Li et al. Cybersecurity (2020) 3:11
https://doi.org/10.1186/542400-020-00051-9

Cybersecurity

RESEARCH Open Access

Iso-UniK: lightweight multi-process
unikernel through memory protection keys

Guanyu Li, Dong Du and Yubin Xia"

Check for
updates

Abstract

damage the applications’ performance.

Keywords: Unikernel, Multi-process, Intel MPK, Isolation

Unikernel, specializing a minimalistic /ibOS with an application, is an attractive design for cloud computing. However,
the Achilles” heel of unikernel is the lack of multi-process support, which makes it less flexible and applicable. Many
applications rely on the process abstraction to isolate different components. For example, Apache with the
multi-processing module isolates a request handler in a process to guarantee security. Prior art tackles the problem by
simulating multi-process with multiple unikernels, which is incompatible with existing cloud providers and also
introduces high overhead. This paper proposes Iso-UniK, a new unikernel design enabling multi-task applications with
the support of both functionality and isolation. Iso-UniK leverages a recent hardware feature, named Intel Memory
Protection Key (Intel MPK), to provide lightweight and efficient isolation for multi-process in unikernel. Our design has
three benefits compared with previous approaches. First, Iso-UniK does not need hypervisor support and is thus
compatible with existing cloud computing platforms; second, Iso-UniK promises fast system calls with only 45 cycles;
last, a process can be isolated with a flexible configuration. We have implemented a prototype based on OSv, a
unikernel system supporting unmodified applications. Iso-UniK can achieve fast fork operation with only 66us for
multi-process applications. Our evaluation shows that the isolation and multi-process support in Iso-UniK will not

Introduction
Virtualization is the base of widely-used cloud computing.
The abstraction of virtual machine supports unmodi-
fied OS and applications, but also introduces limitations,
including low resource utilization (Amit and Wei 2018)
and unfair scheduling (Kashyap et al. 2018). It has been
proposed to leverage unikernel, a virtualized library oper-
ating system (libOS), to mitigate these issues. With spe-
cialization and single address space, unikernels promise
performance improvement as well as smaller trusted com-
puting base (TCB).

However, the lack of multi-process support in unikernel
makes it less flexible and applicable for many applica-
tions. It has been identified as the main roadblock towards

*Correspondence: xiayubin@sjtu.edu.cn
The institute of parallel and distributed systems (IPADS), Shanghai Jiao Tong
University, Dongchuan Road, Shanghai, China

@ Springer Open

a widespread use of unikernels (Zhang et al. 2018; Tsai
et al. 2014). Multi-process applications usually leverage
the process isolation to protect sensitive data. For exam-
ple, Apache (Apache http server project) web server can
allow a worker process to handle the request from a
remote client. Without the process isolation, memory dis-
closure bugs like HeartBleed (The heartbleed bug) can
leak secrets in the memory. However, supporting the iso-
lation using protection mode like Linux usually causes
unacceptable overhead to the unikernel applications. Pre-
vious work like Kylinx (Zhang et al. 2018) and Graphene
(Tsai et al. 2014) uses multiple instances of unikernel
to simulate multi-process and implements inter-process
communication (IPC) among these instances with the
help of hypervisor or host OS. However, such solution
may not scale well and may lead to higher overhead of
performance, as shown in Fig. 1.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00051-9&domain=pdf
mailto: xiayubin@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Li et al. Cybersecurity (2020) 3:11

Page 2 of 14

Costly synchronization

Process
. Unikernel

k l___‘, _____

Unikernel
image

Unikernel as process
(Kylinx)

| Unikernel
Fast synchronization

Process Process

Unikernel
image

IsoUnik

Fig. 1 Design comparision. Prior solution uses multi-unikernel to simulate multiple processes, which leads to higher overhead

In the paper, we propose Iso-UniK, a multi-process
unikernel design with lightweight isolation. We leverage a
recent hardware feature, Memory Protection Keys (MPK)
(Intel® 64 and IA-32 architectures software developer’s
manual) from Intel, to provide lightweight protection
between kernel and user applications. As we know, this
is the first work to leverage MPK for isolation in kernel
mode. The design of Iso-UniK is based on two novel tech-
niques: reverse priority isolation and two gates protection.
Further, the design is general and does not depends on the
MPXK feature.

We have implemented a prototype based on OSv (Kivity
et al. 2014), an open-sourced unikernel systems support-
ing unmodified applications. We implement the multi-
process support, and apply our lightweight in-kernel pro-
tection to ensure the isolation between different pro-
cesses. Our evaluation shows that Iso-UniK introduces
negligible performance overhead, about 90 cycles slower
for system calls compared with OSv.

The main contributions of this paper are as follows:

e A detailed analysis of the requirements for multi-task
compatibility in unikernels.

e A general design of Iso-UniK that provides secure
multi-task support for unikernels.

e An implementation of Iso-UniK based on a
state-of-the-art unikernel system, OSv.

e An evaluation with both micro-benchmarks and
real-world applications demonstrating the efficiency
and practicability of Iso-UniK.

The rest of the paper is structured as follows. We
study the necessity of multi-process support to motivate
our design (“Background and motivation” section). After-
ward, we introduce the design of multi-process in the
unikernel and how we integrate the lightweight isolation

into the unikernel design (“Design” section). We present
our design of in-kernel isolation using different hard-
ware protection methods (“Kernel data in user-space for
data protection” and “Inner kernel design for privileged
code” sections). The prototype implementation is based
on OSv (“Implementation” section). Last, we evaluate the
performance of Iso-UniK (“Evaluation” section), discuss
related work (“Related work” section) and conclude our
work (“Conclusion” section).

Background and motivation
Background
Researchers have proposed several lightweight virtual-
ization systems (Belay et al. 2012; Manco et al. 2017;
Madhavapeddy et al. 2013; Kivity et al. 2014) to provide
both strong isolation and good performance (resource uti-
lization). The basic idea of the lightweight virtualization
systems is to reduce unnecessary software layers in the
virtualized environment and eliminate the semantic gaps
between host kernel and virtualized applications.
Process-abstraction virtualization systems like Dune
(Belay et al. 2012) and gVisor (gVisor) are the extreme
cases of the idea, where the host OS provides the sys-
tem call interfaces to the virtualized processes. Typically, a
process-abstraction virtualization system runs an unmod-
ified application in user mode of the guest, while an
intercept kernel (e.g., libDune in Dune and Sentry in gVi-
sor) runs in kernel mode of the guest. The intercept kernel
can handle system calls or redirect them to the host ker-
nel. Process abstraction for the guest environment can
help the host OS manage the resource more efficiently,
and provides defense-in-depth security benefit (as in gVi-
sor). Meanwhile, by supporting OCI (Open Container
Initiative) specification, process-abstraction virtualization
systems can be easily integrated with frameworks like



Li et al. Cybersecurity (2020) 3:11

Docker and Kubernetes, and thus can be used by existing
cloud platforms.

