
CybersecurityYoong et al. Cybersecurity (2021) 4:6
https://doi.org/10.1186/s42400-021-00069-7

RESEARCH Open Access

Deriving invariant checkers for critical
infrastructure using axiomatic design
principles
Cheah Huei Yoong1*, Venkata Reddy Palleti2, Rajib Ranjan Maiti3, Arlindo Silva1 and Christopher M Poskitt4

Abstract

Cyber-physical systems (CPSs) in critical infrastructure face serious threats of attack, motivating research into a wide
variety of defence mechanisms such as those that monitor for violations of invariants, i.e. logical properties over sensor
and actuator states that should always be true. Many approaches for identifying invariants attempt to do so
automatically, typically using data logs, but these can miss valid system properties if relevant behaviours are not
well-represented in the data. Furthermore, as the CPS is already built, resolving any design flaws or weak points
identified through this process is costly. In this paper, we propose a systematic method for deriving invariants from an
analysis of a CPS design, based on principles of the axiomatic design methodology from design science. Our method
iteratively decomposes a high-level CPS design to identify sets of dependent design parameters (i.e. sensors and
actuators), allowing for invariants and invariant checkers to be derived in parallel to the implementation of the system.
We apply our method to the designs of two CPS testbeds, SWaT and WADI, deriving a suite of invariant checkers that
are able to detect a variety of single- and multi-stage attacks without any false positives. Finally, we reflect on the
strengths and weaknesses of our approach, how it can be complemented by other defence mechanisms, and how it
could help engineers to identify and resolve weak points in a design before the controllers of a CPS are implemented.

Keywords: Cyber-physical systems, Critical infrastructure, Industrial control systems, Systematic design framework,
Axiomatic design, Invariants, Anomaly detection, Supervised machine learning

Introduction
Cyber-physical systems (CPSs), in which software com-
ponents and physical processes are tightly integrated,
are prevalent in the automation of critical infrastruc-
ture, e.g. as the industrial control systems of power grids
and water purification plants. The potential impact of
compromising such systems has made them prime tar-
gets for attackers (Hassanzadeh et al. 2020; Leyden 2016).
In 2015, for example, the US Department of Homeland
Security reported 25 cybersecurity incidents in the water
sector and 46 in energy. Internationally, there have been
several well-publicised attacks in these sectors too (N.

*Correspondence: cheahhuei_yoong@sutd.edu.sg
1 Singapore University of Technology and Design, 8 Somapah Road, 487372
Singapore, Singapore
Full list of author information is available at the end of the article

Al-Mhiqani et al. 2018). This situation has motivated
the development of multiple different countermeasures
for attack detection and prevention, including techniques
based on anomaly detection (Cheng et al. 2017; Goh et
al. 2017; Harada et al. 2017; Inoue et al. 2017; Pasqualetti
et al. 2011; Aggarwal et al. 2018; Aoudi et al. 2018; He
et al. 2019; Kravchik and Shabtai 2018; Lin et al. 2018;
Narayanan and Bobba 2018; Schneider and Böttinger
2018; Carrasco and Wu 2019; Kim et al. 2019; Adepu et
al. 2020; Das et al. 2020; Giraldo et al. 2020; Schmidt et
al. 2020), fingerprinting (Ahmed et al. 2018; Ahmed et al.
2018; Formby et al. 2016; Gu et al. 2018; Kneib and Huth
2018; Yang et al. 2020), and fuzzing (Chen et al. 2019;
Chen et al. 2020; Wijaya et al. 2020).
Another popular approach is to monitor invariants of

a CPS (Adepu and Mathur 2016a; Adepu and Mathur

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00069-7&domain=pdf
mailto: cheahhuei_yoong@sutd.edu.sg
http://creativecommons.org/licenses/by/4.0/

Yoong et al. Cybersecurity (2021) 4:6 Page 2 of 24

2016b; Giraldo et al. 2018), i.e. properties that always hold
under normal operating conditions, and the violation of
which might suggest the presence of an attacker in the
system. Invariants are typically relations over the sensor
readings and actuator states of a system, a simple example
being that “if the tank level is above x, then pump p should
be ON”. Given the complexity of CPSs in general, several
approaches (e.g. (Chen et al. 2016; Chen et al. 2018; Feng
et al. 2019)) aim to automatically derive such invariants
from sources of data, for instance, the time series of sen-
sor readings and actuator states logged by a supervisory
control and data acquisition system (SCADA). There is a
risk, however, that viable system behaviours are missed if
they are not represented in that data (e.g. rarely occur-
ring), and addressing any design flaws identified is costly
as the CPS is already built. Invariants can be derived man-
ually by system engineers (Cárdenas et al. 2011; Adepu
and Mathur 2016a; Adepu and Mathur 2016b; Adepu
and Mathur 2021; Choi et al. 2018), but if done so in
an ad hoc manner, may also lead to properties being
missed.
In this paper, we propose a novel and systematic method

for deriving invariants and invariant checkers from a
design-level analysis of a CPS. In doing so, we aim
to: (1) find invariants implicit in the design but poorly
represented in datasets; (2) ensure that invariants can
be contextualised by the specific design iterations and
requirements they were derived from; and (3) further inte-
grate security concerns at the design stage, potentially
allowing weak points to be identified and fixed before a
CPS is built. Our method, inspired by the principles of
axiomatic design (Suh 2001)—a design science method-
ology for systems—iteratively decomposes a CPS design
to sets of dependent components that can be transformed
into invariants. We implement invariant checkers using
decision tree learning, and use them to monitor CPSs for
anomalies, i.e. violations of the invariant properties.
To evaluate the viability of our proposals, we apply our

method to the designs of two real-world CPS testbeds.
First, Secure Water Treatment (SWaT) (Secure Water
Treatment (SWaT) 2020; Mathur and Tippenhauer 2016),
a scaled-down version of a modern water purification
plant. SWaT is a complex multi-stage CPS involving
physical and chemical processes such as ultrafiltration,
de-chlorination, and reverse osmosis. Second, Water Dis-
tribution (WADI) (Ahmed et al. 2017), a scaled-down
version of a water distribution network typical of a city,
designed to account for varying patterns of peak and off-
peak water demand. Starting from high-level functional
requirements, we applied axiomatic design principles to
decompose the systems’ designs and identify dependen-
cies between their design parameters (i.e. sensors and
actuators). Using domain expertise and process graphs, we
transformed these into a suite of invariant checkers that

were able to detect 13 different single- and multi-stage
attacks on the real systems, all without false positives.
Our paper is organised as follows. In our Background

section, we present an overview of the SWaT and WADI
testbeds, aswell as a general attack classification that will be
used in the evaluation of our method. In Our Approach,
we present the three main steps of our design-level anal-
ysis, and show how axiomatic design principles can be
used to identify sets of dependent components that can
be transformed into invariants. In our Evaluation and dis-
cussion section, we assess the effectiveness of decision
tree learning for constructing our invariant checkers, their
ability to correctly label real SWaT and WADI inputs as
normal or anomalous, and then reflect on the strengths
and weaknesses of our approach. Finally, we compare our
approach against some Related work before drawing some
Conclusions and speculating on some future work.
This is a revised and extended version of our posi-

tion paper, Towards Systematically Deriving Defence
Mechanisms from Functional Requirements of Cyber-
Physical Systems (Yoong et al. 2020), adding the fol-
lowing new content: (1) an expanded description of
the approach, adding details of the training sets used,
an algorithm, and additional examples of invariants;
(2) the addition of WADI as a second case study;
(3) an evaluation of our invariant checkers against
13 different single- and multi-stage attacks; (4) new
Discussion and Related work sections offering some
critical reflections and comparisons; and (5) significant
improvements to all parts of the text, including additional
depth, examples, and figures.

Background
This section presents an overview of the two CPS testbeds
used to evaluate our proposed approach. First, we present
SWaT, a water purification plant that forms our princi-
pal case study, followed by our second testbed, the WADI
water distribution system. Finally, we clarify what is meant
by a CPS attack in the context of such systems.

SWaT testbed
The Secure Water Treatment (SWaT) testbed (Secure
Water Treatment (SWaT) 2020; Mathur and Tippen-
hauer 2016) is a scaled-down version of a modern water
purification plant, intended for supporting research into
cyber-security solutions for critical infrastructure. SWaT
is able to produce up to five gallons of safe drinking
water per minute across six distinct co-operating stages
(Fig. 1) involving chemical processes like ultrafiltration,
de-chlorination, and reverse osmosis. Each stage is con-
trolled by an Allen-Bradley ControlLogix Programmable
Logic Controller (PLC), which communicates with sen-
sors and actuators through a field-bus network, and with
each other through a 24-port Ethernet switch. A SCADA

Yoong et al. Cybersecurity (2021) 4:6 Page 3 of 24

Fig. 1 Overview of the six stages of SWaT. Thick red arrows indicate the flow of water; dotted and dashed rectangles respectively indicate sensors
and actuators; thick black rectangles indicate tanks and sub-systems; and blue rectangles indicate the stages

workstation connects a human-machine interface to all
of the PLCs, facilitating monitoring and control of the
plant by human operators. The physical state of SWaT, as
observed by the sensors, is recorded by a historian server
at pre-specified intervals. A SWaT dataset is available,
consisting of all the data recorded by this server over a
period of several days, including a few during which the
testbed was subjected to attacks (iTrust Labs: Datasets
2020; Goh et al. 2016).
An overview of the six sub-processes of SWaT is given

in Fig. 1. A number of the testbed’s 68 sensors and actu-
ators are depicted, with sensors including Flow Indica-
tor Transmitters (FITs), Analyzer Indicator Transmitters
(AITs), and Level Indicator Transmitters (LITs). Actuators
include Motorised Valves (MVs) for controlling the inflow
of water into tanks and Pumps (Ps) for pumping it out.
Note that each stage is controlled by a dedicated PLC (not
shown in the figure).
Stage One. This is the first stage of SWaT, consisting

of a raw water tank (T-101), connected to a motorised

valve (MV-101) that controls the inflow of raw water. An
electromagnetic flow transmitter (FIT-101) reads the flow
rate of this water, and sends it to the PLC. Pump P-101
transfers water from T-101 into the chemical dosing pro-
cess of stage two. The operation of P-101 is interlocked to
the level indicator transmitter (LIT-301) in tank T-301 of
stage three.
Stage Two. Chemical dosing is applied in this stage.

The chemical properties of the incoming raw water are
measured using analyser indicator transmitters AIT-201,
AIT-202, and AIT-203. This information is used by the
PLC to control pumps P-201, P-202, and P-203, adjusting
the dosing and thus the water’s chemical properties before
it enters stage three.
Stage Three. Ultrafiltration (UF) is performed in this

stage. Raw water, after being dosed with chemicals in
stage two, is fed into a UF unit. The operation of P-301
is interlocked with the level indicator transmitter LIT-401
for the reverse osmosis (RO) feed water tank (T-401) in
stage four. Thus, P-301 is stopped when the water level

Yoong et al. Cybersecurity (2021) 4:6 Page 4 of 24

in T-401 is high, but when the water level reaches the
low marker, P-301 is turned on, and MV-302 is opened.
Flow meter FIT-301 measures the incoming flow rate to
the UF unit. The differential pressure indicator transmit-
ter (DPIT) continuously monitors the difference in inlet
pressure and outlet pressure. If the UF membranes are
clogged, the DPIT triggers an alarm, and a backwash
sequence begins in stage six. AIT-301, AIT-302, and AIT-
303 measure and transmit (to the PLC) various chemi-
cal parameters of the water entering the UF feed water
tank T-301.
Stage Four. De-chlorination is performed in this stage:

any free chlorine in the water coming out of the UF
unit is removed using a combination of an ultraviolet de-
chlorinator and sodium bisulphate. P-401 is started when
T-401 reaches the high marker, moving water through
the de-chlorinator unit. The hardness analyser (AIT-401)
monitors and reports the level of hardness to avoid scaling
within the RO system.
Stage Five. Reverse osmosis (RO) is applied in stage five.

The RO system is designed to provide bulk reduction of
inorganic impurities. The RO permeate stream is chan-
nelled to the RO permeate tank (T-601) when MV-501 is
opened. Before reaching the tank, the conductivity anal-
yser (AIT-504) measures water conductivity, and if above
the threshold, water is diverted to a reject tank T-602
by opening valve MV-503. The rejected water is used to
clean the UF membranes in the backwash process. RO
permeate pump P-601 recycles water from T-601 back
to T-101.
Stage Six. Finally, stage six consists of a backwash pro-

cess. UF membranes need cleaning to remove solid par-
ticles. This cleaning is achieved through the backwash
process, which is programmed to start every 30 min. It is

also started when the pressure drop across the membrane
goes above a pre-set threshold. The rejected RO water
from tank T-602 is moved through the UF unit by starting
pump P-602.

