information of memory
objects, because it is frequently used for accessing a mem-
ber in a data structure. The data structure starts from the
address of the base pointer, and the member locates at
the offset address in that data structure. Therefore, for
all “base+offset” memory accessing patterns, if the base is
already the starting address of a MRR A, we generate a
new child MRR for A.

MRR length
The last section discussed two rules to generate root MRR
and child MRR, but we only mentioned getting the start-
ing address from memory allocation or base pointers.
We still need to find the ending address so as to get the
complete boundary of a memory range. Because we are
working on binary code, source code level information
such as type and data structure is not available. We have
to infer the memory range length from the instructions in
program execution.
Our method uses a heuristic to infer the length: the first

“write” operation to the memory range. Typically, a mem-
ory range is initialized by the first write operation after it
is allocated, so the initialization “write” naturally covers
the whole memory range and reveals the boundary infor-
mation. Therefore the length of the first write operation is
a good heuristic for inference of the length of the memory
range.
We still use the linked list example to explain how to

decide the range of a MRR. As shown in Fig. 8, the code
initializes the linked list node. The code of line 2 in left
hand side of Fig. 8 and line 6 in right hand side generates
a root MRR for node. The calculation operation of line 3
in left and line 9 in right generates a child MRR of node

Fig. 5Memory ranges in the linked list example

Li et al. Cybersecurity (2019) 2:17 Page 7 of 18

Fig. 6 A linked list node structure

for next. The memory write operation at line 9 writes 4
bytes, so we set these 4 bytes as the accessible range of
pointer next. Similarly, Line 11 applys the same opera-
tion. Assuming the id of the node MRR is 1, MRR id of
next is 2, MRR id of prev is 3, MRR id of buffer is 4,
MRR id of buffer.id is 5, MRR id of buffer.name is
6, the memory identifier map is shown in Fig. 9.
In practice, the first write operation does not always

write all memory range inside the boundary. There could
be situations when the first write operation writes a larger
or smaller memory range. We provide a detailed discus-
sion in Section First write. Our discussion result shows
that no matter the first write operation write more or
less memory chunks, MAI can still correctly detect the
memory access errors.

MRR state
In addition to the starting and ending address, MRR can
record the state of the memory range. This is important
for policy checking. Our system records three different
states in the life cycle of a memory range: uninit, used,
and free. When a program allocates a block of memory,
the state of the MRR is uninitialized (uninit). After some
value is written into the memory range, the MRR state
will be changed to (used). When the operating system free
the memory area, the according MRR state is changed to
(free). Figure 10 shows the memory state transition dia-
grams. The state is used for detection of memory access
errors as shown in “Error detection” section.

MRR deletion
After amemory block is freed, no pointer should be able to
access this memory; otherwise, it is a use-after-free error.
In our multi-level MRR system, we remove the accord-
ing MRR tree, mark its state as free, and also delete the
id number. Particularly, the operating system only free a
memory block which has been allocated before, so corre-
spondingly, the root MRR and the whole tree are deleted
in our system.

Pointer monitoring
So far we have elaborated the system we designed for
record fine-grained memory boundary and state. As
shown in “Design principle” section,MAI policy describes
legal accessing relation between a set of pointers and
MRRs. Therefore, we also need to monitor the pointers
inside the target program.

Fig. 7 A MRR tree example

Li et al. Cybersecurity (2019) 2:17 Page 8 of 18

Fig. 8 The source code and assembly code of initializing the linked list node

Since the core rule of MAI is (PS, MRR), we only take
care of the memory pointers associated with MRR. We
get these pointers naturally from the two ways of MRR
generation in 5. One is from the program’s allocation oper-
ations. When the system allocates a chunk of memory, the
pointer it returns is the target pointer we want to moni-
tor. Because this operation means the return pointer can
access the chunk of memory. Another way is the program’s
base-pointer addressing operation. In this operation, we
will generate a new MRR and the new base+offset
pointer is our monitoring target.
In the process of pointer monitoring, we also moni-

tor the behavior of using the tainted pointer for memory
operations. These memory operations include memory
reads, memory writes andmemory free.Memory read and
write operations are performed by using a tainted pointer
to read and write memory bytes. The memory free opera-
tion is the system’s deletion of the memory chunk pointed
by the tainted pointer. We insert the MAI integrity check
before these operations to ensure the security of the pro-
gram.

In practice, pointers may have various aliases, e.g., dif-
ferent pointers pointing to the same address. In our
system, we tackle the pointer alias problem by dynamic
multi-tag taint analysis. We keep track of the propagation
of pointers and taint all aliases of a pointer with the same
tag.

Policy
After introducing MRR and pointer monitoring, now we
can associate a pointer set with MRRs to build the MAI
policy (PS, MRR). Every MRR is connected to those point-
ers that can access the starting address of this MRR. In
another words, a rule (PS,MRR) means the pointers inside
PS should be used to access the memory objects inside the
range of MRR.
In general, the policy inMAI can be formally interpreted

as follows.

Definition 3 A memory access base+offset is legal,
if and only if:
if base ∈ PS, base+offsetmust be in MRR.

Fig. 9 The MRR tree and memory range after initialization

Li et al. Cybersecurity (2019) 2:17 Page 9 of 18

Fig. 10MRR state transition

Particularly, pointers associated with aMRR is also legal
to access all its child MRRs, because all child MRRs are
sub ranges. In our multi-level MRR systems, this feature
also helps us track more information when an overflow
happens, e.g., the offset to the head of the memory chunk,
where this chunk is allocated. The information is essen-
tial in program analysis and it can save lots of time for
analysts.
When a memory out-of-bounds-write occurs, we can

know where the vulnerable memory area is allocated in
the code segment based on the pointer used, which sub-
region of thememory block it belongs to, what is the offset
to the first byte of the memory chunk and where is the
memory block allocation by its parent node, and so on,
etc.
For example, when we detect the name in Fig. 7 which

has an overflow vulnerability, we can know that the name
memory region is the sub-region of buffer and the
buffer is the sub-region ofnode. So we knowwhere this
vulnerable memory is allocated, where vulnerable mem-
ory is written, what the boundaries inside this vulnerable,
and much other useful information. All this information
can be queried by this pointer’s MRR chain.