However, process-abstraction virtualization systems
share the same attack surface, Linux syscall interfaces,
and is highly dependent on the host OS. Unikernel is
another solution for lightweight virtualization. LightVM
(Manco et al. 2017) leverages the small memory foot-
print of unikernel to achieve fast instantiation. Unikernels
like Mirage (Madhavapeddy et al. 2013) and OSv (Kiv-
ity et al. 2014) provide better performance by specializ-
ing the operating system for applications and removing
the isolation between kernel and applications. Compared
with other virtualization system design, unikernel systems
enjoy the benefit of flexible resource management, as they
have a minimal memory footprint and the applications
can customize the kernel (in the guest) behaviors.

Multi-process support is necessary

In this section, we emphasize the necessity of supporting
multi-process in unikernels. We have two specific rea-
sons; first, many legacy applications rely on multi-process
support for compatibility; second, applications rely on the
multi-process isolation for its security.

Multi-process for Compatibility. One important rea-
son for using multi-process instead of multi-thread is
to be compatible with non-thread-safe libraries. Take
Apache as an example. Apache provides Multi-Processing
Module (MPM) (Apache MPM prefork) to implement
a non-threaded, pre-forking multi-process web server.
MPM guarantees the correctness of the sites that using
non-thread-safe libraries, specifical libraries with non-
reentrant functions.

Multi-process for Security. Cloud servers are usually
deployed with applications that touch critical secrets, like
the cryptographic keys for SSH connection, the personal
privacy data and even the passwords of users. However,
such secrets can be disclosed due to memory disclosure
vulnerabilities in the application. HeartBleed (CVE-2014-
0160) (The heartbleed bug), as one of the most notorious
vulnerabilities, can be leveraged by attackers to read up to
64KB memory data in a process. This has already lead to
practical attacks like stealing private keys and session keys
of a cloud server. Although many sandbox approaches
(Yee et al. 2009; Sehr et al. 2010; Liu et al. 2015) have been
proposed, multi-process isolation provided by the kernel
is still the most widely used and efficient approach.

Isolation for unikernel

With the significance of supporting multi-process in
unikernels, researchers have already proposed designs
to meet the need. Graphene (Tsai et al. 2014) treats
an instance of unikernel as a process. Graphene runs
instances on host Linux within a picoprocess, and imple-
ments multi-process feature with the help of Linux. The

Page 3 of 14

cost of this solution is that the isolation is not as good
as virtual machine based on hypervisor. Kylinx (Zhang et
al. 2018) uses multiple virtual machines to implements
multi-process abstraction.

These proposed unikernel designs are not practical for
commercial cloud platforms. For example, instantiating
multiple virtual machines in the AWS (AWS) to simulate
a multi-process applications costs a lot.

Intel MPK

Intel MPK (Memory Protection Keys) (Intel® 64 and
IA-32 architectures software developer’s manual) is a
keys-based permission control for memory isolation of
userspace. Each page can be set to group with the group
number in the page table, from 0 to 15. The register,
PKRU, contains two AD/WD bits for each group, and AD
bit is for access to the page while WD bit is for write per-
mission to the page. PKRU provides a thread-local control
and can be modified with the instruction wrpkru.

There are already some studies focused on applying
Intel MPK on application memory protection, like Libmpk
(Park et al. 2019) and ERIM (Vahldiek-Oberwagner et al.
2019). But there are few works on MPK for kernel memory
protection. This paper is intended to fill this gap.

Goals

Although applications rely on compatibility and isola-
tion of multi-process abstraction, a practical and efficient
multi-process unikernel design is still missing. Thus, we
propose Iso-UniK, which has the following goals,

® The multi-process applications should be running in the
kernel mode to retain the performance and flexibility of
unikernels.

e The isolation of the multi-process design should be
flexible and configurable by the user.

® The cross-isolation communication should be efficient
enough to handle most of the practical applications.

e Do not rely on hypervisors or cloud providers to be
compatible with commercial cloud platforms.

Design

Threat model

In this paper, we provide a multi-process like model for
Iso-UniK. Each process is treated as a sandbox process.
Applications run as sandbox processes in Iso-UniK. We
assume attackers are able to invade an application sand-
box process through remote attack methods. Therefore,
the control flow and all code running inside a sandbox
process are untrusted. We assume the hypervisor and the
Iso-UniK itself is trusted.

Iso-UniK ensures that the behavior of an untrusted
sandbox process would not interfere the kernel and other
sandbox processes in the same Iso-UniK system. The
access and write to kernel data are banned, and the



Li et al. Cybersecurity (2020) 3:11

invocations to kernel services are intercepted with secu-
rity checks.

Iso-UniK does not protect application from data attacks
as we think it is the duty of application. Data-only attack
(Vogl et al. 2014; Hu et al. 2016) and side-channel attacks
like Meltdown (Lipp et al. 2018) are beyond the scope of
Iso-UniK and can be addressed by orthogonal work (Hua
et al. 2018).

Overview

In Iso-Unik, each process is treated as a standalone sand-
box. Like traditional multi-process design in the mono-
lithic kernel (e.g., Linux), Iso-UniK uses separate page
tables from different sandboxes. However, Iso-UniK does
not isolate the application from the shared kernel using
protection mode, but using Intel Memory protection
Keys (“MPK for kernel mode isolation” section) with the
inner/outer kernel design (“Inner kernel design for privi-
leged code” section).

Programming model

Existing applications used to using multi-process to iso-
late vulnerable codes/request handling into a sandbox.
Iso-UniK provides a compatible programming model with
multi-process based sandbox model. The APIs provided
by Iso-UniK are shown in Table 1. The SANDBOX_FORK
has very similar semantics like the standard fork in Linux,
but with an additional configuration argument. The con-
figuration argument tells the kernel how to configure the
sandbox. An example code of using Iso-UniK to pro-
vide sandbox is shown in Listing 1, The main process
will create a sandbox using SANDBOX_FORK, which
forks the current process in a sandbox environment.
The return value is the sandbox-id. Like fork in Linux,
this API will return two values, 0 for the in-sandbox
environment and a non-zero sandbox-id for the parent
process.

Sandbox configuration

To provide better flexibility, a sandbox configuration is
used in Iso-UniK. We provide two kinds of isolation
requirements in the configuration: 1) Interface isolation
and 2) Memory copying isolation. Interface isolation is

Table 1 Sandbox API by Iso-UniK

Page 4 of 14

a black-list approach, to list the denied interfaces for
the sandbox in the configuration. Although in unikernel,
applications use function call for kernel services instead
of system call, there is still a line of interface between ker-
nel and applications. These interfaces can be very large in
OSy, for example, the POSIX APIs. It is better to use a
black-list approach. While zero-copying of data between
kernel and user achieves better performance in uniker-
nels, it leads to potential TOCTTOU (time of check to
time of use). Memory copying isolation is to tell the kernel
whether it should copy or not for the sandboxed codes.

Listing 1 Sandbox API using Iso-UniK in unikernels.

1 int main() {
//initialization work
int sandbox id = sandbox fork (config) ;
if (sandbox_id == 0) {
//in-sandbox handler
int ret = enter handler();
exit (ret) ;

wailt_sandbox (sandbox_id) ;

HOWKNAULER WN

— =

Multi-process based sandbox model
OSv adopts the multi-thread design with single address
space, which is not enough for multi-process. In order to
support multi-process feature, we need to redesign the
memory management of unikernel.