WADI testbed
The Water Distribution (WADI) testbed (Ahmed et al.
2017) is a scaled-down version of a typical water distri-
bution network, designed to account for varying patterns
of water demands (e.g. peak vs off-peak), and support
research into ways of mitigating attacks that might other-
wise cut off the water supplies of real consumers. WADI
consists of three distinct stages, each controlled by a
National Instruments PLC. The first stage consists of two
2500 litre water tanks which receive treated water from
an external source. In the second stage, this water is fed
through to two elevated reservoirs, which are configured
to supply six consumer tanks based on a pre-set pattern
of demand. Finally, in the third stage, unused water is fed
into a return water tank, which can then be pumped back
to the first stage to be re-used.
Figure 2 provides an overview of the WADI’s three

stages, as well as the main sensors and actuators involved.
While the electronics involved are all based on different
hardware from that of SWaT, we use a similar naming
convention: LT for Level Transmitters, AIT for Anal-
yser Indication Transmitters, FIT for Flow Indication
Transmitters, PIT for Pressure Indication Transmitters,
LS for Level Switches, P for Pumps, MV for Motorised
Valves, MCV for Modulating Control Valves, and SV for
Solenoid Valves. Each component is named according
to its stage, type, and index: stage-type-index. For
example, component 2-MV-001 is a motorised valve in
stage two.

Fig. 2 Overview of the three stages of WADI. Solid arrows indicate the flow of water and the sequence of processes; component names are of the
form stage-type-index, e.g. 1-LT-001 is a Level Indication Transmitter in stage one

Yoong et al. Cybersecurity (2021) 4:6 Page 5 of 24

Attacks
To evaluate the defence mechanisms developed in this
work, we must first clarify exactly what we mean by a
CPS attack. We define an attack as a tuple 〈T ,C,O,D, L〉
of five components: T, a type; C, the subset of compo-
nents being targeted (e.g. pump P-101); O, the objective;
D, the description of the attacker’s steps (or actions);
and L, the initial (or launch) state of the attack. In the
context of SWaT and WADI, we consider four types
of attacks:

• Single attack, one stage (SAOS) : one component is
attacked, and the impact is observable within one
stage only;

• Single attack, multiple stages (SAMS) : one
component is attacked, but the impact is observable
within more than one stage;

• Multiple attacks, one stage (MAOS) : multiple
components are attacked, affecting one stage only;

• Multiple attacks, multiple stages (MAMS) : multiple
components are attacked, affecting multiple stages of
the CPS.

Thus, T ∈ {SAOS, SAMS,MAOS,MAMS}, and we aim
to cover attacks of multiple different types to test the
effectiveness of our defence mechanisms across a vari-
ety of scenarios. For simplicity, we will describe the steps
of attackers (D) informally, but precisely, using natural
language in our case studies.
Our attack classification is similar to that of Adepu and

Mathur (Adepu and Mathur 2016), in that we distinguish
between single- and multi-point attacks. However, our
model emphasises the results of the attacks (rather than
just the steps themselves), classifying attacks according to
whether they impact devices in one or multiple stages of
the CPS. We shall use this classification for the attacks we
consider in our Evaluation.

Our approach: a design-level analysis
The overarching goal of our work is to define a system-
atic design-level method for identifying—possibly before
a system is built—dependencies between CPS compo-
nents, helping designers to understand the potential
impact of compromised components, and to identify
weak points that should be redesigned or mitigated
by other means (e.g. security policies, access rights,
physical keys). In this paper, we focus on one par-
ticular application of this analysis: deriving invariants,
i.e. mathematical relations over the dependent compo-
nents. These can be included as part of the imple-
mented CPS’s defence mechanisms, in the form of
invariant checkers.
Figure 3 summarises the steps of our approach. First,

a design-level analysis based on axiomatic design princi-
ples is used to identify groups of dependent components
in the CPS design. Second, invariants are derived for
those groups of components, guided by domain knowl-
edge and/or process graphs. Finally, we construct invari-
ant checkers that can be used as defence mechanisms
for an implementation of the CPS design. We expand
upon these broad steps in the following three subsections,
demonstrating them on SWaT, our principal case study, as
well as WADI.

Step one: axiomatic design process
Our analysis is based on the principles of axiomatic
design, a systems design methodology developed by
Nam Pyo Suh (Suh 2001), that uses matrix methods
to systematically analyse the transformation of customer
needs (e.g. “build a six-stage water treatment plant”)
into functional requirements (e.g. “track water level of
tanks”), design parameters (e.g. sensing mechanisms),
and process variables (e.g. value ranges). The objective
of the theory is to create a scientific base for the design

Fig. 3 High-level overview of our design-level analysis for obtaining invariant checkers

Yoong et al. Cybersecurity (2021) 4:6 Page 6 of 24

process by building upon a suite of fundamental theo-
ries from logic and rationale thinking. Researchers have
applied this theory in areas such as manufacturing (Matt
2012; Zhu et al. 2008) and software development (Kand-
jani et al. 2015; Mohsen and Cekecek 2000).
In axiomatic design, functional requirements (FRs)

express what we want to achieve, i.e. the specific
behaviours we want from the design. Design parame-
ters (DPs) are elements of the physical design that are
chosen to realise the FRs. Finally, process variables (PVs)
are elements of the process design controlling the DPs
(e.g. continuous or discrete values that are characterising
the process). Matrix methods are used by the designer to
map FRs to DPs in the physical domain. For example, sup-
pose that the top-level of a design involved two FRs and
two DPs. These can then be related using the following
matrix:[

FR1
FR2

]
=

[
b11 b12
b21 b22

] [
DP1
DP2

]

The square matrix is a binary (or Boolean) matrix, indicat-
ing the coupling between FRs and DPs. After identifying
the couplings at a high level (e.g. where one DPmight rep-
resent all pumps), the designer would decompose the FRs
and DPs further (e.g. with one DP representing exactly one
of the pumps) until achieving a fine-grained set of depen-
dencies in the design. The decomposed matrices can then
be subjected to analyses to assess and mitigate the effects
of coupling.
In our work, rather than using axiomatic design to build

a CPS from the ground up, we take the core principles of
the approach and apply them to an existing CPS design
in order to identify dependencies. We take DPs to be
CPS components such as tank level sensors or motorised
valves, each of which can function within specific val-
ues of PVs. Furthermore, we differ from conventional
axiomatic design in the type of coupling: instead of consid-
ering physical coupling between FRs and DPs, we consider
information state coupling when decomposing the matrix
equations. This paves the way for a simple and high-level
design analysis to uncover the relations that exist between
DPs in normal CPS behaviour.

Applied to SWaT
Based on the requirements of SWaT, a top-level design
decomposition is given in Table 1. By the axiomatic design
principles, this first level should be a functionally uncou-
pled design guaranteeing that eachDP satisfies exactly one
FR. This is reflected by the matrix of Eq. (1), a diagonal
matrix in which each FR is related only to its given DP
from Table 1.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 0 0 0 0 0 0
0 X 0 0 0 0 0 0
0 0 X 0 0 0 0 0
0 0 0 X 0 0 0 0
0 0 0 0 X 0 0 0
0 0 0 0 0 X 0 0
0 0 0 0 0 0 X 0
0 0 0 0 0 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DP1
DP2
DP3
DP4
DP5
DP6
DP7
DP8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Next, the engineer analyses the DPs against the FRs and
updates the corresponding Boolean value of the matrix
if there is an information state coupling between them.
Inserting this information state coupling into Eq. (1)
results in Eq. (2), where ⊗ (or X on the diagonal) indicates
some dependencies, and a zero (0) denotes the absence
of them. Note that for simplicity, we assume these depen-
dencies to be symmetric, e.g. if DP7 is (information state)
coupled with FR2, then FR2 is coupled with DP7.⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ⊗ ⊗ ⊗ 0 ⊗ ⊗ 0
⊗ X ⊗ 0 0 0 ⊗ 0
⊗ ⊗ X 0 0 0 ⊗ 0
⊗ 0 0 X ⊗ 0 0 0
0 0 0 ⊗ X 0 0 ⊗
⊗ 0 0 0 0 X ⊗ 0
⊗ ⊗ ⊗ 0 0 ⊗ X 0
0 0 0 0 ⊗ 0 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DP1
DP2
DP3
DP4
DP5
DP6
DP7
DP8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Equation (2) shows that FR7 (“direct flow of water”)
is coupled with DP1–3, DP6, and DP7. This is justified
by a number of different behaviours in the design. For
example, if a tank level (DP2) is low and the correspond-
ing pump (DP1) is on, then a motorised valve (DP7) is
opened. Note however that Eq. (2) presents design infor-
mation that is at a very high and broadly defined level.
For instance, FR3—“track flow rate of water”—relates to

Table 1 Top-level decomposition of SWaT

Functional Requirements (FRs) Design Parameters (DPs) Process Variables (PVs)

FR1: Feed water to water tanks/systems DP1: DOL/VSD Pumps Features - Switch (On/Off) and Speed

FR2: Track level of water in tanks DP2: Sensing mechanisms Value range

FR3: Track flow rate of water DP3: EMF sensors Value range

FR4: Monitor chemical properties of water DP4: Chemical properties sensors Value range

FR5: Feed chemicals to water DP5: Dosing Pumps Switch (On/Off)

FR6: Track water pressure DP6: Pressure sensors Value range

FR7: Direct flow of water DP7: Motorised valves Switch (On/Off)

FR8: Track level of chemicals in tanks DP8: Level switch Value range

Yoong et al. Cybersecurity (2021) 4:6 Page 7 of 24

multiple different locations and flow sensors (DP3) in
SWaT. Another example is FR1—“feed water to water
tanks/systems”—when in reality, there are multiple water
pumps (DP1) in six different stages of SWaT. In order to
derive meaningful invariants that relate concrete compo-
nents of the CPS, our method requires that the top-level
design of Eq. (2) is iteratively decomposed towards a
point-to-point mapping between each FR and DP. For
illustration purposes, such a mapping is shown in the
third-level decomposition of Table 2.
For simplicity of presentation, rather than use a full

point-to-point mapping, we decompose the eight FRs of
Eq. (2) into the 30 FRs of the second-level decomposi-
tion in Table 3. This is much more concrete than the
top-level decomposition as it factors in particular sensors
and actuators from different stages, but groups some of
them together for convenience (e.g. P-101 and P-102 are
the same DP, as the latter pump is simply a backup for the
former).
Next, the equation in Fig. 4 is constructed by mapping

down the information-state coupling from Eq. (2) and
adjusting according to the FRs of Table 3. At this second
level, we use the notational format FRi.j and DPi.j with i
denoting the number from the top-level design and j the
number from the second-level.
Finally, Table 4 presents the dependencies between DPs

for each second-level FR of Table 3, using the information-
state coupling as identified by the CPS designer in the
equation of Fig. 4. These sets of dependencies identified
in the design can then be used to construct invariants (see
Step Two and Three).

Applied toWADI
Similar to SWaT, our method requires a functionally
uncoupled top-level decomposition in which each DP sat-
isfies exactly one FR. Following the design of Palleti et al.
(Palleti et al. 2018), we decompose WADI into eight FRs
andDPs, which are presented together in Table 5. An anal-
ysis of the requirements enables the designer to derive the
matrix below (Eq. 3), in a similar way to SWaT.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ⊗ 0 0 0 0 0 ⊗
⊗ X 0 0 0 0 0 0
0 0 X 0 0 0 0 0
0 0 0 X 0 0 0 ⊗
0 0 0 0 X 0 0 0
0 0 0 0 0 X ⊗ ⊗
0 0 0 0 0 ⊗ X 0
⊗ 0 0 ⊗ 0 ⊗ 0 X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DP1
DP2
DP3
DP4
DP5
DP6
DP7
DP8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Further detailed, lower levels of decomposition follow
the same procedure as in SWaT, and enable the designer
to flesh out the relations across the different components
of the system. For WADI, a second-level decomposition
leads to 25 FRs and DPs.

Step two: deriving invariants
Having identified sets of dependent DPs, the second step
of our approach is to identify the invariant relation-
ships that exist between them, i.e. relational properties
that always hold under normal operating conditions. For
example, if two DPs have been identified as dependent,
then we are seeking to identify the combinations of states
they are permitted to be in, with any other combinations
representing anomalous behaviour.
Design engineers can derive invariants for these sets of

DPs in a number of different ways. We propose a sys-
tematic approach supported by visual aids. In particular,
we propose the construction of mathematical expressions
over the DP states (e.g. “if DP1 is on and DP2 is low
then the system is anomalous”). These expressions can
be constructed directly (e.g. in a tabulated format) by
the designer or engineer using domain expertise, or can
be guided by visual aids such as process graphs. These
are based on the directed acyclic graph (DAG) concept
of graph theory (Bondy and Murty 2008) and can assist
the designer/engineer to visually analyse the relationship
between states of DPs (represented as nodes) and the
conditions that cause them to change (represented as
edges).