Error detection
Previous sections present the detailedmechanism ofMAI.
In this section, we describe how to detect fine-grained
memory access errors based on MAI system. In general,
we examine whether a pointer violates MAI policy from
the following two aspects.

1 The pointer is accessing correct location.
2 The pointer is performing correct operation on the

memory state.

If one of the aspects failed to pass the detection, an alert
indicating memory corruption is automatically reported.
By checking different combinations of pointer opera-

tions and memory states, MAI is able to detect three
memory access errors as shown in Table 1.

Table 1 Operation type error: the type of error generated by
different types of operations accessing different memory states

Type

State Uninit Used Free

read unintialized-read - read use-after-free

write - - write use-after-free

deallocation - - double-free

allocation chunk overlap chunk overlap -

‘-’ indicates legal access

If the memory access behavior uses a pointer in PS and
its address is not inside the corresponding MRR, this is
an out-of-bounds error. In this violation case, we could
furthermore perform root cause diagnosis, as is shown in
Table 2. If the victim memory chunk of the invalid mem-
ory access is not of root MRR, we are able to draw the
conclusion that this out-of-bounds error happens inside
a memory chunk. For example, If an out-of-bounds error
happens in the heap and the level of the overflowed mem-
ory’s MRR is not the root MRR, this error is a fine-grained
memory access error.
In addition to the vulnerability types, we also provide

some information about Trouble-Shooting. Because we
can get the MRR generation address, MRR base address,
and parent MRR node by querying the MRR tree. We can
get the information about where this memory chunk is
first to be written, what the overflowed memory region
belong to, where is this memory chunk allocated and so
on.

Implementation
This section presents the implementation details of MAI.
We implement MAI as an enforcement tool based on the
valgrind dynamicbinary instrumentation framework (Luk
et al. 2005; Hundt et al. 2005).
We reused the translation, IR statement analysis and

instrumentation of the intermediate language VEX of
the Valgrind framework. The core technique is dynamic
instrumentation. We insert vex statements to implement
the function of MAI, like pointer monitor, MRRmaintain-
ing. The whole implementation includes about 4,000 lines
of C code in total.
Pointer monitoring. The pointer monitoring function

is implemented based on taint analysis. We use a dynami-
cally expanded shadow memory to taint the pointer store

Table 2 Four types of pointer overflow error according to
overflow location

- Heap Stack

inside intra-heap overflow intra-frame overflow

outside inter-heap overflow out-frame overflow

Li et al. Cybersecurity (2019) 2:17 Page 10 of 18

address with MRR id. Shadow memory (Nethercote and
Seward 2007a) consists of shadow bytes that map to indi-
vidual bits or one or more bytes in main memory. In order
to save space, the size of the shadow memory is dynam-
ically expanded. When the pointers are propagated, we
copy the id to another. Unlike taint analysis, our imple-
mentation uses fewer but sufficient rules which is men-
tion in Section Pointer monitoring. This implementation
allows us to circumventmany traditional problems of taint
analysis, like overtainting and undertainting, because we
greatly reduce the instruction complexity of tracking taint.
MRR record.We record the MMR id and memory state

information on another dynamically expanded shadow
memory, in order to ensure that the pointer monitor-
ing shadow memory will not disturb the content of the
MMR’s. Other MRR information is recorded in a global
variable as a tree structure, which can be queried byMMR
id. We allocate 16-bits shadowmemory for each byte. The
high 14-bits used to record memory privilege identifier
and the low 2-bit used to record memory state.
Policy. The method we build MAI policy (PS,MRR) is

implemented by id field. Pointers to be monitored are
tainted with an id and MRR has an id field. We bind the
pointers and MRRs with the same id, which means the
pointers should be used to access the memory objects
inside the range of MRR with same id.
Error detection.We insertMAI policy detection before

five types of operation: base-pointer addressing operation,
read operation, write operation, allocation opertaion and
deallocation opertaion. Before these operations, we exam-
ine if the id of pointer and target address’s MRR are equal
and if the memory state match the opertaion type.

First write
As mentioned earlier, the method we use to determine the
MRR length encounters two problems, the length of the
first write is less than the actual length of MRR and the
length of the first write is longer than the actual length.
In the situation that the length of the first write is less

than the actual length of MRR. The MAI will automat-
ically expand the range of this MRR, when the remain-
ing range of this MRR is written for the first time. The
first write operation is longer than the actual length is
undoubtedly a malicious operation and may break the
program. we will describe how we detect this situation.
There are two situations to discuss here. We will use the

structure shown in the Fig. 11 as an example. In this exam-
ple, the program will write 6 bytes to the array a which is
an overflow operation. In the first situation, the switch
variable of the program has been written before the over-
flow operation. Shown in the Fig. 12-a, the switch has
already been set a MRR(id=2). When program wants to
use array a’s MRR(id=3) to access switch’s MRR(id=2),
we will detect this overflow error. In the second situation,

Fig. 11 An data structure showing first write

the switch variable of the program has not been writ-
ten before the overflow operation. Shown in the Fig. 12-b,
the switch has noMRR. In this case, we will temporarily
recognize the overflow operation as a normal operation
and sets a MRR(id=3) whose size is larger than it should
be. Since the switch has not been written to the data,
this setting will not cause malicious consequences. When
the program reads or writes the variable switch for the
first time, this error can be detected because MAI finds
that thememory already has aMRR. This is a kind of delay
detection.

Evaluation
In this section, we present the evaluation scheme and
result of MAI. Basically, we design experiments to answer
the following three research questions.

1 RQ1: Is MAI able to detect various memory access
errors?

2 RQ2: How many false positives and false negatives
can MAI produce?

3 RQ3:What is the overhead of MAI?

As the response to RQ1, we first apply MAI to a CTF
problem set including 10 examples of different types of
memory access errors. To check MAI’s effectiveness in
practice, we run MAI and Valgrind on 10 real-world pro-
grams and compare the result. We also elaborate a case
study to give a detailed answer to RQ1. As the answer to
RQ2, we apply MAI to 50 randomly selected CTF pro-
grams and check the result of false positives and false
negatives. In response to RQ3, we compare MAI’s perfor-
mance with Valgrind.
The evaluation runs on a 64-bit Ubuntu 16.04 desk-

top and 4GB RAM. MAI is complied by GCC 5.4.0. The
Valgrind version is 3.14.