Page table

There is only one page table in the world, which is not
conducive to the switching of process address space. For
the isolation between the sandboxes, we provide a local
page table for each sandbox as shown in Fig. 2. We add
the support by 1) adding an address space management
in the unikernel, instead of using a global page table; 2)
extending the thread abstraction to the sandbox process
abstraction.

Address space

The data of the sandbox should be independent of each
other, but the data of the kernel should be shared between
the sandboxes, such as free page list and scheduler. So,

API API Arguments

Description

SANDBOX_FORK sandbox configuration
SANDBOX_WAIT sandbox-id
SANDBOX_CREATE sandbox configuration
SANDBOX_DESTROY sandbox-id
SANDBOX_RUN sandbox-id

SANDBOX_PIPE sandbox-id, message

Fork current process in a sandbox configured with the arguement.
Wait the sandbox sandbox-id to finish.

Create a sandbox according to the argument, and ready to run.
Destroy the sandbox sandbox-id

Run the sandbox sandbox-id.

Send/Recevie a message to/from a sandbox.




Li et al. Cybersecurity (2020) 3:11

Page 5 of 14

Pad
Kernel /

thread

NPy
vy ey

Application
thread

Sandbox-1 Sandbox-2 Sandbox-n
LPT]||LPT]
| Rrc | | Rrc | Rrc

e,
ETRTAVEY
\, .
LA AR}

Kernel/main process
pid=0

.
AaAN

v,
Wy
WYY

Traditional
Unikernel

Iso-UniK

Fig. 2 Isolation between Sandboxes. Uses page table for inter-sandbox isolation. “PT" means page table, “Rrc” means resources

we divided the single address space of unikernel into the
shared space for kernel data and the unshared applica-
tion space for sandbox process data. At the same time,
we found that the data in shared space is critical and
affects the running of unikernel and all sandboxes, and
needs to be protected from malicious sandbox tampering.
Such address space separation is also beneficial for the
following isolation work.

As the applications running in the most privileged mode
in unikernel, it is a common sense that they are hard
to be restricted. For example, codes in the Ring-0 mode
can even write a page without write-permission when the
write-protection flag is not set.

Restrict kernel behavior with MPK

The Intel MPK (Memory Protection Keys) is a hardware
feature to provide a lightweight memory isolation mech-
anism for user space. While MPK is originally proposed
for user space, it can also be used to restrict the kernel’s
behavior.

MPK for kernel mode isolation

MPK is configured by the register PKRU (Protection Key
Rights register for User pages). PKRU, a 32-bit regis-
ter, contains 16 pairs of permission controls bits include
“AD” bit for access disable and “WD” bit for write dis-
able. Each user-space page table entry contains a key
from 0 to 15, and the corresponding PKRU bits pair

will control the access to the page. The MPK does not
work when a code in kernel mode privilege accesses a
kernel-space memory. However, When CR4.PKE is set
(Intel® 64 and IA-32 architectures software developer’s
manual) and PKRU right bits are set disabled, access will
be denied when the target memory is in user-space (e.g.,
user bit in page table entry is set 1) even the code run-
ning in kernel mode privilege, as shown in Fig. 3. In the
figure, we only configure the first MPK region with “no-
read/write’, and set all the memory in the page table with
the region. Although this permission check will be ignored
on any kernel-space memory access from the kernel code,
it will work when the kernel code tries to access the mem-
ory in user-space. But, MPK does not stop instruction
fetch from user-space memory, which means that the pro-
gram can jump to the protected code in user-space and
execute.

PKRU can only be modified using the instruction wrp-
kru, which writes the value of %rax into PKRU when %ecx
and %edx are both 0.

Kernel data in user-space for data protection

As the application located in the kernel-mode in uniker-
nel, we leverage MPK to protect the kernel data by putting
itin user-space, configure the page table entries with MPK
key 1, and make any memory access from the kernel mode
to the protected data forbidden by setting PKRU bits. As
shown in Fig. 4, Iso-UniK uses the first PKRU region,




Li et al. Cybersecurity (2020) 3:11 Page 6 of 14
0
11 .
PKRU PKU check fail
///
7 User
User ,UserSpace Space
Mode 4 Data (U1, PK:0)
ring-3 /’ T
(ring-3) ¥
g
Kernel
Kernel Code | KernelSpace Space
Mode ® Data (U:0)
(ring-0) .. ’
PKU ignore
Fig. 3 MPK Protection. MPK will check the kernel memory accesses on user pages. “U” means user bit and “PK” means MPK protect key index in page
table entry

which is set to “no read/write” when application code is
running, and switch to “read/write” when the control flow
turns to kernel side. In the page table, the memory of pro-
tected kernel data will be set as user-space pages, “U:1” in
the Figure, to activate MPK checks.

Iso-UniK first introduces the MPK Gate, which is pro-
posed to protect the kernel data from an untrusted in-
kernel application. Whenever the application sandbox
needs to call kernel functions, it first calls the MPK Gate,
then calls the responding functions. The gate code, shown

in Listing 2, will update the PKRU registers to allow the
kernel to access its data. The PKRU will be set to protect
kernel data again when returning to application code. And
Iso-UniK will ensures only MPK Gate has the instruction
to update PKRU registers.

And there is still a problem that application thread stack
is mapped as application data. When a thread call ker-
nel functions, its stack is still writable for other thread
of the same process and the control flow may be taken.
This is solved by assign a new stack protected by MPK

Kernel

Mapped with MPK key 1

|  Privileged Code |

Privilege Gate 57_

Privilege gate
call

—t——»

__________________

Kernel function
call

[

Application

)

Fig. 4 Two Gates design. “P" means present bit, “U” means user bit in page table entry

PTE present bit: 0

v 4

PTE present bit: 1

Index 1 A/W bits pair
on PKRU




Li et al. Cybersecurity (2020) 3:11

Page 7 of 14

(O8]
o
(=]

N
(O]
(e

\®]
=
(=]

Iso-Unik —@— ||

—_
e
[«]

9]
(e

Throughput of Jos Server (kb/s)
73
o

[«

Iso-Unik-no-gate —&- H

1 2 4

Concurrent Clients
Fig. 5 The throughput (in kbytes/second) of JOS web server and different concurrent clients

6 8 10

to each application thread. The protected stack is set as
same as kernel data. When MPK Gate is called, the thread
will switch to the protected stack to ensure control flow
integrity.

Inner kernel design for privileged code

Using MPK is not enough since an untrusted application
sandbox can still directly jump into any part of the kernel
to execute privileged codes, like switching the page table
or changing the IDTR register, aiming to take over the
control of our unikernel.

Listing 2 MPK Gate code

1 cli
;Disable interrupt

2 push %rax, $rbx, $rcx
;Save regs
3 xor %ecx, %ecx
4 mov %ecx, %edx
5 mov  Get MPK Permission, %eax
6 wrpkru
7 ;Writes the value of %EAX into
PKRU
8 pop $rax, $rbx, $rcx
;Restore regs
9 cmp SFN MAX, %rax
;Check funtion id
10 ja abort
11 mov PerThreadProtectedStack, $rsp
12 ;Change to protected
13 stack
14 sti
;Enable interrupt
15 call «FN Table(, %rax,8)

16 ;Jdump to
17 function

To defend such attacks, Iso-UniK uses an inner ker-
nel and outer kernel design. Specifically, we isolate the
privileged codes in the inner kernel, and protect them
by unmapping them in the page table, e.g., “P:0” shown
in Fig. 4. When kernel needs to execute the privileged

codes, it must go through a gate, called Privilege Gate,
shown in Listing 3, which will map the privileged codes
into the page table and then execute the codes. Privileged
codes will be unmapped again before return to the normal
kernel.

