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Abstract

Decompilation aims to analyze and transform low-level program language (PL) codes such as binary code or assembly
code to obtain an equivalent high-level PL. Decompilation plays a vital role in the cyberspace security fields such as
software vulnerability discovery and analysis, malicious code detection and analysis, and software engineering fields
such as source code analysis, optimization, and cross-language cross-operating system migration. Unfortunately, the
existing decompilers mainly rely on experts to write rules, which leads to bottlenecks such as low scalability,
development difficulties, and long cycles. The generated high-level PL codes often violate the code writing
specifications. Further, their readability is still relatively low. The problems mentioned above hinder the efficiency of
advanced applications (e.g., vulnerability discovery) based on decompiled high-level PL codes.
In this paper, we propose a decompilation approach based on the attention-based neural machine translation (NMT)
mechanism, which converts low-level PL into high-level PL while acquiring legibility and keeping functionally similar.
To compensate for the information asymmetry between the low-level and high-level PL, a translation method based
on basic operations of low-level PL is designed. This method improves the generalization of the NMT model and
captures the translation rules between PLs more accurately and efficiently. Besides, we implement a neural
decompilation framework called Neutron. The evaluation of two practical applications shows that Neutron’s average
program accuracy is 96.96%, which is better than the traditional NMT model.
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Introduction
Decompilation aims to convert compiled low-level PL,
such as executable programs or assembly code, in inter-
mediate representation into functionally equivalent high-
level PL, which is friendly to read. Decompilation facili-
tates the tedious task ofmanualmalware reverse engineer-
ing, allowing the use of source-code-based security tools
on binary code, such as tools to find vulnerabilities, per-
form taint tracking. Unfortunately, conventional decom-
pilation tools mainly rely on structured analysis methods
such as pattern matching, inserting new rules, or decom-
piling new PL that requires high costs. Furthermore,
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existing decompilers usually generate codes that do not
conform to standard idioms or cannot be parsed, so that
there are many problems in manual or automated analy-
sis. Machine translation principles based on deep neural
networks (DNN) automatically learn and extract related
programs from code data. It breaks through the bottle-
neck of decompilation technology that relies heavily on
experts to write rules and thus is time-consuming. The
NMT-based malicious code detection (Peng et al. 2014;
Yadegari et al. 2015; Yakdan et al. 2016), analysis and
patching (Yakdan et al. 2016) vulnerability discovery (Li et
al. 2018; Heo et al. 2017) and exploit (Wang et al. 2018;
You et al. 2017; Zong et al. 2020) have sprung up and have
been implemented in engineering applications, providing
breakthroughs in cyberspace security technology. Recent
work has shown that neural networks are also useful in
summarizing source code (Loyola et al. 2017; Allamanis
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et al. 2015). The above works indicate that deep learning
technologies such as NMT have a vast application range
in program analysis.
Several NMT-based approaches to neural decompila-

tion for PL have been proposed to overcome the cur-
rent bottlenecks faced by rule-based approaches. In these
works, decompilation for low-level PL is converted into
translation problems between PL, and then decompilation
tools are built using NMT technology to enable neural
translation from low-level PL to high-level PL. The exist-
ing neural decompilation technology has been improved,
but they can only achieve accurate semantic recovery
for simple functions (e.g., arithmetic operations), but still
powerless for complex functions or real-world PL code.
Our approach. We propose a neural program decompi-

lation framework, named Neutron1. Neutron mainly con-
sists of three core phrases: Code Preprocessing, Neural
Translation, and Function Reconstruction.
In the first phrase, Code Preprocessing is committed

to the standardization of PL and helps the model learn
the conversion rules between the high-level PL and the
low-level PL well. To reduce the decompilation difficulty
of the NMT model, we disassemble the binary code into
assembly language, which contains richer semantic as well
as structural information, and thus is utilized as the tar-
get low-level PL. Further, to avoid the adverse effects of
identifiers (e.g., variable names), we propose a method to
standardize the PL code in model training. Using the reg-
ularized low-level PL code and high-level PL code pairs as
training sets can effectively reduce the difficulty of model
learning conversion rules.
In the second phrase, Neural Translation aims to design

a neural decompilation model, which can translate a low-
level target PL into a functionally similar C-like high-level
PL code. After preprocessing the PL dataset that is gen-
erated by cfile (2020) in the first phrase, Neutron trains
a neural-based decompilation model AsmTran, which is
based on LSTM-Seq2Seq-attention (Luong et al. 2015)
architecture. Then we use AsmTran to translate the low-
level target PL into a high-level PL while keeping function-
ally similar.
In the third phrase, Function Reconstruction focuses

on restoring the function’s dependencies through spe-
cific rules. Since AsmTran takes the basic operation
of PL as the translation unit, its output is also inde-
pendent and regularized high-level PL fragments, miss-
ing the dependency between variables and sentences in
the function. To reconstruct the function’s structure, we
manually define rules to gradually reconstruct the com-
plete function structure from data flow recovery, control
flow recovery, as well as parameters and return value
recovery.

