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Abstract

The advent of CUDA-enabled GPU makes it possible to provide cloud applications with high-performance data
security services. Unfortunately, recent studies have shown that GPU-based applications are also susceptible to
side-channel attacks. These published work studied the side-channel vulnerabilities of GPU-based AES
implementations by taking the advantage of the cache sharing among multiple threads or high parallelism of GPUs.
Therefore, for GPU-based bitsliced cryptographic implementations, which are immune to the cache-based attacks
referred to above, only a power analysis method based on the high-parallelism of GPUs may be effective. However,
the leakage model used in the power analysis is not efficient at all in practice. In light of this, we investigate
electro-magnetic (EM) side-channel vulnerabilities of a GPU-based bitsliced AES implementation from the perspective
of bit-level parallelism and thread-level parallelism in order to make the best of the localization effect of EM leakage
with parallelism. Specifically, we propose efficient multi-bit and multi-thread combinational analysis techniques based
on the intrinsic properties of bitsliced ciphers and the effect of multi-thread parallelism of GPUs, respectively. The
experimental result shows that the proposed combinational analysis methods perform better than
non-combinational and intuitive ones. Our research suggests that multi-thread leakages can be used to improve
attacks if the multi-thread leakages are not synchronous in the time domain.

Keywords: GPU-based cryptographic implementations, Side-channel analysis (SCA), Electro-magnetic attacks (EMA),
Micro-architectural vulnerabilities, Combinational analysis

Introduction
Nowadays as the most widely used parallel computing
platform, Graphics Processing Unit (GPU) has evolved
from a special hardware for graphics rendering into a
general-purpose computing device for various applica-
tions as biomedical analysis, signal processing, scien-
tific computing and so on. GPU executes program in a
Single-Instruction, Multiple-Thread (SIMT) fashion, so it
is well suited for cryptographic applications deployed in
cloud computing environment to provide the Security-
as-a-Service (SECaaS). Unfortunately, GPU-based appli-
cations are vulnerable to many known attacks as pro-
posed in Di et al. (2016); Naghibijouybari et al. (2018);
Jiang et al. (2016). Among those published vulnerabilities
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of GPUs, side-channel vulnerabilities are the most seri-
ous ones due to their non-invasiveness to target devices.
In recent years, the study on the side-channel attacks
against cryptographic implementations have always been
a research hotspot of cryptanalysis beyond algebraic
analysis methods. As the most popular block cipher,
AES has been widely deployed on a variety of hard-
ware platforms. The side-channel attacks against CPU-
based AES software implementations and FPGA-based
hardware implementations have been deeply investigated.
Until very recently, some literatures mentioned that GPU-
based cryptographic implementations are also susceptible
to side-channel attacks through electro-magnetic (EM)
emanation (Gao et al. 2018; Gao et al. 2018), power con-
sumption (Luo et al. 2015) or execution time leakages
(Jiang et al. 2016; 2017). Thanks to the bitsliced cipher
proposed by Biham Biham (1997) as well as the efficient
GPU-based bitsliced AES implementations proposed by
Lim et al. Lim et al. (2016) and Nishikawa et al. Nishikawa
et al. (2017), we are capable of deploying GPU-based AES
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cryptosystems that are resistant to cache-timing attacks
(Jiang et al. 2016; 2017) and cache-based EM attacks
(Gao et al. 2018; Gao et al. 2018). However, it does not
mean that GPU-based AES implementation is not vulner-
able to other side-channel attacks, for example the power
analysis attack proposed in (Luo et al. 2015), though it is
not efficient at all in practice. In light of this, we study
more efficient side-channel attacks against a GPU-based
bitsliced AES implementation in order to give a deeper
insight into the side-channel vulnerabilities of GPU-based
cryptographic implementations in the perspective of
parallelism.

Related work
Luo et al. proposed the first power analysis attack against a
GPU-based AES implementation in (Luo et al. 2015). They
inserted a resistor in series with power supply in order to
measure the power consumption of GPU card. They tar-
geted aT-table-based GPUAES implementation and built
a simplified leakage model to avoid the synchronization
of power traces in the time domain. They employed cor-
relation power analysis (CPA) to recover 16-byte secret
key of AES with 160,000 power traces. Their attack is
performed in a chosen-thread mode, which requires the
adversary be capable of encrypting the same plaintexts for
all block threads. In fact, it is almost impossible to con-
duct side-channel attacks successfully in known-plaintext
or highly-occupied scenarios against GPU-based crypto-
graphic implementations. After that Jiang et al. proposed
two cache-based timing attacks against T-table-based
GPU AES implementation based on the time differences
induced by L1 cache line access serialization (Jiang et
al. 2016) and shared memory bank conflict (Jiang et al.
2017). They recovered the 16-byte secret key of a GPU-
based AES implementation by correlation timing anal-
ysis and differential timing analysis, respectively. Very
recently, Gao et al. proposed electro-magnetic analysis
attacks against a GPU-based AES implementation based
on the cache line access coalescing (Gao et al. 2018; Gao
et al. 2018), which are proved to be much efficient.

Contributions
To the best of our knowledge, this is the first work
that investigates EM side-channel vulnerabilities of GPU-
based bitsliced cryptographic implementation in the per-
spective of both bit-level parallelism and thread-level
parallelism. The contributions are as follows:
First, we study the vulnerabilities of bit-level paral-

lelism in a GPU-based bitsliced AES implementation.
With the help of a multi-bit EM leakage features extracted
from non-profiled t-test, we construct two special multi-
bit combinational analysis methods, namely multi-bit
feature combinational analysis and multi-bit decision
combinational analysis, which take the full advantage of

the bit-level parallelism of bitsliced ciphers and are exper-
imentally proved to be more efficient than traditional
single-bit CEMA.
Second, we also study the vulnerabilities of thread-level

parallelism in the same AES implementation referred to
above. In the study, a profiled correlation-based leak-
age detection test is employed to extract a multi-thread
EM leakage feature, which is later used to construct spe-
cial multi-thread combinational analysis methods. The
proposedmethodsmake the best of the thread-level paral-
lelism of GPUs and our experimental result shows that the
proposed combinational methods outperform traditional
non-combinational ones.