Listing 3 Privilege Gate code
1 void inner gate_call (uint call id,

2 { uint64 t argl, ...)
3
4 irqg disable() ;
// Disable interrupts
5 map privileged code() ;
6 TLB flush();
7 if(!is _rsp in kernel stack())
8 abort () ;
9
10
11 /// abort if not from kernel stack
12 switch(call id) {
13 case WRITE CR3:
14 R
15 case SET IDT:
16 R
17
18 }
19 unmap_ privileged code() ;
20 TLB_flush();
21 irqg enable() ;
// Enable interrupts
22

Iso-UniK will ensures there are no privileged codes in
the address space except the Privilege Gate. Although the
Privilege Gate and MPK Gate introduces some overhead,
our evaluation (“Applications” section) shows the cost of
isolation is acceptable for real applications.

Implementation

We describe our specific implementation of the Iso-UniK
in the section. Specifically, we implement the prototype of
Iso-UniK on OSy, with about 4700 LoC C++ modifications



Li et al. Cybersecurity (2020) 3:11

and 100 LoC assembly code. We choose OSv because it
provides other Linux APIs support for applications except
the multi-process feature.

Multi-process functionality support

OSy, as a unikernel, adopts a single address space design
with one global page table, which is sufficient for run-
ning multi-thread programs. However, this design does
not meet the requirements of multi-process feature which
is needed by many real applications. To this end, We add
sandbox process abstraction to OSv.

Address space
OSv does not have the multi address spaces semantics,
and it has only one global page table.

Iso-UniK adds “local_cr3”, which stands for base address
of a page table, in the sandbox process struct to sup-
port the process abstraction. And threads of the same
process share one “local_cr3” Iso-UniK also modifies the
scheduler for the switch of page tables between sandbox
processes.

In OSy, the kernel and application use the same mem-
ory allocation mechanism, and the address space is not
separated. Iso-UniK separates the address space of OSv
into two parts, shared space which is shared among sand-
box processes and application space which is private for a
sandbox process. Shared space is set with MPK key 1 in
page table entries to be protected. This work is done by
provide a new memory allocator for application with the
lower address space, and modify application heap, appli-
cation stack, and ELF&library load address to the lower
address space. And we implement the sandbox APIs intro-
duced in “Overview” section using our sandbox process
abstraction.

There are other resources that should be unique to each
process, such as file descriptor table, which in OSv is also a
global one for all threads. They are also be added to sand-
box process abstraction and be switched when process is
switched.

SANDBOX_FORK implementation

Fork is an operation whereby a process creates a copy of
itself. Many wellknown applications, like Nginx (Nginx),
use fork to create new processes. Programmers use the
return value of fork to distinguish between parent and
child processes, and then let them do different things. In
OSv, we implement a fork like API SANDBOX_FORK for
applications.

When a process call SANDBOX_FORK, it first pushes
some registers on the stack, saving the context. Then,
a new thread is created and assigned to a new process
struct with new pid. The parent process turns to sleep,
and the thread of the child process is awakened, copies

Page 8 of 14

the page table of the parent process, sets unshared appli-
cation space to copy-on-write. Other resources are also
copied for new process. Child process then restores the
registers and return address from stack, sets %rax to
0 which is the return value of SANDBOX FORK, and
jumps to the return address of SANDBOX_FORK. Father
process then wakes and returns with the pid of child
process.

Multi-process security support

System configuration

To use MPK, we must set the PKE bit. To ensure that
the paging is enabled, we set the PG and PE bits of
%CRO, the PAE bit of %CR4, LME bit of EFER MSR.
To map specific pages unwritable, we set the WP bit of
%CRO.

We then ensure that the application’s code segment is set
to read-only, preventing runtime modifications. The ker-
nel’s pages are protected by MPK and cannot be modified
while the application is running. Except for the pages of
the kernel and the application’s code, the rest of the pages
are set to be nonexecutable.

Outer kernel with MPK gate

If an application thread needs to call a kernel function,
it must first modify PKRU to get access to kernel data.
As wrpkru is a critical instruction, Iso-UniK wraps wrp-
kru with MPK Gate to reduce the attack interface. When
an application needs to call an important kernel func-
tion, it will first store the function id in a register such
as %rax before calling MPK Gate. We replace the func-
tion calls with function ids and MPK Gate calls in the
compilation process of application without modification
to applications. A read-only table records the mapping
from function id to function address. In addition to ker-
nel function calls, interrupt handler is also protected
with MPK Gate. In MPK Gate, Iso-UniK sets the PKRU
bits, looks up the function table, switches to protected
stack, then finally calls the corresponding function. It
takes about 45 CPU cycles to finish this process. PKRU
permissions can only be modified by the instruction wrp-
kru. We can analyze the application to ensure that the
wrpkru instruction is not used inside application using
binary check.

To support unmodified applications, Iso-UniK replaces
kernel function calls with MPK Gate calls during compi-
lation. The compilation process typically consists of four
stages: preprocessing, compilation, assembly, and linking.
Between the compilation stage and assembly stage of the
application, Iso-UniK gets the assembly code and replace
kernel invocations with call MPK Gate. A function ID is
passed by a register to MPK Gate. This design improves
the compatibility of Iso-UniK.



Li et al. Cybersecurity (2020) 3:11

Identify the inner kernel

Iso-UniK uses Privilege Gate to prevent application from
jumping and executing privileged instructions. Due to the
significant overhead caused by mapping and unmapping,
we must try to delineate the scope of code that Privilege
Gate protects.

Modification of critical registers may cause protection
failures. We analyze the assembly code and inline assem-
bly code of OSv, and move the modification code of key
registers into the protection scope of Privilege Gate, such
as read or write the control registers, SIDT(set interrupt
descriptor table), etc. We unmap the pages that con-
tain these instructions and map them only when Privilege
Gate invoked. The unremovable privileged code that runs
during OSv boot will be unmapped before the applica-
tion runs. Although performance is affected, since these
registers are not often used, the overhead is acceptable.

Binary check on the applications

We first remove the privileged code outside of OSv Privi-
lege Gate, replaced by privilege_gate_call() and call id. The
application and the required dynamic link library bina-
ries are scanned before loading to ensure that they do not
contain privileged code.

We currently summarize the privileged codes that need
to be quarantined, some of which are listed in Table 2. In
addition, since the design of the Privilege Gate is very scal-
able, privileged code can be added as configured without
effort.

Evaluation
In the evaluation, we try to answer these four questions:

e Question-1: How efficient Iso-UniK supports
multi-process operations?

® Question-2: How Iso-UniK influences unikernel
applications’ performance?

® Question-3: Can Iso-UniK defend attacks from the
applications?

® Question-4: Is it easy to port Iso-UniK for other unikernel
systems?

