
RESEARCH Open Access

A lightweight cryptographic algorithm for
the transmission of images from road
environments in self-driving
Runchen Gao1,2*, Shen Li1, Yuqi Gao2 and Rui Guo1

Abstract

With the large-scale application of 5G in industrial production, the Internet of Things has become an important
technology for various industries to achieve efficiency improvement and digital transformation with the help of the
mobile edge computing. In the modern industry, the user often stores data collected by IoT devices in the cloud,
but the data at the edge of the network involves a large of the sensitive information, which increases the risk of
privacy leakage. In order to address these two challenges, we propose a security strategy in the edge computing.
Our security strategy combines the Feistel architecture and short comparable encryption based on sliding window
(SCESW). Compared to existing security strategies, our proposed security strategy guarantees its security while
significantly reducing the computational overhead. And our GRC algorithm can be successfully deployed on a
hardware platform.

Keywords: 5G, Internet of things (IoT), Mobile edge computing, Feistel architecture, SCESW, GRC algorithm

Introduction
As industry continues to grow, the conditions required
for production are becoming more and more complex,
the most important of which are stability, efficiency and
high concurrency. Currently, 5G networks are mainly
serving industrial production, and 5G networks meet the
needs of ultra-stable and large-scale machine connectiv-
ity in industrial production by supporting three business
scenarios: Enhanced mobile bandwidth (eMBB), Ultra-
reliable low latency (uRLLC), and Massive Machine
Type Communication (mMTC). Mobile edge computing
provides local big data triage, flexible routing scheduling,
efficient cloud computing and cloud mega-storage cap-
abilities, which makes it be an essential part of the In-
dustrial Internet of Things.
The reason we use mobile edge computing is because

all three scenarios in a 5G network are inextricably

linked to it. The eMBB required for high bandwidth and
high concurrency is due to the large number of end-
points that impose a greater data traffic impact on the
core network (i.e., 5G Core), with the gateway respon-
sible for data forwarding at each endpoint becoming a
bottleneck for the entire network. The local big data
triage, flexible routing, and other features provided by
mobile edge computing can effectively relieve data trans-
mission pressure on the core network. uRLLC with low
latency limit requirements that impose stringent require-
ments on the network. Technologies, such as local ser-
vice processing, content acceleration and so on,
provided by mobile edge computing significantly reduce
the transmission time of data streams in the core net-
work. mMTC is provided many resource-constrained
IoT terminals that cannot achieve high power consump-
tion for computing, storage, etc. Mobile edge computing
provides computation, storage capabilities close to IoT
terminals.
Problem of image transmission in self-driving as an

example to proposed encryption algorithm for self-

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: runchengao@stu.xupt.edu.cn
1School of Cyberspace Security, Xi’an University of Posts
&Telecommunications, Xi’an 710121, China
2School of Telecommunication and Information Engineering, Xi’an University
of Posts & Telecommunications, Xi’an 710121, China

CybersecurityGao et al. Cybersecurity (2021) 4:3
https://doi.org/10.1186/s42400-020-00066-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00066-2&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:runchengao@stu.xupt.edu.cn

driving image transmission. Fourthly, we analyze the se-
curity performance in GRC algorithm. Lastly, we prac-
tical GRC algorithm verification through self-designed
hardware platform.

Various security issues facing mobile edge
computing
Potential security vulnerabilities in edge computing envi-
ronments have an edge access level, an edge manage-
ment level, and we categorize these vulnerabilities into
multiple scenarios that can appear in the following

A. Insecure communication protocols between
terminals and remote ends: As most of the edge
nodes and massive, heterogeneous, resource-
constrained mobile devices use short-range wireless
communication technologies, and most of the edge
nodes and cloud servers use message middleware or
network virtualization technologies, most of these
protocols have insufficient security considerations.
For example, in industrial edge computing, enter-
prise and IoT edge computing scenarios, there are
numerous insecure communication protocols be-
tween sensors and edge nodes (e.g., Wi-Fi, GSM,
etc.), lack of encryption, authentication and other
measures, and easy to be eavesdropped and tam-
pered with; in telecom operator edge computing
scenarios, the wireless communication protocol be-
tween edge nodes and users is based on WPA2, and
the message middleware between cloud servers and
edge nodes is based on instant messaging protocol,
and network construction and expansion of net-
work devices at the edge is carried out through the
network Overlay control protocol, the main consid-
eration is communication performance, with insuffi-
cient consideration of the confidentiality, integrity,
authenticity and undeniability of messages.

