Vélja et al. Cybersecurity (2020) 3:19
https://doi.org/10.1186/s42400-020-00060-8

Cybersecurity

RESEARCH Open Access

Automating threat modeling using an

ontology framework

Validated with data from critical infrastructures

Margus Vlja', Fredrik Heiding'"

Check for
updates

, Ulrik Franke? and Robert Lagerstrom'

Abstract

Threat modeling is of increasing importance to IT security, and it is a complex and resource demanding task. The aim
of automating threat modeling is to simplify model creation by using data that are already available. However, the
collected data often lack context; this can make the automated models less precise in terms of domain knowledge
than those created by an expert human modeler. The lack of domain knowledge in modeling automation can be
addressed with ontologies. In this paper, we introduce an ontology framework to improve automatic threat modeling.
The framework is developed with conceptual modeling and validated using three different datasets: a small scale
utility lab, water utility control network, and university IT environment. The framework produced successful results such
as standardizing input sources, removing duplicate name entries, and grouping application software more logically.

Keywords: Threat modeling, Ontologies, Automated modeling, Conceptual models, Ontology framework

Introduction

Threat modeling is a growing trend in cyber security
and vulnerability assessments. Creation of holistic models
of the weaknesses and vulnerabilities of an organization
can provide effective methods of making secure systems
(Torr 2005). However, it is not necessarily an easy or
straightforward task. Owing to the increasing complexity
in information technology (IT) architectures and the rapid
increase of digital threats, it is difficult to maintain an up-
to-date and comprehensive threat model of a given system
(Berger et al. 2013; Moral-Garca et al. 2014). In addition to
this, threat modeling is still predominantly a manual task
and thus both time consuming and error prone (Ekelhart
et al. 2006), particularly because models quickly become
outdated (Aier et al. 2009; Aier et al. 2009). Because of this,
automation of threat modeling is preferable and we focus
on creating automated threat models by using ontologies
and conceptual modeling of IT systems.

*Correspondence: fheiding@kth.se
'KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
Full list of author information is available at the end of the article

@ Springer Open

Furthermore, the cyber security of critical infrastruc-
ture is receiving increasing attention every year. As the
digitization of industrial complexes is increasing, it is cru-
cial to ensure that the security of these systems is main-
tained (Krumay et al. 2018). Several studies have been
conducted to create new tools to enhance the security of
industrial machines, such as new intrusion detection sys-
tems specifically tailored to monitor power systems (Pan
et al. 2015) or deep learning-based tools for detecting
incoming threats (Catak et al. 2019).

To contribute to the security of critical infrastructure,
our threat modeling ontology framework was validated
against three datasets, each of which is connected to some
part of critical industrial systems, as further explained in
“Datasets” section.

There have been attempts to automate threat model-
ing (Barankova et al. 2020; Xu et al. 2012). However,
these methods are less precise than they would have been
if domain knowledge had been included in the model-
ing process. For example, if information is obtained from
several data sources (e.g., an active directory and a vulner-
ability scanner), small differences in the representation of

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00060-8&domain=pdf
http://orcid.org/0000-0001-7884-966X
mailto: fheiding@kth.se
http://creativecommons.org/licenses/by/4.0/

Vélja et al. Cybersecurity (2020) 3:19

software names can result in duplicated information in the
model. Another problem for modeling automation is mis-
matched data granularity, which occurs when the level of
data abstraction of a data source is different from that of
the model-to-be-created (Farwick et al. 2013).

Ontologies offer a promising method to solve these
problems. In general, ontologies are designed to solve
problems or answer domain-specific questions (Gruber
1995). This is achieved by supporting computations with
structured data to provide consistency and entailment.
Ontologies can be used to address various data-quality
problems at run time by having controlled vocabulary
concepts and machine-processable semantics (Maedche
and Staab 2001a).

To improve the quality of ontologies, it has been pro-
posed that their design should be based on conceptual
patterns (Gangemi and Presutti 2009; Falbo et al. 2013).
In Gangemi and Presutti (2009), it was reported that small
ontologies with explicit motivations to connect use cases
with designs can be used as building blocks for auto-
matic modeling. Moreover, such an approach facilitates
the alignment, merging, and reusing of ontologies.

To improve automated threat modeling, we propose an
ontology framework for threat modeling. The purpose of
this framework is to improve automated threat model-
ing by addressing the two problems mentioned previously:
lack of domain knowledge and mismatched granularity.
The ontology based framework is created with conceptual
modeling built on general knowledge. The usefulness of
the created models is evaluated through the implemen-
tation and use of the modeled framework. The proposed
framework fits into an automated model-creation process
(Fig. 1) that has been implemented separately from this
work (Vlja et al. 2019), and the proposed framework is
presented using ontology patterns defined in Falbo et al.
(2013); Gangemi and Presutti (2009).

The remainder of this paper is structured as follows.
“Related work” introduces related works. The ontology
framework is explained using ontology patterns in “Threat
modeling ontology framework” The same section also
details the implementation of the ontology and the knowl-
edge acquisition. The application of the ontology frame-
work is explained in “Case study” The paper is concluded
with a discussion in “Discussion and conclusion” sections.

Related work

Here, we list the relevant related literature. This section
is presented in four parts: threat modeling, automation of
threat modeling, conceptual modeling, and ontologies.

Threat modeling

Threat modeling is a growing trend in cyber-security
domain as it can assist in several aspects of making a
system more secure, such as clarifying a vulnerability

Page 2 of 20

analysis, facilitating decision support, and improving doc-
umentation (Torr 2005).

Most studies regarding threat modeling can be cate-
gorized into one of three clusters (Xiong and Lagerstrm
2019): focus on the application of the models (Cardenas
et al. 2009; Pei et al. 2004), discussion on threat mod-
eling methods (Satnam Singh et al. 2004), or analysis of
the threat modeling process (Dhillon 2011; Steven 2010).
Most of these studies have been conducted to address
manual threat modeling. Automation of the models has
been focused in very few studies (Xiong and Lagerstrm
2019). In these few studies, ontologies are not a vital part.

Threat modeling is growing in both industry and
academia (Akhawe et al. 2010). However, organizations
sometimes avoid implementing threat modeling because
it is a resource-intensive and time-consuming task.
Because of this, there is a need for more modeling tools
and frameworks to make modeling easier and more widely
accessible to security employees (Steven 2010).

Threat models can be implemented and tailored for dif-
ferent domains and industries such as smart grids and the
energy sector (Jiang et al. 2014), where they can enhance
the security of Advanced Metering Infrastructure to pro-
tect against energy theft.

Mathematical modeling enables threat modeling to
map security threats, categorize threat levels, and clarify
intended functions, as well as provide ways to mitigate
threats and improve the general security architecture (Xu
and Nygard 2006).

Domain-specific attack languages can be used to make
the creation of new attack graphs and threat models
cheap and efficient (Johnson et al. 2018). Such languages
can clarify the reasoning of a generic attack in a spe-
cific domain and facilitate the modeling or instantiating
of a specific system in that domain. Domain-specific lan-
guages can be created using the Meta Attack Language,
which provides a way to formalize the structure and input
of specific languages (Johnson et al. 2018).

Automated threat modeling

Formalization of input data is a natural part of model
automatization and facilitates the automatic creation of
threat models. The need for manual editing of input data
when creating threat models is reduced by formalizing
current threats and vulnerabilities, as well as adapting
them to the FSTEC threat data bank structure (Barankova
et al. 2020).

Tiramisu is a software that can be used to automate
threat modeling via attack path analysis. Security threats
are quantified by weighing the severity of potential attack
paths, and the severity of vulnerabilities are calculated
based on the ranking from famous severity databases and
manual evaluation of potentially lost business value (Chen
et al. 2007).

Vilja et al. Cybersecurity (2020) 3:19 Page 3 of 20
Data from enterprise
sources Model for IT Assessment
LN architecture tool
assessment
Scan
data
Tool for
Enterprise i automated ;
) Y C:j)nflg >_ Ontology 3 Model
infrastructure ata model data
generation
o—on—» Traffic
capture
y, User may need to manually ’
enter additional data to run
automated assessment
Fig. 1 Data is collected from an enterprise environment, standardized, merged, and finally transformed into a threat model

A number of studies have been conducted to auto-
mate security tests using threat models, but the focus
has mainly been on using the threat models to achieve
automation of the test, rather than automating the cre-
ation of the models. In Xu et al. (2012), a method was
proposed to represent threat models with Petri nets and
use these to derive attack paths that can be converted
into executable test code. This enabled partial automation
of the security testing but the creation of threat models
remained manual.

Microsoft’s SDL Threat Modeling Tool offers a way
to automatically create data flow diagrams for security
analysis of a system; however, the ways to automatically
populate the data for the diagrams and formalize input
requirements are limited (Kornecki and Janusz 2015).

Another way to automate security testing is to generate
automatic attack steps depending on the systems archi-
tecture, vulnerabilities, and relevant threats. However,
similar to the previous case, automation is only applied to
the security testing and not to the model creation (Mar-
back et al. 2013). In Marksteiner et al. (2019), a method
to use threat models was demonstrated to automate secu-
rity tests towards Industrial Internet of Things devices. In
Patil and Pawar (2012), web applications were targeted,
future possibilities were discussed, and several problems
were identified that must be solved to achieve automated
model creation for fully automated testing. The require-
ments are predominantly aligned with what we propose
to solve with ontologies, such as the need for a formalized
template for the node structure in the model, as well as a
standardized and formalized way to populate the values of
the model using the input data.

Conceptual modeling

The goal of conceptual modeling is to improve our under-
standing of a given problem and design better systems.
These systems can be particular software systems or larger
systems-of-systems representing architectures (Axelsson
2015).