Organization
The rest of this paper is organized as follows. In
“Preliminary” section, we give a brief introduction
of CUDA-enabled GPUs, a GPU-based bitsliced AES
implementation, and definitions and notations involved
in this paper. In “EM measurement” section, we present
special techniques for leakage acquisition and preprocess-
ing. In “The vulnerabilities of bit-level parallelism” and
“The vulnerabilities of thread-level parallelism” sections,
we investigate the side-channel vulnerabilities of bit-level
parallelism and thread-level parallelism of the GPU-based
bitsliced AES implementation, respectively. Finally, con-
clusions are given in “Conclusions” section.

Preliminary
In this section, we give a brief introduction to the architec-
ture of CUDA-enabled GPUs, the features of GPU-based
bitsliced AES implementation as well as the definitions
and notations involved in this paper.

CUDA-enabled GPU
Compute Unified Device Architecture (CUDA) is a
general-purpose parallel computing framework and pro-
gramming model developed by NVIDIA for its GPUs. In
a physical view, the CUDA-enabled GPU is composed of
M× Streaming Multiprocessors (SM) and a global mem-
ory. Each SM has N× Scalar Processor (SP), a shared
memory, several 32-bit registers, and a shared instruction
unit. In an abstract view, CUDA defines the threading
model, calling conventions and memory hierarchy for
programmers.
Warps are the basic unit of execution in an SM. When

you launch a grid of thread blocks, the thread blocks in
the gird are distributed among SMs. Once a thread block
is scheduled to an SM, threads in the thread block are
further partitioned into warps. A warp consists of 32 con-
secutive threads and all threads in a warp are executed in
SIMT fashion; that is, all threads execute the same instruc-
tion, and each thread carries out that operation on its own
private data.
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GPU-based bitsliced AES implementation
The terminology bitsliced cipher was first proposed by
Biham Biham et al. (1998) referring to the AES can-
didate Serpent. Precisely speaking, bitsliced cipher is a
concept about cryptographic implementation instead of
cryptographic algorithm or scheme itself.
The AES implementation of bitsliced version could pro-

cess more than one 128-bit plaintext in a parallel fashion.
The parallelism is determined by the word-length of a pro-
cessor. For 32-bit processors, 32 128-bit plaintexts can be
encrypted in parallel, which is also mentioned as bit-level
parallelism. The first step of a bitsliced AES implementa-
tion is to transpose multiple plaintexts by bit in order to
adapt bitsliced execution fashion. As showed in Fig. 1, 32
128-bit plaintexts are arranged by row, and each plaintext
is written to or read from four 32-bit registers within GPU.
The 32×128 matrix is transposed before the first round
encryption, and the inverse transposition is performed
after the final round encryption. Obviously, only one
forward transposition and one inverse transposition are
needed to finish one bitsliced AES encryption on a single
GPU thread. For multiple thread executions on GPU, each
thread executes the above process independently, which
is also referred to as thread-level parallelism. In a word,
GPU-based bitsliced AES implementation achieves paral-
lelism in two dimensions, namely bit-level parallelism and
thread-level parallelism.

Definitions and notations
Definition 1 For a bitsliced AES implementation on a

32-bit processor, 32 16-byte standard AES state is mapped

as Fig. 1 to an (8 × 16)-sized matrix:

⎛
⎜⎜⎜⎜⎜⎝

W 1
0 W 2

0 W 3
0 · · · W 16

0
W 1

1 W 2
1 W 3

1 · · · W 16
1

W 1
2 W 2

2 W 3
2 · · · W 16

2
...

...
...

. . .
...

W 1
7 W 2

7 W 3
7 · · · W 16

7

⎞
⎟⎟⎟⎟⎟⎠

(1)

where Wj
i is a 32-bit value. The matrix is called bitsliced

AES state, which is opposite to standard AES state. In
addition, each bit of Wj

i is also called one slice.

Definition 2 For a side-channel attack to a multi-
thread cryptographic implementation, if an attacker is
able to choose the same random plaintexts for some
threads and collect the corresponding ciphertexts and side-
channel leakages, then the attack is called Chosen-Thread
Side-Channel Attack (CTSCA). Please note that attack-
ers cannot choose specific plaintext for any thread in
CTSCA mode, which is different from chosen-plaintext
side-channel attack.

Definition 3 For a CTSCA to an (m×n)-thread par-
allel cryptographic implementation, if an attacker is able
to assign the same random plaintext to every consecu-
tivem threads, the CTSCA is called n-group multi-thread
CTSCA or TnG CTSCA for short, and the chosen-thread
encryption is called n-group multi-thread encryption or
TnG encryption for short.

Fig. 1 Transposition in bitsliced AES implementation. On the left side, it shows the normal byte ordering of 32 128-bit plaintext block layout in
registers. On the right side, it is the bit-oriented transposed bitsliced ordering layout in registers. The transformation from the left to the right and
the reverse are made only once at the beginning of encryption and at the end of encryption, respectively
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Definition 4 For a side-channel attack to a bitsliced
cipher implemented on anm×n-bit word-length processor,
if an attacker is able to give the same plaintext for every
consecutive m slices, the attack is called n-group multi-
slice CSSCA or SnG CSSCA for short, and the chosen-slice
encryption is called n-group multi-slice encryption or SnG
encryption for short.

Notations.

In this paper, · and � denote quantifier all and any,
respectively. For example, if M is a 5 × 10 matrix, then
M[ 2, ·] denotes the 10 elements of the second row of the
M, which is also a 10-dimensional vector, and M[ �, 3]
denotes any one of the 5 elements in the third column
of the M, which is also regarded as a set composed of 5
elements.
Bitj(R): the function outputs the j-th bit of each com-

ponent of R in its original format. For example, if R =
[ 0x10010101, 0x01011101], then Bit1(R) =[ 0x1, 0x1]
and Bit4(R) =[ 0x0, 0x1].

EMmeasurement
Electro-magnetic emanation around electronic devices
can be captured without any difficulties, but it is not so
easy to measure useful signals. Compared with power
analysis, EM analysis enables us to take the advantage of
localization effects, which makes EM attacks more effi-
cient than power analysis attacks. We use two small mag-
netic probes Rohde Schwarz RF B 3-3 and Rohde Schwarz
RS H 2.5-2 instead of larger ones in order to probe local-
ized leakages from near-field emanation (Agrawal et al.
2002). Theoretically, the region located less than 1/2π of
wavelength away from the source is called near-field. All
our probings in this work are conducted in this region.