CTF challenges
To evaluate that MAI is able to detect various types of
memory access errors, we collected 10 difficult programs

Li et al. Cybersecurity (2019) 2:17 Page 11 of 18

(a)

(b)
Fig. 12 Different cases of first write

(weight score ≥ 25) from popular CTF events in the past
two years. Weight score is an per-event value, depends on
tasks and organization level, participated teams or pre-
vious years weight used. Events with high weight score
means that they are widely known and their competition
programs have a high quality.
Table 3 present the evaluation result. The first and sec-

ond column shows the name of challenges and the event
name. The third column shows the type of memory access
error in that challenge. The last two columns present
MAI’s detection result and the error type.

Table 3 The detection result of MAI on CTF challenges with ten
different memory corruption bugs

Challenges Name Event Bug Type Detection

babyheap 0ctf2017 use-after-free �
auir casw2017 double free �
house_of_c4rd 0ctf2018quals integer

overflow
�

scv casw2017 stack overflow �
simple_memo_pad codebluectf2017 intra data-

structure
overflow

�

1000levels hitbctf2017 read uninit �
woO2-fixed TUCTF 2016 abuse global

variable
�

fastbin 0ctf2017 chunk overlap �
babyheap Codegate 2018 heap write

overflow
�

babyheap SECUINSIDE 2017 heap read
overflow

�

The evaluation result shows that MAI successfully
detects all memory access errors and reports the correct
error type in all test programs. Particularly, the “abuse
global variable” error type from the challenge “woO2-
fixed” is an out-of-bounds access caused by a dangling
pointer, which points to a memory block that has been
previously freed but reallocated. Since the newly allo-
cated memory has a different id than the pointer, MAI
successfully captures this memory access error.

Real world programs
In order to evaluate MAI’s capability in practice, we
apply MAI and Valgrind to 10 real-world programs with
known memory access errors and compare the detection
result. Openjpeg and Jasper are Image toolkit, OpenSSL
is a toolkit for the Transport Layer Security (TLS) and
Secure Sockets Layer (SSL) protocols. Vlc is a video player.
Unrar is a compression software. Iselect is an interac-
tive line selection tool for textual files and Polymorph
is a filesystem. libxaac is an audio decoder library. Mutt
is a command-line email client. Iselect and Polymorph
are obtained from the BugBench suite (Lu et al. 2005).
The rest eight programs are obtained from Exploit-db and
cvedetails.com.
In this experiment, we run MAI with a fuzzing tool

(Godefroid et al. 2012; Sutton et al. 2007) and it detects
three zero-day intra-frame overflow error in the test
program libxaac. We have reported the bugs and the
security team has conducted a severity assessment on
this issue. Based on their published severity assessment
matrix they were rated as critical severity. CVE numbers
will be assigned to these vulnerabilities once they finish
developing an update.

Li et al. Cybersecurity (2019) 2:17 Page 12 of 18

Wepresent the detailed description of the experiment as
follows. AFL mutates the provided seed corpus and then
feed them to the target program libxaac and MAI runs
libxaac to accept the input. MAI detection tool detects
if the input causes memory access errors. If it has, we
will manually analyze this bug based on the error report.
At the beginning of the program, it will allocate a large
memory (64MB) to store its data structures. It means the
program store many structures in a memory chunk. If one
of these structures can be overflowed, other structures
will also be affected and this overflow does not cross the
boundary of this large memory chunk. Thus this overflow
is an intra-frame heap overflow. We have fuzzed three
data structures with this vulnerability.
Table 4 lists the program name, CVE numbers and

the detection ability of MAI and Valgrind. MAI with
full checking was able to detect and prevent all of the
errors.The bugs of program iselect, polymorph, libxaac
and netatalk is intra-frame overflow. An attacker will
first overflow some intra-frame local variables, then over-
flow the out-frame variable to hijack control flow. MAI
can detect this overflow when an attacker overflows the
first intra-frame local variable, but Valgrind memcheck
detects this overflow when the attacker overflows the out-
frame variable. We will explain Netatalk with intra-frame
overflow as an example.

A case study
Netatalk is an open source file sharing erver. An UNIX,
Linux or BSD system running Netatalk is capable of serv-
ing many Macintosh clients simultaneously as an Apple-
Share file server(AFP).
The vulnerability in Nettatalk 3.x is shown as the fol-

lowing code 13. Missing length check of the arguments in
memcpy is the root cause.
In this function, dsi->commands is under the con-

trol of the attacker. The variable dsi->commands is a

Table 4 The comparison detection result on 10 real programs

Program Name CVE Error Type Detection

Valgrind MAI

openjpeg 2016-9572 coarse-grained � �
jasper 2016-9583 coarse-grained � �
openssl 2016-7054 coarse-grained � �
vlc 2017-8311 coarse-grained � �
unrar 2012-6706 coarse-grained � �
mutt 2007-2683 coarse-grained � �
iselect N/A fine-grained × �
polymorph N/A fine-grained × �
libxaac N/A fine-grained × �
Netatalk 2018-1160 fine-grained × �

char array and the size parameter is limited to a maxi-
mum value of 255. So an attacker can write up to 255 bytes
starting from the address of the dsi->attn_quantum
which is a 4-byte integer.
attn_quantum is a member of the struct DSI which

is allocated in a 10096 bytes chunk in the heap. The
part of this struct is shown as code 14. Because of only
251 bytes we can overflow, the members can be con-
trolled are datasize, server_quantum, serverID,
clientID, the commands pointer, and partially into
data. The overflow bytes cannot write over the boundary
of this heap chunk.
Luckily the life of the commands pointer begins shortly

after a new connection is forked to its own process.
commands passes through the system based on a global
jump table pointer defined in etc/afpd/switch.c called
afp_switch, so the exploit of this vulnerability is feasible.
The initialization of this struct is shown as code 15. In

line 4, the program allocates 10096 bytes in heap. In MAI,
we generate a new MRR(LV0) for this heap and taint the
point dsi with this new MRR id.
In line 7-9, the program initializes attn_quantum,

server_quantum and dsireadbuf. According to
the offset to the pointer dsi, we generate three new
MRRs(LV1) and set these MRRs as the child node of the
pointer dsi’s and taint their own pointers.
Asmentioned in SectionMemory range record, we taint

the shadow memory bytes according to the bytes first
written by the pointer. This processing will set the range
pointer can access. So when the function memcpy wants
to overflow the member dsi->server_quantum with
the pointer dsi->attn_quantum, MAI will detect this
error.
Valgrind sets memory boundaries based on the size of

heap chunks, but this overflow operation happens inside a
heap chunk and does not over the chunk boundary. There-
fore, Valgrind cannot detect this overflow vulnerability.