Modeling is generally at the heart of enterprise disci-
plines such as systems architecture (Johnson et al. 2007;
Lagerstrom et al. 2010) and enterprise architecture (John-
son et al. 2014; Lankhorst et al. 2004).

In the enterprise context, models are needed to handle
the increasing complexity of IT-landscapes. Automation
of modeling is desired but is hindered by numerous prob-
lems. In Rahm and Do (2000), heterogeneous data sources
were integrated. In Florez et al. (2014), imperfections in
enterprise models were studied, and low quality of infor-
mation was reported as one problem. In a study regarding
current and future enterprise documentation, mismatch-
ing granularity between the collected datasets and the
enterprise model was identified as another problem (Far-
wick et al. 2013) and (Roth et al. 2013).

Conceptual models represent a domain without imple-
mentation details. In a study in which the effect of apply-
ing ontology-based modeling rules on modeling deci-
sions was examined, conceptual modeling was explained
to occur during the first stages of system development
(Soffer and Hadar 2007). According to the authors, con-
ceptual models are qualitative in nature, and thus it is
common that different people can create correct but dif-
ferent conceptual models of the same domain. Ontology
can be defined as a specification of a conceptualization.
Several authors found that ontologies are useful during

Vélja et al. Cybersecurity (2020) 3:19

the run-time of systems (Guizzardi et al. 2003; Maed-
che and Staab 2001a), and (Soffer and Hadar 2007). In
Vasilecas et al. (2006), it was reported that ontologies tend
to be richer and can provide a controlled vocabulary of
concepts that are explicitly defined with machine process-
able semantics. According to the authors, who studied
the automatic transformation of ontology into concep-
tual models, a single ontology could give rise to multiple
conceptual models. In Guizzardi et al. (2003), the use of
ontologies was proposed to evaluate the ontological cor-
rectness of conceptual models. In Guizzardi et al. (2004), a
Unified Modeling Language (UML) profile was proposed
for representing ontologies and for conceptual modeling.
The authors also studied the use of design patterns to
solve recurrent problems in conceptual modeling.

Ontologies

Several studies have been conducted regarding the use
of ontologies to improve model and data quality. In Jar-
rar et al. (2003), an ontology engineering framework was
presented that can represent ontologies with conceptual
modeling approaches. The authors developed a concep-
tual markup language that can express conceptual dia-
grams and supports run-time processing. In Antunes et al.
(2014), constructs based on description logics were pro-
posed for the integration and analysis of enterprise archi-
tecture models. The authors surveyed possible analysis
approaches and matched reasoning features of description
logics to different types of enterprise architecture analysis.

Data integration is a central part of ontologies, and by
integrating large scale datasets into a single coherent sys-
tem, process data and static data can be combined to a
single model while maintaining the identity of domain
objects over time. In Cesare et al. (2016), this was achieved
with a semantic data integration framework for integrat-
ing data in large scale enterprise systems.

Ontologies can also be used to integrate various domain
description languages, maintain coherence, consistency,
and traceability between the representations of domain
languages, and automate the analysis of models. Model
analysis techniques are applied to enforce meta-model
coherence, conformance, and ontological integration of
stakeholder viewpoints (Antunes et al. 2014). Further-
more, in Caldarola et al. (2015), an approach was proposed
to integrate ontologies for ontology reuse to achieve infor-
mation standardization.

Semantic techniques serve as a tool for analyzing enter-
prise architecture models, where ontologies represent the
conceptual models and derive logical conclusions about
the models. In Antunes et al. (2016), such an analysis was
performed using both SPARQL and computational infer-
ence, and the approach was claimed to have facilitated
analysis using syntactic and semantic information from
the models. The semantics and structure of data can cause

Page 4 of 20

organization-wide heterogeneity problems, as described
in Song et al. (2013). The authors of that study proposed
an ontology driven framework to solve these problems,
and according to them, these problems arise when hetero-
geneous systems are evaluated and redesigned.

Ontologies are also used in more organizational settings
such as aligning IT and business processes. In Hinkel-
mann et al. (2016), a continuous adaption approach was
proposed for such an alignment to combine machine
interpretable ontologies and enterprise modeling. The
ontologies were used to identify adaption needs, and
graphical models supported analysts in decision making.
Similar to our approach, automated decision support was
addressed in that study; however it was only for the con-
tinuous alignment of business and IT. In Pittl et al. (2017),
the method to use enterprise models was investigated to
build an ontology for representing risks and mitigation
measures for a system. This knowledge was used to cap-
ture logic, recognize structure in the data, and organize
information. In Maedche and Staab (2004), an ontol-
ogy engineering framework was presented for ontology
acquisition. The proposed framework supports ontology
import, extraction, pruning, refinement, and evaluation.

Some studies have been conducted regarding ontologies
for threat modeling. In Ekelhart et al. (2006), threat mod-
eling of corporate assets was focused upon, and in Gong
and Tian (2020), the focus was on an ontology to enhance
threat models for a cyber range. In Chhaya et al. (2019),
the aim was to create a web ontology language and use
ontologies to create better threat models for protecting
against drones and low, slow, and small unmanned aerial
vehicles. However, automation has not been the focus. In
Luh et al. (2016), TAON, a so-called APT ontology made
to mitigate digital risk by creating threat models, was
introduced. However, automation was not focused upon,
and it was mainly mentioned as a direction for future
research.

We conclude that many applications of ontologies sup-
port automated reasoning and ontologies seem to be a
suitable way of storing knowledge for threat modeling and
supporting automatic modeling initiatives.

Threat modeling ontology framework

The goal of our ontology framework is to support the
automation of threat modeling by improving the compa-
rability and completeness of data from multiple sources.
It considers the following types of data elements: (i) soft-
ware products, (ii) operating systems, (iii) other types of
applications and, (iv) data flows. The requirements for
the reasoning functionality of the ontology framework
are based on earlier studies (Farwick et al. 2011). The
desired functionality is the standardization, classification,
and grouping of the data elements, but not all operations
are supported on all data elements.

Vilja et al. Cybersecurity (2020) 3:19

Because every company has their own infrastructure
and development environment, it is essential that the
ontology is flexible and adaptable in order to work for any
given context. Some organizations may have customized
or even self-built tools that should be included in the
threat modeling. Therefore, it is important that the ontol-
ogy gives room for customization. Because our framework
is rather broad it should capture most desired items, such
that in case a user should want to modify parts in a way
that for some reason does not comply with the framework,
these additions could be added to the model manually. If
this is not enough, the user could even aspire to add to the
framework by developing a new branch to the ontology.

The ontology framework builds on ontology patterns
as defined in Gangemi and Presutti (2009) and Falbo et
al. (2013), which are created in different phases of ontol-
ogy development as explained in Falbo et al. (2013). The
patterns are provided to simplify partial, but also com-
plete reuse of the framework. The ontology framework’s
development process starts with conceptual modeling and
design phases, during which reusable ontology patterns
(content patterns and reasoning patterns) are produced.
The last phase is the implementation phase, in which
the ontology patterns are implemented. The next two
subsections explain the ontology patterns, and the third
subsection gives an example of ontology implementation
and knowledge acquisition. “Case study” section presents
the use of the implemented ontology with a case study
using multiple datasets. Figure 2 gives an overview of the
three phases covered in this section.

Content patterns

Content patterns solve conceptual ontology design prob-
lems by addressing modeling issues for the domain classes
and their properties. Content patterns can be reused as
building blocks in the ontology design. The following sub-
sections present the content patterns that are the building
blocks of the ontology framework. The subsections par-
tially follow the template from (Gangemi and Presutti
2009). We begin the description of the content patterns
with a short summary of each pattern. Subsequently, a
generic use case (Intent) is explained, followed by com-
petency questions that each ontology must address. Next,
a diagram is presented to show the elements in the pat-
tern and their relationships, and further descriptions of
the elements are provided. Finally, the process of cre-
ating specific patterns is briefly explained. Some of the
patterns, such as “Standardization of application soft-
ware names”,“Classification of application software”, and
“Grouping of application software names” may initially
appear to be similar. They are separated as individual pat-
terns because this structure fits well with the structure
of the SecuriCAD framework, which we use in our case
study.

Page 5 of 20

Standardization of operating system names

Summary Heterogeneous data sources can use different
names to represent the same object (such as a system or
software). The different representation of names compli-
cates the merging of data from multiple sources. If two
or more data sources use different naming conventions
or formatting, it can be hard to distinguish whether two
objects that are being referred to are the same or are
different. For example, one data source might say that a
computer node is running “Microsoft Windows Server
2003 Standard Edition,” whereas another refer to the same
operating system as “Microsoft Windows Server 2003 SE”
Such a difference will require a conflict resolution dur-
ing the merging process to decide which data source, if
any, makes the correct claim. If the names had been stan-
dardized in advance, the conflict resolution would not
be required. Thus, before the merging process, all names
should be standardized to the same format and syntax.

Intent The intent is to represent standard operating sys-
tem names of different platforms, and their variations,
which can be used to standardize the operating system
names obtained from multiple data sources for data merg-
ing.

Competency questions

1. What different names and name representations do
common operating systems have?

Diagram The diagram of the pattern is shown in Fig. 3.

Elements

OperatingSystemPlatform: Represent the
major platform of the software. Examples include
Windows, Linux, and Unix. The reason for dif-
ferentiating is the existence of different naming
conventions.