Applied to SWaT
To illustrate this step, consider, row FR7.1 of Table 4: here,
DP7.1.1 expresses that motorised valve MV-101 has a
dependency on LIT-101 (and vice versa). Using knowledge
of the plant’s design, we then construct state expressions
to characterise their invariant relationship, i.e. the com-
binations of states they will always be in during normal
operation. These state expressions consist of combina-
tions of DP states and the corresponding labels of anoma-
lous or non-anomalous. In the case of LIT-101, we use
the low/high thresholds to determine two discrete states
of interest, then relate them against the possible discrete
values of MV-101 (open or closed). These equations are
given in Table 6 (Invariant #1), where MV-101 denotes
that the valve is open, !MV-101 denotes that the valve is
closed, LIT-101 denotes that the tank level is high, and
!LIT-101 denotes that the tank is low. The table also con-
tains labels reflecting the judgement of an engineer as to
which of these four combinations reflect anomalous con-
figurations. For example, if the valve is open and the tank
level is high, this is anomalous as it could cause the tank
to overflow.
Figure 5 shows how the normal and anomalous cases

of Invariant #1 would be depicted as process graphs. The
arrows in parts (b) and (c) indicate changes of state, here
triggered by LIT-101 reporting a reading below one of
its low thresholds (Low or LowLow), or above one of its
high thresholds (High or HighHigh). The idea is that the
designer traverses through the different paths to explore

Yoong et al. Cybersecurity (2021) 4:6 Page 8 of 24

Table 2 Third-level decomposition of SWaT’s FRs and DPs

Functional Requirements (FRs) Design Parameters (DPs) Process Variables (PVs)

FR1.1.1: Feed raw water from stage one to UF feed tank in stage three using pump P-101 DP1.1.1: P-101 On/Off

FR1.1.2: Feed raw water from stage one to UF feed tank in stage three using pump P-102 DP1.1.2: P-102 On/Off

FR1.2.1: Feed water from stage three to RO feed tank in stage four using pump P-301 DP1.2.1: P-301 On/Off

FR1.2.2: Feed water from stage three to RO feed tank in stage four using pump P-302 DP1.2.2: P-302 On/Off

FR1.3.1: Pump water from stage four through de-chlorination system using pump P-401 DP1.3.1: P-401 On/Off

FR1.3.2: Pump water from stage four through de-chlorination system using pump P-402 DP1.3.2: P-402 On/Off

FR1.4.1: Pump (VSD) water from stage five to tanks in stage six using pump P-501 DP1.4.1: P-501 On/Off

FR1.4.2: Pump (VSD) water from stage five to tanks in stage six using pump P-502 DP1.4.2: P-502 On/Off

FR3.5.1: Compute RO membrane inlet flow meter in stage five DP3.5.1: FIT-501 0 ≤ α ≤ maxk1

FR3.5.2: Compute RO permeate flow meter in stage five DP3.5.2: FIT-502 0 ≤ α ≤ maxk2

FR3.5.3: Compute RO reject flow meter in stage five DP3.5.3: FIT-503 0 ≤ α ≤ maxk3

FR3.5.4: Compute RO re-circulation flow meter in stage five DP3.5.4: FIT-504 0 ≤ α ≤ maxk4

FR4.1.1: Calculate chemical dosing conductivity of water in stage two DP4.1.1: AIT-201 0 ≤ α ≤ maxm1

FR4.1.2: Calculate chemical dosing pH of water in stage two DP4.1.2: AIT-202 0 ≤ α ≤ maxm2

FR4.1.3: Calculate chemical dosing ORP of water in stage two DP4.1.3: AIT-203 0 ≤ α ≤ maxm3

FR4.1.4: Calculate UF permeate pH of water in stage three DP4.1.4: AIT-301 0 ≤ α ≤ maxm4

FR4.1.5: Calculate UF permeate ORP of water in stage three DP4.1.5: AIT-302 0 ≤ α ≤ maxm5

FR4.1.6: Calculate UF permeate conductivity of water in stage three DP4.1.6: AIT-303 0 ≤ α ≤ maxm6

FR4.1.7: Calculate RO feed hardness of water in stage four DP4.1.7: AIT-401 0 ≤ α ≤ maxm7

FR4.1.8: Calculate RO ORP of water in stage four DP4.1.8: AIT-402 0 ≤ α ≤ maxm8

FR4.1.9: Calculate RO feed pH of water in stage five DP4.1.9: AIT-501 0 ≤ α ≤ maxm9

FR4.1.10: Calculate RO feed ORP of water in stage five DP4.1.10: AIT-502 0 ≤ α ≤ maxm10

FR4.1.11: Calculate RO feed conductivity of water in stage five DP4.1.11: AIT-503 0 ≤ α ≤ maxm11

FR4.1.12: Calculate RO permeate conductivity of water in stage five DP4.1.12: AIT-504 0 ≤ α ≤ maxm12

FR5.1.1: Feed NaCl dosing in stage two using pump P-201 DP5.1.1: P-201 On/Off

FR5.1.2: Feed NaCl dosing in stage two using pump P-202 DP5.1.2: P-202 On/Off

FR5.1.3: Feed HCl dosing in stage two using pump P-203 DP5.1.3: P-203 On/Off

FR5.1.4: Feed HCl dosing in stage two using pump P-204 DP5.1.4: P-204 On/Off

FR5.1.5: Feed NaOCl dosing in stage two using pump P-205 (FAC) DP5.1.5: P-205 On/Off

FR5.1.6: Feed NaOCl dosing in stage two using pump P-206 (FAC) DP5.1.6: P-206 On/Off

FR5.1.7: Feed NaOCl dosing to stage three UF cleaning using pump P-207 (UF) DP5.1.7: P-207 On/Off

FR5.1.8: Feed NaOCl dosing to stage three UF cleaning using pump P-208 (UF) DP5.1.8: P-208 On/Off

FR5.1.9: Feed NaHSO3 dosing in stage four using pump P-403 DP5.1.9: P-403 On/Off

FR5.1.10: Feed NaHSO3 dosing in stage four using pump P-404 DP5.1.10: P-404 On/Off

FR7.1.1: Direct raw water inlet in stage one DP7.1.1: MV-101 On/Off

FR7.1.2: Direct water flow in stage two DP7.1.2: MV-201 On/Off

FR7.1.3: Direct UF backwash in stage three DP7.1.3: MV-301 On/Off

FR7.1.4: Direct UF feed water in stage three DP7.1.4: MV-302 On/Off

FR7.1.5: Direct UF backwash drain in stage three DP7.1.5: MV-303 On/Off

FR7.1.6: Direct UF drain in stage three DP7.1.6: MV-304 On/Off

FR7.1.7: Direct RO permeate in stage five DP7.1.7: MV-501 On/Off

FR7.1.8: Direct RO backwash in stage five DP7.1.8: MV-502 On/Off

FR7.1.9: Direct RO permeate reject in stage five DP7.1.9: MV-503 On/Off

FR7.1.10: Direct RO reject in stage five DP7.1.10: MV-504 On/Off

Yoong et al. Cybersecurity (2021) 4:6 Page 9 of 24

Ta
b
le

3
Se
co
nd

-le
ve
ld
ec
om

po
si
tio

n
of

SW
aT
’s
FR
s
an
d
D
Ps

Fu
n
ct
io
n
al
Re

q
ui
re
m
en

ts
(F
Rs
)

D
es
ig
n
Pa

ra
m
et
er
s
(D
Ps
)

Pr
oc
es
s
Va
ria
bl
es

(P
Vs
)