Set-ups The testbed in this work is set up with the fol-
lowing configurations:

- We target an NVIDIA’s GeForce GT 620 graphics
card connected to the host with PCI-e bus. Though
the device is of low performance, it is enough to show
the vulnerability of NVIDIA’s GPU to EM attacks.
Specifically, the device has one streaming
multiprocessor of 48 SPs, an L2 cache of 64KiB, and it
is equipped with an off-chip device memory of
454MiB. The device is running at 1.27GiHz.

- We port a bitsliced AES implementation of an open
source community (Patrick) into the GPU. Since it is
a table-free implementation, we do not need to
consider the efficiency of table look-up with respect
to different types of memory. The device memory in
our GPU is used to store the plaintexts to be
encrypted as well as the ciphertexts to be produced.

- We employ an Agilent DSO9104A digital
oscilloscope, which is capable of measuring signals
with a sampling rate up to 20GHz (20GSa/s). We set
our sampling rate as 200MSa/s, which turns out to be
enough for our experiments.

Our testbed is set up in a client/server mode which
is widely used for internet applications. Specifically, in
cloud computing environment, cloud devices that pro-
vide SECaaSwork as servers, and inside attackers (Duncan
et al. 2015) are authorized to encrypt any plaintexts P-s
then obtain the corresponding ciphertexts C-s and mea-
sured EM traces T -s. With a sufficient number of triples
〈P , C,T 〉, the attackers attempt to recover the preset
secret key of our GPU bitsliced AES implementation.

Locate Signals A printed circuit board such as GPU card
is usually composed of hundreds of electronic compo-
nents like chips, resistors, capacitors, inductors and so
on. However, it is not necessary to check all of them to
locate target signals. Generally speaking, only the right
above of GPU chip and the capacitors on the back of
GPU chip should be checked, because these positions
or components tend to produce useful leakages, which
is also confirmed afterwards in our experiments. More
specifically, we start up the CUDA program and run the
encryption procedure in a loop. We adjust EM probe on
the candidate components within their near-field zones
until we find a position in which the oscilloscope captures
a periodic signal. If some patterns within the signal repeat
nine to ten times, leakage positions are found. A repeated
signal in our experiments is showed in Fig. 2. We call it
target signal.

Collect Signals Although the target signal is identified,
it is still not easy to capture it without external triggers.
In fact, it is impractical to provide an external trigger
controlled within program, so we design a delicate trig-
ger with another magnetic probe. As shown in Fig. 2,
two signals measured at different probing positions look
similar, and the amplitude in the upper one is basically
less than that in the lower one. However, the two signals
share a signal pattern of the same high voltage marked
as Trigger A and Trigger B, so the more significant dif-
ference between Trigger signal and other signals in the
upper channel makes Trigger A a better choice to work as
a trigger to capture target signal.

Align Signals Nowwe havemeasured almost aligned EM
traces with our delicate trigger, but it is still not enough
to perform a successful attack. More accurate trace align-
ment techniques are necessary. By zooming in the first
round encryption of the lower signal in Fig. 2, more details
of the first round encryption are showed in Fig. 3. First
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Fig. 2 Overall EM measurement of our GPU-based bitsliced AES implementation

of all, we observe the special patterns on the signal and
find a two-trough (C in Fig. 3) pattern that is shared by
all traces. The pattern is very likely an ideal reference to
align all traces. Second, we match the pattern among sev-
eral traces and find that the pattern in different traces

are strongly correlated (Pearson Correlation Coefficient,
PCC > 0.70). Third, for all traces we search the pattern by
fixing one trace and sliding the others within a small range
to find the position at which the pattern hold the maxi-
mum PCC with the pattern in the fixed trace. We exclude

Fig. 3 Overview of the EM measurement of the first round AES encryption
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the traces whose maximum PCC is less than 0.70. Then
the traces with the maximum PCC no less than 0.70 will
be aligned properly.

The vulnerabilities of bit-level parallelism
Bitsliced implementation features bit-level parallelism,
which means that the bits located at the same position
of multiple plaintexts are processed simultaneously at any
moment. As known, the 16-byte state of standard AES
implementation is processed byte by byte, so its EM leak-
ages at any moment is a function of a byte. However, for
bitsliced AES implementation the bits at the same position
of the standard states from multiple slices are gathered
into a single register of a processor, so the EM leakages
at any moment is a function of several bits from the stan-
dard states of multiple slices. Therefore, for the bitsliced
version each secret key byte is likely leaked at eight differ-
ent moments at least, which makes it possible for specific
multi-bit combinational analysis methods to be effective.
In this section, we investigate the side-channel vulner-
abilities of a GPU-based bitsliced AES implementation
from the perspectives of bit-level parallelism provided by
the intrinsic properties of bitsliced ciphers with combina-
tional analysis techniques.
We analyze the output of SubByte in the first AES

round of a bitsliced AES implementation (Patrick). The C
code snippet of the SubByte of the implementation is
shown in Fig. 4, where U and S are the input and output of

the function, respectively, and Tx and Lxx are temporary
variables. The function processes the SubByte of one
byte for multiple slices. The length of a word_t is 32-bit
for the target GPU, so 32 slices are processed simultane-
ously in any single GPU thread.
We know from S[ 0], S[ 1], S[ 2], S[ 3], S[ 4], S[ 5], S[ 6]

and S[ 7] that for each byte in standard AES state the eight
bits are processed independently, and the same bit of mul-
tiple slices are processed simultaneously. The fact is of
great importance for the research in this section.

Non-profiled leakage detection test
Since the 128 bits in standard AES state are processed at
different instants of time, the leakages from the 128 bits
are not overlapped in the time domain. Therefore, it is
possible for a non-profiled leakage detection test to each
of the 128 bits to evaluate the amount of EM leakages from
each individual bit. For other specific bitsliced AES imple-
mentations, the test results may differ much from ours,
but the method itself works as well.
Specifically, Welch’s t-test (Goodwill et al. 2011) is

employed to detect the EM leakages from each of the 128
bits. Non-profiled leakage detection test requires specify-
ing intermediates to be tested. In our test, we suppose that
the 128 bits after the SubByte operation be the target
intermediates.
Because of the multi-slice plaintexts used in bitsliced

AES, we take into account of the CSSCA and CTSCA

Fig. 4 The C code snippet of the SubBytes of a bitsliced AES
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mode when performing a test. As showed in Fig. 1, the
state of 32-slice bitsliced AES encryption can be formal-
ized as a 128 × 32 binary matrix:

I :=

⎛
⎜⎜⎜⎜⎜⎝

b10 b20 b30 · · · b320
b11 b21 b31 · · · b321
b12 b22 b32 · · · b322
...