B. Data located at edge nodes is highly vulnerable to
destruction: the lack of effective data backup,
recovery, and auditing measures due to the
infrastructure of edge computing located at the
edge of the network leads to the possibility that
attackers may modify or delete user data on edge
nodes to destroy some evidence. In the enterprise
and IoT edge computing scenarios, using the traffic
regulation scenario as an example, the edge node at
the side of the road holds video of a traffic accident
reported by a nearby vehicle, which is important
evidence for accident forensics. Criminals may
attack edge nodes to forge evidence to get out of
punishment. Furthermore, in a telecom operator
edge computing scenario, in the event that
subscriber data is lost or corrupted on the edge
node or server and there is no backup of the

corresponding subscriber data in the cloud and no
effective mechanism is provided by the edge node
to recover the data, the subscriber is forced to
accept such loss; if the above scenario occurs in an
industrial edge computing scenario, the loss or
corruption of data on the edge node will directly
affect the batch industrial production and decision-
making process.

C. Account information is vulnerable to hijacking:
account hijacking is a kind of identity theft, the
main target is generally the field equipment users,
attackers in a dishonest way to obtain equipment or
services tied to the user-specific unique identifica-
tion. Account hijacking is usually done through
phishing emails, malicious pop-ups, etc. In this way,
users often inadvertently leak their own authentica-
tion information. This is used by attackers to per-
form malicious operations such as modifying
accounts and creating new accounts. In industrial
edge computing, enterprise and IoT edge comput-
ing scenarios, users’ field devices are often directly
connected to fixed edge nodes, and the devices’ ac-
counts often use weak, easy-to-guess and hard-
coded passwords, making it easier for attackers to
disguise themselves as legitimate edge nodes to con-
duct phishing, spoofing and other operations on
users. In a telecom operator edge computing sce-
nario, where a subscriber’s end device often needs
to move between edge nodes and switch access fre-
quently, an attacker can easily intercept or illegally
obtain account information that the subscriber has
authenticated to use by compromising an edge node
that the subscriber has already passed through, or
forging a legitimate edge node.

D. False malicious edge nodes: In the edge
computing scenario, the number and type of
entities involved is large and the trust situation is
complex. Attackers may disguise malicious edge
nodes as legitimate edge nodes and trick end
users into connecting to malicious edge nodes to
covertly collect user data. In addition, edge nodes
are often placed near users, at locations such as
base stations or routers, and even at the extreme
network edges of wireless access points, making
it very difficult to provide security for them, and
physical attacks are more likely to occur. Existing
intrusion detection techniques are difficult to
detect the above attacks due to differences in
edge computing device architecture, protocols,
and service providers.

E. Insecure Application Program Interface (API): In a
cloud service environment, to facilitate user
interaction with cloud servers, a series of user
interfaces or API programming interfaces are

Gao et al. Cybersecurity (2021) 4:3 Page 2 of 11

opened that need to prevent accidental or malicious
access. In addition, third parties often develop more
value-added services based on these interfaces or
APIs, which introduces a new layer of more com-
plex APIs, with a corresponding increase in risk.
Therefore, whether in the industrial edge comput-
ing, enterprise and IoT edge computing scenarios,
or carrier edge computing scenarios, there is a need
to pay attention to interface security.