Table 2 Some of the privileged instructions

Influences

Modify PKRU for A/W permissions
Modify flags such as WP or PG
Modify the base of page table
Modify flags like PKE

Privileged Instructions

wrpkru

mov %REG, %CRO
mov %REG, %CR3
mov %REG, %CR4
sidt Modify interrupt descriptor handler

wrmsr Modify model specific bit like NX

And it is easy to configure other instructions. Except wepkru is used by MPK Gate,
other instructions should be protected by the Privilege Gate and unmapped in most
of the time

Page 9 of 14

Evaluation environment

We use an x86-64 machine with an 40-core Intel(R)
Xeon(R) Gold 6138 CPU (2.00GHz), 128GB memory and
a 160GB SSD. The host OS is Ubuntu 18.04 with Linux
Kernel 4.15.7. The prototype of Iso-UniK is implemented
based on OSv unikernel (Kivity et al. 2014) of git commit
#64dfbcdd, with about 4700 LoC C++ modifications and
100 LoC assembly code. For experiments, we assigned 4
vCPUs (virtual CPUs) and 4GB memory for all the evalu-
ated systems used in following tests. We use Qemu 2.11.1
with KVM as the hypervisor.

Microbenchmark
We present several microbenchmarks to show the perfor-
mance of Iso-UniK.

Methodology. We measured the performance of basic
system calls and multi-process interfaces of [so-UniK. The
baseline systems are OSv (commit 64dfbcdd) and Ubuntu
16.04 (with Linux kernel 4.9.75) running in gemu with
KVM. We also present a performance-optimized version
of Iso-UniK, Iso-UniK-no-gate, which does not include
the two gates isolation. We compare Iso-UniK and Iso-
UniK-no-gate to show the performance impacts of the two
gates isolation methods.

We use LMBench to evaluate the system call latency,
and evaluate the latency multi-process interfaces by con-
tinuously invoking it.

Results. Table 3 shows the mean latencies of several
typical system calls. Compare with OSv, Iso-UniK pro-
vides a multi-process program model, and the overhead
is brought by page table switch and the two gates. As
shown in Null syscall testing, the MPK Gate introduces
some overhead compared to OSv, but is still 5x faster than
Linux kernel. Compare with Linux kernel, Our SAND-
BOX _FORK and SANDBOX_EXIT can be 2x faster, and
also have a better performance at the latency of pipe.
The latency of SANDBOX_FORK (without Exit, not list in
the table) of Iso-Unik is 66us with gate and 59us with-
out gates. And in Open&Close testing, the unikernels and
Linux kernel are all tested with ZFS, which is the pri-
mary file system supported by OSv. This shows that the
implementation of file system in OSv is not as perfect as
Linux kernel. Iso-UniK also introduces some overhead to
Open&Close compared with origin OSv.

And the overhead of Privilege Gate is more expensive
than MPK Gate when privileged instructions (like write
%CR3 to switch page table) is invoked. Under Multi-
Process tests, Iso-UniK-no-gate has a much better per-
formance than Iso-Unik, and is closed to origin OSv in
pipe testing. But in Open&Close testing, the overhead of
isolation is acceptable.

Our design is more attractive when compared to other
hypervisor-based or host-based designs. According to the
paper (Zhang et al. 2018), the latency of fork() in Kylinx



Li et al. Cybersecurity (2020) 3:11

Page 10 of 14

Table 3 The mean latency (in ps or microseconds) of some important multi-process interfaces and syscalls evaluating with Imbench

Multi-Process Syscall
Systems

Fork&Exit Pipe Ctx Null Open&Close
Linux Kernel 2178 10.46 7.794 0.1974 1.717*
OSv - 348 - 0.0013 4.560
Iso-UniK-no-gate 65.8 432 4.256 0.0014 5.107
[so-UniK 103.1 9.64 7.746 0.0425 5.181

“Iso-UniK-no-gate” means disable the two isolation methods. “ctx” means context switch *: The “Open&close” is tested under Linux 4.4.0 with ZFS

takes about 1.3 ms, slower than Ubuntu (1.0ms in their
paper). The latency of pipe() in Kylinx is similar to Ubuntu
(55us versus 54us). The latency of Graphene in the test
fork&exit is 463us (Tsai et al. 2014), much slower than
Linux (67us in their paper). The latency of IPC (msgsnd
and msgrcv) in Graphene is about 5.0x slower than Linux.
As Iso-UniK performs better than Ubuntu, we believe
Iso-UniK works better than the designs mentioned before.

Applications

We port two applications, JOS web server and Nginx, to
Iso-UniK to show the performance on real-world applica-
tions. Iso-UniK can run unmodified Nginx directly, which
proves the compatibility.

JOS web server. In order to show the functionality of
multi-process feature and the overhead introduced by iso-
lation methods in Iso-UniK, we evaluate the JOS web
server(Jos Tiny Server) in Iso-UniK, which utilizes multi-
process feature such as fork to handle HT TP requests. JOS
web server is a tiny web server for lab in MIT OS lessons,
which has a simple and clear workflow for testing per-
formance of multi-process feature. The main process of
server is always listening and establishes connections with
clients. Once it accepts a request, the main process will
fork a child process to actually handle the request (such as
read file, send contents), and itself will wait to answer next
request. We use benchmark tool ab(Apache HTTP server
benchmarking tool) to evaluate the performance of this
server on Iso-UniK and Linux kernel. The test file is an
index html file of about 124 bytes. And the request repeats
for 600 times.

The result is shown in Fig. 5. The isolation methods
result in about 2.5% to 6.3% lower throughput when com-
paring Iso-Unik and Iso-Unik-no-gate, which is acceptable.

Nginx. Nginx (Nginx) is a well-known and second most
widely used web server around the world. It can be used
as a reverse proxy, load balancer, mail proxy, HTTP cache,
etc. In order to show that the multi-process model of Iso-
UniK can help applications take advantage of multi-core
to improve performance, we run Nginx on Iso-UniK. The
version of Nginx is 1.12.2 and the performance is tested

using the ab benchmark with 6000 requests. The test file is
the default index html file of Nginx, about 612 bytes. Each
unikernel is assigned with 6 vCPUs.

In the original OSy, after the removal of codes related
to multi-process features, Nginx can run as one pro-
cess, accepting and responding to requests. In Iso-UniK,
through fork(), multiple Nginx processes can work par-
allelly, and they can run on different virtual CPU cores,
accepting and responding to requests at the same time.
The result is shown in Fig. 6. When the client concur-
rency is 2, the throughput in the original OSv is higher,
because the pressure of requests is not heavy and Iso-
UniK introduces some overhead. As the number of client
concurrency increases, the throughput of Iso-UniK rises
faster with the benefit of multi-core. Compared with the
single-process Nginx in the original OSv, Iso-UniK is
about 1.15x to 1.17x faster. And when client concurrency
is large, the throughput of Iso-UniK is only 0.4% less than
Iso-UniK-no-gate.

Figure 7 shows the throughput of different numbers
of Nginx processes running in Iso-UniK with 60 concur-
rent clients. As the number of Nginx processes increases,
the throughput of the entire system increases. The multi-
process model introduced by Iso-UniK helps applications
to get better performance with security.

Security analysis

We analyze some of the methods that malicious appli-
cations might use to attack kernel critical data or other
sandboxes.