False positives and false negatives
We evaluate the false positives and false negatives by test-
ing 50 CTF programs from 25 CTF events whose weight
are higher than 25. We randomly select programs which
have memory access error vulnerability in these CTF
events to ensure the randomness of the testing. The result
shows that the false positive rate is 4% and false negative
rate is also 4%.
Themain cause of false positives is the special operation

of the program itself. Assuming a c-type char array is allo-
cated, the program writes a zero at the max length of this
array to identify the end of the string. In our MRR’s gener-
ation rule, we will generate a subordinate level MRR(with
offset max length) for this byte which is the last byte
of the array. When the program writes this array from
the beginning, we will generate another subordinate level

Li et al. Cybersecurity (2019) 2:17 Page 13 of 18

Fig. 13 Netatalk vulnerable code

MRR(with offset 0). So when the MRR(with offset 0) to
write the MRR(with offset max length), MAI will report
an OOB error which is a false positive. Another example is
using different operations to write an int array. When the
array is initialized, the program uses the following code in
Fig. 16.
For each int variable, we give it anMRR that can access 8

bytes, but this array is used later. The source code is shown
in Fig. 17.
In our MRR’s detection rule, line 3 is an OOB error

which is a normal operation. The above two cases have not
appeared in other test cases, so these two cases may rarely
appear in other programs. These two types of false posi-
tives are also well investigated according to the context of
error reporting and error reporting points.
There is also other special operation, for example, some

functions in glibc, such as malloc, free. They will use a
pointer to over-access another memory chunk to do some
safety checks. These operations will lead to false positives.

Our solution is to stop memory bounds detection when
the program runs the code in libc which will probabally
raise false positives.
False negatives are mainly caused by the memory

access errors occurring at the locations where MAI
does not monitor, such as a global variable in .data
segment or function pointer in the .got segment. It is
because the generation of the root MRR is based on
the program allocation operation. But in the case of the
above segment, it has been allocated before the pro-
gram is running. So we cannot generate an MRR for
this place and cannot detect out of bounds accesses
in these places. In addition, since the use of memory
on these segments usually directly show as a memory
address rather than a form of base_point+offset,
it is difficult for MAI to tell if it is a pointer or
just an integer value. We provide a manual extension
to mark memory pointers and memory bytes. Users
can track and do boundary detection on any pointers,

Fig. 14 DSI struct

Li et al. Cybersecurity (2019) 2:17 Page 14 of 18

Fig. 15 The initialization code in Netatalk

including global variables and function pointers in the .got
segment.

Performance
In this section, we evaluate the runtime overhead of 10
real programs. The average overhead of MAI is around
2-26 times (Fig. 18). The black part is MAI’s overhead,
and the gray part shows the overhead of Valgrind. In most
cases, MAI’s overhead is a little higher (less than twice)
than Valgrind’s overhead, and there are also some cases
that MAI is lower than Valgrind. The reason is that when
we do the optimization, we remove some of Valgrind’s
own functions and instruments, such as the execution
state of the statement, and greatly optimize the memory
read and write of our own system.
There are two primary sources of overhead inMAI. One

of the sources is that Valgrind still has the operations that
are not necessary for the implementation ofMAI. Another
source is the runtime overhead of metadata accesses. Fre-
quent reads and writes to shadow memory are required
in the generation of new MRR and detection of MRR’s
queries. In Fig. 18, challenges like scv, Houseofcard, Auir
and programs like dnstrace, ncompress have few MRRs,
so the overhead is low. However, programs like netatalk
and libxaac generate a large number of MRRs due to fre-
quent heap memory allocation operations and complex
data structure.

Fig. 16 The first method of initializing arrays

We also observe that larger number of MRRs leads to
higher cost. In our design, we generate a new MRR for
each member variable of each data structure to achieve
the effect of fine-grained detection. Reuse of a member
variable does not generate a new MRR. Therefore, the
number of MRRs in theMAI is only related to the number
of data structures owned by the program itself. The num-
ber of data structures in a program is limited, so the cost
is acceptable.

Related work
In this section, we introduce the background of this
research and the line of work closely related to our work.
The research areas mostly close to ours are exploit mitiga-
tions and data-structure recovery.

Exploit mitigations
Control flow integrity (Abadi et al. 2005; Kuznetsov et al.
2014) leverages static analysis and program instrumen-
tation to guarantee the runtime control flow follows the
precomputed correct control flow graph, and thus could
detect and prevent an important exploit vector: control
flow hijack, however, CFI only detects exploit attempt
when the control flow deviates from the legit control flow
graph, if the exploitation does not involve control flow vio-
lation (e.g., Data-Oriented Programming (Hu et al. 2016)),
CFI is not able to detect the exploit. Data flow integrity is
another technique which prevents invalid read and writes
operation by calculating a valid data flow graph at com-
pile time. Object Type Integrity (Burow et al. 2018) is

Fig. 17 The second method of initializing arrays

Li et al. Cybersecurity (2019) 2:17 Page 15 of 18

Fig. 18MAI and Valgrind overhead for 10 real programs

designed to protect the programs written in C++ as an
orthogonal policy as CFI. OTI tracks the assigned type for
every object at runtime. When the object’s type is used for
dynamic dispatch, OTI can verify that the type is uncor-
rupted. OTI get object information while a program is
compiled.