F. Advanced Persistent Threat Attack (APT): An APT
attack is a parasitic form of attack that typically
establishes a foothold in the target infrastructure
from which data is surreptitiously stolen and
security measures can be adapted to protect against
APT attacks. In an edge computing scenario, APT
attackers first look for vulnerable edge nodes and
try to attack them and hide themselves. To make
matters worse, edge nodes often have many known
and unknown vulnerabilities and suffer from
untimely synchronization with security updates in
the central cloud. Once breached, coupled with the
current edge computing environment’s inadequate
ability to detect APT attacks, the user data and
programs connected to that edge node are insecure.
What is more threatening than traditional network
APT is that in industrial edge computing, enterprise
and IoT edge computing scenarios, the default
settings of field devices and networks are simple
and mostly insecure, and edge centers cannot
provide effective mechanisms to modify these
configurations in a timely manner, making APT
attacks more susceptible and propagating, easily
spreading to a large number of field devices and
other edge nodes.

G. Less secure end-user privacy data: Edge comput-
ing migrates computing from the cloud to the
nearest end-user and directly processes and
makes decisions about the data locally, avoiding
to some extent the spread of data over long dis-
tances in the network and reducing the risk of
privacy leakage. However, because edge devices
acquire first-hand data from users, they have ac-
cess to a large amount of sensitive and private
data. For example, in a telecom operator edge
computing scenario, it is extremely easy for curi-
ous users of edge nodes to collect and snoop on
other users’ location information, service content,
frequency of usage, etc. In industrial edge com-
puting, enterprise and IoT edge computing sce-
narios, edge nodes lacking effective encryption or
desensitization measures relative to traditional
cloud centers, and any information they store
will be compromised in the event of a hacking
attack.

Edge computing security issues in self-driving
Self-driving is accomplished by the collaboration of its
supporting software and hardware, which mainly
includes heterogeneous hardware platform, system soft-
ware and application software. The heterogeneous hard-
ware platform consists of a computing unit, an AI unit
and a control unit. The computing unit is usually a
multi-core ARM chip that runs system software and ap-
plications related to self-driving. The AI unit uses GPU,
AI chip, FPGA and other parallel computing architec-
ture chips, and relies on system software for resource al-
location and scheduling to complete the AI processing
of image and LIDAR data. The flow and distribution re-
lationship of data from each terminal in self-driving is
shown in Fig. 1.

Safety issues and needs for automated driving
From the traditional car closed scenario to the open sce-
nario of automatic driving, automatic driving software
logic is complex, the amount of code, security vulner-
abilities are difficult to avoid, once attacked, is likely to
cause car damage or even more serious public safety
problems. It also faces a broad, new type of attack win-
dow, which mainly includes.

(a) Physical attack window: contact-based attacks via
physical interfaces such as USB and Ethernet.

(b) Proximity attack window: non-contact attacks
through proximity communications such as Wi-Fi
and Bluetooth.

(c) Remote attack window: non-contact attacks via 5G,
GNSS, etc. communication or navigation.

Data acquisition on road conditions in self-driving
In automated driving, the data of the road ahead is
mainly acquired through LIDAR point cloud data or
through millimeter wave radar. Echoes collected data,
but after both types of data acquisition, the first thing
that happens is that the chip converts the collected data
into images, into After completion, it enters the AI unit
for target recognition and decision making by the upper
control system. If an intruder destroys the picture data
during this process, it can directly threaten the safety of
the traffic, and for such a phenomenon, we propose a
image encryption algorithm in an self-driving scenario
to deal with the above problem. Security and compari-
son complexity of this scheme in the phase of encryption
is O(log(m2)log

3p).

GRC algorithm design
The GRC algorithm proposed in this paper is for simple
structural algorithms that can be implemented in low-
power devices in an IoT environment. Popular ciphers
include a series of SF (Ebrahim and Chong 2013) and