OperatingSystemName: The standard version of
the operating system name without a version.
OperatingSystemVersion: The different ver-
sion an operating system can have.
OperatingSystemVendor: The distributor of
the particular operating system software.
executes: A relation between Operating-
SystemPlatformand OperatingSystemName
enumeratedAs: A relation between Operating-
SystemName and OperatingSystemVersion
createdBy: A relation between Operating-
SystemName and OperatingSystemVendor

Creation

1. Extract data from the data model patterns of IT data
sources.

Vélja et al. Cybersecurity (2020) 3:19

Page 6 of 20

Conceptual modeling phase

Content Pattern:
Operating system
standard names

Content Pattern:
Software product
standard name

(Content Software product

Content Pattern:

Design phase

Reasoning
pattern

Implementation phase

Knowledge
acquisition

1) Elicit from experts
2) Set up queries

Content Pattern:
Software product
grouping

Merged
Content
pattern

Content Pattern:
Data flow grouping

classification i
pattern Merge Re:\tsonlng Implement Graph
creation Content Pattern: Content pattern the patterns dat:base
1) Extract from Vulnerability patterns creathn 1) Use flexible schema
data models classfication 1) Map patterns 1) Reengineer data storage
2) Reengineer workflow
| workflow ‘

'

Queries

Fig. 2 Ontology framework life cycle from specification to implementation. Operations are represented with rounded blue rectangles and artifacts

with normal rectangles

2. Reengineering from the automatic model creation
framework workflow pattern.

Standardization of application software names

Summary The pattern of standardizing of application
names is similar to that of standardizing operating
system names (“Standardization of operating system
names” section). The goal of this pattern is to standard-
ize heterogeneous representations of software product
(application) names from heterogeneous data sources.
The standardization of application names needs a differ-
ent approach than that of operating system names because

the names for different software products can be created
by different vendors.

An application is represented by a name and is usually
accompanied by a version number. Depending on the plat-
form, a vendor name can also be available. An application
can be modular, meaning it can have several parts, thus
there might be a main name and a sub-name describing
some specific functionality of the application. The version
number often consists of the major version, which rep-
resents a major release of the software, and a minor part
which is increased incrementally with every update. An
application name might also contain information about

OperatingSystemPlatform L o

hasIndividual

OperatingSystemName

o o1 OperatingSystemVendor

createdB

type: Class

name: Platform's name

Fig. 3 Standardization of operating system names

type: Individual

name: Individual's name

1]
hasVersion
0..*

type: Class

name: Class' name

OperatingSystemVersion

type: Individual

name: Individual's name

Vilja et al. Cybersecurity (2020) 3:19

major fixes, such as if a certain version of a service pack
has been installed. All of this is represented in the pattern.

Intent The intent is to represent standard software prod-
uct names for different platforms and their variations,
which can be used to standardize the names obtained
from multiple data sources when merging the data.

Competency questions

1. What different names, versions, and representations
do common software products have?

Diagram The diagram of the pattern is shown in Fig. 4.

Elements

Platform: Represents the main type of operat-
ing system on which the software runs. Examples
include Windows, Linux, Unix. Naming conventions
for different platforms differ.

ApplicationName: The standard version of the
software product name without a version.
ApplicationMainVersion: The major versions
of a software product.

ApplicationVersion: The versions of a soft-
ware product.

ApplicationArchitecture: The architectures
of a software product. Examples include x86 or x64.
ApplicationVendor: The vendor of a particular
software product.

executes: A relationship between Plat form and

ApplicationName

enumeratedBy: A relation between
ApplicationName and ApplicationMain-
Version

has: A relation between ApplicationMain-
Version and ApplicationVersion
executesOn: A relation between Application-
Versionand ApplicationArchitecture
createdBy: A relation between Application-
Name and ApplicationVendor

Creation

1. Extract data from the data model patterns of IT data
sources and from public software repositories.

2. Reengineering from the automatic model creation
framework workflow pattern.

Classification of application software

Summary System utilities and network scanning tools
such as Nexpose and Nessus often only give names of
application software installed on particular hosts. Using

Page 7 of 20

this kind of data to create models requires expert knowl-
edge and manual supervision when classification of appli-
cation software is required. If such knowledge and super-
vision is not available, as with automated modeling, other
means are required to perform the classification.

Intent The intent is to classify application software
according to the predefined set of classes such as client or
server software.

Competency questions

1. In what application software classes are we
interested?

2. To what class (from the identified classes) does a
particular application software product belong?

Diagram The diagram of the pattern is shown in Fig. 5.

Elements

Platform: Represents the general type of operating
system on which the application runs.
ApplicationName: Represents the application
name of the software product.
ApplicationClass: The application type such as
server, client, or data store.

executes: A relation between Platform and
ApplicationName.

isKind: A relation between ApplicationName
and ApplicationClass.

Creation

1. Extraction from IT data sources and from the data
models of modeling tools.

Classification of vulnerabilities

Summary Software vulnerabilities can be used to model
and assess threats against particular systems. When a
modeling tool does not support the inclusion of all the
software vulnerabilities in the model, software vulnerabil-
ities must be grouped according to some criteria.

A widely used source for vulnerability data is the
National Vulnerability Database (NVD).! NVD uses a
community-developed Common Weakness Enumeration
list (CWE)? to categorize NVD software vulnerability
entries into general weakness types. However, there are
more than 900 CWE weaknesses, and therefore, a small
number of meaningful groups might be required. A log-
ical way to group software vulnerabilities is according to
the attack methods that can be used on them, and that is
the purpose of this pattern.

https://nvd.nist.gov Accessed 2020-07-27
2http://cwe.mitre.org/ Accessed 2020-07-27

https://nvd.nist.gov
http://cwe.mitre.org/

Vélja et al. Cybersecurity (2020) 3:19

Page 8 of 20

Platform
type: Class
name: Platform's name
1]
executes
0.4/
1 - .
enumeratedBy ApplicationName createdBy—,
o]
1
type: Individual 0-1
ApplicationMainVersion name: Individual's name ..
PP ApplicationVendor
type: Individual —
- type: Individual
name: Individual's name -
name: Individual's name
1
has
0..*
ApplicationVersion . o1 ApplicationArchitecture
executesOn
type: Individual type: Individual
name: Individual's name name: Individual's name
Fig. 4 Standardization of application software names
Platform
type: Class
name: Platform's name
1]
executes
0..%\/
ApplicationName 0 o4 ApplicationClass
isKind
type: Individual type: Class

name: Individual's name

Fig. 5 Classification of applications

name: Class' name

Vilja et al. Cybersecurity (2020) 3:19

Intent The intent is to enable grouping software vulner-
abilities from the NVD into meaningful groups, such as
attack method based groups.

Competency questions

1. What attack method from a known list of attack
methods can be used against a software product?

Diagram The diagram of the pattern is shown in Fig. 6.

Elements

AttackMethod: Represents a general type of attack
method that can be used against a specific software
vulnerability.

CWE: A community driven software weakness cat-
egory entry. Most NVD entries (CVEs) have one
assigned to them and this relationship in NVD
is used to assign CVEs to AttackMethods during
knowledge acquisition.

CVE: An NVD vulnerability database entry denot-
ing a single software vulnerability of one or more
software products.

CPE: An entry from the Common Platform Enu-
meration (CPE)3, which is a dictionary of common
software applications and hardware names. Many
software products have a unique CPE entry.
relatesTo: A relation between AttackMethod
and CWE.

groups: A relation between AttackMethod and
CVE.

has: A relation between CVE and CWE.

impacts: A relation between CVE and CPE.

Creation

1. Extraction from the data models of modeling tools
and from public software vulnerability and weakness
repositories.

Grouping of application software names

Summary Each threat model assumes a certain level of
granularity. In automated modeling, many data sources
are used that can have different granularities compared
to the modeling language. Though it is impossible to
increase the granularity if additional information is not
available, it is possible to reduce the granularity even with
no additional information available, and a reduction is
often what we want to do. The purpose of grouping func-
tionality is to facilitate the reduction of granularity for
application software modeling.

3https://cpe.mitre.org/cpe Accessed 2020-07-27

Page 9 of 20

Intent The intent of the pattern is to facilitate the group-
ing of application software into meaningful groups, simi-
lar to how multiple Microsoft Office products are grouped
into a single Office Suite.

Competency questions

1. Can a particular application software be grouped?
2. If a particular application software can be grouped,
what is the name of the group?

Diagram The diagram of the pattern is shown in Fig. 7.

Elements

Platform: The general type of operating system on
which the application runs.

ApplicationName: The name of the application
in question.

ApplicationGroup: The group assignment of a
particular software application.

executes: A relation between Platform and
ApplicationName.

groupedInto: A relation between
ApplicationName and ApplicationGroup.

Creation

1. Extraction from IT data sources and from the data
models of modeling tools.

Grouping of data flows

Summary The focus of the data flow grouping pattern
is similar in form to that of the application software pat-
tern. However, the data flow grouping pattern adapts data
granularity to a modeling language level for application
level data flow modeling, whereas the application software
pattern adapts the description of software.

An application level data flow as defined in the pattern
is a flow of similar network packets between two network
hosts. The pattern captures the numbers and names of the
relevant application protocols that should be modeled.

Intent The intent of the pattern is to facilitate the group-
ing of time series network packet captures into time
independent application data flows between two or more
hosts.

Competency questions

1. Is there an application data flow between network
hosts?

Diagram The diagram of the pattern is shown in Fig. 8.

https://cpe.mitre.org/cpe

Vélja et al. Cybersecurity (2020) 3:19

Page 10 of 20

CWE

AttackMethod

relatesTo
type: Individual 0..* 1

type: Individual

name: Individual's name

name: Individual's name

0.1
groups
0..* \l/
1 CVE CPE
has impacts
type: Individual 1.% 0.* type: Individual
name: Individual's name name: Individual's name

Fig. 6 Classification of vulnerabilities

Elements

HostToHostProtocol: The type of the host to
host network communication protocol. Two values
are possible, either TCP or UDP.

PortNumber: The port number of the server in a
one way communication.
ApplicationProtocol: The name of the appli-
cation protocol that is linked to a particular port.
MaxNonDynamicPort: The last non dynamic port
as defined by IANA,* so that the larger port numbers
can be safely ignored.

includes: Relation between HostToHost-
Protocol and PortNumber.

translatesTo: Relation between PortNumber
and ApplicationProtocol.

limitedBy: Relation between HostToHost-
Protocol and MaxNonDynamicPort.