...
...

. . .
...

b1127 b2127 b3127 · · · b32127

⎞
⎟⎟⎟⎟⎟⎠

(2)

where bji corresponds to the (i+ 1)-th bit in standard AES
state of the j-th slice. The 32 bits in each row of I are
stored into an independent register, so 128 registers are
required to hold the (128 × 32)-bit bitsliced AES state.
To reduce noises, our test is conducted in S1G encryption
mode, in which 32 slices are fed with the same plaintexts,
so that each of the 128 registers hold either 32 zeros or 32
ones instead of 232 possible values. The rationale is that
to distinguish one of two values from the other is much
easier than to distinguish one of 232 values from the oth-
ers. To further reduce noises, 32 threads in a warp also
run the same plaintexts, which is also referred to as T1G
encryption mode.

Test Method The procedure of t-test consists of three
steps. For our target implementation, t-test will be per-
formed on each of the 128 intermediate bytes, say
b0, b1, b2, ..., b127, where bi := b1i b

2
i b

3
i . . . b32i . Now take the

first intermediate byte b0 for example.
First, N EM trace samples of M sampling points in the

time domain are partitioned into two groups, namely G0
and G1, with respect to their corresponding intermediate
byte b0 = 0 or b0 = 232 − 1.
Then, t-statistic at each sampling point is computed:

t(τ ) = μ0(τ ) − μ1(τ )√
s20(τ )

n0 + s21(τ )

n1

(3)

where μ0(τ ), μ1(τ ) are the means of G0 and G1 at τ in
time (or the τ -th sample point, so τ ∈[ 1,M]∩Z), and
s0(τ ) and s1(τ ) are the standard deviations ofG0 andG1 at
τ in time, and n0 and n1 are the cardinality of G0 and G1.
Last, it is time to determine whether the two sets G0

and G1 are sampled from the same population or not.
Generally speaking, two sets are assumed to be sampled
from two distinct populations, if the statistical quantity
|t(τ )| > 4.5 at some τ -s (Schneider andMoradi 2015). We
also follow this convention in our test.
The same tests are carried out for the leakages from the

other 127 intermediate bytes, say b1, b2, ... , b127. As a
result, 128 × M t-statistics are obtained:

T =

⎛
⎜⎜⎜⎜⎜⎝

t0,1 t0,2 t0,3 · · · t0,M
t1,1 t1,2 t1,3 · · · t1,M
t2,1 t2,2 t2,3 · · · t2,M
...

...
...

. . .
...

t127,1 t127,2 t127,3 · · · t127,M

⎞
⎟⎟⎟⎟⎟⎠

(4)

where t�,j corresponds to t(j).

Test Results and Discussions As mentioned above,
there are 128 registers to hold the (128 × 32)-bit state of
bitsliced AES encryption. We perform the t-test on each
of the 128 32-bit intermediate stored in the 128 registers.
The test results are showed in Fig. 5. We observe that 16
peaks are clearly visible, and they are far beyond the preset
thresholds [−4.5, 4.5] for deciding if the value in a register
is leaked or not. The 16 peaks in different colors repre-
sent the leakages of 16 SubByte outputs in the first round
encryption of the bitsliced implementation.
As a matter of fact, the values of t-statistic in the time

domain is not that important, because we intend to deter-
mine whether rather than when any of 128 intermediate
bytes is leaked or not. Hence, the maximum of the values
in each row of T is sufficient, so we define

⎛
⎜⎜⎜⎜⎜⎝

t0
t1
t2
...

t127

⎞
⎟⎟⎟⎟⎟⎠

:=

⎛
⎜⎜⎜⎜⎜⎜⎝

maxMj=0{|t0,j|}
maxMj=0{|t1,j|}
maxMj=0{|t2,j|}

...
maxMj=0{|t127,j|}

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

Each consecutive 8 values, for example t0, t1, ...t7, in
(t0, t1, t2, ..., t127)T (Eq. 5) corresponds to one byte of stan-
dard AES state. As is known from standard AES algo-
rithm, the 8 values all depend on the same key byte, so we
say that each key byte is leaked through at least 8 interme-
diate bytes that are executed the same operation. This is
also the essence of the distinctive leakage feature provided
by the bit-level parallelism. In this study, the distinctive
leakage feature is formally defined as a (16 × 8) matrix:

� :=

⎛
⎜⎜⎜⎜⎜⎝

t0 t1 t2 · · · t7
t8 t9 t10 · · · t15
t16 t17 t18 · · · t23
...

...
...

. . .
...

t120 t121 t123 · · · t127

⎞
⎟⎟⎟⎟⎟⎠

(6)

Thematrix describes the leakages on each of the 128 inter-
mediate bytes. The experimental results for � are also
showed in Fig. 6. � corresponds to the histogram, but the
t-s that are beyond [−4.5, 4.5] in � are reduced to zeros in
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Fig. 5 Experimental results of Welch’s t-test for all 128 bits of 16 intermediate bytes in T1G-S1G encryption mode

Fig. 6Maximum of t(τ ) in the time domain for all 128 individual bytes of the SubByte output in T1G-S1G encryption mode
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the histogram. We also define another matrix based on �:

F :=

⎛
⎜⎜⎜⎜⎜⎝

ζ0 ζ1 ζ2 · · · ζ7
ζ8 ζ9 ζ10 · · · ζ15
ζ16 ζ17 ζ18 · · · ζ23
...

...
...

. . .
...

ζ120 ζ121 ζ123 · · · ζ127

⎞
⎟⎟⎟⎟⎟⎠

(7)

where for any i ∈ {0, 1, 2, ..., 127}, the variable ζi = 1 if
ti /∈[−4.5, 4.5]; otherwise the variable ζi = 0. In addition,
we define a Multi-Bit Leakage Feature (MBLF):

J :=[J1,J2,J3, ...,J16] (8)

where Jn ⊂ {1, 2, ..., 8} denotes a set of indices of scalars
that equals to 1 in F [ n, ·].