Gao et al. Cybersecurity (2021) 4:3 Page 3 of 11

DES (Coppersmith 1994) ciphers, and they all have in
common the use of the feistel architecture. One of the
main advantages of using the feistel architecture is that
the encryption and decryption operations are almost
identical. The algorithm proposed in this paper is a hy-
brid approach based on feistel and SCESW. SCESW is a
combination of short comparable encryption (SCE) The
scheme is combined with a new algorithm with win-
dowing technology. Since the original comparative en-
cryption scheme has a large storage and computational
overhead, the new scheme can make the storage and
computation of the encryption algorithm securely.
Overhead and computational overhead are reduced,
resulting in increased efficiency. The logarithm of the
sliding window method used in this paper no longer
distinguishes between zero and non-zero windows, but
instead opens them uniformly, so that each window size
equivalence. The disadvantage of symmetric cryptog-
raphy is that both parties to the transaction use the
same key, which does not guarantee security. In
addition, each time a pair of users uses the symmetric
encryption algorithm, they need to use a unique key
that is not known to the others, which makes it difficult
to send and receive messages. The number of keys
owned by both sides has increased geometrically and
key management has become a burden on users. Sym-
metric cryptographic algorithms are more difficult to
use on distributed network systems, mainly because of
the difficulty of key management and the high cost of
use. In contrast to public key encryption algorithms,
symmetric encryption algorithms provide encryption

and authentication but lacking signature capabilities,
making the use of the range is reduced. In symmetric
key algorithms, the encryption process consists of
cryptographic rounds, each of which is based on some
mathematical function to generate obfuscation and dif-
fusion. The increase in the number of rounds ensures
better security, but ultimately leads to an increase in
the consumption of bound energy (Chandramouli et al.
2006). The algorithm utilizes a feistel network of alter-
native diffusion functions to drastically reduce the
number of cryptographic rounds of the system. There-
fore, the GRC algorithm is designed using the charac-
teristics of the above two methods. It presents
substantial security in the IoT environment while keep-
ing the computational complexity at a moderate level.
The GRC scheme consists of five algorithms: parameter

generation G, data chunking P, label generation D and Al-
gorithm E for secret message generation and Algorithm C
for secret message comparison. (Meng et al. 2018)
Before specifying the GRC scheme, a definition of the

symbols used in the GRC scheme is given in Table 1.

Algorithm G
Given safety parameters k∈N and range parameter n∈N .
Algorithm output public parameter para and main key
key as shown in Eq. (1).

G k; nð Þ ¼ para; keyð Þ ð1Þ

The para in Eq. (1) is para = (n1,H1,H2,H3) and select
H1, H2, H3 satisfies the condition {0, 1}h × {0, 1}∗→ {0,

Fig. 1 Software & Hardware in self-driving

Gao et al. Cybersecurity (2021) 4:3 Page 4 of 11

1}k. In this paper, we take a 64-bit block cipher example.
After specific operations are performed on a specific key
given by the user to cause obfuscation and proliferation,
the specific key will generate five unique keys. And en-
cryption or decryption shall be used these keys. The
process of the key is shown in Fig. 2.
Next, we explain the individual steps in Fig. 2

� First, we divided the 64-bit user-given main key
(key) equally into multiple 4-bit parts.

� Second, we obtain the f-function we need by initial
substitution of 16-bit of data made up of four 4-bit
data at the same location as the previous quadratic
part. The results obtained are shown in Eq. (2).

key ið Þa ¼ ∥4
j¼1key4 j − 1ð Þþi ð2Þ

� Third, we get key(i)b by every 16-bit data segments
transform from f-function. The results obtained are
shown in Eq. (3).

key ið Þb ¼ f key ið Það Þ ð3Þ

� Together, the P and Q tables form the f-function. It
is because these tables perform linear and nonlinear
transformations that the obfuscation and diffusion
processes in symmetric encryption are completed, as
shown in Fig. 3. And P and Q tables are shown in
Tables 2 and 3.

� Fourth, the key keyi(i = 1, 2, 3, 4) output from last
step as four 4 × 4 matrix are shown in Eqs.
(4)(5)(6)(7) below:

key1 ¼ key1a jð Þ ð4Þ
key2 ¼ key2b jð Þ ð5Þ
key3 ¼ key3c jð Þ ð6Þ
key4 ¼ key4d jð Þ ð7Þ

where j = 1 to 16.