Creation

1. Extraction from IT data sources and from the data
models of modeling tools.

Reasoning pattern

The purpose of the reasoning pattern is to address design
problems related to queries on the ontology. The rea-
soning patterns described here can be considered as a
functional extension of the ontology. The following para-
graphs explain the reasoning required for each part of the
ontology framework. Each reasoning pattern description
starts with an explanation regarding the input to a query,
then the output, and finally a short description of how the
reasoning was performed.

“https://www.iana.org/assignments/service- names- port- numbers/service-
names-port-numbers.xml Accessed 2020-07-27

Standardization of operating system names The rea-
soning pattern for standardization of operating system
names uses stored acquired knowledge, exclusion infor-
mation and is described below.

— Input: Software product name, software product
version, vendor name.

— Output: Standardized product name, standardized
version, vendor name.

— Processing steps i) Exclude general words from the
name such as 'Kernel’ depending on the amount of
words in the name. ii) Separate the name, product
name and version using known names, or the type of
characters in the name. iii) Use a word based match
(word order unimportant) of known ontology product
name values. iv) Return the database query result.

Standardization of application software names The
standardization of application names is achieved by apply-
ing platform specific word exclusion and word matching
strategies. Here, the platforms are seen as general classes
of operating systems, such as Linux or Windows. The
need for a separate strategy results from different naming
conventions being used on each platform. The queries use
stored, acquired knowledge, and is described below.

— Input: Application software name, software version,
vendor name, platform.

— Output: Standardized application name, standardized
version, vendor name.

— Processing steps i) Based on platform, exclude
architecture, distribution and language version
information (like ‘ENU’ for Microsoft) from product
name. ii) Discard all the characters except the ones
that describe the platform based products best. iii)
Use a word based match (word order unimportant) of

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

Vélja et al. Cybersecurity (2020) 3:19 Page 11 of 20
Platform
type: Class
name: Platform's name
1]
executes
0.5\
ApplicationGroup ApplicationName
groupedInto
type: Class 0..1 0.* type: Individual
name: Class' name name: Individual's name
Fig. 7 Grouping of software names

known ontology product name values. iv) Return the
database query result.

Classification of application software The classifica-
tion of software is achieved by using pre-stored soft-
ware classification information and matching input
standardized software product names to known soft-
ware product names and related classes. Version and
vendor information are completely ignored as they
are not relevant to determining the class of the
application.

— Input: Standardized application software name.

— Output: Application class, such as Server.

— Processing steps i) Use a word based match of known
ontology product name values. ii) Return the
database query result.

Classification of vulnerabilities The role of the vul-
nerability classification functionality is to classify soft-
ware vulnerabilities according to more general attack type
classes. The authors see the main data source for vul-
nerability data as NVD, and the unique weaknesses as
being identifiable by CWE ids. The idea of vulnerability
classification then is to substitute CWEs with a smaller
number of predetermined attack categories, and to use
these categories to classify the software vulnerabilities
(such as CVE) that have a linked CWE value in the
NVD.

— Input: Software vulnerability ID.

— Output: Attack type class like XSS.

— Processing steps i) Use a word based match of CVE
number to find corresponding attack type. ii) Return
the database query result.

MaxNonDynamicPort

HostToHostProtocol

. limitedBy
type: Individual 1 0..*

type: Individual

name: Individual's name

name: Individual's name

includes

PortNumber

ApplicationProtocol

type: Individual 1.* 0.*

translatesTo:

type: Individual

name: Individual's name

name: Individual's name

Fig. 8 Grouping of data flows

Vélja et al. Cybersecurity (2020) 3:19

Grouping of application software names The method
for grouping software titles involves identifying if a partic-
ular application software is part of a software suite using
acquired knowledge. Due to each platform having a differ-
ent naming convention, platform specific strategies must
be applied. For Linux applications the first part of the
name usually represents the primary part of the software,
and for grouping purposes, the rest can be discarded.
Windows applications need to have been defined in the
ontology.

— Input: Standardized application name.

— Output: Group name.

— Processing steps i) Use a word based match to find
predefined group for a particular application software
name. ii) Return the database query result.

Grouping of data flows The grouping of data flows
means ignoring the time aspect of the data flows and
abstracting multiple network package exchanges into
unique, but fewer traffic flows. The ontology in this case
is needed to identify the application data flows using port
numbers. Dynamic port ranges are excluded from the
results.

— Input: Source address, destination address,
destination port, transport protocol.

— Output: Source address, destination address,
application protocol name.

— Processing steps i) Transport protocol is matched. ii)
A query to find an application protocol name
corresponding to a port number. iii) Return the
database query result.

Ontology framework implementation and knowledge
acquisition

This subsection describes the implementation of the
ontology content and the reasoning patterns introduced
in “Content patterns” and “Reasoning pattern” sections
as an ontology. As part of the ontology creation, knowl-
edge needs to be acquired to populate the ontology. The
knowledge acquisition is also covered in this section.

The ontology content patterns are implemented as a
graph data model in a hybrid NoSQL database. For this
study, the database engine ArangoDB® is used. Because
ontology is often seen as a finite set of unambiguously
identifiable classes and their relationships, a graph data
model is a logical choice. In addition, NoSQL databases
provide the flexibility and scalability that the traditional
relational database systems fail to provide. The data struc-
ture of the ontology, which is based on the described
content patterns, is shown in Fig. 9. The ontology is made

Shttps://www.arangodb.com Accessed 2020-07-27

Page 12 of 20

up of classes and related individuals that are manifesta-
tions of the classes. The data model consists of nodes that
represent the classes and individuals and are connected
to each other with named edges. The ontology reason-
ing patterns are implemented as database (AQL) queries
and Python functions. The Python functions are imple-
mented in a way so that the reasoning patterns described
in “Reasoning pattern” section can be used for automated
modeling to improve the data quality of incoming data.

The ontology framework is plugged into the modeling
automation process that has been implemented as part of
an earlier work (Vlja et al. 2019). However, the ontology
framework is based on a set of functions that could be
invoked from other systems and the automation modeling
process is not needed for using the ontology framework.
The integration between the two as implemented in this
study is shown in Fig. 10. As shown on the figure, the
ontology framework functions are invoked from the mod-
eling automation process adapters. There is a separate
adapter for each type of data source. The idea of the
adapter is to process files from a particular type of data
source that show the state of the data source at a particular
moment. The goal of the ontology framework is to enrich
this data using the functions shown in the figure. Once the
data has been enriched it is used as input to the modeling
automation process.

Knowledge acquisition is required to fill the ontology
with knowledge. The role of the knowledge acquisition is
to collect data that corresponds to the data model and
can be applied as knowledge. According to (Pinto and
Martins 2004), there are many possibilities for knowledge
acquisition such as elicitation techniques, inductive tech-
niques, or using relevant data sources. Maedche and Staab
(2001b) mention extraction of ontology knowledge from
web documents using resource processing components.
In our case, knowledge acquisition is conducted separately
for each content pattern using methods coded in Python.

For the first two content patterns, standard operating
system names and application names, data is acquired
from two sources, internet software repositories and the
lab environment described in “Case study” section. In
both cases the data is collected for two platforms, Win-
dows and Linux, and platform specific strategies are
applied to standardize the names. The main reason for
choosing the Windows and Linux platforms is the avail-
ability of data.

The operating system names are collected using various
data sources — network scanners and system software util-
ities like Windows Powershell and yum. The names are
parsed with the help of platform based translation lists,
which capture acronyms and their fully written defini-
tions. For example ‘SE’ translates to ‘Standard Edition’ for
the Windows platform. In the case of Linux, we need to
exclude unnecessary information. For example, depending

https://www.arangodb.com

Vélja et al. Cybersecurity

(2020) 3:19

Page 13 of 20

\———contains Ontology v !
1 1
Software . DataFlow

wntaifs

1 - 1

haslnstaonc‘e Vulnerability haslnstance
Platform hasinst. J 1
\I;:S'm ance , | HostToHostProtocol
\L 0.* 1| type:Class -

OperatingSystemVendor

OperatingSystemName

name: Platform's name
1

type: Class

0.1 0.*

type: Individual

executes
0.%

name: Class' name

name: Individual's name

o

OperatingSystemVersion

type: Individual

ApplicationName

I
0.1 J/

ApplicationMainVersion

type:

createdBy

type: Individual

me

tyi

0.*
isKind-
0.1

-

AttackMethod 1 0.* CWE ““name: Individual’s name

type: Individual type: Individual includes 0.*

name: Individual’s name name: Individual’s name

1 0.1 o
. rcuvsuq/ limitedBy
PortNumber
CVE 1 hlas type: Individual
type: Individual name: Individual's name .

name: Individual's name

name: Individual's name

]
—has-

0.1

ApplicationClass

ApplicationGroup

I
translatesmJ
1.%

impacts o
0.* J/ type:

MaxNonDynamicPort

type: Class type: Class

na

ApplicationProtocol

name: Class' name

name: Class’ name

CPE

ApplicationVersion

Application'

Vendor

type: Individual

name: Individual's name

ty

type: Individual
name: Individual's name

name: Individual’s name

0.1

0.1

ApplicationArchitecture

type: Individual

Fig. 9 Database schema created from merged content patterns

on the amount of words in the name, we might want
to remove ‘Linux’ or ‘Linux Kernel’ from the full operat-
ing system names. During the name capture, the version
information is stored separately from the product name to
enable abstraction to the product name only.