A simple single-bit correlation analysis
We learn from the above that all 16 secret key bytes are
leaked from the most significant bit (MSB) of the respec-
tive intermediate bytes, because all elements in the 8th
column of F are equal to 1. Therefore, it is possible to
recover all 16 secret key bytes if anMSB-based correlation
EM analysis (Brier et al. 2004) (MSB-CEMA) is employed.
The leakage model of the MSB-CEMA is

Ln = a ·
32∑
j=1

I[ 8 · n, j]+Nnoise (9)

where Ln denotes the predicted EM leakage of n-th inter-
mediate byte, I[ ·, ·] denotes the intermediate matrix in
Eq. 2, and a is a scale factor, the value of which is insignif-
icant. In addition,Nnoise is a Gaussian noise.
The single-bit CEMA related above makes use of the

leakages from the MSB of each intermediate byte. In fact,
each secret key byte is leaked from more than one bit of
relevant intermediate byte. For example, the first secret
key byte is leaked from the 1st, 2nd, 6th and 8th bit and
the second secret key byte is leaked from the 1st and
4th bit. Therefore, it is possible to take full advantage of
the multi-bit leakages of a certain key byte to improve
performance.

Multi-bit combinational analysis
The first combinational method is proposed to be multi-
bit feature combinational analysis (MB-FCA). Just as its
name suggests, MB-FCA makes the best of � showed in
Eq. 6 to determine which of the eight bits is used to com-
pute the predicted leakage. Specifically, the bit is selected
as follows:

bn = argmax
j

(
8max

j=1
|�[ n, j] |

)
(10)

The rationale is that the intermediate bit with the max-
imum amount of EM leakage is the best candidate to
predict the measured EM leakages.

Let B :=[ b1, b2, b3, ..., b16], and it is called combined
multi-bit leakage feature (cMBLF). The B is the essence of
the MB-FCA and used to construct the following leakage
model:

Ln = a ·
32∑
j=1

I[ (n − 1) × 8 + bn, j]+Nnoise (11)

With the leakage model derived from cMBLF, a simple
CEMA will suffice to recover the 16-byte secret key.

The second combinational method is proposed to be
multi-bit decision combinational analysis (MB-DCA).
Compared with MB-FCA, MB-DCA does not care about
the selection of intermediate bit before modeling leakages
but tries on every leaked bits then makes a decision on the
results of their respective analysis.
The first step of MB-DCA is to perform analysis on

every leaked intermediate bits based on the MBLF, so the
leakage model is:

LJn{i}
n = a ·

32∑
j=1

I[ (n − 1) × 8 + Jn{i}, j]+Nnoise (12)

where Jn{i} denotes the i-th element in Jn, and LJn{i}
n

denotes the predicted leakage of the Jn{i}-th bit of the
n-th intermediate.
To recover the n-th secret key byte, |Jn| CEMAs should

be performed before making a decision:

kn = argmax
k̃

(
max

i∈{1,2,...,|Jn|},k̃∈[0,255]∩Z
|ρJn{i}

n (k̃)|
)

(13)

where ρ
Jn{i}
n (k̃) is a matrix of Pearson Correlation Coef-

ficient obtained from CEMAs based on the model LJn{i}
n .

Obviously, it is feasible to recover the 16 secret key bytes
of AES. More details about the MB-DCA is showed in
Algorithm 1.

Experimental results and discussion
Since the number of multi-slice groups and multi-thread
groups for the GPU-based bitsliced AES encryption of
(32 × 32 × 16)-byte plaintext within a GPU warp have
nothing to do with MB-FCA and MB-DCA, our experi-
ments are performed in a simplified mode, say T1G-S1G
encryption mode. Therefore, only one 128-bit plaintext is
required in order to obtain one EM trace. As mentioned
above, an MBLF and cMBLF must be extracted from F
and �, respectively, before the MB-FCA or MB-DCA is
applied. Finally, we obtain an MBLF J and a cMBLF B in
our setting:

J =[ {1, 3, 7, 8}, {5, 8}, {3, 7, 8}, {4, 7, 8}, {1, 3, 7, 8}, {5, 8},
{3, 7, 8}, {4, 7, 8}, {1, 3, 7, 8}, {5, 8}, {3, 7, 8}, {4, 7, 8},
{1, 3, 7, 8}, {5, 8}, {3, 7, 8}, {4, 7, 8}]
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Algorithm 1 Multi-Bit Decision Combinational Analysis
(MB-DCA)
Input:
[ p(j)

i,n]i∈{1,2,...,N},j∈{1,2,...,32},n∈[0,15]∩Z: 32 × N plaintexts.
[ ςi,j]i∈{1,2,...,N},j∈{1,2,...,M}: N EM traces with M sampling
points on every traces.
J =[J1,J2, ...,J16]: MBLF from t-test.
Output:
[ k0, k1, ..., k15]: 16-byte secret key recovered.
1: for n ← 0 to 15 do
2: for k̃ ← 0 to 255 do
3: r(·)· ← SBox(p(·)·,n ⊕ k̃)
4: for i ← 1 to N do
5: for j ← 1 to 8 do
6: si,j ← ∑32

b=1 Bitj(r
(1)
i )

7: for β ← 1 to |Jn+1| do
8: b ← Jn+1{β}
9: form ← 1 toM do

10: ρm,β ← |Corr(ς·,m, s·,b)|
11: φβ ← max{ρ1,β , ρ2,β , ..., ρM,β}
12: wk̃ ← max{φ1,φ2, ...,φ|Jn+1|}
13: kn ← argmax

k̃
max{w0,w1, ...,w255}

return [ k0, k1, ..., k15]

B =[ 1, 8, 7, 8, 1, 8, 8, 8, 1, 8, 7, 8, 1, 8, 7, 8]
We compare the performance of MB-FCA and MB-

DCA with MSB-CEMA in our experiments. The experi-
mental results shows that a complete key-recovery attack
with MSB-CEMA requires 900 EM traces at least (Fig. 7),
while MB-FCA and MB-DCA are almost equivalent and
require 500 EM traces at least. In fact, any scalar of B is
very likely to be null if all values of the corresponding row
in � are within [−4.5, 4.5]. In this case, 16 key bytes can

not be recovered completely. Formally, a complete key-
recovery with MB-FCA or MB-DCA is feasible only if F
satisfies

16∑
i=1

⎛
⎝

8∨
j=1

F [ i, j]

⎞
⎠ = 16. (14)

We have to note that the MB-FCA or MB-DCA can
not work if no prior leakage detection test is available,
because both methods are based on the prior knowl-
edge of �. That is to say, MB-FCA and MF-DCA are
essentially profiled side-channel analysis techniques like
template attacks (Chari et al. 2002). However, our meth-
ods are more practical than template attacks, because for
devices of certain architectural model the profiling is done
only once to extract � of the architecture before attack-
ing any device of this architecture, while both profiling
and attacking in template attacks usually target identi-
cal device, which makes template attacks less practical
than our methods. In addition, template attacks require
very low noise level, so they are almost ineffective for
GPU-based cryptographic implementations.