Memory corruption detection technique
Traditionally, dynamic vulnerability analysis technique
relies on explict signals such as software crash or sys-
tem panic to determine whether a sink point is reached.
However, this result in a lot of false negatives because an
input which triggers a memory corruption vulnerability
does not necessarily crash the target program. To facili-
tate detecting trigger of vulnerabilities and analyzing root
cause, a majority of research works focuses on design cor-
ruption site sensitive vulnerability detection technique to
identify orrurrence of memory corruption as early as pos-
sible. Another important area of researchis vulnerability
detection technique designed to find vulnerability at the
site corresponding to the root cause of the vulnerabil-
ity. These works are closely collaborate with vulnerability
discovery technique (e.g., fuzzing) to generate sink point
closer to the memory corruption site.
Based on dependency on source code information, the

vulnerability detection technique can be catogorized into
two families, one relies on source code information while
the other does not. AddressSanitizer (or ASan) (Sere-
bryany et al. 2012) is an open source compiler extenstion

developed by Google that detects memory corruption
bugs such as buffer overflows or dangling pointer accesses
(e.g., use-after-free). AddressSanitizer is based on com-
piler instrumentation and directly-mapped shadow mem-
ory. Asan detects memory overflow error by inserting
a special memory between two adjacent memory blocks
during program compilation. Wookhyun et al. (Han et
al. 2018) enforces two extra properties and achieve bet-
ter memory corruption detection performance. Although
the above approaches incurs a relatively low runtime
overhead, it also changes the memory layout, making it
tricky to detect some special vulnerabilities. Of course, the
dependency on source code is a major difference between
address sanitizer and our work.
Another research direction is designing and devel-

oping binary analysis tools which are able to per-
form vulnerability detection without source code. The
lack of type information brings a lot of challenge to
vulnerability detection. Valgrind is an instrumentation
framework for building dynamic analysis tools. Its core
memory error detector—memcheck—detects memory-
management problems, primarily for detecting memory
corruption for program compiled from C and C++ lan-
guage. When a program is executed under memcheck’s
supervision, all memory read and write operations are
checked, and calls to malloc/new/free/delete are inter-
cepted.
Valgrind uses runtime information to recover the stack

frame information and maintain the basic heap layout

Li et al. Cybersecurity (2019) 2:17 Page 16 of 18

information, however, as is shown in “Real world prog-
rams” section, such coarse-grained type boundary infor-
mation is not enough to detect some intra memory chunk
corruption.

Data structure recovery
In the absence of type information(e.g., debug info,
symbol-table), approximating and inferring data structure
is a very challenging research topic. Gogul addresses the
problem with value-set analysis (VSA) in (Balakrishnan
and Reps 2005), they show the effectiveness by identifying
arrays, local variables, and heap-allocated data structures.
Asia (Slowinska et al. 2010) uses a dynamic approach to

extract data-structure. These works are similar to ours in
the sense that we are both able to extracting information
related to the data structure and its sub-fields. However,
these works do not provide us the ability to decide the
privilege of instructions tied tomemory chunks, including
its subfields.
Traditional data structure recovery is different from

memory bounds recovery techniques for memory error
detection. Traditional data structure recovery techniques
focus on restoring all data structures as accurate as pos-
sible. But for memory bounds recovery techniques in
the field of memory error detection, we only need to
recover the memory bounds corresponding to pointers
used by the program during the running of a process. VSA
(Balakrishnan and Reps 2005) shows the effectiveness by
identifying arrays, local variables, and heap-allocated data
structures. Asia (Slowinska et al. 2010) uses a dynamic
approach to extract data-structure. The accuracy of these
techniques is around 80%-90%. However, these data struc-
ture recovery techniques do not consider time sequence
of memory access which is important for memory error
detection. For example, DDE uses the spacing between
different offsets to decide the range of a pointer. This
method cannot provide the information whether a block
of memory is written or not. So it is hard to detect some
temporal safety memory error like uninitialized-read and
use-after-free. Moreover, it is not enough to recover the
data structure. We also need the relationship between
pointers and memory used during the running of the
program. Additionally, it is necessary to provide informa-
tion pertaining to the root cause of the vulnerability with
more details. Traditional data structure recovery tech-
niques cannot provide this information. In this paper, we
use a new technique to get memory bounds information
mentioned in Section Memory range record.

Conclusion
In this paper, we focus on an interesting and challeng-
ing research problem: detect fine-grained memory access
errors in binary code.While plenty of research works have
been proposed to explore memory corruption detection

with the help of source code and type information or
some basic runtime memory usage information, they are
barely useful to recover fine-grained memory bound-
ary information for binary executables and thus fail in
some memory corruption detection. We propose Mem-
ory Acess Integrity, an effective method to infer and check
the memory access policy between pointers and memory
blocks. We implement a prototype system that facilitates
memory access error detection for off-the-shelf binaries
and prove the effectiveness of our method.
We demonstrated the utility of MAI with various cate-

gories of memory corruption bugs, MAI is able to detect
all of the evaluated memory corruption bugs and facilitate
root cause diagnosis. MAI’s ability to recover fine-grained
memory boundary significantly improve the detectability
of memory corruption bugs happening in a single stack
frame or a single heap chunk. We plan to release the
source of our current implementations as well as migrate
the implementation to Valgrind platform. In addition, we
will explore to find the theoretic upper bound of mem-
ory boundary information that could be extracted from
binaries.

Discussion
In this section, we discuss three limitations of MAI, which
lead to false positives and false negatives. Then we discuss
the solutions taken in two special cases and the risks that
may arise.
Compiler optimization. The compiler optimizes the

program when it compiles the source code into binary.
To minimize the time taken to execute a program, the
compiler uses optimization strategies like peephole opti-
mizations, local optimizations, loop optimizations and so
on.
MAI method is based on the “first write” and

“base+offset” addressing operations. the “first write” oper-
ation in MAI’s design decides the length of an MRR. It
means the length of thememory region that can be used in
a memory object. The length also reflects the “valid” area
of the memory object. The compiler’s optimization oper-
ation may reduce the number of variables and increase
or decrease the initialization length of the variables, but
there is no case like initializing 10 bytes but using 15 bytes.
So the change of “first write” operation do not cause false
positives of false negatives.
However, compiler optimization that affects