An application software element is represented by a
unique name and a version number. Depending on the
platform, the ontology might also contain its vendor and
platform information. The strategy to add software names
to the ontology uses platform specific regular expression

Activity diagram

Modeling automation process adapter

Ontology framework

Start the adapter

Get data from the
data source

The data type is
determined in the
adapter manually and
corresponding function
is invoked

product name
function

Run vulnerability
name function
Run network flow
function

Run software

Standardize name

Classify vulnerability N
name

Application . - Determine
Classify application L
name application group
Operating

system name

Input o the
modeling framework

Group network flow

Fig. 10 Implementation activity diagram

Vélja et al. Cybersecurity (2020) 3:19

based extraction of the name and exclusion lists. For both
platforms, architecture specific information is excluded
from the application names, and for Windows, language
version specific acronyms like ‘ENU’ are also excluded
when possible. The strategy to add application software
version numbers is also based on platform specific exclu-
sion lists. A Linux application version number is often
made up of the package version number which shows the
version of the application, such as ’4.5; and a Linux dis-
tribution release number, such as ’3.fc26; which shows the
distribution specific changes to the code. As this level of
detail is not required by the content pattern (and for our
purposes), the release information is removed. Once the
product and operating systems names get stored in the
ontology database, they become the standard names.

The third content pattern is about classification of appli-
cation software. First, a set of classes needs to be defined.
The classes are taken from the modeling tool SECURICAD
used in our case study (see “Case study” section). The
applications are classified according to the following cat-
egories: client, server, data store, firewall, scanner, oper-
ating system internals. Here again a distinction between
operating systems needs to be made and different strate-
gies need to be used. In case of applications that can be
installed on the Windows platform, no good source of
classification data could be identified. Thus, we used our
expertise to classify the collected application names.

There are more alternatives for classifying Linux soft-
ware. Web sites like Linux Packages Search® contain
detailed information about Linux packages, including
short and long descriptions. Moreover, the packages on
the Linux Packages Search web site are organized accord-
ing to distributions and sometimes the type of the appli-
cation is also available. In our solution we download a
description of each package name learned from our sys-
tems, and then sort them into the predefined classes
according to known application names and combina-
tions of keywords. Internal operating system packages and
libraries get marked as well so that they can be excluded
at will.

The vulnerability content pattern supports grouping
vulnerabilities based on attack methods. The vulnerabili-
ties can be classified into four attack groups:

— Command injection.
Remote file injection.

— SQL injection.

— Cross site scripting (XSS).

As CVE identification numbers are used in many pop-
ular vulnerability scanners like Nessus and Nexpose, the
classification content pattern is based on the National
Vulnerability Database (NVD) standard that uses CVE

Ohttps://pkgs.org Accessed 2020-07-27

Page 14 of 20

identification numbers by default. In the NVD dataset,
the vulnerabilities (with CVE id) have been classified into
various weakness types (represented by a unique CWE
id). To map the CVE ids to the specific attack method
groups, first the CWE need to be matched to these groups.
The Open Web Application Security Project (OWASP)
regularly publishes a list of the top 10 application secu-
rity risks.” MITRE on the other hand has created CWE
OWASP Top 10 views, where CWEs are linked to the dif-
ferent attacks in the OWASP top 10 list.® For the purpose
of categorization, we choose four attack methods from the
list and create 4 groups of CWE ids. These groups are then
compared to all the CVE ids and the CWE ids linked to the
CVE ids. That way, the software vulnerabilities that belong
to one of the four groups can be stored in the database
and later compared to incoming CVE ids to get the group
name.

The four chosen categories capture a large part of the
relevant vulnerabilities and fit well in our ontology frame-
work because they are supported by the SECURICAD
modeling tool. Together, they allow the modeler to create
an accurate representation of the threats an organization
may face while maintaining a comprehensive structure.
More information regarding the implementation and vali-
dation of the ontology framework and of the SECURICAD
tool can be found in “Case study” section.

The application name grouping content patterns help
to adapt the granularity level of data. We apply platform
specific strategies because the names for different plat-
forms follow different formats. Windows specific names
use multiple parts that are separated by spaces. For Win-
dows application names it is difficult if not impossible
to say how many first parts of the name define a group,
meaning that a manual group definition is needed. Linux
package name parts are separated by hyphens and follow a
more unified format. Usually, the first part of the name is
representative for the entire group, such as perl or mysql.
Therefore the first part is always used as the group name.

Similar to the previous content pattern, the role of the
data flow pattern is to adapt the granularity of the data to
the required level. The idea of the data flow grouping is to
exclude the time aspect and only keep certain application
protocols. In network traffic, port numbers are used to
distinguish different types of traffic between a source and
a destination. Thus we need a list of known port numbers
that link to application protocols. Such a source is pro-
vided by Internet Assigned Numbers Authority (IANA).”
However, because the list is general and application con-
figurations might differ between organizations, it makes

7https://www.owasp.org/index.php/Top_10» 2017_Top_10
8https://cwe.mitre.org/data/definitions/928.htm! Accessed
https://www.iana.org/assignments/service- names- port-numbers/service-
names- port-numbers.xhtml Accessed 2020-07-27

https://pkgs.org
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://cwe.mitre.org/data/definitions/928.html
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Vilja et al. Cybersecurity (2020) 3:19

sense to keep a customized version of this list in each
separate environment of the ontology.

Case study

This section presents a case study with three different
enterprise system setups. The datasets from the three
setups are used to create cyber threat models of I'T archi-
tectures using the modeling tool SECURICAD!? (Ekstedt
et al. 2015). The metamodel (model structure) of SECURI-
CAD has a central role in the implementation of the
ontology framework, by determining the data needs and
constraints for the implemented ontology. The imple-
mentation of the ontology framework is described in
“Ontology framework implementation and knowledge
acquisition” section.

Three cases are described as they complement each
other. The first case (SCADA lab) contains the most com-
prehensive dataset and demonstrates the functionality of
the ontology framework in full. The second case (Water
utility field devices) shows the usefulness of grouping data
flows for higher level modeling when the protocols are
similar and the differences mainly lie in the payload of the
network packages. The third case (CRATE lab) demon-
strates how data flow grouping makes sense even if the
exchanged data are diverse (multiple different protocols)
and exchanges take place between a large number of hosts.
The nature of the data from the third setup facilitates the
extraction of the operating system names for some hosts
using the fingerprinting tool, pOf. This is not possible with
the second dataset owing to the homogeneous nature of
its captured traffic.

SECURICAD,!! the modeling tool used in all three cases,
is a tool for threat modeling and risk assessment. SECURI-
CAD is designed to be used for evaluation of cyber-
security of systems-of-systems-level architectures. Attack
graphs are automatically derived from the modeled archi-
tecture, and time-to-compromise values are calculated to
provide estimations on the likelihood of various attacks
towards the architecture. The attack graph follows the
logic of a Bayesian network. The security properties of
different assets have a relatively high abstraction level,
meaning that individual vulnerabilities are less consid-
ered than general expectations of a system deploying the
latest patches. SECURICAD’s metamodel describes 14 dif-
ferent IT architecture asset types, such as network, host,
software, dataflow, and access control.

Datasets
The following sections detail the threedata sets used in
this study and their origins.

Ohttps://www.foreseeti.com/securicad/ Accessed 2020-07-27
Uhttps://www.foreseeti.com/products Accessed 2020-07-27

Page 15 of 20

SCADA lab

Supervisory Control and Data Acquisition (SCADA) sys-
tems are widely used in industrial control systems such
as manufacturing, electricity supply, and fresh and waste
water utilities. SCADA systems play an important role in
the automation of industrial processes, as they enable an
operator to oversee a complex process that may be geo-
graphically distributed and to take action as necessary.
SCADA systems do not include the real-time control logic
in machinery, but rather use sensors and actuators on top
of these in order to provide an interface to the human
operator. As SCADA systems thus offer this link between
previously standalone systems and the rest of the world,
SCADA system security has a received a lot of attention
in the past few decades (Korman et al. 2017; Knapp and
Langill 2014).

Our SCADA lab is virtualized with ten servers and runs
using ABB SCADA software. The network has been seg-
mented into SCADA, Office, Management, and Substa-
tion zones. A firewall restricts traffic between the zones.
Some of the virtual machines run Windows Server 2012
software, whereas other machines run various Linux dis-
tributions, including Red Hat Enterprise Linux 7.

The lab data used to test the ontology framework
include configuration files from operating systems and
network devices and results from network scans con-
ducted using Nmap,'? Nessus,'? and Nexpose!* scanners.
Because of the variety of data available, all functions
of the ontology framework can be tested. This includes
standardization of operating system and software names,
classification of applications and vulnerabilities, and also
grouping of applications and data flows.

Water utility field devices

The data from the second case study are obtained from a
water utility. Similarly to the first case, the data are col-
lected from an environment where industrial control sys-
tems control industrial processes. Unlike the first case, the
data are obtained from a real geographically distributed
production environment.

The dataset contains network traffic between the water
utility’s central control system and its field devices. The
traffic is in the form of TCPDump files and consists mostly
of control messages that are MODBUS over TCP/IP being
exchanged between AC800M (controller) and AC500
(programmable logic controller) devices and that have
been captured using a sniffer. There is a firewall between
the field devices and the control devices that stops all the
non-control traffic.

Zhttps://nmap.org/download.html Accessed 2020-07-27
Bhttps://www.tenable.com/products/nessus/nessus- professional Accessed
2020-07-27

4 https://www.rapid7.com/products/nexpose Accessed 2020-07-27

https://www.foreseeti.com/securicad/
https://www.foreseeti.com/products
https://nmap.org/download.html
https://www.tenable.com/products/nessus/nessus-professional
https://www.rapid7.com/products/nexpose

Vélja et al. Cybersecurity (2020) 3:19

The dataset contains detailed information regarding the
source, destination, and content of the network package in
a time sequence. As the data in question is MODBUS over
TCP/IP traffic, the source of the traffic are the controllers
and destinations are the programmable logic controllers.
The content of the packages are commands that write
to and read from the programmable logic controllers’
memory values.