Kernel Data Exposure Elimination. We evaluate the
data protection by scan critical memory region. We write
a tool to dump the memory region of the kernel page pool
as an application. And we allocate a page in the kernel
page pool to represent some secret and important data.
As shown in Fig. 8, because the whole unikernel runs in
the kernel mode, it is easy for application to reach the data
of kernel, include some secret and critical data. And if we
enable the MPK Gate isolation method, the region of the
kernel page pool is hidden and safe. This shows that the
MPK Gate helps to protecte the kernel data.



Li et al. Cybersecurity (2020) 3:11 Page 11 of 14
20000 ' ' ' ' '
o A A A, A . A
= 15000 2‘2‘/
—D "7
< /)’
E /,
D-1 4
-fb 10000 ® Iso-Unik-no-gate —=— ||
g
=
Iso-Unik - @ -
= 5000 !
OSv —h-
%4 6 § 10 1z 14 16

Concurrent Clients
Fig. 6 The throughput (in kbytes/second) of Nginx server. Two processes in Iso-UniK, and one process in origin OSv

Arbitrary Directly Jump. MPK is not designed to
block instruction fetches, application can directly jump
to kernel-space code. However, the attacker cannot mod-
ify the data in kernel-space code as MPK still prevent the
access and write. And there is no privileged code out-
side Privilege Gate for attacker to exploit. Therefore, the
malicious application sandbox process cannot affect other
sandboxes.

Directly Jump to MPK Gate Code. Malicious appli-
cations can jump directly to the wrpkru instruction in
outgate to get MPK permissions. But outgate will con-
tinue to check the function id in the register and can only
continue to jump to the entry of the finite corresponding

kernel functions. Malicious apps are not free to change the
control flow.

Directly Jump to wrpkru before application initial-
ization. We need to use wrpkru to set data in shared space
Unreadable and unwritable. And we immediately check
the value of %rax, and it should be the 1 at corresponding
AD and WD bit of PKRU. If application tries to set %rax
with a value jump to wrpkru to write PKRU and get MPK
permissions, it will be forbidden by Iso-UniK.

Directly Jump to Map Code in Privilege Gate. The
page table page is protected by MPK, and is free from the
malicious applications when directly jump to map code in
Privilege Gate.

2 3 4 5

Nginx Processes

20000
18000
2
< 16000
=]
o
=
%D 14000
©)
=
=
[
12000
10000
1
Fig. 7 The throughput (in kbytes/second) of Nginx server with different numbers of processes




Li et al. Cybersecurity (2020) 3:11

Page 12 of 14

Enable MPK Gate
isolation method

\\\\\\\\\\\\\\\\\\\\\\\

Fig. 8 The memory layout for kernel page pool from the view of application. Green for accessible area. Black for unaccessible or invalid area. Red for

the pages containing secret

Side-channel Attacks. Side-channel attacks like Melt-
down (Lipp et al. 2018) are beyond the scope of this paper.
Other orthogonal works like EPTI (Hua et al. 2018) can
help to solve the problem with software solution with
some overhead. And hardware manufacturers also plan
to address these issues at the hardware level, such as
improving speculative execution mechanisms.

Lessons learned

It is straightforward to support multi-tasking on a mature
unikernel systems like OSv. In this section, we present sev-
eral challenges we met and how we solved them , then we
discuss about the generality of the design.

Stack Switch in MPK Gate. If an application thread
needs to call a kernel function, it first calls the MPK Gate
to modify PKRU for permission of kernel data. As the
stack of thread is exposed to other thread of the same pro-
cess, it needs to change to a protected stack in MPK Gate,
to guarantee the control flow of the thread with MPK per-
mission. It is implemented as modifying the stack register
%RSP.

One of the problems is that the arguments passed to
the function are pushed on the stack, and if the stack is
changed, the arguments may be lost. However, The mod-
ern Intel x86-64 architecture provides more registers, and
some of the registers are used to store function arguments
to accelerate the function calls. We compile Iso-UniK with
GCC version 5.4.0, which uses 6 specific registers(%RDI,
%RSI, %RDX, %RCX, %R8, %R9) to pass up to 6 argu-
ments. And the arguments of Iso-UniK kernel functions
are no more than 6. All the arguments of kernel func-
tions used by Nginx, are passed in registers, and avoid the
problem of arguments lost when stack switches.

Another conclusion is that, when a kernel function is
finished, the stack of kernel function is destroyed and
nothing is stored on the protected stack. So it is only need

to provide a fixed protected stack for each thread, and
switch to the fixed stack each time MPK Gate is called.

Fork Implementation Details. In Iso-UniK, when a
process calls fork(), a new process should be created as
a copy of the calling process. There will be problems
if father process copies the page table for new process.
Father is still running, and the page table is not stable as
the stack may change. So we first create a new thread,
pause the father process, then use the new thread to copy
the page table of father. After copy, the new thread switch
to the copied page table and become the thread of child
process.

During the page table copy, Copy-on-Write is considered
as an efficient method to reduce time and memory usage.
However, in OSv, there is no support for Copy-on-Write
feature. So Iso-UniK adds the feature to the unikernel.
Specifically, Iso-UniK adds a check of the Copy-on-Write
bit in page table entry in page fault handler. When the
Copy-on-Write bit is found when page fault happens, a
copy of the old page will be made and be filled to the page
table.

When other work is done, the child thread directly
jumps to the return address of fork() and runs just like the
father with a different return value of 0. The return value
can be modified by set %$RAX, and the return address can
be found by %RSP.

If child process runs on the same CPU processor, it will
be long before father process wakes as child process needs
to consume some time. This results in a long fork() latency.
And if Iso-UniK is assigned multiple processors, it is bet-
ter to assign the child process to another CPU processor
to reduce the latency.

Inter-Process Communication Support. In OSy,
pipe() is implemented as to write/read a memory region
in kernel shared space. The region is abstracted as a file
with file descriptor. During fork(), the file descriptor table



Li et al. Cybersecurity (2020) 3:11

is copied, and the memory region is shared between page
tables of processes. So Iso-UniK supports pipe() as an
inter-process communication between father and child
processes.

Generality. It is easy to port Iso-Unik to other unikernel
systems. For the unikernels based on virtualization plat-
forms like KVM, unikernel itself plays the role of memory
and resource manager. It is therefore possible to add
mechanisms that Iso-UniK utilizes to support the multi-
process feature, such as multiple page tables, separation
of address space, mechanisms of fork and IPC. And the
isolation method introduced by Iso-UniK needs the MPK
hardware feature provided by Intel x86-64 architecture.
But similar hardware features can also be found on other
architectures, like the Domain Access Control on ARM.
So it is possible to provide efficient isolation methods for
unikernels running on different architectures.

Related work

Multi-process Feature in Unikernel. Prior art has
already explored the multi-process support in unikernels.
Graphene (Tsai et al. 2014) treats an instance of uniker-
nel as a process. Graphene runs instances on host Linux
within a picoprocess, and implements the multi-process
feature with the help of picoprocess of Linux. The cost
of this solution is that the isolation is not as good as the
virtual machine. Kylinx (Zhang et al. 2018) treats a single
VM as a process and uses the method of VM-fork to solve
the multi-process problem. It modifies Xen to offer fork
and IPC. This solution is not suitable for existing cloud
vendors as it requires modifications on the hypervisor.
Iso-UniK is the first work to support multi-process with
high-security assurance using MPK, and is compatible
with existing cloud providers.