“base+offset” addressing operations affect the imple-
mentation of MAI. This kind of optimization strategy
makes the memory model we restore from binary differ-
ent from the original data structures, but as long as the
read and write behavior is consistently under the unified
standard, it will not affect the MAI detection results. For
example, there is an optimization that replaces all offsets
of “base+offset” addressing operation with the offset

Li et al. Cybersecurity (2019) 2:17 Page 17 of 18

between the memory objects and page start address. In
this situation, the MAI method generates a root MRR
node at the start address of each page and restore the
sub-regions inside each page. This memory model is
different from the original data structures but does not
affect the MAI detection process.
If optimization strategy make the “base+offset” address-

ing operation of the same memory object inconsistent,
this kind of strategy leads to false positives. For exam-
ple, compiler may merge some consecutive pointer offset
operations, like merging "p2 = p1+offset1 p3 =
p2+offset" to "p3 = p1+offset". After this opti-
mizated operation, MAI method generates a child MRR
node of p1’s MRR node for p3, but actually p3’s MMR
should be the child MRR node of p2’s. If and only if pro-
gram uses pointer p2 to access p3’s MRR range, MAI
method reports a false positive error.
Union data structure. The union data structure causes

false positives in the MAI method. This is a limitation.
In future work, we will use union data structure identifi-
cation techniques to solve this problem. Fortunately, the
union data structure is not common in programs.
Global variables. MAI method can check heap and

stack objects access. However, due to the lack of alloca-
tion operation before the global variable is used, the MAI
method cannot achieve automatic monitoring of global
variables. We try to identify global variables by static anal-
ysis, but this method produces many false positives and
false negatives. In future work, we will use other global
variables identification techniques to solve this problem.
Delay detection. Mentioned in subsection First write,

we use “delay detection” solution to detect “malicious first
write” error. This technique can stop exploit before it
causes harm, but it still causes data pollution. In addition,
there is a problem with the location of the vulnerabil-
ity in the error report, because it is difficult for MAI to
determine whether the location of the vulnerability is the
previous overflow write operations or an out-of-bounds
access by the new pointer.
Redundant MRR node. When the MAI method han-

dles some operations, it generates redundant MRR nodes,
which does not affect the detection of MAI but generates
extra time overhead. There are two cases to discuss here.
The first case is to use a loop to write memory continu-
ously. Each round of loops contains a pointer addressing
operation and a write operation. According to the rule of
MRR’s generation,We generate a child nodeMRR for each
round. We refer to these child nodes as redundant nodes.
Because the MRR of the pointer which points to the first
address of the memory is the parent node of these child
nodes, and its range is the sum of these child nodes. This
is in line with the actual situation and does not cause false
positives and false negatives. In order to reduce the time
overhead of these redundant nodes’s generation, wemerge

loop-writing operations by identifying the characteristics
of such operations.
The second case is that programs use functions such

as “memset” to initialize the entire block of memory. In
this case, the MAI method generates a child node with
the same range as the root node and the subsequently
generated child nodes will become the child node of this
node. This node is a redundant MRR node and does not
affect the detection of MAI. In order to reduce the time
overhead, we hook the libc functions like “memset” and
ignore their execution when their parameters meet the
conditions for generating redundant nodes.

Acknowledgements
Not applicable.

Funding
Not applicable.

Availability of data andmaterials
All public dataset sources are as described in the paper.

Authors’ contributions
WL, DX and XG designed the study. WL, XX and Fg performed the
experiments. DX, WL and WWwrote the paper. XG, YW and QZ reviewed and
edited the manuscript. All authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China. 2University of New Hampshire, Beijing, China. 3Key Laboratory of
Network Assessment Technology, CAS, Beijing, China. 4Beijing Key Laboratory
of Network Security and Protection Technology, Beijing, China. 5Institute of
Information Engineering, Chinese Academy of Sciences, Beijing, China.

Received: 16 April 2019 Accepted: 5 May 2019

References
Abadi M, Budiu M, Erlingsson U, Ligatti J (2005) Control-flow integrity. In: Acm

Conference on Computer & Communications Security. http://xueshu.
baidu.com/s?wd=paperuri%3A%28f6b7e0d5098513f897e156e75fa04af2
%29&filter=sc_long_sign&sc_ks_para=q%3DControl-flow%20integrity&
sc_us=1548336401933715558&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8

Akritidis P, Cadar C, Raiciu C, Costa M, Castro M (2008) Preventing memory error
exploitswithWIT. In: 2008 IEEE SymposiumonSecurity andPrivacy (sp2008). IEEE.
pp 263–277. https://ieeexplore.ieee.org/abstract/document/4531158/.

Austin TM, Breach SE, Sohi GS (1994) Efficient detection of all pointer and array
access errors (Vol. 29, No. 6, pp. 290-301). ACM. https://dl.acm.org/citation.
cfm?id=178446

Balakrishnan G, Reps T (2005) Recovery of variables and heap structure in x86
executables. Technical Report 1533, Computer Sciences Department

Bruening D, Zhao Q (2011) Practical memory checking with dr. memory. In:
Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization. pp 213–223. IEEE Computer Society
https://dl.acm.org/citation.cfm?id=2190067.

Buchanan E, Roemer R, Shacham H, Savage S (2008) When good instructions
go bad: Generalizing return-oriented programming to RISC. In: Proceedings
of the 15th ACM Conference on Computer and Communications Security.
ACM. pp 27–38. https://dl.acm.org/citation.cfm?id=1455776

http://xueshu.baidu.com/s?wd=paperuri%3A%28f6b7e0d5098513f897e156e75fa04af2%29&filter=sc_long_sign&sc_ks_para=q%3DControl-flow%20integrity&sc_us=1548336401933715558&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
http://xueshu.baidu.com/s?wd=paperuri%3A%28f6b7e0d5098513f897e156e75fa04af2%29&filter=sc_long_sign&sc_ks_para=q%3DControl-flow%20integrity&sc_us=1548336401933715558&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
http://xueshu.baidu.com/s?wd=paperuri%3A%28f6b7e0d5098513f897e156e75fa04af2%29&filter=sc_long_sign&sc_ks_para=q%3DControl-flow%20integrity&sc_us=1548336401933715558&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
http://xueshu.baidu.com/s?wd=paperuri%3A%28f6b7e0d5098513f897e156e75fa04af2%29&filter=sc_long_sign&sc_ks_para=q%3DControl-flow%20integrity&sc_us=1548336401933715558&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8
https://ieeexplore.ieee.org/abstract/document/4531158/
https://dl.acm.org/citation.cfm?id=178446
https://dl.acm.org/citation.cfm?id=178446
https://dl.acm.org/citation.cfm?id=2190067
https://dl.acm.org/citation.cfm?id=1455776

Li et al. Cybersecurity (2019) 2:17 Page 18 of 18

Burow N, McKee D, Carr SA, Payer M (2018) Cfixx: Object type integrity for c++
virtual dispatch. In: Prof. of ISOC Network & Distributed System Security
Symposium (NDSS). https://hexhive.epfl.ch/publications/files/18NDSS.pdf.