� Fifth, we want to obtain round key in symmetric
encryption, last step four matrix will transformed to
16 bits data are called ki(i = 1, 2, 3, 4) shown in Eqs.
(8)(9)(10)(11) below:

k1 ¼ a4#a3#a2#a1#a5#a6#a7#a8#a9
#a10#a11#a12#a13#a14#a15#a16

ð8Þ

k2 ¼ b1#b5#b9#b13#b14#b10#b6#b2#b3
#b7#b11#b15#b16#b12#b8#b4

ð9Þ

k3 ¼ c1#c2#c3#c4#c8#c7#c6#c5#c9#c10
#c11#c12#c16#c15#c14#c13

ð10Þ

k4 ¼ d13#d9#d5#d1#d2#d6#d10#d14#d15
#d11#d7#d3#d4#d8#d12#d16

ð11Þ

� End, we obtain final round key k5 by XOR operation
k1 to k4 as shown in Eq. (12).

k5 ¼ k1⊕k2⊕k3⊕k4 ð12Þ

Algorithm P
num = (b0, b1,…bn − 1); bi ∈ {0, 1} is a binary representa-
tion of the given number, the output value after count-
ing the open window is num ¼ ðB0…;Bm − 1Þ; nm ¼ t .

Algorithm D
Given the public parameters para, the main key key and
the number num, the algorithm outputs the label token
as shown in Eq. (13).

token ¼ D para; key; numð Þ ð13Þ
The label token consists of di like token = (d1, d2,…,

dm),the di is as shown in Eq. (14)

Table 1 Definition of the symbols used in the GRC scheme

Symbol Definition

H1 Hash1 Function

H2 Hash2 Function

H3 Hash3 Function

H Hash Function

key Main Key

I k bits Random Number

n numerical length

h Number of Hash Functions

m Number of windows

para Output Parameters

⊕ XOR

⊙ XNOR

∥ Connections

Gao et al. Cybersecurity (2021) 4:3 Page 5 of 11

di ¼ H1 key;Bm;Bm − 1;…;Bið Þ; i ¼ 1; 2;…;mdi
¼ H1 key;Bm;Bm − 1;…;Bið Þ; i ¼ 1; 2;…;m ð14Þ

Algorithm E
Given the public parameter para, the master key key and
the number num. Algorithm E is random to generate
I ∈ {0, 1}k and label ken = (d1,…, dm), generate fi accord-
ing to Eq. (15), output a secret message ciph = (I, (f0, f1,
…, fm − 1)). In order to make the secret message length

shorter, (f0, f1,…, fm − 1) convert to integer F ¼ Pm − 1
i¼0 f i

ð2ðtþ1Þ − 1Þi to save.

f i ¼ H1 diþ1; Ið Þ þ H2 key; di þ 1ð Þ
þ BiMod 2 tþ1ð Þ

� �
ð15Þ

Then, to create confusion and diffusion during sym-
metric encryption, this process consists of a number of
logical operations, left shifts, swaps and substitutions,
and the process shown in Fig. 4.
The Roi, j in Fig. 4 is

Roi; j ¼
Pxi; j⊙Ki; j ¼ 1 and 4

Pxi; jþ1⊕E f li ;
Pxi; j − 1⊕E f ri ; j ¼ 3

j ¼ 2

8
<

:

The final cipher text(ciph) is shown in Eq. (16).

Fig. 2 Process of the key

Gao et al. Cybersecurity (2021) 4:3 Page 6 of 11

ciph ¼ R51#R52#R53#R54 ð16Þ

Algorithm C
Given the public parameter param, the secret messages
ciph, ciph∗ and the label corresponding to one of the se-
cret messages token the output of the algorithm as
shown in Eq. (17).

Cmp ¼
− 1; num > num�

0; num ¼ num�

1; nnm < num�

8
<

:
ð17Þ

The parameter generation algorithm is used to gener-
ate the public parameters para and master key key used
in the next steps. The label generation algorithm is used
to generate the label token associated with the number
m∗ . The token∗ is similar to this process. The secret
message generation algorithm is mainly used to generate
the secret message ciph associated with the number
num, where the number num∗ is generated by the The
ciphertext ciph∗ is similar to this process. The crypto-
graphic comparison algorithm mainly uses the previ-
ously generated cryptographic data and the label
associated with one of the numbers to perform the com-
parison. Finally, we determine the difference between
the first different windows of the pair of secret ciph and
ciph∗ .