Isolation Using Hardware Isolation. Most of prior
systems (Dautenhahn et al. 2015; Shi et al. 2017; Hua
et al. 2018; Liu et al. 2015; Li et al. 2019; Hua et al.
2017) rely on privilege modes or address space (e.g., page
table or extended page table) for isolation. Nested Kernel
(Dautenhahn et al. 2015) proposes a nested kernel archi-
tecture, and uses a map and unmap method to protect
privileged instructions in kernel mode. Deconstructing
Xen (Shi et al. 2017) applies the Nested Kernel architec-
ture in Xen hypervisor.

MPK is a new hardware feature, which is proposed
for user-space isolation. There are some works (Park
et al. 2019; Vahldiek-Oberwagner et al. 2019) are using
MPK feature for application isolation. Libmpk (Park et
al. 2019) provides a library with more semantic-gap-
mitigated and scalable abstraction with Intel MPK. ERIM
(Vahldiek-Oberwagner et al. 2019) helps application pro-
tect sensitive data from other untrusted components of
the application using MPK without requiring control-flow
integrity. Iso-UniK has a similar MPK gate design with

Page 13 of 14

ERIM, but we modify the compilation process to insert
MPK gate without modifying application codes. More-
over, all the related systems can not leverage MPK for
kernel-space isolation.

Efficient Inter-process Communication. L4 micro-
kernel (Klein et al. 2009) proposes direct process
switch to boost the IPC performance. Moreover, recently
efforts on hardware-software co-design to optimizing
IPC performance, including CrossOver (Li et al. 2015),
Codom (Vilanova et al. 2014), SkyBridge (Mi et al
2019) and XPC (Du et al. 2019), can significantly
reduce the IPC latency. Crossover and SkyBridge lever-
age a hardware virtualization feature, VMFUNC, which
enables a virtual machine to directly switch its EPT
(extended page table) without trapping to the hyper-
visor. XPC proposes two hardware extensions, direct
switch and relay segment, to achieve fast domain
switching and zero-copying data transfer. The design
of Iso-UniK is compatible with existing IPC model,
thus is easy to adopt optimizations proposed by these
systems.

Conclusion

The lack of multi-process feature in unikernel makes it
less flexible and applicable for nowadays applications.
Meanwhile, the isolation between processes is a necessary
feature to ensure the security of applications like Nginx.
This paper proposes Iso-UniK, a multi-process sandbox
model for unikernels. Iso-UniK is compatible with exist-
ing multi-process interfaces, has high-security assurances
through Intel MPK, and does not need any modifications
in the hypervisor. Iso-UniK uses a novel two-gates con-
figurable isolation technique to balance the performance
and security, and is also the first work to leverage Intel
MPK for kernel-mode isolation. The overhead introduced
by two gates isolation is only about 2.5% to 6.3% in Tiny
Server, 0.4% in Nginx.

Acknowledgements
Not applicable.

Authors’ contributions

The fist author conceived the idea of the study and finish the implementation.
The first and second author wrote the paper. All authors discussed the results
and revised the final manuscript. All authors read and approved the final
manuscript.

Funding
Sponsored by Program of Shanghai Academic/Technology Research Leader
(No.19XD1401700).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 4 October 2019 Accepted: 27 December 2019
Published online: 07 May 2020



Li et al. Cybersecurity (2020) 3:11

References

Amit N, Wei M (2018) The design and implementation of hyperupcalls. In: 2018
USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA. pp 97-112. https://www.usenix.org/conference/
atc18/presentation/amit

Apache HTTP server benchmarking tool. https://httpd.apache.org/docs/2.4/
programs/ab.html. Accessed Dec 2019

Apache http server project. https://httpd.apache.org/. Accessed Dec 2019

Apache MPM prefork. https://httpd.apache.org/docs/2.4/mod/prefork.html.
Accessed Dec 2019

AWS AmazonWebServices. https://aws.amazon.com/?. Accessed Dec 2019

Belay A, Bittau A, Mashtizadeh A, Terei D, Maziéres D, Kozyrakis C (2012) Dune:
Safe user-level access to privileged CPU features. In: Presented as Part of
the 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12). USENIX, Hollywood, CA. pp 335-348. https://
www.usenix.org/conference/osdi12/technical-sessions/presentation/
belay

Dautenhahn N, Kasampalis T, Dietz W, Criswell J, Adve V (2015) Nested kernel:
An operating system architecture for intra-kernel privilege separation. In:
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS "15.
Association for Computing Machinery, New York, NY, USA. pp 191-206.
https://doi.org/10.1145/2694344.2694386

Du D, Hua Z, Xia 'Y, Zang B, Chen H (2019) Xpc: Architectural support for secure
and efficient cross process call. In: Proceedings of the 46th International
Symposium on Computer Architecture, ISCA "19. Association for
Computing Machinery, New York, NY, USA. pp 671-684. https://doi.org/10.
1145/3307650.3322218

gVisor. https://gvisor.dev/. Accessed Dec 2019

Hu H, Shinde S, Adrian S, Chua ZL, Saxena P, Liang Z (2016) Data-oriented
programming: On the expressiveness of non-control data attacks. In: 2016
IEEE Symposium on Security and Privacy (SP). pp 969-986. https://doi.org/
10.1109/5P.2016.62

Hua Z, Du D, Xia Y, Chen H, Zang B (2018) EPTI: Efficient defence against
meltdown attack for unpatched vms. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA. pp 255-266.
https://www.usenix.org/conference/atc18/presentation/hua

Hua Z, Gu J, Xia Y, Chen H, Zang B, Guan H (2017) vtz: Virtualizing ARM
trustzone. In: 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, Vancouver, BC. pp 541-556. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/hua

Intel® 64 and 1A-32 architectures software developer's manual. https://
software.intel.com/en-us/articles/intel-sdm. Accessed Dec 2019,
Published November 11, 2019

Jos Tiny Server. https://pdos.csail.mit.edu/6.828/2014/labs/lab6/. Accessed
Dec 2019

Kashyap S, Min C, Kim T (2018) Scaling guest OS critical sections with ecs. In:
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA. pp 159-172. https://www.usenix.org/conference/
atc18/presentation/kashyap

Kivity A, Laor D, Costa G, Enberg P, Har'EI N, Marti D, Zolotarov V (2014)
Osv—optimizing the operating system for virtual machines. In: 2014
USENIX Annual Technical Conference (USENIX ATC 14). USENIX
Association, Philadelphia, PA. pp 61-72. https://www.usenix.org/
conference/atc14/technical-sessions/presentation/kivity

Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D,
Engelhardt K, Kolanski R, Norrish M, et al. (2009) Sel4: Formal verification of
an os kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP '09. Association for Computing
Machinery, New York, NY, USA. pp 207-220. https://doi.org/10.1145/
1629575.1629596

Li W, Xia Y, Chen H, Zang B, Guan H (2015) Reducing world switches in
virtualized environment with flexible cross-world calls. In: Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
ISCA "15. Association for Computing Machinery, New York, NY, USA.
pp 375-387. hitps://doi.org/10.1145/2749469.2750406