FR
1.
1:
Pu

m
p
ra
w
w
at
er
fro

m
st
ag
e
on

e
to

U
F
fe
ed

ta
nk

in
st
ag
e
th
re
e

D
P1
.1
:P
-1
01
,P
-1
02

O
n/
O
ff

FR
1.
2:
Pu

m
p
w
at
er
fro

m
st
ag
e
th
re
e
to

RO
fe
ed

ta
nk

in
st
ag
e
fo
ur

D
P1
.2
:P
-3
01
,P
-3
02

O
n/
O
ff

FR
1.
3:
Pu

m
p
w
at
er
fro

m
st
ag
e
fo
ur

th
ro
ug

h
de

-c
hl
or
in
at
io
n
sy
st
em

D
P1
.3
:P
-4
01
,P
-4
02

O
n/
O
ff

FR
1.
4:
Pu

m
p
(V
SD

)w
at
er
fro

m
st
ag
e
fiv
e
to

ta
nk
s
in
st
ag
e
si
x

D
P1
.4
:P
-5
01
,P
-5
02

O
n/
O
ff

FR
1.
5:
Pu

m
p
w
at
er
fro

m
RO

pe
rm

ea
te

ta
nk

to
ra
w
w
at
er
ta
nk

in
st
ag
e
on

e
D
P1
.5
:P
-6
01

O
n/
O
ff

FR
1.
6:
Pu

m
p
w
at
er
fo
rU

F
ba

ck
w
as
h
sy
st
em

D
P1
.6
:P
-6
02

O
n/
O
ff

FR
1.
7:
Pu

m
p
w
at
er
fo
rR

O
/U
F
cl
ea
ni
ng

D
P1
.7
:P
-6
03

O
n/
O
ff

FR
2.
1:
D
et
er
m
in
e
w
at
er
le
ve
li
n
ra
w
w
at
er
ta
nk

of
st
ag
e
on

e
D
P2
.1
:L
IT
-1
01

0
≤

α
≤
m
ax

a

FR
2.
2:
D
et
er
m
in
e
w
at
er
le
ve
li
n
U
F
fe
ed

ta
nk

of
st
ag
e
th
re
e

D
P2
.2
:L
IT
-3
01

0
≤

α
≤
m
ax

b

FR
2.
3:
D
et
er
m
in
e
w
at
er
le
ve
li
n
RO

fe
ed

ta
nk

of
st
ag
e
fo
ur

D
P2
.3
:L
IT
-4
01

0
≤

α
≤
m
ax

c

FR
2.
4:
D
et
er
m
in
e
w
at
er
le
ve
li
n
RO

pe
rm

ea
te

ta
nk

of
st
ag
e
si
x

D
P2
.4
:L
S-
60
1

Lo
w
d

≤
α

≤
H
ig
h d

FR
2.
5:
D
et
er
m
in
e
w
at
er
le
ve
li
n
U
F
ba

ck
w
as
h
ta
nk

of
st
ag
e
si
x

D
P2
.5
:L
S-
60
2

Lo
w
e
≤

α
≤
H
ig
h e

FR
2.
6:
D
et
er
m
in
e
w
at
er
le
ve
li
n
C
IP
ta
nk

of
st
ag
e
si
x

D
P2
.6
:L
S-
60
3

Lo
w
f
≤

α
≤
H
ig
h f

FR
3.
1:
M
ea
su
re
ra
w
w
at
er
flo

w
ra
te

in
st
ag
e
on

e
D
P3
.1
:F
IT
-1
01

Lo
w
g
≤

α
≤
H
ig
h g

FR
3.
2:
M
ea
su
re
w
at
er
flo

w
ra
te

in
st
ag
e
tw

o
D
P3
.2
:F
IT
-2
01

Lo
w
h

≤
α

≤
H
ig
h h

FR
3.
3:
M
ea
su
re
w
at
er
flo

w
ra
te

in
st
ag
e
th
re
e

D
P3
.3
:F
IT
-3
01

Lo
w
i
≤

α
≤
H
ig
h i

FR
3.
4:
M
ea
su
re
w
at
er
flo

w
ra
te

in
st
ag
e
fo
ur

D
P3
.4
:F
IT
-4
01

Lo
w
j
≤

α
≤
H
ig
h j

FR
3.
5:
M
ea
su
re
w
at
er
flo

w
ra
te

in
st
ag
e
fiv
e

D
P3
.5
:F
IT
-5
01
,F
IT
-5
02
,F
IT
-5
03
,F
IT
-5
04

Lo
w
k
≤

α
≤
H
ig
h k

FR
3.
6:
M
ea
su
re
w
at
er
flo

w
ra
te

in
st
ag
e
si
x

D
P3
.6
:F
IT
-6
01

Lo
w
l
≤

α
≤
H
ig
h l

FR
4.
1:
C
al
cu
la
te

ch
em

ic
al
pr
op

er
tie

s
of

w
at
er

D
P4
.1
:A
IT
-2
01
,A
IT
-2
02
,A
IT
-2
03
,A
IT
-3
01
,A
IT
-3
02
,A
IT
-3
03

Lo
w
m

≤
α

≤
H
ig
h m

A
IT
-4
01
,A
IT
-4
02
,A
IT
-5
01
,A
IT
-5
02
,A
IT
-5
03
,A
IT
-5
04

FR
5.
1:
Pu

m
p
ch
em

ic
al
s
to

w
at
er

D
P5
.1
:P
-2
01
,P
-2
02
,P
-2
03
,P
-2
04
,P
-2
05
,P
-2
06
,P
-2
07
,P
-2
08
,

O
n/
O
ff

P-
40
3,
P-
40
4

FR
6.
1:
M
ea
su
re
U
F
fil
te
rd

iff
er
en

tia
lp
re
ss
ur
e

D
P6
.1
:D

PI
T-
30
1

0
≤

α
≤
m
ax

n

FR
6.
2:
M
ea
su
re
RO

m
em

br
an
e
in
le
tp

re
ss
ur
e

D
P6
.2
:P
IT
-5
01

0
≤

α
≤
m
ax

o

FR
6.
3:
M
ea
su
re
RO

m
em

br
an
e
pr
es
su
re

D
P6
.3
:P
IT
-5
02

0
≤

α
≤
m
ax

p

FR
6.
4:
M
ea
su
re
RO

re
je
ct
pr
es
su
re

D
P6
.4
:P
IT
-5
03

0
≤

α
≤
m
ax

q

FR
7.
1:
C
on

tr
ol
w
at
er
flo

w
di
re
ct
io
n

D
P7
.1
:M

V-
10
1,
M
V-
20
1,
M
V-
30
1,
M
V-
30
2,
M
V-
30
3,
M
V-
30
4,

O
n/
O
ff

M
V-
50
1,
M
V-
50
2,
M
V-
50
3,
M
V-
50
4

FR
8.
1:
D
et
er
m
in
e
N
aC

ll
ev
el
in
N
aC

lt
an
k
of

st
ag
e
tw

o
D
P8
.1
:L
S-
20
1

Lo
w
r
≤

α
≤
m
ax

r

FR
8.
2:
D
et
er
m
in
e
H
C
ll
ev
el
in
H
C
lt
an
k
of

st
ag
e
tw

o
D
P8
.2
:L
S-
20
2

Lo
w
s
≤

α
≤
m
ax

s

FR
8.
3:
D
et
er
m
in
e
N
aO

C
ll
ev
el
in
N
aO

C
lt
an
k
of

st
ag
e
tw

o
D
P8
.3
:L
S-
20
3

Lo
w
t
≤

α
≤
m
ax

t

FR
8.
4:
D
et
er
m
in
e
N
aH

SO
3
le
ve
li
n
N
aH

SO
3
ta
nk

of
st
ag
e
fo
ur

D
P8
.4
:L
S-
40
1

Lo
w
u
≤

α
≤
m
ax

u

Yoong et al. Cybersecurity (2021) 4:6 Page 10 of 24

Fig. 4 Equation characterising the second-level information-state couplings

the different behaviours, before mapping them down to
equivalent state expressions.
We exemplify the process of deriving invariants with

two more examples. Consider DP3.5.1, in row FR3.5 of
Table 4, which denotes a set of dependencies between flow
sensor FIT-501, pump P-401, and pump P-402. We iden-
tify two states of interest for each component: water flow-
ing (FIT-501>0) versus no water flowing; and pump on
(P-401) versus pump off (!P-401). Using knowledge of the
design, we enumerate the mathematical state expressions
in Table 7 (Invariant #2).
Finally, consider the more complex case of DP7.1.2, in

row FR7.1 of Table 4. The four devices are found across
different stages of SWaT: the pumps P-101 and P-102 in
stage one, the valve MV-201 in stage two, and the tank
level sensor LIT-301 in stage three. The communication
between these components is summarised in Fig. 6a. The
sensor reading of LIT-301 (in tank T-301) is transmitted
from PLC3 to PLC2. When the water level in the tank
is low or very low, PLC2 sends a signal to close valve
MV-201. Next, it transmits a signal to start pump P-101
or P-102 via PLC1. By doing so, water is pumped from
stage one of SWaT through MV-201 in stage two through
to tank T-301 in stage three. These are typical normal

cases, i.e. without an attack. The process graph in Fig. 6b
presents exactly three different paths to represent normal
behaviour, whereas Fig. 6c depicts other, anomalous cases.
For example, if the tank is falsely reported as being in a low
state (e.g. by an attacker), MV-201 is anomalously opened,
and P-101 or P-102 are switched on. The water starts
flowing into the tank, but since its actual state is high,
it may start to overflow and cause damage. The mathe-
matical state expressions corresponding to these paths are
summarised in Table 8 (Invariant #3).
Note that for SWaT, we are able to assume that all DPs

have one of two states, meaning that the total number
of state expressions to analyse will be 2n, where n is the
number of components involved. Though n is typically
of a manageable magnitude for SWaT, for other systems,
the number of equations may grow too large to manu-
ally complete. We address this in Step Three by allowing
automated approaches (e.g. decision tree learning) to gen-
eralise from a strict subset of the state expressions that
engineers have been able to identify.

Applied toWADI
After decomposing the design of WADI using axiomatic
design principles, we are able to identify the following sets

Yoong et al. Cybersecurity (2021) 4:6 Page 11 of 24

Table 4 Linking SWaT’s second-level decomposition of FRs to dependent DPs

Functional Requirements (FRs) Design Parameters (DPs)

FR1.1: Pump raw water from stage one to UF feed tank in stage three DP1.1: P-101, P-102

DP1.1.1: P-101; Other DPs: DP2.1(LIT-101), DP2.2(LIT-301),
DP7.1(MV-201)

DP1.1.2: P-102; Other DPs: DP2.1(LIT-101), DP2.2(LIT-301),
DP7.1(MV-201)

FR1.2: Pump water from stage three to RO feed tank in stage four DP1.2: P-301, P-302

DP1.2.1: P-301; Other DPs: DP2.2(LIT-301), DP2.3(LIT-401),
DP7.1(MV-302)

DP1.2.2: P-302; Other DPs: DP2.2(LIT-301), DP2.3(LIT-401),
DP7.1(MV-302)

FR1.3: Pump water from stage four through de-chlorination system DP1.3: P-401, P-402

DP1.3.1: P-401; Other DPs: DP1.4(P-501,P-502), DP2.3(LIT-401)

DP1.3.2: P-402; Other DPs: DP1.4(P-501,P-502), DP2.3(LIT-401)

FR1.4: Pump (VSD) water from stage five to tanks in stage six DP1.4: P-501, P-502

DP1.4.1: P-501; Other DPs: DP1.3(P-401,P-402), DP7.1(MV-501)

DP1.4.2: P-502; Other DPs: DP1.3(P-401,P-402), DP7.1(MV-501)

FR1.5: Pump water from RO permeate tank to raw water tank in stage one DP1.5: P-601; Other DPs: DP2.1(LIT-101), DP2.4(LS-601)

FR1.6: Pump water for UF backwash system DP1.6: P-602; Other DPs: DP2.5(LS-602), DP7.1(MV-301)

FR1.7: Pump water for RO/UF cleaning DP1.7: P-603; Other DPs: DP2.6(LS-603)

FR2.1: Determine water level in raw water tank of stage one DP2.1: LIT-101; Other DPs: DP1.1(P-101,P-102), DP1.5(P-601),
DP2.4(LS-601), DP7.1(MV-101)

FR2.2: Determine water level in UF feed tank of stage three DP2.2: LIT-301; Other DPs: DP1.1(P-101,P-102), DP1.2(P-301,P-
302), DP7.1(MV-201)

FR2.3: Determine water level in RO feed tank of stage four DP2.3: LIT-401; Other DPs: DP1.2(P-301,P-302), DP1.3(P-401,P-
402), DP7.1(MV-302)

FR2.4: Determine water level in RO permeate tank of stage six DP2.4: LS-601; Other DPs: DP1.5(P-601), DP2.1(LIT-101)

FR2.5: Determine water level in UF backwash tank of stage six DP2.5: LS-602; Other DPs: DP1.6(P-602), DP7.1(MV-301)

FR2.6: Determine water level in CIP tank of stage six DP2.6: LS-603; Other DPs: DP1.7(P-603), DP7.1(MV-301)

FR3.1: Measure raw water flow rate in stage one DP3.1: FIT-101; Other DPs: DP2.1(LIT-101), DP7.1(MV-101)

FR3.2: Measure water flow rate in stage two DP3.2: FIT-201; Other DPs: DP1.1(P-101,P-102), DP2.2(LIT-301),
DP7.1(MV-201)

FR3.3: Measure water flow rate in stage three DP3.3: FIT-301; Other DPs: DP1.2(P-301,P-302), DP2.3(LIT-401),
DP7.1(MV-302)

FR3.84: Measure water flow rate in stage four DP3.4: FIT-401; Other DPs: DP1.3(P-401,P-402), DP2.3(LIT-401)

FR3.5: Measure water flow rate in stage five DP3.5: FIT-501,FIT-502,FIT-503,FIT-504

DP3.5.1: FIT-501; Other DPs: DP1.3(P-401,P-402)

DP3.5.2: FIT-502; Other DPs: DP1.4(P-501,P-502)

DP3.5.3: FIT-503; Other DPs: DP1.4(P-501,P-502)

DP3.5.4: FIT-504; Other DPs: DP1.3(P-401,P-402)

FR3.6: Measure water flow rate in stage six DP3.6: FIT-601; Other DPs: DP1.6(P-602), DP2.5(LS-602),
DP7.1(MV-301)

FR4.1: Calculate chemical properties of water DP4.1: AIT-201,AIT-202,AIT-203,AIT-301,AIT-302,AIT-303,

AIT-401,AIT-402,AIT-501,AIT-502,AIT-503,AIT-504

DP4.1.1: AIT-201; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)

DP4.1.2: AIT-202; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)

DP4.1.3: AIT-203; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102)

DP4.1.4: AIT-301; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)

Yoong et al. Cybersecurity (2021) 4:6 Page 12 of 24

Table 4 Linking SWaT’s second-level decomposition of FRs to dependent DPs (Continued)

Functional Requirements (FRs) Design Parameters (DPs)

DP4.1.5: AIT-302; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)

DP4.1.6: AIT-303; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)

DP4.1.7: AIT-401; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)

DP4.1.8: AIT-402; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)

DP4.1.9: AIT-501; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)

DP4.1.10: AIT-502; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)

DP4.1.11: AIT-503; Other DPs: DP1.3.1(P-401), DP1.3.2(P-402)

DP4.1.11: AIT-504; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

FR5.1: Pump chemicals to water DP5.1: P-201,P-202,P-203,P-204,P-205,P-206,P-207,P-208,P-
403,P-404

DP5.1.1: P-201; Other DPs: DP4.1.1(AIT-201), DP7.1.2(MV-201)

DP5.1.2: P-202; Other DPs: DP4.1.1(AIT-201), DP7.1.2(MV-201)

DP5.1.3: P-203; Other DPs: DP4.1.2(AIT-202), DP7.1.2(MV-201)

DP5.1.4: P-204; Other DPs: DP4.1.2(AIT-202), DP7.1.2(MV-201)

DP5.1.5: P-205; Other DPs: DP4.1.3(AIT-203), DP7.1.2(MV-201)

DP5.1.6: P-206; Other DPs: DP4.1.3(AIT-203), DP7.1.2(MV-201)

DP5.1.7: P-207; Other DPs: DP4.1.5(AIT-302)

DP5.1.8: P-208; Other DPs: DP4.1.5(AIT-302)

DP5.1.9: P-403; Other DPs: DP4.1.8(AIT-402)

DP5.1.10: P-404; Other DPs: DP4.1.8(AIT-402)

FR6.1: Measure UF filter differential pressure DP6.1: DPIT-301; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302),
DP7.1(MV-302)

FR6.2: Measure RO membrane inlet pressure DP6.2: PIT-501; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

FR6.3: Measure RO membrane pressure DP6.3: PIT-502; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502),
DP7.1.7(MV-501),

DP7.1.9(MV-503)

FR6.4: Measure RO reject pressure DP6.4: PIT-503; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502),
DP7.1.8(MV-502),

DP7.1.10(MV-504)

FR7.1: Control water flow direction DP7.1: MV-101,MV-201,MV-301,MV-302,MV-303,MV-304,MV-
501,MV-502,MV-503,MV-504

DP7.1.1: MV-101; Other DPs: DP2.1(LIT-101)