The vulnerabilities of thread-level parallelism
GPU-based bitsliced implementation achieves thread-
level parallelism because of the SIMT execution fashion
of GPUs, which means multiple threads execute the same
program in parallel. For simplicity, we consider the paral-
lelism within a GPU warp, because the threads in a warp
execute the same instruction at any moment if warp diver-
gence does not happen. In other words, the threads in a
warp achieve a full synchronization in the time domain.
However, the full synchronization among multiple thread
executions does not necessarily imply a full synchroniza-
tion of their respective EM leakages. In this section, we
investigate the vulnerabilities of a GPU-based bitsliced

Fig. 7 Experimental results of MB-FCA, MB-DCA and MSB-CEMA, where MSB-CEMA denotes the single-bit CEMA with the MSB



Gao et al. Cybersecurity             (2020) 3:3 Page 11 of 17

implementation from the perspective of thread-level
parallelism.

Developing a simple attack
As mentioned above, multiple thread executions within a
GPU warp are synchronous, so their leakages are always
considered to be synchronous as well. Suppose the Ham-
ming weight leakages in multiple thread executions be
summable, say E

(∑N
n=1 HW(In)

)
= ∑N

n=1 E(HW(In)),
where I1, I2, I3, ... IN are some intermediates within N
threads, and E denotes an ideal EM leakage model with-
out any noise, say E(x) = a · x for a positive a. Then we
construct a simple synchronous model (SSM) for multi-
thread leakages in a warp:

Lm
n = a·

32∑
i=1

HW
(
I ′[ (n − 1) × 8 + m, i]

)+Nnoise. (15)

I ′ in the Equation is defined as follows:

I ′ :=

⎛
⎜⎜⎜⎜⎜⎝

B1
0 B2

0 B3
0 · · · B32

0
B1
1 B2

1 B3
1 · · · B32

1
B1
2 B2

2 B3
2 · · · B32

2
...

...
...

. . .
...

B1
127 B2

127 B3
127 · · · B32

127

⎞
⎟⎟⎟⎟⎟⎠

(16)

where Lm
n denotes the predicted leakages based on the

m-th intermediate bit, B�
i := b1i b

2
i ...b32i is a 32-bit value,

and I ′[ ·, j] :=
[
Bj
0,B

j
1,B

j
2, ...,B

j
127

]T
corresponds to the I

(Eq. 2) within the j-th thread of a warp.

The above SSM is based on another assumption, that is,
the Hamming weight leakages in different threads are of
the same scale. Otherwise, the model should be:

Lm
n =

32∑
i=1

(
ai · HW

(
I ′[ (n − 1) × 8 + m, i]

)) + Nnoise.

(17)

The model essentially gives different weights to the pre-
dicted leakages from 32 threads, which should be more
accurate than the previous SSM. Nevertheless, we will not
study any analysis methods based on this model, because
the value of a1 : a2 : a3 : ... : a32 has to be known
somehow in advance, which we think is not very practical
unless exhaustion.
SSM assumes that the EM leakage of multiple threads

are synchronous. If all of multi-thread leakages are not
synchronous, it comes to another leakage model called
Partial Synchronous Model (PSM):

Lm
n = a·

∑
i∈I

HW
(
I ′[ (n − 1) × 8 + m, i]

)+Nnoise. (18)

where I ⊂ {1, 2, ..., 32} if the EM leakages of 32 threads are
considered. Obviously, the key problem of constructing a
PSM is to obtain the I some way.

Evaluations and Discussions In order to evaluate the
performance of SSM-based CEMA (SSM-CEMA) to
the GPU-based bitsliced AES implementation, we set
up experiments in T2G-S1G, T8G-S1G and T32G-S1G
encryption modes. As shown in Fig. 8, the 16 secret key
bytes of AES can be recovered with about 1,500 EM traces

Fig. 8 The experimental results of SSM-CEMA in T2G-S1G, T8G-S1G and T32G-S1G encryption mode, respectively
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in T2G-S1G mode, while none of the 16 secret key bytes
is recovered with up to 4,000 EM traces in T8G-S1G
or T32G-S1G mode. This suggests that the performance
of SSM-CEMA becomes worse in more grouped thread
encryption mode, because more noises are introduced
and less accurate the SSM becomes. The latter reason will
be verified in the next experiment.
In order to verify the accuracy of the SSM in T2G-S1G

encryptionmode. we compare the SSMwith a PSM select-
ing half of 32 threads in a warp. As shown in Fig. 9, the
PSM-CEMAwith the first half of 32 threads performs bet-
ter than the SSM-CEMA, which suggests that the PSM
is more accurate than SSM. Therefore, the EM leakages
in a warp may not be synchronous and a further study is
needed.

Profiled correlation-based leakage detection test
To further understand the nature of the above paral-
lel EM leakage, we employ a profiled leakage detection
test method to analyze the individual leakages of multi-
ple threads in a warp. With profiled methods, we do not
have to make any assumptions about the leakage model of
the target implementation, which thereby lowers the pre-
requisite for an attack and simplifies the procedure. The
profiled ρ-test method we use is originally due to Durvaux
and Standaert Durvaux and Standaert (2016). Themethod
takes advantage of the cross-validation techniques intro-
duced in Durvaux et al. (2014) and applies to the leakage
detection of all threads in a warp. For the leakage test
of one thread, the leakages from any other threads are

treated as random noises. Specifically, the ρ-test is carried
out in three steps:
First, N EM traces with random plaintext inputs are

sampled. For k-fold cross-validation, the set of acquired
traces T is split into k (we set k = 10) non-overlapping
subsets T (1), T (2), ...,T (k) of (approximately) the same
size. For i = 1, 2, 3, ..., k, we define the profiling sets T (j)

p =⋃
i
=j T (i) and the test sets T (j)

t = T \T (j)
p . For each tar-

get plaintext byte variable Xm,n with m ∈ {1, 2, 3, ..., 32},
n ∈ {1, 2, 3, ..., 16} and for each cross-validation set j with
j ∈ {1, 2, 3, ..., k}, a model is estimated: ˆmodel