LiW, Xia Y, Lu L, Chen H, Zang B (2019) Teev: Virtualizing trusted execution
environments on mobile platforms. In: Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE 2019. Association for Computing Machinery, New York,
NY, USA. pp 2-16. https://doi.org/10.1145/3313808.3313810

Page 14 of 14

Lipp M, Schwarz M, Gruss D, Prescher T, Haas W, Fogh A, Horn J, Mangard S,
Kocher P, Genkin D, Yarom Y, Hamburg M (2018) Meltdown: Reading
kernel memory from user space. In: 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, Baltimore, MD. pp 973-990.
https://www.usenix.org/conference/usenixsecurity 18/presentation/lipp

LiuY, Zhou T, Chen K, Chen H, Xia Y (2015) Thwarting memory disclosure with
efficient hypervisor-enforced intra-domain isolation. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS "15. Association for Computing Machinery, New York, NY,
USA. pp 1607-1619. https://doi.org/10.1145/2810103.2813690

Madhavapeddy A, Mortier R, Rotsos C, Scott D, Singh B, Gazagnaire T, Smith S,
Hand S, Crowcroft J (2013) Unikernels: Library operating systems for the
cloud, vol. 41. Association for Computing Machinery, New York, NY, USA.
pp 461-472. https://doi.org/10.1145/2490301.2451167

Manco F, Lupu C, Schmidt F, Mendes J, Kuenzer S, Sati S, Yasukata K, Raiciu C,
Huici F (2017) My vm is lighter (and safer) than your container. In:
Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP "17. Association for Computing Machinery, New York, NY, USA.
pp 218-233. https;//doi.org/10.1145/3132747.3132763

Mi Z, Li D, Yang Z, Wang X, Chen H (2019) Skybridge: Fast and secure
inter-process communication for microkernels. In: Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys '19. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
3302424.3303946

Nginx. http://nginx.org/en/. Accessed Dec 2019

Open Container Initiative. https://www.opencontainers.org/about. Accessed
Dec 2019

Park S, Lee S, Xu W, Moon H, Kim T (2019) libmpk: Software abstraction for intel
memory protection keys (intel MPK). In: 2019 USENIX Annual Technical
Conference (USENIX ATC 19). USENIX Association, Renton, WA. pp 241-254.
https://www.usenix.org/conference/atc19/presentation/park-soyeon

Sehr D, Muth R, Biffle C, Khimenko V, Pasko E, Schimpf K, Yee B, Chen B (2010)
Adapting software fault isolation to contemporary cpu architectures. In:
Proceedings of the 19th USENIX Conference on Security, USENIX
Security’10. USENIX Association, USA. p 1

Shi L, Wu'Y, Xia Y, Dautenhahn N, Chen H, Zang B, Guan H, Li J (2017)
Deconstructing xen. In: 24th Annual Network and Distributed System
Security Symposium,(NDSS'17), San Diego, CA, USA. The Internet Society,
Reston, Virginia, U.S. https://doi.org/10.14722/ndss.2017.23455

The heartbleed bug. http://heartbleed.com/. Accessed Dec 2019

Tsai C-C, Arora KS, Bandi N, Jain B, Jannen W, John J, Kalodner HA, Kulkarni V,
Oliveira D, Porter DE (2014) Cooperation and security isolation of library
oses for multi-process applications. In: Proceedings of the Ninth European
Conference on Computer Systems, EuroSys '14. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/2592798.2592812

Vahldiek-Oberwagner A, Elnikety E, Duarte NO, Sammler M, Druschel P, Garg D
(2019) ERIM: Secure, efficient in-process isolation with protection keys
(MPK). In: 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA. pp 1221-1238. https://www.usenix.org/
conference/usenixsecurity19/presentation/vahldiek-oberwagner

Vilanova L, Ben-Yehuda M, Navarro N, Etsion Y, Valero M (2014) Codoms:
Protecting software with code-centric memory domains. In: 2014
ACMV/IEEE 41st International Symposium on Computer Architecture (ISCA).
pp 469-480. https://doi.org/10.1109/I1SCA.2014.6853202

Vogl S, Pfoh J, Kittel T, Eckert C (2014) Persistent data-only malware: Function
hooks without code. The Internet Society, Reston, Virginia, U.S. https://doi.
0rg/10.14722/ndss.2014.23019

Yee B, Sehr D, Dardyk G, Chen JB, Muth R, Ormandy T, Okasaka S, Narula N,
Fullagar N (2009) Native client: A sandbox for portable, untrusted x86
native code. In: 2009 30th IEEE Symposium on Security and Privacy.
pp 79-93. https://doi.org/10.1109/SP.2009.25

Zhang'Y, Crowcroft J, Li D, Zhang C, Li H, Wang Y, Yu K, Xiong Y, Chen G (2018)
Kylinx: A dynamic library operating system for simplified and efficient
cloud virtualization. In: 2018 USENIX Annual Technical Conference (USENIX
ATC 18). USENIX Association, Boston, MA. pp 173-186. https://www.usenix.
org/conference/atc18/presentation/zhang-yiming

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


https://www.usenix.org/conference/atc18/presentation/amit
https://www.usenix.org/conference/atc18/presentation/amit
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/mod/prefork.html
https://aws.amazon.com/?
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/belay
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.1145/3307650.3322218
https://doi.org/10.1145/3307650.3322218
https://gvisor.dev/
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1109/SP.2016.62
https://www.usenix.org/conference/atc18/presentation/hua
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hua
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/hua
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://pdos.csail.mit.edu/6.828/2014/labs/lab6/
https://www.usenix.org/conference/atc18/presentation/kashyap
https://www.usenix.org/conference/atc18/presentation/kashyap
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2749469.2750406
https://doi.org/10.1145/3313808.3313810
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3302424.3303946
https://doi.org/10.1145/3302424.3303946
http://nginx.org/en/
https://www.opencontainers.org/about
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.14722/ndss.2017.23455
http://heartbleed.com/
https://doi.org/10.1145/2592798.2592812
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://doi.org/10.1109/ISCA.2014.6853202
https://doi.org/10.14722/ndss.2014.23019
https://doi.org/10.14722/ndss.2014.23019
https://doi.org/10.1109/SP.2009.25
https://www.usenix.org/conference/atc18/presentation/zhang-yiming
https://www.usenix.org/conference/atc18/presentation/zhang-yiming

	Abstract
	Keywords

	Introduction
	Background and motivation
	Background
	Multi-process support is necessary
	Isolation for unikernel
	Intel MPK
	Goals

	Design
	Threat model
	Overview
	Programming model
	Sandbox configuration

	Multi-process based sandbox model
	Page table
	Address space
	Restrict kernel behavior with MPK

	MPK for kernel mode isolation
	Kernel data in user-space for data protection

	Inner kernel design for privileged code

	Implementation
	Multi-process functionality support
	Address space
	SANDBOX_FORK implementation

	Multi-process security support
	System configuration
	Outer kernel with MPK gate
	Identify the inner kernel
	Binary check on the applications


	Evaluation
	Evaluation environment
	Microbenchmark
	Applications
	Security analysis

	Lessons learned
	Related work
	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