DP7.1.2: MV-201; Other DPs: DP1.1.1(P-101), DP1.1.2(P-102),
DP2.2(LIT-301)

DP7.1.3: MV-301; Other DPs: DP1.6(P-602), DP2.5(LS-602),
DP2.6(LS-603)

DP7.1.4: MV-302; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302),
DP2.3(LIT-401)

DP7.1.5: MV-303; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)

DP7.1.6: MV-304; Other DPs: DP1.2.1(P-301), DP1.2.2(P-302)

DP7.1.7: MV-501; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

DP7.1.8: MV-502; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

DP7.1.9: MV-503; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

DP7.1.10: MV-504; Other DPs: DP1.4.1(P-501), DP1.4.2(P-502)

FR8.1: Determine NaCl level in NaCl tank of stage two DP8.1: LS-201; Other DPs: DP5.1.1(P-201), DP5.1.2(P-202)

FR8.2: Determine HCl level in HCl tank of stage two DP8.2: LS-202; Other DPs: DP5.1.3(P-203), DP5.1.4(P-204)

FR8.3: Determine NaOCl level in NaOCl tank of stage two DP8.3: LS-203; Other DPs: DP5.1.5(P-205), DP5.1.6(P-206),
DP5.1.7(P-207), DP5.1.8(P-208)

FR8.4: Determine NaHSO3 level in NaHSO3 tank of stage four DP8.4: LS-401; Other DPs: DP5.1.9(P-403), DP5.1.10(P-404)

Yoong et al. Cybersecurity (2021) 4:6 Page 13 of 24

Table 5 Top-level decomposition of WADI

Functional Requirements (FRs) Design Parameters (DPs)

FR1: Supply water to the elevated
tanks

DP1: Pumps

FR2: Monitor water level of elevated
tanks

DP2: Level sensors

FR3: Monitor water flow rate DP3: Flow sensors

FR4: Monitor the water quality DP4: Water quality sensors

FR5: Monitor the dosing agent DP5: Dosing pumps

FR6: Supply water to the consumer
tanks

DP6: Methods of distribution

FR7: Measure and monitor the pres-
sure of water

DP7: Pressure meters

FR8: Control the direction of the
water flow

DP8: Control valves

of dependent components (depicted in Fig. 2). These sets
of dependencies identified in the design include two lim-
ited to a single stage of WADI, and two involving multiple
stages.

• Motorised valves (1-MV-001, 1-MV-005) allowing
treated water to flow into the stage one tank, and the
level indicator transmitter (1-LT-001) in that tank;

• Motorised valve (2-MV-001) in an elevated reservoir
of stage two, and the associated level indicator
transmitter (2-LT-001);

• Pump 1-P-005 in stage one, and a motorised valve
(2-MV-003) and level indicator transmitter
(2-LT-002) in stage two;

• Pumps 1-P-005 and 1-P-006 in stage one, and a
motorised valve (2-MV-003) and level indicator
transmitter (2-LT-002) in stage two.

With these sets of dependencies extracted, their invari-
ant relationships can be derived by the designer/engineer
in much the same way as SWaT.

Step three: building invariant checkers
In this final step, we incorporate the identified invari-
ants into the implemented CPS as invariant checkers,
i.e. defence mechanisms that monitor for any violations
of the properties. Intuitively, an invariant checker takes
live sensor readings and actuator states from a CPS, maps

Table 6 State expressions of Invariant #1 for SWaT

State expression Label

!MV-101 and !LIT-101 Anomaly

!MV-101 and LIT-101 No anomaly

MV-101 and !LIT-101 No anomaly

MV-101 and LIT-101 Anomaly

them to the appropriate state expression of the invari-
ant (discretising continuous values where necessary), then
returns the corresponding label of anomalous or non-
anomalous.
Implementing invariant checkers can be done in at least

two ways. First, if a complete set of state expressions is
available, they can be programmed explicitly, e.g. as a con-
trol structure. Alternatively, an invariant checker can be
constructed automatically using a supervised algorithm
such as decision tree learning (Breiman et al. 1984). This
latter approach has the advantage that the set of expres-
sions need not be complete, as the learning algorithm will
attempt to generalise from the samples presented.

Applied to SWaT andWADI
Consider the training set given in Table 9, which corre-
sponds to the state expressions and labels of Invariant
#3 (Table 8). The inputs are discretised representations
of the sensor and actuator states, whereas the labels yk
are discrete values between 1 and 5 of which 2 and 4
indicate anomaly cases (of course, one could simply use
two labels—anomaly, normal—but this helps differentiate
exactly which anomaly occurred). Note that the train-
ing set is incomplete in comparison to Table 8, but is
still enough to learn an accurate classifier (i.e. invari-
ant checker), as detailed in the next section. This allows
for the possibility of a design engineer to focus on enu-
merating the most important cases, using decision trees
to generalise the rest, followed by some validation (see
Evaluation and discussion) to ensure that the resulting
classifier is correct.
Once the invariant checker is constructed or trained,

Algorithm 1 summarises how it can be deployed as
an anomaly detector—whether on simulators, datasets,
or real systems and testbeds. In SWaT and WADI, the
invariant checkers are implemented using values from

Algorithm 1: Detecting anomalies
Input: Ordered set of dependent components DP;

invariant checkerMDP ; mapping F from raw inputs
of DP to discretised inputs ofMDP ; set of
anomalous labels LDP

Output: Anomalous values of DP
1 anomalyDetected := False;
2 while ! anomalyDetected do
3 Read the current values of DP and store in the

sequence S;
4 if actuator states in S are stable then
5 label := MDP(F(S));
6 if label ∈ LDP then
7 anomalyDetected := True;

8 Return S;

Yoong et al. Cybersecurity (2021) 4:6 Page 14 of 24

Fig. 5 Process graphs for Invariant #1 a Subsystem in stage one of SWaT; b a process graph for normal cases; c a process graph for anomalous cases

the historian server. Intuitively, the states of the sen-
sors/actuators relevant to a particular invariant are con-
stantly read, discretised, then labelled (as anomalous or
non-anomalous) by the invariant checker. As soon as an
anomalous label is returned, an alarm is raised and the
relevant values are sent to the plant operator. Note that
the algorithm requires actuator states to be ‘stable’, i.e. not
in the process of transitioning from one state to another
(such as a closed valve moving into a fully open position).
These transient states can be handled either by expanding
the mathematical state expressions to cover them, or by
using complementary defence mechanisms alongside our
invariant checkers (see our Discussion section).
The classifiers (i.e. invariant checkers) embody key char-

acteristics of the design as identified by the engineer
through a systematic method. We envisage that this has
the potential to complement defence mechanisms based
on data mining (e.g. (Pal et al. 2017; Chen et al. 2018;
Umer et al. 2020)), where invariant relationships are based
only on observable data after the system has been imple-
mented, and which might not reflect all invariants implied
by the design. Furthermore, as our invariants are con-
structed at the design stage, it may be possible to involve
them in early simulations of the processes, and to itera-
tively modify the system design before it is implemented
(Fig. 3) if any weak points or large sets of dependencies are
identified.

Table 7 State expressions of Invariant #2 for SWaT

State expression Label

!(FIT-501>0) and !P-401 and !P-402 No anomaly

!(FIT-501>0) and !P-401 and P-402 Anomaly

!(FIT-501>0) and P-401 and !P-402 Anomaly

!(FIT-501>0) and P-401 and P-402 Anomaly

FIT-501>0 and !P-401 and !P-402 Anomaly

FIT-501>0 and !P-401 and P-402 No anomaly

FIT-501>0 and P-401 and !P-402 No anomaly

FIT-501>0 and P-401 and P-402 Anomaly

Evaluation and discussion
Having derived invariants and invariant checkers from the
designs of SWaT and WADI, in this section, we evaluate
how effective they are at detecting real attacks.

Experiments and results
We derived eight invariants and invariant checkers from
the designs of SWaT and WADI by following the steps
given in the previous section. These invariants relate
groups of dependent level/flow/analytical sensors, pumps,
and motorised valves from both single stages and mul-
tiple stages of their respective testbeds (Table 10). As
described, we used process graphs and domain knowledge
to determine state expressions for the invariants, i.e. com-
binations of discretised states and their corresponding
labels. The full sets of expressions for Invariants #1–#3 are
given in Tables 6, 7, and 8 (with the expressions for the
others omitted for brevity).

Table 8 State expressions of Invariant #3 for SWaT

State Expression Label

!LIT-301 and !MV-201 and !P-101 and !P-102 Anomaly

!LIT-301 and !MV-201 and (!P-101 or P-102) Anomaly

!LIT-301 and !MV-201 and (P-101 or !P-102) Anomaly

!LIT-301 and !MV-201 and P-101 and P-102 Anomaly

!LIT-301 and MV-201 and !P-101 and !P-102 Anomaly

!LIT-301 and MV-201 and (!P-101 or P-102) No anomaly

!LIT-301 and MV-201 and (P-101 or !P-102) No anomaly

!LIT-301 and MV-201 and P-101 and P-102 Anomaly

LIT-301 and !MV-201 and !P-101 and !P-102 No anomaly

LIT-301 and !MV-201 and (!P-101 or P-102) Anomaly

LIT-301 and !MV-201 and (P-101 or !P-102) Anomaly

LIT-301 and !MV-201 and P-101 and P-102 Anomaly

LIT-301 and MV-201 and !P-101 and !P-102 Anomaly

LIT-301 and MV-201 and (!P-101 or P-102) Anomaly

LIT-301 and MV-201 and (P-101 or !P-102) Anomaly

LIT-301 and MV-201 and P-101 and P-102 Anomaly

Yoong et al. Cybersecurity (2021) 4:6 Page 15 of 24

Fig. 6 Process graphs for Invariant #3. a Subsystems involved across three stages of SWaT; b a process graph for normal cases; c a process graph for
anomalous cases

We experimentally assess the effectiveness of our
design-derived invariant checkers on the SWaT and
WADI testbeds. First, we run a pre-study to assess the
suitability of decision trees for implementing invariant
checkers from our (possibly partial) sets of mathematical
state expressions. Second, we describe a study to vali-
date that our invariant checkers properly classify normal
system behaviour as non-anomalous (i.e. without raising
false alarms). Finally, in our main study, we assess their
effectiveness at detecting attacks, before discussing how
designers might have mitigated them in the first place.

Table 9 Training set of Invariant #3 for SWaT

LIT-301 MV-201 P-101 P-102 yk

1 1 1 1 1 (normal)

1 1 2 1 1 (normal)

1 1 2 2 1 (normal)

1 2 1 1 1 (normal)

1 2 1 2 2 (anomaly)

1 2 2 1 2 (anomaly)

1 2 2 2 3 (normal)

2 1 1 1 4 (anomaly)

2 1 1 2 5 (normal)

2 1 2 1 5 (normal)

2 1 2 2 5 (normal)

2 2 1 1 5 (normal)

2 2 2 2 5 (normal)

Suitability of decision trees
As previously discussed, after identifying a group of
related components and some mathematical state expres-
sions, our approach uses decision tree learning to convert
this information (e.g. Table 9) into a classifier that can be
used as an invariant checker. To assess the suitability of
decision trees for this purpose, we designed a simple pre-
study to ascertain that the learnt classifiers correctly label
states as anomalous or non-anomalous, using complete
sets of state expressions as our oracles. Our decision trees
were implemented in Python using scikit-learn (no maxi-
mum tree depth; minimum sample of two to split a node;
minimum sample of one to be leaf).
For each invariant, we generated 1000 copies of every

possible combination of inputs (thus totalling 4000 tests
for Invariant #1 and 16,000 for Invariant #3). First, we
fed these to decision trees trained on the complete sets
of state expressions for Invariants #1–#8 and found that
the classifiers labelled them correctly 100% of the time.
This is unsurprising, but an important sanity check before
deploying our classifiers. Second, we fed the same inputs
but to decision trees trained on partial sets of state expres-
sions, in particular, the training set of Table 9 which
covered all three non-anomalous cases but only 10 of
the anomalous cases. Here too the classifiers labelled
inputs correctly 100% of the time, suggesting that decision
trees may be useful in cases where we want to generalise
from partially completed analyses, e.g. if the number of
dependent components is larger than 2–4. This should
be investigated further, although for SWaT and WADI, is

Yoong et al. Cybersecurity (2021) 4:6 Page 16 of 24

Table 10 Dependent sensors and actuators of some
design-derived invariants for SWaT and WADI

Invariant ID CPS Dependent Components Notes

#1 SWaT LIT-101, MV-101 Single-stage

#2 SWaT P-401/402, FIT-501 Multi-stage

#3 SWaT P-101/102, MV-201, LIT-301 Multi-stage

#4 SWaT P-203, MV-201, AIT-202 Single-stage

#5 WADI 1-MV-001, 1-MV-005, 1-LIT-001 Single-stage

#6 WADI 2-MV-001 and 2-LIT-001 Single-stage

#7 WADI 1-P-005, 2-MV-003, 2-LIT-002 Multi-stage

#8 WADI 1-P-005, 1-P-006, 2-MV-003, 2-LIT-002 Multi-stage

less important as the number of dependent components
involved for each invariant typically remains in this range.