Security analysis
The plaintext that the user needs to transmit is
encrypted with a key to obtain a secret message that can
be transmitted securely. An attacker intercepts the secret
message on the data link and attempts to recover the

plaintext by cracking the key. If an adversary is able to
decrypt the key, the message is considered to be cracked.
If the attacker is sometimes able to decrypt the secret
message but is unsure of the key content, the secret
message is said to be partially cracked. We assume that
the attacker is able to fully intercept the encrypted secret
message transmitted over the data link, and that the at-
tacker may also have some additional information, but
to assess the security of the secret message, the at-
tacker’s ability to crack the computation must also be
taken into account. Since the GRC algorithm is an inte-
grated algorithm that combines the feistel architecture
and the SCESW scheme, it can be used by Conclusions
are drawn from the previously existing security analyses.
In the following, the existing security analyses for both
components are reviewed and their relevance to the pro-
posed algorithm is discussed.

Weak Indistinguishability
The SCESW scheme satisfies weak indistinguishability if
the H1, H2, H3 functions are pseudo-random functions
(Meng et al. 2018).
It is assumed that there is a polynomial time. After ad-

versary Alice inquires, AdvkC;A≔j PrðExpkC;A ¼ 0Þ − Prð
ExpkC;A ¼ 1Þj is not negligible for k in the weakly distin-

guishable game. Therefore, it can be expressed as j Prð
ExpkC;A ¼ 0Þ − PrðExpkC;A ¼ 1Þj≥ε, and H1, H2, H3 can be
distinguished from the random function. This contra-
dicts the premise of this article and assumes that H1, H2,
H3 are pseudo-random functions.

Interpolation attacks
The interpolation attack relies on the simple structure of
the cipher component, which may yield a reasonable ex-
pression with convenient complexity. The S-box and dif-
fusion layer expression of the proposed algorithm makes
this type of attack infeasible. (Muhammad and Irfan 2017)

Weak keys
Nonlinear operations depend on the actual key value of
the cipher to map out block ciphers with detectable
weaknesses. This occurs in (Daemen 1995). However,
the proposed algorithm does not use the actual key in
the cipher, but rather XORed it before feeding it to the
f-function. In the f-function, all the non-linearity is fixed
and there is no restriction on the selection of the key.

Fig. 3 f-function

Table 2 P Table

keyi 0 1 2 3 4 5 6 7 8 9 A B C D E F

P(keyi) 7 5 A F D 1 9 0 C 6 2 E 8 4 B 3

Table 3 Q Table

keyi 0 1 2 3 4 5 6 7 8 9 A B C D E F

Q(keyi) 5 8 A 7 C 0 B 3 1 E 2 6 4 F 9 D

Gao et al. Cybersecurity (2021) 4:3 Page 7 of 11

Fig. 4 Encryption Process

Gao et al. Cybersecurity (2021) 4:3 Page 8 of 11

Cryptanalysis
In the SCESW scheme, the data is generated with the H
function and the master key key. If the master key key is
not disclosed to an unauthorized user, then the
unauthorized user cannot get the data from the H func-
tion only through the tag information and the secret
message. Access to sensitive information in the original
plaintext.

Related keys
The attacker can complete the operation of attacking the
user by performing decryption operations using unknown
or partially previously known keys. Related key attacks
mainly rely on the slow diffusion or symmetry in the key
expansion block. The key expansion process of the GRC
algorithm is designed to quickly and nonlinearly diffuse
the difference of cipher keys to round keys.