Castro M, Costa M, Harris T (2006) Securing software by enforcing data-flow
integrity. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. USENIX Association. pp 147–160. https://dl.
acm.org/citation.cfm?id=1298470

Checkoway S, Davi L, Dmitrienko A, Sadeghi A-R, Shacham H, Winandy M
(2010) Return-oriented programming without returns. In: Proceedings of
the 17th ACM Conference on Computer and Communications Security.
ACM. pp 559–572. https://dl.acm.org/citation.cfm?id=1866370

Chen S, Xu J, Nakka N, Kalbarczyk Z, Iyer RK (2005) Defeating memory
corruption attacks via pointer taintedness detection. In: 2005 International
Conference on Dependable Systems and Networks (DSN’05). IEEE.
pp 378–387. https://ieeexplore.ieee.org/abstract/document/1467812/

Condit J, Harren M, Anderson Z, Gay D, Necula GC (2007) Dependent types for
low-level programming. In: European Symposium on Programming.
Springer. pp 520–535. Technical Report EECS-2006-129, UC Berkeley; 2006

Dhurjati D, Adve V (2006) Backwards-compatible array bounds checking for c
with very low overhead. In: Proceedings of the 28th International
Conference on Software Engineering. ACM. pp 162–171. https://dl.acm.
org/citation.cfm?id=1134309

Dhurjati D, Kowshik S, Adve V (2006) Safecode:enforcing alias analysis for
weakly typed languages. Acm Sigplan Not 41(6):144–157

Godefroid P, Levin MY, Molnar D (2012) Sage: whitebox fuzzing for security
testing. Commun ACM 55(3):40–44

Han W, Joe B, Lee B, Song C, Shin I (2018) Enhancing memory error detection
for large-scale applications and fuzz testing. In: Network and Distributed
System Security Symposium (NDSS). https://lifeasageek.github.io/papers/
han-meds.pdf

Hu H, Shinde S, Adrian S, Chua ZL, Saxena P, Liang Z (2016) Data-oriented
programming: On the expressiveness of non-control data attacks. In: 2016
IEEE Symposium on Security and Privacy (SP). IEEE. pp 969–986. https://
ieeexplore.ieee.org/abstract/document/7546545/

Hundt R, Ramasamy V, Gouriou E, Babcock DJ, Lofgren TC, Rivera JG,
Krishnaswamy U (2005) Dynamic instrumentation of an executable
program by means of causing a breakpoint at the entry point of a function
and providing instrumentation code. US Patent 6,918,110.
Hewlett-Packard Development Co LP, assignee United States patent US
6,918,110 https://patents.google.com/patent/US6918110B2/en

Jim T, Morrisett JG, Grossman D, Hicks MW, Cheney J, Wang Y (2002) Cyclone:
A safe dialect of C. In: USENIX Annual Technical Conference, General Track.
pp 275–288. https://www.usenix.org/event/usenix02/full_papers/jim/
jim_html

Kuznetsov V, Szekeres L, Payer M, Candea G, Sekar R, Song D (2014)
Code-pointer integrity. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). pp 147–163. https://www.usenix.
org/conference/osdi14/technical-sessions/presentation/kuznetsov

Lam L-c, Chiueh T-c (2005) Checking array bound violation using
segmentation hardware. In: 2005 International Conference on Dependable
Systems and Networks (DSN’05). IEEE, 388–397. https://ieeexplore.ieee.
org/abstract/document/1467813/

Lattner C, Adve V (2004) Llvm: A compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium
on Code Generation and Optimization: Feedback-directed and Runtime
Optimization. IEEE Computer Society. p 75. https://dl.acm.org/citation.
cfm?id=977673

Lu S, Li Z, Qin F, Tan L, Zhou P, Zhou Y (2005) Bugbench: Benchmarks for
evaluating bug detection tools. In: Workshop on the Evaluation of
Software Defect Detection Tools, (vol. 5). http://mir.cs.illinois.edu/~
marinov/sp05-cs598dm/ShanLu.pdf

Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ,
Hazelwood K (2005) Pin: building customized program analysis tools with
dynamic instrumentation. In: Acm sigplan notices (Vol. 40, No. 6, pp.
190–200). ACM. https://dl.acm.org/citation.cfm?id=1065034

Maklakov L (2017) Have the Error Code ATTEMPTED EXECUTE OF NO EXECUTE
MEMORY. https://answers.microsoft.com/en-us/windows/forum/
windows_10-performance/have-the-error-code-attempted-execute-of-
no/0a35ae12-2c06-4053-8de8-6492d37a290b

Nagarakatte S, Zhao J, Martin MM, Zdancewic S (2009) Softbound: Highly
compatible and complete spatial memory safety for c. ACM Sigplan Not
44(6):245–258

Necula GC, Condit J, Harren M, McPeak S, Weimer W (2005) Ccured: Type-safe
retrofitting of legacy software. ACM Trans Program Lang Syst (TOPLAS)
27(3):477–526

Nethercote N, Seward J (2007a) How to shadow every byte of memory used
by a program. In: Proceedings of the 3rd International Conference on
Virtual Execution Environments. ACM. pp 65–74. https://dl.acm.org/
citation.cfm?id=1254820

Nethercote, N, Seward J (2007b) Valgrind: a framework for heavyweight
dynamic binary instrumentation. In: ACM Sigplan Notices, (Vol. 42, No. 6,
pp. 89–100). ACM. https://dl.acm.org/citation.cfm?id=1250746