Validating the invariant checkers
In our pre-study, we validated our classifiers (i.e. invariant
checkers) against inputs we labelled ourselves. In practice,
we need confidence that our invariant checkers perform
correctly for inputs from the real systems too: real normal
behaviour should be classified as non-anomalous, whereas
real behaviours under attack scenarios should be classified
as anomalous.
We designed a simple study to assess the first of these

two requirements, i.e. to validate that our SWaT and
WADI classifiers actually do characterise invariant prop-
erties of the testbeds. In other words, we want to validate
that whenever the system is behaving normally, our invari-
ant checkers label this behaviour as such and do notmisla-
bel it as anomalous (detecting anomalies will be addressed
in our third study).
To assess this, we made use of the SWaT and WADI

datasets (iTrust Labs: Datasets 2020; Goh et al. 2016),
which respectively contain seven and 14 days of data from
continuous normal operation of the testbeds, i.e. with-
out interruption from any faults or attacks. In particular,
the dataset contains the readings of all sensors and the
states of all actuators as logged every one second dur-
ing this period. For every log in this normal dataset,
we mapped the (continuous) sensor values and actuator
states to the (discretised) inputs of our invariant checkers,
and noted whether the classification was anomalous or
non-anomalous. We found that all of our invariant check-
ers correctly labelled all stable states extracted from the
logs as non-anomalous, i.e. 100% of the time. In other
words, no false positives were reported at any point while
analysing these 21 days’ worth of logged data.

Effectiveness at detecting attacks
While our second study suggests that our invariant check-
ers are unlikely to raise false alarms, we must also investi-
gate their ability to detect true positives, i.e. actual attacks.

In this third study, we launched several attacks on the
SWaT testbed that targeted components covered by the
invariants, and observed whether or not the checkers were
able to successfully detect them based on values obtained
from the testbeds’ historians. ForWADI, we evaluated our
invariant checkers against real data extracted from the
system while it was under attack (iTrust Labs: Datasets
2020).
Tables 11 and 12 list several different SWaT and WADI

attack scenarios, targeting sensors and actuators cover-
ing all of the dependent components monitored by our
invariant checkers. Furthermore, the attacks cover all four
categories of attacks as introduced earlier. For each SWaT
attack in turn, we used the SCADA controls to bring the
given testbed into the stated launch state, before starting
the attack as described, extracting the logs from the his-
torian, and mapping the (continuous) sensor values and
actuator states to the (discretised) inputs of our invariant
checkers (for WADI, we used existing attack data (iTrust
Labs: Datasets 2020)). We found that for every attack, at
least one of the invariant checkers (i.e. the one covering
the affected dependent components) was able to correctly
detect the anomaly and raise an alarm for the plant engi-
neer. However, it should be noted that the anomalies were
only detected once actuator states had stabilised, e.g. a
valve is either open or closed, but not in the process of
changing from one state to the other. Nonetheless, in a
water plant the processes typically evolve slowly (e.g. fill-
ing up a tank takes time), so despite the small delay, the
alarm is still likely to be raised well before an unsafe state
is reached.

Attackmitigation
All of the attacks presented in Table 11 exploit the same
dependencies between components that we identified in
a design-level analysis to develop invariant checkers. By
identifying dependencies in the design early, the designer
can take steps either to minimise them (i.e. feedback to
and adjust the design) or identify other means of attack
mitigation.
For example, consider Attack #1, visualised in Fig. 7. The

dependency exploited is given in DP7.1.1, row FR7.1 of
Table 4. SWaT’s defences could be strengthened against
this attack by overriding attempts to manually turn on
MV-101 if the water level reported by LIT-101 is above
its high (H) or critically high (HH) thresholds. This would
help to prevent the original attack, although would rely on
the assumption that the value of LIT-101 is correct and
can be trusted (additional invariant checkers concerning
LIT-101 could help to mitigate this threat).
Consider Attacks #2 through to #5, as visualised in

Fig. 8. The dependencies exploited are given in DP7.1.2,
row FR7.1 of Table 4. Attacks #2 and #3 could bemitigated
by overriding attempts to change the states of the pumps

Yoong et al. Cybersecurity (2021) 4:6 Page 17 of 24

Table 11 Attacks launched on SWaT to test our invariant checkers

No. Test Target Launch state Attack intent and description

category component(s)

1 SAOS MV-101 At time t, LIT-101 is above 900mm Damage or reduce reliability of MV-101

and MV-101 is turned off At time t++, an attacker begins manually turning MV-101 on

(Fig. 7) and off several times.

2 SAOS P-101 At time t, LIT-301 is below 450mm, Damage or reduce reliability of P-101

MV-201 is opened, and P-101 is At time t++, an attacker manually stops P-101 for 10 seconds.

turned on (Fig. 8) Then the attacker manually turns on P-101 for another 10 seconds.

The whole scenario is repeated a few times.

3 MAOS Water pipes At time t, LIT-301 is above 900mm, Damage water pipes at stage two

MV-201 is closed, P-101 is At time t++, an attacker manually turns P-101 on. Next, the

switched off and P-102 is switched attacker manually turns pump P-102 on.

off. (Fig. 8)

4 MAMS P-101, P-102, At time t, LIT-301 is above 900mm, Damage or reduce reliability of P-101, P-102, and MV-201

MV-201 MV-201 is closed, and At t++, an attacker manually turned on MV-201.

P-101 and P-102 are switched off. Next, the attacker manually starts pump P-102.

(Fig. 8) Then the attacker manually starts pump P-101.

The test scenario is repeated several times.

5 SAMS LIT-301,MV-201 At time t, LIT-301 is above 900mm, Damage or reduce reliability of LIT-301 sensors, P-101, and MV-201.

P-101 MV-201 is closed and At t++ where x > 3, an attacker changes the LIT-301 value

P-101 and P-102 are switched off. to 400mm. At t + 2x the value of LIT-301 is set to above 800mm.

(Fig. 8) This procedure is repeated several times.

These causes the LIT-301 sensors to sense sudden change

in readings, MV-201 to open and close repeatedly,

and P-101 to start and off many times.

6 SAOS P-203 At time t, MV-201 is opened, Damage or reduce reliability of P-203

P-203 is turned on, At time t++, an attacker turns off and on

AIT-202 analyses water pH is P-203 several times.

above 8. (Fig. 9)

7 SAOS P-203 At time t, MV-201 is opened, Damage or reduce reliability of P-203 and AIT-202

AIT-202 P-203 is turned on, At time t++, an attacker changes pH value from above 8 to 6

AIT-202 analyses water pH is in AIT-202. This causes P-203 to switch off.

above 8. (Fig. 9) The attacker repeatedly changes these pH values.

These caused P-203 to switch on and off several times. The

sensor in AIT-202 needs to calculate the sudden change

in pH several times.

Yoong et al. Cybersecurity (2021) 4:6 Page 18 of 24

Table 11 Attacks launched on SWaT to test our invariant checkers (Continued)

No. Test Target Launch state Attack intent and description

category component(s)

8 SAOS Water pipes At time t, P-401 and P501 are Damage water pipes at stage four

switched on. (Fig. 10) At time t++, an attacker physically turns P-402 on.

Now both P-401 and P-402 are pumping water to

stage five which add extra water pressure

to the pipes.

9 SAOS FIT-501 At time t, P-401 is Damage or reduce reliability of FIT-501.

switched on. (Fig. 11) At time t++, an attacker drastically

increases the value of FIT. This procedure

is repeated several times.

Table 12 WADI attacks used to test our invariant checkers

No. Test category Target component(s) Launch state Attack intent and description

10 SAOS Water pipes At time t, 1-LT-001 is at Low or
LowLow, 1-MV-005 is open and 1-
MV-001 is turned off (Fig. 12)

Damage the pipes of WADI by
increasing water pressure. At time
t++, an attacker manually turns on
1-MV-001

11 SAOS 2-LT-001 At time t, 2-LT-001 is at High or
HighHigh, and 2-MV-001 is closed
(Fig. 13)

Overflow the tank, 2-LT-001. At time
t++, an attacker opens 2-MV-001.

12 MAOS 2-LT-002 At time t, 2-LT-002 is at High or
HighHigh, 1-P-005 is not turned
on, and 2-MV-003 is not opened
(Fig. 13)

Overflow the tank, 2-LT-002. At time
t++, an attacker turns on 1-P-005
and 2-MV-003

13 MAOS 2-LT-002 At time t, 2-LT-002 is at High or
HighHigh, 1-P-005 and 1-P-006 are
not turned on, and 2-MV-003 is
closed (Fig. 13)

Overflow the tank, 2-LT-002. At time
t++, an attacker turns on 1-P-006
and 2-MV-003

Fig. 7 Attack #1 on SWaT: single attack, one stage

Yoong et al. Cybersecurity (2021) 4:6 Page 19 of 24

Fig. 8 Attacks #2-#5 on SWaT: including SAOS, MAOS, and MAMS attacks

when the LIT is in its high (H) or critically high (HH)
thresholds. A key lock could even be introduced to min-
imise the possibility of the manipulation being carried out
by an insider. Attack #4 could bemitigated by similar mea-
sures for MV-201. Finally, Attack #5 could be mitigated by
a monitor that checks for vast changes in continuous val-
ues, e.g. a sudden increase in a tank from level z at time t
to level z + 3 at time t + 1.
Consider Attacks #6 and #7, as visualised in Fig. 9. The

dependencies exploited are given in DP5.1.3, row FR5.1
of Table 4. Attack #6 could be mitigated by preventing P-
203 from being switched off when the water pH is above
eight, e.g. by requiring a password to digitally switch it off
or requiring a key to physically turn it off. Attack #7 could
be mitigated using similar solutions to those suggested
for #5.
For Attack #8 (Fig. 10), which exploits dependencies

DP1.3.1 and DP1.3.2, row FR1.3 of Table 4, similar miti-
gations to those suggested for Attacks #2 and #3 could be
used. For Attack #9 (Fig. 11), which exploits dependency

DP3.5.1, row FR3.5 of Table 4, a similar solution to that of
#5 can be again be used.

Discussion
This evaluation has shown that our design-level analysis
for identifying sets of dependent components can also be
used to derive invariants and invariant checkers. These
invariant checkers are able to classify a range of real sys-
tem inputs as anomalous or non-anomalous without any
false positives. Our work has focused on the method of
deriving invariants: axiomatic design principles provide
systematic guidance for this purpose, without the need
for any complex mathematical modelling (e.g. Petri-nets
(Liu et al. 2017), Bayesian networks (Hadjsaid et al. 2009))
or even the implemented control logic itself. Ideally, the
method would be applied earlier in the design process so
that the system and its invariants can be derived together.
Our work has focused on the problem of unearthing

invariants, rather than deploying them. While our
invariant checkers perform well on the inputs that they

Fig. 9 Attacks #6 and #7 on SWaT: single attack, one stage

Yoong et al. Cybersecurity (2021) 4:6 Page 20 of 24

Fig. 10 Attack #8 on SWaT: single attack, one stage

analyse, we have not addressed the problem—shared by
all invariant-based defence mechanisms—of making sure
that those inputs have not been spoofed by an attacker.
For this, we recommend combining our invariants with
secure deployment strategies as suggested in the litera-
ture, e.g. trusted embedded devices connected to PLCs
(Alves and Felton 2004; Abera et al. 2016).
Even if deployed securely, no invariant-based defence

mechanism alone is enough to secure a CPS against
the full range of attacker profiles. For example, invariant
checkers would not be able to detect a stealthy attacker
changing the reading of LIT-101 from 820mm to 830mm:
no anomaly would be detected as LIT-101 remains in the
same state of High. However, this kind of attack could
be detected by the auto-regression technique (Yoong and
Heng 2019), the state estimation method (Adepu and
Mathur 2021), or by analysis of sensor and process noise
(Ahmed et al. 2018). These various approaches (as well
as invariant-based methods) have their own strengths

and weaknesses, but are complementary and should be
deployed together.
While our case studies have shown viability of deriving

dependent components and invariants from a design, they
have also highlighted some limitations of the approach,
including: (1) manual effort is required; (2) the process
requires the designer to have some domain expertise;
(3) as SWaT and WADI were already built, we had lim-
ited opportunity to investigate how invariants derived
from our process could be used to improve the design;
and (4) the invariant checkers only detect anomalies once
component states have stabilised (e.g. a valve has finished
the process of opening). Some of these limitations are
inherent from the goals of the approach: we want to man-
ually analyse the CPS design in part to ensure we uncover
invariants missed by data-driven approaches (e.g. invari-
ants involving components rarely used). However, we are
keen to explore ways of mitigating this by automating
the extraction of simpler invariants (e.g. from data or

Fig. 11 Attack #9 on SWaT: single attack, one stage

Yoong et al. Cybersecurity (2021) 4:6 Page 21 of 24

Fig. 12 Attack #10 on WADI: single attack, one stage

simulations), focusing the design-level analysis on others,
and supporting the decomposition of matrices using tools.
By applying our axiomatic design analysis to two CPS

testbeds, we have increased our confidence in the gener-
ality of the method. However, while the testbeds involve
different processes, stages, and components, they are both
from the domain of water, so we plan to explore the
applicability of our work to other types of CPSs as well
(e.g. power). As our approach is applied at the design level,
it can avoid the safety and resource problems faced by oth-
ers that rely on guided data generation (e.g. (Chen et al.
2018)).