Table 4 Different Algorithm Implementations

CIPHER DEVICE Block Size Key Size Code Size RAM (Byte) Cycles (enc) Cycles (dec)

AES (Poettering 2013) AVR 64 128 1570 – 2739 3579

HIGHT (Eisenbarth et al. 2012) AVR 64 128 5672 – 2964 2964

IDEA (CEisenbarth et al. 2012) AVR 64 80 596 – 2700 15,393

KATAN (Eisenbarth et al. 2012) AVR 64 80 338 18 72,063 88,525

KLEIN (Eisenbarth et al. 2012) AVR 64 80 1268 18 6095 7658

PRESENT (Eisenbarth et al. 2012) AVR 64 128 1000 18 11,342 13,599

TEA (Eisenbarth et al. 2012) AVR 64 128 648 24 7408 7539

PRINCE (Koo et al. 2008) AVR 64 128 1574 24 3253 3293

SKIPJACK (Eisenbarth et al. 2007) Power TOSSIM 64 80 5230 328 17,390 –

RC5 (Eisenbarth et al. 2007) Power TOSSIM 64 128 3288 72 70,700 –

GRC Zynq-7000 64 64 826 30,516 2568 2972

Fig. 5 Process of Images

Gao et al. Cybersecurity (2021) 4:3 Page 9 of 11

Performance analysis
We performed our GRC algorithm simulation using
MATLAB on a computer with an Intel Core i7–

7700@2.8Ghz processor. In order to make our GRC al-
gorithm meaningful, we performed it on the Xilinx
VIVADO platform on the FPGA algorithm design and
simulation, and after all this was verified successfully, we
ported the GRC algorithm to Xilinx. Real-world valid-
ation on the Zynq-7000 platform with no failures in op-
eration. It is found that the GRC algorithm takes only
0.002 milliseconds to encrypt on Zynq-7000, which cor-
responds to the following With a decryption time of
0.003 milliseconds, the Zynq-7000 platform takes up
only about 30 kilobytes memory size in the process. Fi-
nally, we compared the GRC algorithm with other algo-
rithms deployed on the hardware platform and the
results are shown in the Table 4 below, we can clearly
see that the GRC algorithm we have designed greatly re-
duces the number of encryption and decryption rounds
compared to other algorithms, while enhancing security.
The results in Fig. 5 show that accurate decryption of

an image is only possible if the correct key is used to de-
crypt the image, otherwise the image will still not Iden-
tify. Further in the histogram results of the original and
encrypted images in Fig. 6 the uniform distribution of
the encrypted intensity is a representation of the desired
safety. A maximum entropy of 8 bits can be achieved for
the grayscale images. As can be seen from the results in
Table 5, the entropy of all encrypted images is close to
the maximum value, depicting a property of the algo-
rithm. The final correlation in Fig. 7 illustrates the com-
parison between the raw and encrypted data. The raw
data, which in our case is an image, can be seen to be
highly correlated and leaves a high value of the correl-
ation coefficient. And the encrypted images have little to
no correlation.

Conclusion
In this highly prosperous era of information technology,
the Internet of Things has been integrated into our daily
lives. Numerous devices are constantly communicating
with each other, and there are bound to be problems
with the secure transmission of information during the
communication process.
To this end, this paper proposes a new safety algo-

rithm, named GRC, using automated driving as an ex-
ample. We have implemented this algorithm on different
hardware platforms, thus making it an optional solution
for IoT applications. Next, we are interested in

Fig. 6 Histogram Results

Table 5 Result for Correlation and Entropy

Image Size Correlation Entropy

Original Encrypted Original Encrypted

Scene 1 512*512 0.9165 0.0016 7.0106 7.9981

Scene 2 512*512 0.8158 0.0023 7.2516 7.9985

Scene 3 512*512 0.9021 0.0018 7.4329 7.9979

Gao et al. Cybersecurity (2021) 4:3 Page 10 of 11

performing a detailed performance evaluation of this al-
gorithm in more scenarios to address the multiple pos-
sible future attacks.

Authors’ contributions
The algorithm design and writing of the manuscript was completed by
Runchen Gao. The contribution of Shen Li was his reasonable analysis of
algorithm and the solution of the problems during algorithm was done by
Rui Guo. Yuqi Gao verified the integrity of algorithm, completed flow charts
and typeset our manuscript. The author(s) read and approved the final
manuscript.