CRATE lab

The Swedish Defence Research Agency is running a
Cyber Range And Training Environment (CRATE).'® This
environment supports deploying thousands of virtual
machines and is equipped with host based traffic genera-
tors.

Occasionally, cyber security related training exercises
are conducted in CRATE. The third dataset pertains to
one of those exercises and contains general descriptions of
the virtual machines and network traffic captured at var-
ious points in time between more than 50 hosts. Various
activities between the hosts have been captured, including
scanning and hacking. The network traffic is in the form
of TCPDump files.

The types of actions available for this dataset are stan-
dardization of operating system names and grouping of
data flows.

Application of the framework

The goal of the application of the ontology framework is
to improve semantic accuracy and the match of granu-
larity for SECURICAD (explained at the beginning of the
“Datasets” section) model elements. The ontology frame-
work is applied in an automated modeling process (from
an earlier work Blind) and the application of the frame-
work is described according to the reasoning patterns for
all three available datasets.

The data are captured as files and the files are processed
using data source specific adapters. The data sources are
shown in Table 1. During the automated modeling pro-
cess, the data source specific adapters transform data into
a common format and write the transformed data to a
back end database. Seven different adapters are used For
the SCADA lab case study, one (Wireshark) is used for
the Water utility, and two (pOf, Wireshark) are used for
CRATE.

The adapters in our study are run twice to store the data
in a common format in two different back end databases
for comparison. During the first run of the adapters, no
ontology functionality is used. The second run is done
with the ontology functionality enabled. The following
paragraphs explain the differences between those runs for
the implemented reasoning patterns.

5 https://www.foi.se/en/foi/resources/crate- - - cyber-range-and- training-
environment.html Accessed 2020-07-27

Page 16 of 20

Table 1 Collected data and the different methods used for
collecting the data. For each data source a separate data source
specific adapter is created to parse the data

Method

Source Data description

Windows 2012 Server Powershell cmdlet Installed software

Red Hat Enterprise Linux 7 yum list Installed software

Nessus Scanning Vulnerability data,
operating system

names

Nexpose Scanning Vulnerability data,
operating system

names

Service names,
operating system
names

Nmap Scanning

Data flows,
operating system
names

pOf Passive capture

Wireshark Passive capture Data flows

Standardization of operating system names During
the standardization of operating system names, syntactic
and linguistic differences of operating system names are
addressed. Following a common format makes the names
from multiple sources comparable with each other. The
SCADA lab dataset comprises 88 operating system names
from four different data sources. Among these 88 names,
38 are distinct. After applying ontology framework, the
number of distinct names is reduced to 33.

In the CRATE dataset, only one data source pro-
vided operating system names, thus standardization of the
names did not achieve anything for that data set. In total,
13 operating system names are captured, of which five are
distinct.

Standardization of application software names Dur-
ing the standardization of application software names,
syntactic and linguistic differences of application soft-
ware names are addressed. Following a common format
makes the names from multiple sources comparable with
each other. The SCADA lab setup comprises 2097 appli-
cation software names, out of which, 1076 are distinct,
captured by five sources. After the ontology framework’s
application, 1041 distinct names remain.

Classification of application software The purpose of
application software classification is to recognize different
predefined types of application software in the automati-
cally collected data and to add that knowledge to the final
model. In the SCADA dataset there is a large number
of application software lacking type information (1442).
After applying the ontology framework, only 585 unde-
fined names remain. The rest of the application software
titles are sorted into either server (initially 578, afterwards

https://www.foi.se/en/foi/resources/crate---cyber-range-and-training-environment.html
https://www.foi.se/en/foi/resources/crate---cyber-range-and-training-environment.html

Vilja et al. Cybersecurity (2020) 3:19

587), client (initially 77, afterwards 396), data store (ini-
tially 0, afterwards 16), or firewall (initially 0, afterwards
4) types. The ontology framework also sorts 440 titles
into the excludable group, which we have designated for
operating system internal software packages and libraries.
Removing them from the model helps to match the level
of abstraction of the model better.

Classification of vulnerabilities The SECURICAD
model only supports four general attack based vulnerabil-
ity categories (command injection, remote file inclusion,
SQL injection, and cross-site scripting). Thus, if vul-
nerability scanners provide more detailed information
this needs to be adapted to the model. Only the SCADA
lab has vulnerability data available from 2 data sources.
Initially, 1190 vulnerabilities are identified, out of which
504 are distinct. Only one category matches the identified
vulnerabilities and is included in the model.

Grouping of application software names The purpose
of grouping application software names is to reduce the
amount of model elements through abstraction to mean-
ingful software groups. For example, Microsoft Word
2013, Excel 2013 and Outlook 2013 might be grouped
as Microsoft Office 2013 suite. For Linux software, often
the tools provide detailed package names for each appli-
cation software. This information is also not useful for
SECURICAD modeling. Application software names can
be grouped only for the SCADA lab dataset. Five differ-
ent data sources provide software names (2097 total), out
of which 1076 are distinct. After grouping the number of
software application is reduced to 1401.

Grouping of data flows The goal of grouping data flows
is to exclude the temporal aspect of communication, pack-
age payloads, and to avoid duplicated model elements to
improve understandability of the model. The data flow
grouping is done based on source, destination network
addresses (IPv4) and the protocol name. Only application
protocol data is included in the final model.

All three datasets provide data flow information.
The SCADA lab dataset includes 76,802 unique packet
exchanges recorded between various hosts, only 91 of
which remain after data flow grouping. The Water util-
ity dataset contains 25 739 461 different network pack-
age exchanges of similar nature (mostly MODBUS over
TCP/IP) with different package payloads. Thus, after the
package content data and temporal information has been
excluded, only 102 unique data flows between 27 unique
source and 32 unique destination network addresses
(IPv4) remain. The network communications captured
with the CRATE lab dataset are more diverse than those
captured with the Water utility dataset. Among 284 237
data flows between 51 hosts, we are interested in only 111.

Page 17 of 20

Discussion and conclusion

We set out to investigate if an ontology can be used
to improve an automated threat modeling process. The
goal of the work was to design an ontology framework
to improve semantic accuracy and granularity match for
threat models.

Our framework was designed using conceptual model-
ing. The models captured the reasoning functionality and
the life cycle of the ontology framework. Both of these
designs abstracted away from the implementation details.
To implement the ontology framework, we needed mod-
els that could capture more details. Content patterns were
useful for implementing the ontology and helped captur-
ing details for the implementation, while also allowing for
modularity of the design. Each content pattern supported
some functionality, and if new functionality is needed for
the framework, the patterns can be modified with this
functionality.

The conceptual models and the ontology patterns
are the basis for creating the ontology framework and
automating the threat modeling process. The main evalu-
ation criteria as stated in the literature was the usefulness
of the models. The framework allows us to standardize
and classify software while increasing the abstraction to
ignore unnecessary details when appropriate.

The patterns proposed in the paper can be considered
generic for a certain threat model and data source and
can be reused whenever this kind of support is needed.
However, all models leave out some properties of the sys-
tems that they study and are thus, from an absolutist
sense, incomplete. Whether those excluded properties are
needed to fulfill a particular task has to be determined by
the users.

The results of applying the ontology framework on the
three datasets show that it can improve the threat mod-
eling process with domain knowledge where automation
is applied. The results show that the semantic accuracy
of the models can be improved using standardization and
classification. The ontology based approach also helps to
address the granularity mismatch problem, by abstract-
ing away from unneeded information. In mismatch cases
where information is missing, such as types of applica-
tion software, the level of detail can be increased. The
benefits are evident with small heterogeneous datasets,
but the approach is even more useful in a large IT envi-
ronment. Since the goal of the study was to improve the
quality of the data with context that only a human modeler
would be able to add, the outcome was evaluated by the
authors who have extensive experience in modeling and
data science. After several iterations that included vari-
ous improvements, the results were as expected and the
artifacts were deemed to meet the goals of the research.

Practical implications of the research are that missing
information can lower the precision of decision support

Vélja et al. Cybersecurity (2020) 3:19

models. This is especially true for models of decision
support tools which can do quantitative analysis and sim-
ulations, such as SECURICAD. Our ontology framework
was able to classify numerous application software titles
and reduce the number of unclassified ones. As each class
behaves differently in the model, this has a direct impact
to the analysis results.

As discussed in “Related work” section, ontologies have
existed for some time in various shapes and forms. Our
current market analysis found that few ontologies target
threat modeling, even fewer target our analyzed branch
of automating threat modeling, and no ontology found
by the authors delivers a comprehensive description of
the construction and implementation of the framework.
This demonstrates the uniqueness of the ontology pre-
sented in this article. Furthermore, no found ontology
towards threat modeling treats the implementation and
use towards industrial control systems or systems of crit-
ical infrastructure. With that said it is beneficial for the
community if more people study and develop ontologies
since they must be kept up to date in order to best facil-
itate the population of relevant data to threat models.
Others could contribute to our model since it is based on
an open source development and thus allows for efficient
updates and even the potential of being forked to new
sub-domains.

Although significant manual input is required for set-
ting up the ontology and its knowledge acquisition pro-
cess, there are no good alternatives as far as we know.
Spending the time and effort set up an ontology is a
one-time endeavor, and the ontology can then be used
to improve an unlimited number of models with simi-
lar requirements. The alternative to using an ontology
requires manually improving and enhancing each new
or updated model, which becomes more time and effort
intensive through repetition.