(j)
τ (Xm,n) ←

T (j)
p (τ ,m, n). For 8-bit plaintext bytes, this model cor-

responds to the sample means of the leakage sample τ

corresponding to each value of the plaintext bytes.
Next, we compute the Pearson correlation coefficient

between this model and the leakage sample in the test sets
T (j)
t (τ ,m, n):

r̂m,n(τ ) = 1
k

·
k∑

j=1
corr(T (j)

t (τ ,m, n), ˆmodel
(j)
τ (Xm,n))

(19)

wherem ∈ {1, 2, 3, ..., 32} and n ∈ {1, 2, 3, ..., 16}.
Last, the ρ-statistic of standard normal distribution is

evaluated:

ρ̂m,n(τ ) = 1
2

· ln
(
1 + ˆrm,n(τ )

1 − ˆrm,n(τ )

)
·
√
N
k

− 3 (20)

Fig. 9 The experimental results of SSM-CEMA and PSM-CEMA in T2G-S1G encryption mode. PSM-CEMA(T1, T2, ..., T16) and PSM-CEMA(T17, T18, ..., T32)
denote CEMAs with PSM based on the leakages from respectively the first half and the second half of threads in a warp
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Fig. 10 The experimental results of ρ-test in T32G-S1G encryption mode. Point of Interest (POI) represents the point-in-time at which leakage
happens

Fig. 11 The experimental results when zooming in POI1, POI2, POI4 and POI5. T1, T2, T17 and T18 represent the POIs from the 1st, 2nd, 17th and 18th
thread within a warp, respectively



Gao et al. Cybersecurity             (2020) 3:3 Page 14 of 17

where N is the number of EM traces. Since ˆρm,n(τ )

satisfies standard normal distribution at any time τ ,
|ρ̂m,n(τ )| > 4.5 can conclude the existence of leakage at
τ with a much high probability (Schneider and Moradi
2015).
For each m ∈ {1, 2, 3, ..., 32} and n ∈ {1, 2, 3, ..., 16},

we define ρm
n := maxτ |ρ̂m,n(τ )|, so the following two

matrices are obtained:

�′ :=

⎛
⎜⎜⎜⎜⎜⎝

ρ11 ρ21 ρ31 · · · ρ321
ρ12 ρ22 ρ32 · · · ρ322
ρ13 ρ23 ρ33 · · · ρ323
...

...
...

. . .
...

ρ116 ρ216 ρ316 · · · ρ3216

⎞
⎟⎟⎟⎟⎟⎠
,F ′ :=

⎛
⎜⎜⎜⎜⎜⎝

ξ11 ξ21 ξ31 · · · ξ321
ξ12 ξ22 ξ32 · · · ξ322
ξ13 ξ23 ξ33 · · · ξ323
...

...
...

. . .
...

ξ116 ξ216 ξ316 · · · ξ3216

⎞
⎟⎟⎟⎟⎟⎠

(21)

where for i = 1, 2, 3, ..., 16 and j = 1, 2, 3, ..., 32, ξ ji = 1, if
ρ
j
i > 4.5; otherwise, ξ ji = 0. In addition, the corresponding

moments of occurrence is:

ϒ ′ :=

⎛
⎜⎜⎜⎜⎜⎝

τ 11 τ 21 τ 31 · · · τ 321
τ 12 τ 22 τ 32 · · · τ 322
τ 13 τ 23 τ 33 · · · τ 323
...

...
...

. . .
...

τ 116 τ 216 τ 316 · · · τ 3216

⎞
⎟⎟⎟⎟⎟⎠

(22)

where τ
j
i := argmaxτ maxτ |ρ̂m,n(τ )|. We define a weak

Multi-Thread Leakage Feature (wMTLF) 
 based on F ′:


 =[
1,
2, ...,
16] (23)

Table 1 Multi-thread combinational methods and
non-combinational methods

Method Leakge Feature Leakage Model Type

SSM-CEMA - SSM Non-combinational

wPSM-CEMA wMTLF PSM Non-combinational

MT-DCA wMTLF PSM Combinational

sPSM-CEMA sMTLF PSM Non-combinational

MT-HCA sMTLF PSM Combinational

where 
n ⊆ {1, 2, ..., 32} denotes a set of indices of scalars
that equals to 1 in F ′[ n, ·]. At the same time, we also
define a strong Multi-Thread Leakage Feature (sMTLF) �

based on F ′ and ϒ ′:

� =[�1,�2, ...,�16] (24)

where �n denotes a partition of 
n. The notation �n{i, j}
denotes the j-th element in the i-th subset of �n. For any
i ∈ {1, 2, ..., |�n|} and x, y ∈ �n{i, ·}, |τ xn − τ

y
n | < δ satis-

fies, while for any i, j ∈ {1, 2, ..., |�n|}, i 
= j, x ∈ �n{i, ·}
and y ∈ �n{j, ·}, |τ xn − τ

y
n | ≥ δ satisfies. δ is a threshold

that determine whether the leakages of two threads are
thought to be synchronous or not.

In our experiment, the ρ-statistic of 32 individual tests
at each time τ are evaluated and plotted within a single
figure as Fig. 10. It shows that there are approximately
five groups of leakage points marked as POI1, POI2,
POI3, POI4 and POI5, respectively. Around any of the five
groups, multiple colors are accumulated, which seems that
the leakages from 32 threads happen at the same time.

Fig. 12 The experimental results of SSM-CEMA, wPSM-CEMA and MT-DCA in T32G-S1G encryption mode
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However, it is not like this when zooming in any of the
five groups of leakage points. As is showed in Fig. 11,
the detail of POI1, POI2, POI4 and POI5 tells that not
all leakages from multiple threads are synchronous as we
usually think. This discovery is so important because we
always expect synchronous executions to generate syn-
chronous leakages instead of asynchronous ones. It is
obvious that the executions of T1 and T2 are almost
overlapping, the same with T17 and T18. Since we can-
not deny the existence of leakages when there is not any
indication in the figure, we still do not know whether
any leakage happens or not in other threads except T1,
T2, T17 and T18. We do not know why the device leaks
information in these special threads, and we think it
may have something to do with the hardware architec-
ture of CUDA-enabled GPU as well as the target software
implementation.