Funding
This work was supported by the National Natural Science Foundation of
China under Grant 61802303, 61772418 and 61602378, the Key Research and
Development Program of Shaanxi under Grant 2020ZDLGY08-04 and
2019KW-053, the Innovation Capability Support Program in Shaanxi Province
of China under Grant 2020KJXX-052 and 2017KJXX-47, the Natural Science
Basic Research Plan in Shaanxi Province of China under Grant 2019JQ- 866,
2018JZ6001 and 2016JM6033, the Research Program of Education Bureau of
Shaanxi Province under Grant 19JK0803, the New Star Team of Xi’an Univer-
sity of Posts and Telecommunications under Grant 2016-02.

Availability of data and materials
Not applicable.

Competing interests
Peace and Love.

Received: 21 August 2020 Accepted: 15 December 2020

References
Chandramouli R, Bapatla S, Subbalakshmi K, Uma R (2006) Battery power-aware

encryption. ACM Trans Inf Syst Security (TISSEC) 9(2):162–180. https://doi.org/
10.1145/1151414.1151417

Eisenbarth T. et al. (2012) Compact Implementation and Performance Evaluation
of Block Ciphers in ATtiny Devices. In: Mitrokotsa A., Vaudenay S. (eds)
Progress in Cryptology - AFRICACRYPT 2012. AFRICACRYPT 2012. Lecture
Notes in Computer Science, vol 7374. Springer, Berlin. https://doi.org/10.
1007/978-3-642-31410-0_11

Coppersmith D (1994) The data encryption standard (DES) and its strength
against attacks. IBM J Res Dev 38(3):243–250. https://doi.org/10.1147/rd.
383.0243

Daemen J (1995) Cipher and hash function design strategies based on linear and
differential cryptanalysis. In: Ph.D. dissertation, Doctoral Dissertation, March
1995, KU Leuven

Ebrahim M, Chong CW (2013) Secure Force: A low-complexity cryptographic
algorithm for Wireless Sensor Network (WSN). In: 2013 IEEE International
Conference on Control System, Computing and Engineering, Mindeb, pp
557–562. https://doi.org/10.1007/978-3-642-31410-0_11

Eisenbarth T, Kumar S, Paar C, Poschmann A, Uhsadel L (2007) A survey of
lightweight-cryptography implementations. IEEE Design Test Comput 24(6):
522–533. https://doi.org/10.1109/MDT.2007.178

Koo WK, Lee H, Kim YH, Lee DH (2008) Implementation and Analysis of New
Lightweight Cryptographic Algorithm Suitable for Wireless Sensor Networks.
In: 2008 International conference on information security and assurance (isa
2008), Busan, pp 73–76. https://doi.org/10.1109/ISA.2008.53

Meng Q, Ma J, Chen K, Miao Y (2018) J Commun 39(4):167–175
Muhammad U, Irfan AM (2017) Imran. Int J Adv Computr Sci Appl 8(1):402–411
Poettering B (2013) Rijndaelfurious aes-128 implementation for avr devices (2007)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Fig. 7 Correlation Results

Gao et al. Cybersecurity (2021) 4:3 Page 11 of 11

https://doi.org/10.1145/1151414.1151417
https://doi.org/10.1145/1151414.1151417
https://doi.org/10.1007/978-3-642-31410-0_11
https://doi.org/10.1007/978-3-642-31410-0_11
https://doi.org/10.1147/rd.383.0243
https://doi.org/10.1147/rd.383.0243
https://doi.org/10.1007/978-3-642-31410-0_11
https://doi.org/10.1109/MDT.2007.178
https://doi.org/10.1109/ISA.2008.53

	Abstract
	Introduction
	Various security issues facing mobile edge computing
	Edge computing security issues in self-driving
	Safety issues and needs for automated driving
	Data acquisition on road conditions in self-driving

	GRC algorithm design
	Algorithm G
	Algorithm P
	Algorithm D
	Algorithm E
	Algorithm C

	Security analysis
	Weak Indistinguishability
	Interpolation attacks
	Weak keys
	Cryptanalysis
	Related keys

	Performance analysis
	Conclusion
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