This takes us to the important observation that the
quality of the models depends on the quality of the
information in the ontology. The information in the
ontology needs to be quality assured and updated reg-
ularly to maintain the quality of the models it is used
to create. Automating the acquisition and updating of
the knowledge in the ontology would significantly reduce
the amount of work required to set up and maintain
the ontology. Several machine learning algorithms were
tested when developing this framework with the aim of
speeding up knowledge acquisition and to ensure data
quality, but the small size of available knowledge data
limited their usefulness. Figuring out how to automate
knowledge acquisition with this limitation is part of future
research.

Acknowledgements
The authors would like to thank Géran Ericsson at the Swedish National Grid
for the valuable discussions on the topics covered in this paper.

Page 18 of 20

Authors’ contributions

Margus Vilja overall work on ontologies and ontology patterns, practical
implementation of the framework in the case studies, and authoring. Fredrik
Heiding contributing work regarding threat modeling, adapting the
framework to fit the automation of threat models, and authoring. Ulrik Franke
contributing work on ontologies, the implementation of ontologies in threat
models, and authoring. Robert Lagerstrom: Contributing work on ontologies,
the implementation of ontologies in threat models, and authoring. All
author(s) read and approved the final manuscript.

Funding

This work has received funding from the European Unions H2020 research and
innovation programme under the Grant Agreement No. 832907, Swedish
Governmental Agency for Innovation Systems (Vinnova), the Swedish Energy
Agency, SweGRIDS, and STandUP for Energy.

Availability of data and materials

The datasets used for the case studies and the script used for automating the
population of data are available at the project webpage or from the Dropbox
folder.

Competing interests
The authors declare that they have no competing interests.

Author details
'KTH Royal Institute of Technology, 100 44 Stockholm, Sweden. ?RISE
Research Institutes of Sweden, 164 40 Kista, Sweden.

Received: 13 May 2020 Accepted: 2 September 2020
Published online: 01 October 2020

References

Aier S, Buckl S, Franke U, Gleichauf B, Johnson P, Narman P, Schweda CM,
Ullberg J (2009) A survival analysis of application life spans based on
enterprise architecture models. In: Mendling J, Rinderle-Ma S, Esswein W
(eds). Enterprise modelling and information systems architectures :
Proceedings of the 3rd international workshop on enterprise modelling
and information systems architectures. vol. LNI P-152. Gesellschaft fur
Informatik, Bonn. pp 141-154

Aier S, Gleichauf B, Saat J, Winter R (2009) Complexity levels of representing
dynamics in ea planning. In: Albani A, Barjis J, Dietz JLG (eds). Advances in
Enterprise Engineering Ill. Springer, Berlin. pp 55-69

Akhawe D, Barth A, Lam PE, Mitchell J, Song D (2010) Towards a formal
foundation of web security. In: 23rd IEEE Computer Security Foundations
Symposium. IEEE, Edinburgh. pp 290-304

Antunes G, Bakhshandeh M, Mayer R, Borbinha J, Caetano A (2014) Using
ontologies for enterprise architecture integration and analysis. Compl Syst
Informa Model Q 1(1):1-23. https://doi.org/10.7250/csimq.2014-1.01
https://www.ingentaconnect.com/content/doaj/22559922/2014/
00000001/00000001/art00001

Antunes G, Borbinha J, Caetano A (2016) An application of semantic
techniques to the analysis of enterprise architecture models. In: 49th
Hawaii International Conference on System Sciences (HICSS). IEEE,
Honolulu. pp 4536-4545. https://doi.org/10.1109/HICSS.2016.564

Antunes C, Caetano A, Borbinha J (2014) Enterprise architecture model analysis
using description logics. In: IEEE 18th International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations. IEEE, Ulm.
pp 237-244. https://doi.org/10.1109/EDOCW.2014.43

Axelsson J (2015) A systematic mapping of the research literature on
system-of-systems engineering. In: 10th System of Systems Engineering
Conference (SoSE). IEEE, San Antonio. pp 18-23. https://doi.org/10.1109/
SYSOSE2015.7151918

Barankova II, Mikhailova UV, Afanaseva MV (2020) Minimizing information
security risks based on security threat modeling. J Phys Conf Ser
1441:012031

Berger BJ, Sohr K, Koschke R (2013) Extracting and analyzing the implemented
security architecture of business applications. In: 17th European
conference on software maintenance and reengineering. IEEE, Genova.
pp 285-294. https://doi.org/10.1109/CSMR.2013.37

https://www.kth.se/nse/research/software-systems-architecture-and-security/projects/old-projects/automatic-data-collection-and-modeling-1.922302
https://www.dropbox.com/sh/kk96rkfkr66e2qg/AADUe-DcLW1zVelhMYdqy0GVa?dl=0
https://doi.org/10.7250/csimq.2014-1.01
https://www.ingentaconnect.com/content/doaj/22559922/2014/00000001/00000001/art00001
https://www.ingentaconnect.com/content/doaj/22559922/2014/00000001/00000001/art00001
https://doi.org/10.1109/HICSS.2016.564
https://doi.org/10.1109/EDOCW.2014.43
https://doi.org/10.1109/SYSOSE.2015.7151918
https://doi.org/10.1109/SYSOSE.2015.7151918
https://doi.org/10.1109/CSMR.2013.37

Vélja et al. Cybersecurity (2020) 3:19

Caldarola EG, Picariello A, Rinaldi AM (2015) An approach to ontology
integration for ontology reuse in knowledge based digital ecosystems. In:
Proceedings of the 7th international conference on management of
computational and collective intelligence in digital ecosystems. MEDES
"15. ACM, New York. pp 1-8. https://doi.org/2857218.2857219

Cardenas AA, Roosta T, Sastry S (2009) Rethinking security properties, threat
models, and the design space in sensor networks: A case study in scada
systems. Ad Hoc Netw 7(8):1434-1447. https://doi.org/10.1016/j.adhoc.
2009.04.012 http://www.sciencedirect.com/science/article/pii/
S1570870509000468, privacy and Security in Wireless Sensor and Ad Hoc
Networks

Catak FO, Yilmaz M, Gul E (2019) Sensor based cyber attack detections in
critical infrastructures using deep learning algorithms. Comput Sci 20:213.
https://doi.org/10.7494/csci.2019.20.2.3191

Cesare S.d, Foy G, Lycett M (2016) 4d-setl. In: Proceedings of the 18th
international conference on enterprise information systems. ICEIS.
SCITEPRESS - Science and Technology Publications, Lda, Portugal.
pp 127-134. https://doi.org/10.5220/0005822501270134

Chen Y, Boehm B, Sheppard L (2007) Value driven security threat modeling
based on attack path analysis. In: 40th Annual Hawaii International
Conference on System Sciences (HICSS'07). p 280a. https://doi.org/10.
1109/HICSS.2007.601

Chhaya B, Jafer S, Proietti P, Marco BD (2019) An ontology for threat modeling
and simulation of small unmanned aerial vehicles. In: 9th International
Defense and Homeland Security Simulation Workshop, DHSS 2019.
Springer, Cham. pp 23-28

Dhillon D (2011) Developer-driven threat modeling: Lessons learned in the
trenches. IEEE Secur Priv 9(4):41-47

Ekelhart A, Fenz S, Klemen MD, Weippl ER (2006) Security ontology: Simulating
threats to corporate assets, Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). International Conference on Information Systems Security
4332:249-259. LNCS cited By :20

Ekstedt M, Johnson P, Lagerstrom R, Gorton D, Nydrén J, Shahzad K (2015)
Securi cad by foreseeti: A cad tool for enterprise cyber security
management. In: [EEE 19th International Enterprise Distributed Object
Computing Workshop. IEEE, Adelaide. pp 152-155

Falbo RA, Guizzardi G, Gangemi A, Presutti V (2013) Ontology patterns:
clarifying concepts and terminology. In: Proceedings of the 4th
international conference on ontology and semantic web patterns-volume
1188. CEUR-WS. org, Aachen. pp 14-26

Farwick M, Agreiter B, Breu R, Ryll S, Voges K, Hanschke | (2011) Requirements
for automated enterprise architecture model maintenance. In: 13th
International Conference on Enterprise Information Systems (ICEIS).
SciTePress - Science and and Technology Publications, Beijing

Farwick M, Breu R, Hauder M, Roth S, Matthes F (2013) Enterprise architecture
documentation: Empirical analysis of information sources for automation.
In: System sciences (HICSS) 2013 46th hawaii international conference on.
|IEEE, Wailea. pp 3868-3877

Florez H, Snchez M, Villalobos J (2014) iarchimate: A tool for managing
imperfection in enterprise models. In: 2014 IEEE 18th international
enterprise distributed object computing conference workshops and
demonstrations. IEEE, UIm. pp 201-210. https://doi.org/10.1109/EDOCW.
2014.38

Gangemi A, Presutti V (2009) Ontology design patterns. In: Handbook on
ontologies. Springer, Berlin. pp 221-243

Gong L, Tian Y (2020) Threat modeling for cyber range: an ontology-based
approach. Lect Notes Electr Eng 517:1055-1062

Gruber TR (1995) Toward principles for the design of ontologies used for
knowledge sharing? Int J Hum-Comput Stud 43(5):907-928. https://doi.
0rg/10.1006/ijhc.1995.1081 http://www.sciencedirect.com/science/article/
pii/S1071581985710816

Guizzardi G, Herre H, Wagner G (2003) On the general ontological foundations
of conceptual modeling. In: Spaccapietra S, March ST, Kambayashi Y (eds).
Conceptual Modeling — ER. Springer Berlin Heidelberg, Berlin, Heidelberg.
pp 65-78

Guizzardi G, Wagner G, Guarino N, van Sinderen M (2004) An ontologically
well-founded profile for uml conceptual models. In: Persson A, Stirna J
(eds). Advanced Information Systems Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg. pp 112-126

Hinkelmann K, Gerber A, Karagiannis D, Thoenssen B, Van der Merwe A,
Woitsch R (2016) A new paradigm for the continuous alignment of