Related work
In this section, we highlight and compare against some
related work that addresses the main themes of this paper:
defending CPSs and deriving CPS invariants.
Several different, complementary approaches have

emerged in recent years for detecting and preventing
attacks on CPSs and critical infrastructure. These include
techniques based on anomaly detection, in which the
logs of the physical data are analysed to identify sus-
picious events and anomalous behaviours (Cheng et al.

2017; Harada et al. 2017; Inoue et al. 2017; Pasqualetti
et al. 2011; Aggarwal et al. 2018; Aoudi et al. 2018; He
et al. 2019; Kravchik and Shabtai 2018; Lin et al. 2018;
Narayanan and Bobba 2018; Schneider and Böttinger
2018; Carrasco and Wu 2019; Kim et al. 2019; Adepu et
al. 2020; Das et al. 2020; Giraldo et al. 2020; Schmidt
et al. 2020); digital fingerprinting, in which sensors are
checked for spoofing by monitoring time and frequency
domain features from sensor and process noise (Ahmed et
al. 2018; Ahmed et al. 2018; Formby et al. 2016; Gu et al.
2018; Kneib and Huth 2018; Ahmed et al. 2020; Yang et al.
2020); and attestation, in which unauthorised changes to
control logic can be detected (Valente et al. 2014; Abera et
al. 2016).
Our work falls into another category of defence mech-

anisms: invariant-based defences (Cárdenas et al. 2011;
Adepu and Mathur 2016a; Adepu and Mathur 2016b;
Chen et al. 2016; Adepu and Mathur 2021; Chen et al.
2018; Choi et al. 2018; Giraldo et al. 2018; Umer et al.
2020), in which a plant is constantly monitored for vio-
lations of properties over the processes or control states
(these violations possibly indicating an ongoing attack or
fault). In particular, we focus on the problem of deriving

Fig. 13 Attacks #11-#13 on WADI: including SAOS and MAOS attacks

Yoong et al. Cybersecurity (2021) 4:6 Page 22 of 24

invariants for these defence mechanisms to check. Invari-
ants can be derived from the system’s design (e.g. doc-
umentation or ladder logic), from data sources (e.g. a
historian server), or both (Umer et al. 2020). Our work
follows the first approach, in that we start from func-
tional requirements and systematically decompose them
to invariants using axiomatic design theory; an approach
that can (in principle) be performed before the plant has
been implemented. This is in contrast to design-based
approaches that start with the laws of physics, e.g. deriving
invariant equations from the dynamics of water flow, then
using state estimation methods to measure them (Adepu
and Mathur 2016a; Adepu and Mathur 2016b).
Data-driven approaches to invariant generationmitigate

the manual effort and expertise required of design-based
approaches. Feng et al. (2019), for example, use data min-
ing and learning to extract invariants from logs while
taking into account noise in sensor measurements; and
Chen et al. (2018) learn invariants over sensor readings
by seeding control software with faults and observing
the outcomes. Nonetheless, data-driven approaches have
shortcomings (Ahmed et al. 2020) that could be com-
plemented by design-driven approaches such as ours.
First, they succeed or fail based on the quality of data:
unbalanced or incomplete data can lead to false posi-
tives and incomplete invariant sets. Second, black-box
anomaly detectors may be susceptible to adversarial syn-
thetic sensormanipulations (Erba and Tippenhauer 2020).
Third, translating data-driven invariants from a testbed
to a real plant is difficult due to the policies of typi-
cal civil infrastructure operators. While fairly represen-
tative, testbeds are not like-for-like, and solutions work-
ing perfectly on the former may need significant re-
engineering to work on the latter (e.g. due to different
design parameters). Some of the data-driven approaches
also come with safety concerns (e.g. (Chen et al. 2018))
which would prevent them from being re-trained on a
real plant.
Once invariants are obtained (by our approach or oth-

ers), they need to be deployed in the plant as invariant
checkers. In our work, invariant checkers were deployed
as decision tree classifiers that monitored live data from
the historian server. However, it is also possible for our
invariants to be deployed in a more distributed man-
ner, with checkers placed in the PLCs, as described
by Adepu and Mathur (2021). We could also deploy
our checkers orthogonally to existing defence mecha-
nisms, i.e. on an independent network that unobtrusively
monitors data extracted from several sources, as pro-
posed by Shrivastava et al. (2018). This would allow
our approach to be deployed alongside complementary
defence mechanisms that focus on attacks that invariant-
based approaches may miss, e.g. the injection of false data
(Beg et al. 2017).

Conclusion
We proposed a novel and systematic method for deriv-
ing CPS invariant checkers through a design-level analysis
based on axiomatic design principles. Our method iter-
atively analyses dependencies in the CPS design to con-
struct mathematical state expressions (or process graphs)
that represent invariant relations between sensor read-
ings and actuator states. In contrast to mining-based
approaches for identifying invariants, our method aims
to: (1) find invariants that are implicit in the design but
not well-represented in datasets; (2) ensure that invari-
ants can be contextualised by tracing them back to specific
design iterations and requirements; and (3) further inte-
grate security concerns at the design stage, potentially
allowing weak points to be identified before a CPS is
built. This is achieved using a step-by-step approach from
requirements through to the implementation of invariant
checkers, in a process that does not require any complex
mathematical modelling or dataset-based training.
We evaluated our approach on two real-world CPS

testbeds: SWaT, a water purification system, and WADI, a
water distribution network for consumer supplies. Start-
ing from high-level functional requirements, we applied
axiomatic design principles to decompose the systems’
designs and identify dependencies between design param-
eters (i.e. sensors and actuators). Using domain exper-
tise and process graphs, we derived mathematical state
expressions for eight of these sets of dependencies, then
generalised them into invariant checkers using decision
tree learning. We found that these checkers were able to
detect all 13 attacks we launched, covering both single
and multi-stage attacks and often multiple components.
Finally, we found that our invariant checkers operated
without false positives, i.e. without incorrectly raising any
alarms on normal operational data.
In ongoing work, plan to compare the effectiveness of

our invariants against those derived by other approaches
(both automated and manual ones) in order to better
quantify and understand the potential payoff of analysing
the CPS design directly. We also plan to evaluate our
approach on other case studies, for example, other indus-
trial control systems (e.g. power grids), and potentially
CPSs from other domains such as building management
or healthcare. Finally, we are interested in exploring the
role that simulation can play, especially for validating
invariants at early stages of the design process, before
the real system has been implemented. Simulation may
play an important role in reducing the effort required
by design-centric approaches: we could use a data-driven
approach to derive a first set of invariants from logs
(e.g. (Feng et al. 2019)), leaving design engineers to focus
their axiomatic design analysis on unearthing any invari-
ants that are implicit in the CPS design but not well-
represented in the data.

Yoong et al. Cybersecurity (2021) 4:6 Page 23 of 24

Acknowledgements
We are grateful to the support of the iTrust technicians and NSoE office for
helping to facilitate the experiments reported in this research.

Authors’ contributions
CHY performed the axiomatic design analysis, implemented the experiments,
and wrote the first draft of this paper. VRP, RRM, AS, and CMP all provided
technical feedback throughout the project. Furthermore, AS had the initial
idea, and CMP made substantial contributions to the text. All authors reviewed
the final manuscript. All authors read and approved the final manuscript.

Funding
This research / project is supported by the National Research Foundation,
Singapore, under its National Satellite of Excellence Programme “Design
Science and Technology for Secure Critical Infrastructure” (Award Number:
NSoE DeST-SCI2019-0004). Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do
not reflect the views of National Research Foundation, Singapore.

Availability of data andmaterials
The datasets used in this research are available online (iTrust Labs: Datasets
2020).

Competing interests
The authors declare that they have no competing interests.

Author details
1 Singapore University of Technology and Design, 8 Somapah Road, 487372
Singapore, Singapore. 2 Indian Institute of Petroleum and Energy, 2nd Floor,
AU Engg College Main Block, Andhra University, 530003 Visakhapatnam, India.
3 Birla Institute of Technology and Science, Pilani, Hyderabad Campus Jawahar
Nagar, Kapra Mandal Medchal District, 500078 Telangana, India. 4 Singapore
Management University, 80 Stamford Road, 178902 Singapore, Singapore.

Received: 18 August 2020 Accepted: 1 January 2021

References
Abera T, Asokan N, Davi L, Ekberg J, Nyman T, Paverd A, Sadeghi A, Tsudik G

(2016) C-FLAT: control-flow attestation for embedded systems software. In:
Proc. ACM SIGSAC Conference on Computer and Communications Security
(CCS 2016). ACM. pp 743–754. https://doi.org/10.1145/2976749.2978358

Adepu S, Brasser F, Garcia L, Rodler M, Davi L, Sadeghi A, Zonouz S (2020)
Control behavior integrity for distributed cyber-physical systems. In: Proc.
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS
2020). IEEE, New York. pp 30–40

Adepu S, Mathur A (2016) Using process invariants to detect cyber attacks on a
water treatment system. In: Proc. International Conference on ICT Systems
Security and Privacy Protection (SEC 2016), IFIP AICT, vol. 471. Springer,
Cham. pp 91–104

Adepu S, Mathur A (2016) Distributed detection of single-stage multipoint
cyber attacks in a water treatment plant. In: Proc. ACM Asia Conference on
Computer and Communications Security (AsiaCCS 2016). ACM, New York.
pp 449–460

Adepu S, Mathur A (2021) Distributed attack detection in a water treatment
plant: Method and case study. IEEE Trans Dependable Secure Comput
18(1):86–99

Adepu S, Mathur A (2016) Generalized attacker and attack models for cyber
physical systems. In: Proc. IEEE Annual Computer Software and Applications
Conference (COMPSAC 2016). IEEE Computer Society. pp 283–292

Aggarwal E, Karimibiuki M, Pattabiraman K, Ivanov A (2018) CORGIDS: A
correlation-based generic intrusion detection system. In: Proc. Workshop
on Cyber-Physical Systems Security and PrivaCy (CPS-SPC 2018). ACM, New
York. pp 24–35

Ahmed C, Ochoa M, Zhou J, Mathur A, Qadeer R, Murguia C, Ruths J (2018)
NoisePrint: Attack detection using sensor and process noise fingerprint in
cyber physical systems. In: Proc. Asia Conference on Computer and
Communications Security (AsiaCCS 2018). ACM, New York. pp 483–497

Ahmed C, Palleti V, Mathur A (2017) WADI: a water distribution testbed for
research in the design of secure cyber physical systems. In: Proc.