Oleksenko O, Kuvaiskii D, Bhatotia P, Felber P, Fetzer C (2017) Intel mpx
explained: An empirical study of intel mpx and software-based bounds
checking approaches. https://arxiv.org/abs/1702.00719

Patil H, Fischer C (1997) Low-cost, concurrent checking of pointer and array
accesses in c programs. Softw Pract Exper 27(1):87–110

Roemer R, Buchanan E, Shacham H, Savage S (2012) Return-oriented
programming: Systems, languages, and applications. ACM Trans Inf Syst
Secur (TISSEC) 15(1):2

Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) Addresssanitizer: A
fast address sanity checker. In: Presented as part of the 2012 USENIX
Annual Technical Conference (USENIXATC 12). pp 309–318. https://www.
usenix.org/conference/atc12/technical-sessions/presentation/serebryany

Slowinska A, Stancescu T, Bos H (2010) Dde: dynamic data structure
excavation. In: ApSys. ACM. pp 13–18. http://www.syssec-project.eu/m/
page-media/3/dde-apsys10.pdf

Sutton M, Greene A, Amini P (2007) Fuzzing: Brute Force Vulnerability
Discovery. Pearson Education. https://books.google.com/books?hl=en&
lr=&id=DPAwwn7QDy8C&oi=fnd&pg=PT4&dq=Fuzzing:+Brute+Force+
Vulnerability+Discovery&ots=4xwaG1eHqj&sig=
GXXE617bUn6P6DvVejVIRGupUeY

Xu W, DuVarney DC, Sekar R (2004) An efficient and backwards-compatible
transformation to ensure memory safety of c programs. ACM SIGSOFT
Softw Eng Notes 29(6):117–126

Yong SH, Horwitz S (2003) Protecting c programs from attacks via invalid
pointer dereferences. In: ACM SIGSOFT Software Engineering Notes (Vol.
28, No. 5, pp. 307–316). ACM, https://dl.acm.org/citation.cfm?id=940113

https://hexhive.epfl.ch/publications/files/18NDSS.pdf
https://dl.acm.org/citation.cfm?id=1298470
https://dl.acm.org/citation.cfm?id=1298470
https://dl.acm.org/citation.cfm?id=1866370
https://ieeexplore.ieee.org/abstract/document/1467812/
https://dl.acm.org/citation.cfm?id=1134309
https://dl.acm.org/citation.cfm?id=1134309
https://lifeasageek.github.io/papers/han-meds.pdf
https://lifeasageek.github.io/papers/han-meds.pdf
https://ieeexplore.ieee.org/abstract/document/7546545/
https://ieeexplore.ieee.org/abstract/document/7546545/
https://patents.google.com/patent/US6918110B2/en
https://www.usenix.org/event/usenix02/full_papers/jim/jim_html
https://www.usenix.org/event/usenix02/full_papers/jim/jim_html
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov
https://ieeexplore.ieee.org/abstract/document/1467813/
https://ieeexplore.ieee.org/abstract/document/1467813/
https://dl.acm.org/citation.cfm?id=977673
https://dl.acm.org/citation.cfm?id=977673
http://mir.cs.illinois.edu/~marinov/sp05-cs598dm/ShanLu.pdf
http://mir.cs.illinois.edu/~marinov/sp05-cs598dm/ShanLu.pdf
https://dl.acm.org/citation.cfm?id=1065034
https://answers.microsoft.com/en-us/windows/forum/windows_10-performance/have-the-error-code-attempted-execute-of-no/0a35ae12-2c06-4053-8de8-6492d37a290b
https://answers.microsoft.com/en-us/windows/forum/windows_10-performance/have-the-error-code-attempted-execute-of-no/0a35ae12-2c06-4053-8de8-6492d37a290b
https://answers.microsoft.com/en-us/windows/forum/windows_10-performance/have-the-error-code-attempted-execute-of-no/0a35ae12-2c06-4053-8de8-6492d37a290b
https://dl.acm.org/citation.cfm?id=1254820
https://dl.acm.org/citation.cfm?id=1254820
https://dl.acm.org/citation.cfm?id=1250746
https://arxiv.org/abs/1702.00719
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
http://www.syssec-project.eu/m/page-media/3/dde-apsys10.pdf
http://www.syssec-project.eu/m/page-media/3/dde-apsys10.pdf
https://books.google.com/books?hl=en&lr=&id=DPAwwn7QDy8C&oi=fnd&pg=PT4&dq=Fuzzing:+Brute+Force+Vulnerability+Discovery&ots=4xwaG1eHqj&sig=GXXE617bUn6P6DvVejVIRGupUeY
https://books.google.com/books?hl=en&lr=&id=DPAwwn7QDy8C&oi=fnd&pg=PT4&dq=Fuzzing:+Brute+Force+Vulnerability+Discovery&ots=4xwaG1eHqj&sig=GXXE617bUn6P6DvVejVIRGupUeY
https://books.google.com/books?hl=en&lr=&id=DPAwwn7QDy8C&oi=fnd&pg=PT4&dq=Fuzzing:+Brute+Force+Vulnerability+Discovery&ots=4xwaG1eHqj&sig=GXXE617bUn6P6DvVejVIRGupUeY
https://books.google.com/books?hl=en&lr=&id=DPAwwn7QDy8C&oi=fnd&pg=PT4&dq=Fuzzing:+Brute+Force+Vulnerability+Discovery&ots=4xwaG1eHqj&sig=GXXE617bUn6P6DvVejVIRGupUeY
https://dl.acm.org/citation.cfm?id=940113

	Abstract
	Keywords

	Introduction
	Background
	Memory access error
	Detection of memory access error
	Fine-grained memory access error
	Challenges

	Overview
	Memory access integrity
	Design principle
	An example for walk-through MAI

	Memory range record
	MRR and MRR tree
	MRR generation
	MRR length
	MRR state
	MRR deletion

	Pointer monitoring
	Policy
	Error detection
	Implementation
	First write

	Evaluation
	CTF challenges
	Real world programs
	A case study
	False positives and false negatives
	Performance

	Related work
	Exploit mitigations
	Memory corruption detection technique
	Data structure recovery

	Conclusion
	Discussion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