Multi-thread combinational analysis
The above experiments have demonstrated that the EM
leakages from multiple threads in a warp is not exactly
synchronous. To make full use of the EM leakages from
multiple asynchronous threads, we propose two combina-
tional methods.
The first method we propose is Multi-Thread Decision

Combinational Analysis (MT-DCA) based on the wMTLF.
If the j-th bit of a intermediate byte is used to model the
leakage of single thread, then theMT-DCA is based on the
following leakage model:

L
n{i}
n = a ·HW(I ′[ (n−1)×8+ j,
n{i})+Nnoise (25)

where L
n{i}
n denotes the predicted leakage of the j-th bit

of the n-th intermediate in the 
n{i}-th thread.
To recover the n-th secret key byte, |
n| CEMAs should

be performed before making a decision:

kn = argmax
k̃

⎛
⎝ 255max

k̃=0

∑
i∈{1,2,...,|
n|}

∣∣∣ρ
n{i}
n (k̃)

∣∣∣
|
n|

⎞
⎠ (26)

where ρ

n{i}
n (k̃) is a matrix of Pearson Correlation Coef-

ficient obtained from CEMAs based on the model L
n{i}
n .

Obviously, it is feasible to recover the 16 secret key bytes
of AES.
The above MT-DCA depends on wMTLF that indi-

cates which of the 32 threads in a warp is leaky rather
than whether these leakages are synchronous or not.
To make full use of the synchronization of leakages, we
propose the second combinational method called Multi-
Thread Hybrid Combinational Analysis (MT-HCA) based
on sMTLF. If the j-th bit of a intermediate byte is used to
model the leakage of single thread, then the MT-HCA is
based on the following leakage model:

Lw
n = a ·

∑
m∈�n{w,·}

HW(I ′[ (n − 1) × 8 + j,m] ) +Nnoise

(27)

where w ∈ {1, 2, ..., |�n{w, ·}|} and Lw
n denotes the pre-

dicted leakage of the j-th bit of the n-th intermediate in
the w-th grouped threads whose leakages are thought to
be synchronous.
The same way as MT-DCA does, |�n| CEMAs should

be performed before making a decision:

kn = argmax
k̃

(
255max
k̃=0

∑|�n|
w=1

∣∣ρw
n (k̃)

∣∣
|�n|

)
. (28)

where ρw
n is a matrix of Pearson Correlation Coeffi-

cient obtained from CEMAs based on the model Lw
n .

Obviously, it is feasible to recover the 16 secret key
bytes of AES. More details of MT-HCA is showed in
Algorithm 2.

Experimental results and discussion
Since both MT-DCA and MT-HCA take the advantage of
EM leakages from multiple threads, our experiments are
performed in T32G-S1G encryption mode. MT-DCA and
MT-HCA depend on wMTLF and sMTLF, respectively, so
we extract the wMTLF and sMTLF of our experimental

Algorithm 2Multi-Thread Hybrid Combinational Analy-
sis (MT-HCA)
NOTE: The attack is based on the leakage of the MSB of
each intermediate, so α = 8 in the following procedure.
Input:
[ p(j,l)

i,n ]i∈{1,2,...,N},j,l∈{1,2,...,32},n∈[0,15]∩Z: 32×32×N plaintexts.
[ ςi,j]i∈{1,2,...,N},j∈{1,2,...,M}: N EM traces with M sampling
points on every traces.
� =[�1,�2, ...,�16]: sMTLF from ρ-test.
Output:
[ k0, k1, ..., k15]: 16-byte secret key recovered.
1: for n ← 0 to 15 do
2: for k̃ ← 0 to 255 do
3: r(·,·)· ← SBox(p(·,·)·,n ⊕ k̃)
4: for i ← 1 to N do
5: for j ← 1 to |�n+1| do
6: si,j ← ∑

e∈�n+1{j,·}
∑32

b=1 Bitα(r(b,e)i )

7: form ← 1 toM do
8: ρm ← 1

|�n+1| · ∑|�n+1|
w←1 Corr(ς·,m, s·,w)

9: wk̃ ← max{ρ1, ρ2, ..., ρM}
10: kn ← argmax

k
(max{w0,w1, ...,w255})

11: return [ k0, k1, ..., k15]
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Fig. 13 The experimental results of SSM-CEMA, sPSM-CEMA and MT-HCA in T32G-S1G encryption mode

setting by ρ-test before attacking. The extracted wMTLF

 and sMTLF � are as follows:


 =[ {1, 2, 17, 18}, {1, 2, 17, 18}, ..., {1, 2, 17, 18}]
� =[ {{1, 2}, {17, 18}}, {{1, 2}, {17, 18}}, ..., {{1, 2}, {17, 18}}]

(29)

that is, 
1 = 
2 = ... = 
16 = {1, 2, 17, 18} and �1 =
�2 = ... = �16 = {{1, 2}, {17, 18}}.
We compare the performance of five methods showed

in Table 1. wPSM-CEMA computes predicted leakages
by one thread in wMTLF and sPSM-CEMA computes
predicted leakages by one grouped threads in sMTLF.
In fact, both wPSM-CEMA and sPSM-CEMA are non-
combinational methods.
First, we compare the performance of combinational

method with non-combinational ones when wMTLF is
available. The experimental results are showed in Fig. 12.
wPSM-CEMA is a wMTLF-based non-combinational
method and it performs worse than the wMTLF-based
combinational method MT-DCA.
Second, we compare the performance of combinational

method with non-combinational ones when sMTLF is
available. The experimental results are showed in Fig. 13.
sPSM-CEMA is a sMTLF-based non-combinational
method and it perform worse than the sMTLF-based
combinational method MT-HCA.
Both MT-DCA and MT-HCA performs better than

their non-combinational counterparts because they make
use of multi-thread leakages instead of a single one. It is
reasonable that more usable leakages make better perfor-
mance. In addition, the experimental results show that

SSM-CEMA is not effective at all with up to 5,000 traces,
because SSM-CEMA does not depend on any leakage fea-
ture, thus more noises are introduced when modelling
with SSM.

Conclusions
In this paper, we investigate efficient electro-magnetic
analysis of a GPU bitsliced AES implementation in
order to give a deep insight into the vulnerabilities
of bit-level parallelism and thread-level parallelism. We
propose GPU-specific efficient combinational analysis
methods and the methods are experimentally proved to
be more efficient than the non-combinational ones. Our
research suggests that multi-thread leakages can be used
to improve attacks if the multi-thread leakages are not
synchronous in the time domain.
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