Page 19 of 20

business and IT: Combining enterprise architecture modelling and
enterprise ontology. Comput Ind 79:77-86

Jarrar M, Demey J, Meersman R (2003) On using conceptual data modeling for
ontology engineering. Springer Berlin Heidelberg, Berlin, Heidelberg

Jiang R, Lu R, Wang Y, Luo J, Shen C, Shen X (2014) Energy-theft detection
issues for advanced metering infrastructure in smart grid. Tsinghua Sci
Technol 19(2):105-120. https://doi.org/10.1109/TST.2014.6787363

Johnson P, Lagerstrm R, Ekstedt M (2018) A meta language for threat
modeling and attack simulations. In: Proceedings of the 13th International
Conference on Availability, Reliability and Security - ARES 2018 the 13th
International Conference. ACM Press, Hamburg. pp 1-8

Johnson P, Lagerstrém R, Ekstedt M, Osterlind M (2014) It management with
enterprise architecture. KTH, Stockholm

Johnson P, Lagerstrom R, Narman P, Simonsson M (2007) Extended influence
diagrams for system quality analysis. J Softw 2(3):30-42

Knapp ED, Langill JT (2014) Industrial network security: securing critical
infrastructure networks for smart grid, scada, and other industrial control
systems. Syngress 2:41-84

Korman M, Vélja M, Bjorkman G, Ekstedt M, Vernotte A, Lagerstrém R (2017)
Analyzing the effectiveness of attack countermeasures in a scada system.
In: Proceedings of the 2nd Workshop on Cyber-Physical Security and
Resilience in Smart Grids. Association for Computing Machinery, New York.
pp 73-78

Kornecki AJ, Janusz Z (2015) Threat modeling for aviation computer security.
CrossTalk 28(6):21-27

Krumay B, Bernroider E, Walser R (2018) Evaluation of Cybersecurity
Management Controls and Metrics of Critical Infrastructures: A Literature
Review Considering the NIST Cybersecurity Framework: 23rd Nordic
Conference, NordSec 2018, Oslo, Norway, November 28-30, 2018.
Proceedings 11252:369-384

Lagerstrom R, Johnson P, Ekstedt M (2010) Architecture analysis of enterprise
systems modifiability: a metamodel for software change cost estimation.
Softw Qual J 18(4):437-468

Lankhorst MM, van Buuren R, van Leeuwen D, Jonkers H, ter Doest H (2004)
Enterprise architecture modelling — the issue of integration. Adv Eng
Inform 18(4):205-216

Luh R, Schrittwieser S, Marschalek S (2016) Taon: An ontology-based approach
to mitigating targeted attacks. In: ACM International conference
proceeding series. Association for Computing Machinery, New York.
pp 303-312. cited By :2

Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell
Syst 16(2):72-79. https://doi.org/10.1109/5254.920602

Maedche A, Staab S (2001) Ontology learning for the semantic web. IEEE Intell
Syst 16(2):72-79

Maedche A, Staab S (2004) Ontology learning. Springer Berlin Heidelberg,
Berlin, Heidelberg

Marback A, Do H, He K, Kondamarri S, Xu D (2013) A threat model-based
approach to security testing. Softw Pract Experience 43(2):241-258. cited
By :28

Marksteiner S, Ramler R, Sochor H (2019) Integrating threat modeling and
automated test case generation into industrialized software security
testing. In: ACM International Conference Proceeding Series. ACM Press,
New York

Moral-Garca S, Moral-Rubio S, Rosado DG, Fernndez EB, Fernndez-Medina E
(2014) Enterprise security pattern: A new type of security pattern. Secur
Commun Netw 7(11):1670-1690. cited By :7

Pan S, Morris T, Adhikari U (2015) Developing a hybrid intrusion detection
system using data mining for power systems. IEEE Trans Smart Grid
6:3104-3113. https://doi.org/10.1109/TSG.2015.2409775

Patil P, Pawar S (2012) Remote agent based automated framework for threat
modelling, vulnerability testing of soa solutions and web services. In: World
Congress on Internet Security (WorldCIS-2012). IEEE, Guelph. pp 127-131

Pei D, Zhang L, Massey D (2004) A framework for resilient internet routing
protocols. [EEE Network 18(2):5-12. cited By :17

Pinto HS, Martins JP (2004) Ontologies: How can they be built? Knowl Inf Syst
6(4):441-464. https://doi.org/10.1007/510115-003-0138-1

Pittl B, Fill HG, Honegger G (2017) Enabling risk-aware enterprise modeling
using semantic annotations and visual rules. In: European Conference on
Information Systems (ECIS), International. AlS, Guimaraes

Rahm E, Do HH (2000) Data cleaning: Problems and current approaches. IEEE
Data Eng Bull 23(4):3-13

https://doi.org/2857218.2857219
https://doi.org/10.1016/j.adhoc.2009.04.012
https://doi.org/10.1016/j.adhoc.2009.04.012
http://www.sciencedirect.com/science/article/pii/S1570870509000468
http://www.sciencedirect.com/science/article/pii/S1570870509000468
https://doi.org/10.7494/csci.2019.20.2.3191
https://doi.org/10.5220/0005822501270134
https://doi.org/10.1109/HICSS.2007.601
https://doi.org/10.1109/HICSS.2007.601
https://doi.org/10.1109/EDOCW.2014.38
https://doi.org/10.1109/EDOCW.2014.38
https://doi.org/10.1006/ijhc.1995.1081
https://doi.org/10.1006/ijhc.1995.1081
http://www.sciencedirect.com/science/article/pii/S1071581985710816
http://www.sciencedirect.com/science/article/pii/S1071581985710816
https://doi.org/10.1109/TST.2014.6787363
https://doi.org/10.1109/5254.920602
https://doi.org/10.1109/TSG.2015.2409775
https://doi.org/10.1007/s10115-003-0138-1

Vélja et al. Cybersecurity (2020) 3:19

Roth S, Hauder M, Farwick M, Breu R, Matthes F (2013) Enterprise architecture
documentation: Current practices and future directions. In:
Wirtschaftsinformatik Proceedings. AlS, Leipzig

Satnam Singh, Tu H, Allanach J, Areta J, Willett P, Krishna Pattipati (2004)
Modeling threats. IEEE Potentials 23(3):18-21

Soffer P, Hadar | (2007) Applying ontology-based rules to conceptual
modeling: a reflection on modeling decision making. Eur J Inf Syst
16(5):599-611. https://doi.org/10.1057/palgrave.ejis.3000683

Song F, Zacharewicz G, Chen D (2013) An ontology-driven framework towards
building enterprise semantic information layer. Adv Eng Inform
27(1):38-50. https://doi.org/https://doi.org/10.1016/j.aei.2012.11.003
http//www.sciencedirect.com/science/article/pii/S1474034612001048,
modeling, Extraction, and Transformation of Semantics in Computer Aided
Engineering

Steven J (2010) Threat modeling - perhaps it's time. IEEE Secur Priv 8(3):83-86.
https://doi.org/10.1109/MSP.2010.110

Torr P (2005) Demystifying the threat modeling process. IEEE Secur Priv
3(5):66-70. https://doi.org/10.1109/MSP.2005.119

Vasilecas O, Bugaite D, Trinkunas J (2006) On approach for enterprise ontology
transformation into conceptual model. In: International Conference on
Computer Systems and Technologies, CompSysTech. vol. 6. Association for
Computing Machinery, New York

Vlja M, Lagerstrm R, Franke U, Ericsson G (2019) A framework for automatic it
architecture modeling: Applying truth discovery. Complex Syst Inform
Model Q 20:20-56

Xiong W, Lagerstrm R (2019) Threat modeling a systematic literature review.
Comput Secur 84:53-69. cited By :5

Xu D, Nygard KE (2006) Threat-driven modeling and verification of secure
software using aspect-oriented petri nets. IEEE Trans Softw Eng
32(4):265-278. cited By :112

Xu D, Tu M, Sanford M, Thomas L, Woodraska D, Xu W (2012) Automated
security test generation with formal threat models. IEEE Trans Dependable
Secure Comput 9(4):526-540. https://doi.org/10.1109/TDSC.2012.24

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 20 of 20

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1057/palgrave.ejis.3000683
https://doi.org/https://doi.org/10.1016/j.aei.2012.11.003
http://www.sciencedirect.com/science/article/pii/S1474034612001048
https://doi.org/10.1109/MSP.2010.110
https://doi.org/10.1109/MSP.2005.119
https://doi.org/10.1109/TDSC.2012.24

	Abstract
	Keywords

	Introduction
	Related work
	Threat modeling
	Automated threat modeling
	Conceptual modeling
	Ontologies

	Threat modeling ontology framework
	Content patterns
	Standardization of operating system names
	Intent
	Competency questions
	Diagram
	Elements
	Creation

	Standardization of application software names
	Summary
	Intent
	Competency questions
	Diagram
	Elements
	Creation

	Classification of application software
	Summary
	Intent
	Competency questions
	Diagram
	Elements
	Creation

	Classification of vulnerabilities
	Summary
	Intent
	Competency questions
	Diagram
	Elements
	Creation

	Grouping of application software names
	Summary
	Intent
	Competency questions
	Diagram
	Elements
	Creation

	Grouping of data flows
	Summary
	Intent
	Competency questions
	Diagram
	Elements
	Creation

	Reasoning pattern
	Standardization of operating system names
	Standardization of application software names
	Classification of application software
	Classification of vulnerabilities
	Grouping of application software names
	Grouping of data flows

	Ontology framework implementation and knowledge acquisition

	Case study
	Datasets
	SCADA lab
	Water utility field devices
	CRATE lab

	Application of the framework
	Standardization of operating system names
	Standardization of application software names
	Classification of application software
	Classification of vulnerabilities
	Grouping of application software names
	Grouping of data flows

	Discussion and conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