International Workshop on Cyber-Physical Systems for Smart Water
Networks (CySWATER@CPSWeek 2017). ACM, New York. pp 25–28

Ahmed C, R G, Mathur A (2020) Challenges in machine learning based
approaches for real-time anomaly detection in industrial control systems.
In: Proc. ACMWorkshop on Cyber-Physical System Security (CPSS 2020).
ACM, New York. pp 23–29

Ahmed C, Zhou J, Mathur A (2018) Noise matters: Using sensor and process
noise fingerprint to detect stealthy cyber attacks and authenticate sensors
in CPS. In: Proc. Annual Computer Security Applications Conference
(ACSAC 2018). ACM, New York. pp 566–581

Alves T, Felton D (2004) TrustZone: Integrated hardware and software security.
ARM white paper 3(4):18–24

Aoudi W, Iturbe M, Almgren M (2018) Truth will out: Departure-based
process-level detection of stealthy attacks on control systems. In: Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, New York. pp 817–831

Beg O, Johnson T, Davoudi A (2017) Detection of false-data injection attacks in
cyber-physical DC microgrids. IEEE Trans Ind Inform 13(5):2693–2703

Bondy J, Murty U (2008) Graph Theory. Springer
Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and Regression

Trees. Wadsworth and Brooks
Cárdenas A, Amin S, Lin Z, Huang Y, Huang C, Sastry S (2011) Attacks against

process control systems: risk assessment, detection, and response. In: Proc.
ACM Asia Conference on Computer and Communications Security
(AsiaCCS 2011). ACM, New York. pp 355–366

Carrasco M, Wu C (2019) An unsupervised framework for anomaly detection in
a water treatment system. In: Proc. IEEE International Conference On
Machine Learning And Applications (ICMLA 2019). IEEE, New York.
pp 1298–1305

Cheng L, Tian K, Yao D (2017) Orpheus: Enforcing cyber-physical execution
semantics to defend against data-oriented attacks. In: Proc. Annual
Computer Security Applications Conference (ACSAC 2017). ACM, New
York. pp 315–326

Chen Y, Poskitt C, Sun J, Adepu S, Zhang F (2019) Learning-guided network
fuzzing for testing cyber-physical system defences. In: Proc. IEEE/ACM
International Conference on Automated Software Engineering (ASE 2019).
IEEE Computer Society, New York. pp 962–973

Chen Y, Poskitt C, Sun J (2016) Towards learning and verifying invariants of
cyber-physical systems by code mutation. In: Proc. International
Symposium on Formal Methods (FM 2016), LNCS. Springer, Cham
Vol. 9995. pp 155–163

Chen Y, Poskitt C, Sun J (2018) Learning from mutants: Using code mutation to
learn and monitor invariants of a cyber-physical system. In: Proc. IEEE
Symposium on Security and Privacy (S&P 2018). IEEE Computer Society,
New York. pp 648–660

Chen Y, Xuan B, Poskitt C, Sun J, Zhang F (2020) Active fuzzing for testing and
securing cyber-physical systems. In: Proc. ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2020). ACM, New York

Choi H, Lee W, Aafer Y, Fei F, Tu Z, Zhang X, Xu D, Xinyan X (2018) Detecting
attacks against robotic vehicles: A control invariant approach. In: Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, New York. pp 801–816

Das T, Adepu S, Zhou J (2020) Anomaly detection in industrial control systems
using logical analysis of data. Comput Secur 96:1–13

Erba A, Tippenhauer N (2020) No need to know physics: Resilience of
process-based model-free anomaly detection for industrial control
systems. CoRR abs/2012.03586:1–18

Feng C, Palleti V, Mathur A, Chana D (2019) A systematic framework to
generate invariants for anomaly detection in industrial control systems. In:
Proc. Annual Network and Distributed System Security Symposium (NDSS
2019). The Internet Society, Reston. pp 1–15

Formby D, Srinivasan P, Leonard A, Rogers J, Beyah R (2016) Who’s in control of
your control system? device fingerprinting for cyber-physical systems. In:
Proc. Annual Network and Distributed System Security Symposium (NDSS
2016). The Internet Society, Reston. pp 1–15

Giraldo J, Urbina D, Cardenas A, Valente J, Faisal M, Ruths J, Tippenhauer N,
Sandberg H, Candell R (2018) A survey of physics-based attack detection in
cyber-physical systems. ACM Comput Surv 51(4):76–17636

Giraldo J, Urbina D, Tang C, Cárdenas A (2020) The more the merrier: adding
hidden measurements to secure industrial control systems. In: Proc.
Annual Symposium on Hot Topics in the Science of Security (HotSoS
2020). ACM. pp 3–1310. https://doi.org/10.1145/3384217.3385624

https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/3384217.3385624

Yoong et al. Cybersecurity (2021) 4:6 Page 24 of 24

Goh J, Adepu S, Junejo K, Mathur A (2016) A dataset to support research in the
design of secure water treatment systems. In: Proc. International
Conference on Critical Information Infrastructures Security (CRITIS 2016).
Springer Vol. 10242. pp 88–99

Goh J, Adepu S, Tan M, Lee Z (2017) Anomaly detection in cyber physical
systems using recurrent neural networks. In: Proc. International
Symposium on High Assurance Systems Engineering (HASE 2017). IEEE,
New York. pp 140–145

Gu Q, Formby D, Ji S, Cam H, Beyah R (2018) Fingerprinting for cyber-physical
system security: Device physics matters too. IEEE Secur Priv 16(5):49–59

Hadjsaid N, Tranchita C, Rozel B, Viziteu M, Caire R (2009) Modeling cyber and
physical interdependencies - application in ICT and power grids. In: Proc.
IEEE/PES Power Systems Conference and Exposition (PSCE 2009). IEEE,
New York. pp 1–6

Harada Y, Yamagata Y, Mizuno O, Choi E (2017) Log-based anomaly detection
of CPS using a statistical method. In: Proc. International Workshop on
Empirical Software Engineering in Practice (IWESEP 2017). IEEE, New York.
pp 1–6

Hassanzadeh A, Rasekh A, Galelli S, Aghashahi M, Taormina R, Ostfeld A, Banks
M (2020) A review of cybersecurity incidents in the water sector. J Environ
Eng 146(5):03120003

He Z, Raghavan A, Hu G, Chai S, Lee R (2019) Power-grid controller anomaly
detection with enhanced temporal deep learning. In: Proc. IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications (TrustCom 2019). IEEE, New York. pp 160–167

Inoue J, Yamagata Y, Chen Y, Poskitt C, Sun J (2017) Anomaly detection for a
water treatment system using unsupervised machine learning. In: Proc.
IEEE International Conference on Data Mining Workshops (ICDMW 2017):
Data Mining for Cyberphysical and Industrial Systems (DMCIS 2017). IEEE,
New York. pp 1058–1065

iTrust Labs: Datasets (2020). https://itrust.sutd.edu.sg/itrust-labs_datasets/.
Accessed December 2020

Kandjani H, Tavana M, Bernus P, Wen L, Mohtarami A (2015) Using extended
axiomatic design theory to reduce complexities in global software
development projects. Comput Ind 67:86–96

Kim J, Yun J, Kim H (2019) Anomaly detection for industrial control systems
using sequence-to-sequence neural networks. In: Proc. International
Workshop on the Security of Industrial Control Systems and Cyber-Physical
Systems (CyberICPS 2019), LNCS. Springer Vol. 11980. pp 3–18

Kneib M, Huth C (2018) Scission: Signal characteristic-based sender
identification and intrusion detection in automotive networks. In: Proc.
ACM SIGSAC Conference on Computer and Communications Security
(CCS 2018). ACM, New York. pp 787–800

Kravchik M, Shabtai A (2018) Detecting cyber attacks in industrial control
systems using convolutional neural networks. In: Proc. Workshop on
Cyber-Physical Systems Security and PrivaCy (CPS-SPC 2018). ACM, New
York. pp 72–83

Leyden J (2016) Water treatment plant hacked, chemical mix changed for tap
supplies. The Register. Accessed December 2020

Lin Q, Adepu S, Verwer S, Mathur A (2018) TABOR: A graphical model-based
approach for anomaly detection in industrial control systems. In: Proc. Asia
Conference on Computer and Communications Security (AsiaCCS 2018).
ACM, New York. pp 525–536

Liu X, Zhang J, Zhu P (2017) Modeling cyber-physical attacks based on
probabilistic colored petri nets and mixed-strategy game theory. Int J Crit
Infrastruct Prot 16:13–25

Mathur A, Tippenhauer N (2016) SWaT: a water treatment testbed for research
and training on ICS security. In: Proc. International Workshop on
Cyber-physical Systems for Smart Water Networks (CySWater@CPSWeek
2016). IEEE Computer Society, New York. pp 31–36

Matt D (2012) Application of axiomatic design principles to control complexity
dynamics in a mixed-model assembly system: a case analysis. Int J Prod
Res 50:1850–1861

Mohsen H, Cekecek E (2000) Thoughts on the use of axiomatic designs within
the product development process. In: Proc. International Conference on
Axiomatic Design (ICAD 2000). Institute for Axiomatic Design. pp 188–195

Narayanan V, Bobba R (2018) Learning based anomaly detection for industrial
arm applications. In: Proc. Workshop on Cyber-Physical Systems Security
and PrivaCy (CPS-SPC 2018). ACM, New York. pp 13–23

N. Al-Mhiqani M, Ahmad R, Mohamed W, Hassan A, Zainal Abidin Z, Ali N,
Abdulkareem K (2018) Cyber-security incidents: A review cases in
cyber-physical systems. Int J Adv Comput Sci Appl 9:499–508

Pal K, Adepu S, Goh J (2017) Effectiveness of association rules mining for
invariants generation in cyber-physical systems. In: Proc. IEEE International
Symposium on High Assurance Systems Engineering (HASE 2017). IEEE
Computer Society, New York. pp 124–127

Palleti V, Joseph J, Silva A (2018) A contribution of axiomatic design principles
to the analysis and impact of attacks on critical infrastructures. Int J Crit
Infrastruct Prot 23:21–32

Pasqualetti F, Dorfler F, Bullo F (2011) Cyber-physical attacks in power
networks: Models, fundamental limitations and monitor design. In: Proc.
IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC 2011). IEEE, New York. pp 2195–2201

Secure Water Treatment (SWaT) (2020). https://itrust.sutd.edu.sg/itrust-labs-
home/itrust-labs_swat/. Accessed December 2020

Schmidt T, Hauer F, Pretschner A (2020) Automated anomaly detection in CPS
log files - A time series clustering approach. In: Proc. International
Conference on Computer Safety, Reliability, and Security (SAFECOMP
2020), LNCS, vol. 12234. Springer. pp 179–194. https://doi.org/10.1007/
978-3-030-54549-9_12

Schneider P, Böttinger K (2018) High-performance unsupervised anomaly
detection for cyber-physical system networks. In: Proc. Workshop on
Cyber-Physical Systems Security and PrivaCy (CPS-SPC 2018). ACM, New
York. pp 1–12

Shrivastava S, Adepu S, Mathur A (2018) Design and assessment of an
orthogonal defense mechanism for a water treatment facility. Robot Auton
Syst 101:114–125

Suh N (2001) Axiomatic Design: Advances and Applications. Oxford University
Press

Umer M, Mathur A, Junejo K, Adepu S (2020) Generating invariants using
design and data-centric approaches for distributed attack detection. Int J
Crit Infrastruct Prot 28:100341

Valente J, Barreto C, Cárdenas A (2014) Cyber-physical systems attestation. In:
Proc. IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS 2014). IEEE Computer Society. pp 354–357. https://doi.
org/10.1109/DCOSS.2014.61

Wijaya H, Aniche M, Mathur A (2020) Domain-based fuzzing for supervised
learning of anomaly detection in cyber-physical systems. In: Proc.
International Workshop on Engineering and Cybersecurity of Critical
Systems (EnCyCriS 2020). ACM, New York. pp 237–244

Yang K, Li Q, Lin X, Chen X, Sun L (2020) iFinger: Intrusion detection in
industrial control systems via register-based fingerprinting. IEEE J Sel Areas
Commun 38(5):955–967

Yoong C, Heng J (2019) Framework for continuous system security protection
in SWaT. In: Proc. International Symposium on Computer Science and
Intelligent Control (ISCSIC 2019). ACM, New York. pp 60–1606

Yoong CH, Palleti VR, Silva A, Poskitt CM (2020) Towards systematically deriving
defence mechanisms from functional requirements of Cyber-Physical
Systems. In: Proc. ACM Cyber-Physical System Security Workshop (CPSS
2020). ACM. pp 11–22. https://doi.org/10.1145/3384941.3409589

Zhu X, Hu S, Koren Y, Marin S (2008) Modeling of manufacturing complexity in
mixed-model assembly lines. J Manuf Sci Eng 130:1–10

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://itrust.sutd.edu.sg/itrust-labs_datasets/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_swat/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_swat/
https://doi.org/10.1007/978-3-030-54549-9_12
https://doi.org/10.1007/978-3-030-54549-9_12
https://doi.org/10.1109/DCOSS.2014.61
https://doi.org/10.1109/DCOSS.2014.61
https://doi.org/10.1145/3384941.3409589

	Abstract
	Keywords

	Introduction
	Background
	SWaT testbed
	WADI testbed
	Attacks

	Our approach: a design-level analysis
	Step one: axiomatic design process
	Applied to SWaT
	Applied to WADI

	Step two: deriving invariants
	Applied to SWaT
	Applied to WADI

	Step three: building invariant checkers
	Applied to SWaT and WADI

	Evaluation and discussion
	Experiments and results
	Suitability of decision trees
	Validating the invariant checkers
	Effectiveness at detecting attacks
	Attack mitigation

	Discussion

	Related work
	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