1Neutron (Neural translator for binary code)

We implement Neutron on the base of the attention-
based NMT mechanism in the tensor2tensor framework
(tensor2tensor 2020) and evaluate the performance using
real-world applications. The results show that Neutron
achieves an average accuracy of 96.96% on three real-word
projects and three different tasks. The results demon-
strate that the output of Neutron recovers functionality
and improve readability significantly.
Contributions. The contributions of this paper are out-

lined as follows:
•New technique.We implement our technique in a frame-
work called Neutron. Neutron has general applicability
and higher readability in benchmarks of various levels
of complexity and real-world projects, which also pro-
vides superior performance compared to existing neu-
ral decompilation tools. Neutron overcomes several vital
challenges that prior research has not effectively solved,
including (i). designing a neural decompilation mecha-
nism based on PL basic operations, (ii). introducing an
iterative error correction method to improve the accuracy
of the model, and (iii). using a rule-assisted technique to
recover the function structure, such as control flow and
data flow of the function. Neutron can be easily ported
to other types of high-level PL decompilation tasks with
negligible engineering overhead.
• New Understanding. Our study suggests that it is feasi-
ble to apply the NMTmodel for natural language to the PL
decompilation task. We design a new neural translation
mechanism based on the basic operations of PL, which
is more conducive to the model’s learning of decompi-
lation rules. The mechanism can make the NMT model
directly competent for the decompilation task of PL code
and effectively improves the generalization ability of the
Neutron.
RoadMap.The rest of the paper is organized as follows:

Background and related work section presents the back-
ground and prior work related to our research. Overview
section describes the summarize of our research.
Design and implementation section elaborate the design
and implementation. Evaluation section reports our
experimental results. Discussion section discusses the
limitations of our approach and potential future research,
and Conclusion section concludes the paper.

Background and related work
Conventional Decompilation
Conventional decompilation mainly depends on com-
puter scientists to define decompilation rules through
control flow analysis, to realize the conversion of a low-
level PL into intermediate language or high-level language
representation that is more convenient for humans read
(Ďurfina et al. 2011; Ďurfina et al. 2013; Yakdan et al. 2016;
Yakdan et al. 2015; Brumley et al. 2013). Ďurfina et al.
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(2011) outlined the development history of decompilation
technology for more than 50 years.
The current representative decompilers mainly include

Phoenix (Brumley et al. 2013; Hex-Rays 2020), RetDec
(Křoustek et al. 2017), and Ghidra (2020). Both Hex-Rays
and Phoenix rely on pattern matching to identify the pro-
gram’s advanced control flow structure and change the
control flow graph (CFG) of the program. Hex-Rays can
display the C-like code generated by decompilation in the
window, and jump to the function body window by click-
ing the function name. The segments match patterns are
known to originate from specific control flow structures.
When faced with non-trivial code, decompilation often
fails, and a large number of goto statements are used to
simulate the control flow of low-level PL. Although it is
semantically equivalent to the original low-level PL code,
it is difficult to read and relatively inefficient. In response
to this problem, scientists have targeted goto-free for
research, such as DREAM++ (Yakdan et al. 2016; Yak-
dan et al. 2015), which can restore all control structures
in binary programs and generate structured decompiled
codes without any goto statements.
RetDec (Křoustek et al. 2017) is a redirectable machine-

code decompiler based on LLVM and developed by the
Czech security company Avast in 2017. It aims to become
the first “universal” decompiler that is capable of sup-
porting multiple architectures and multiple languages.
However, according to data released by Avast, the devel-
opment of RetDec requires a team of 24 developers
to develop for seven years to complete (Avast Retar-
getable Decompiler IDA Plugin 2020). Ghidra (2020) is
a software reverse engineering (SRE) framework devel-
oped by the National Security Agency (NSA) for the
NSA’s network security tasks. It is used to assist in
analyzing malicious code, viruses and other malicious
software, and understanding its network and system
Potential loopholes. Ghidra contains hundreds of func-
tions (e.g., disassembly and decompilation) and sup-
ports multiple processor instruction sets and executable
formats.
Because traditional decompiler is based on hand-made

rules designed by experts, and these rules are difficult to
develop and error-prone. Usually only part of the known
control flow structure can be captured, which lead to
poor scalability as well as the slow and costly development
of decompilers. Under the background of the success-
ful development of deep learning, especially NMT tech-
nology, which brings new ideas to decompilation tech-
nology to break through the current bottleneck. Using
the powerful learning and expression capabilities of deep
learning models to automate the decompilation process
can be significant, improving the development cycle of
decompilation tools, saving R&D costs, and enhance their
scalability.

Neural Decompilation
Due to the limitations of the traditional decompila-
tion technology based on rule matching mode, artificial
intelligence (AI) technology is used to build an intel-
ligent decompilation mechanism to break through the
distinction between code and data, indirect jump and
indirect call instructions, self-modifying code recogni-
tion, and data type recovery. The bottleneck has now
become a research direction in the field of decompila-
tion. The related technology of NMT can be used for code
decompilation because assembly program, intermediate
code, or high-level PL can also be regarded as a language.
Therefore, the problem of decompilation between nat-
ural languages can be regarded as translation problems
between PL. There has been some work to build neural
decompilation tools based on NMT technology (Katz et
al. 2018; Katz et al. 2019; Fu et al. 2019).
Levy and Wolf (2017) proposed a method that uses

neural networks to predict the alignment between source
code and compiled target code, aiming to solve the dif-
ference between decompiled and manually written code.
The model learns the attributes and patterns in the source
code and uses them to generate decompiled output. This
work can be extended and applied to situations that are
not targeted at traditional decompilers, such as optimizing
the readability of decompilation, restoring control flow
structure, or variables.
Katz et al. (2018) proposed to use recurrent neural net-

work (RNN) (Pearlmutter 1995) to build a decompiler.
They trained an RNN model to convert binary code into
C-like code directly and improved syntax and seman-
tic accuracy through post-processing. Unfortunately, their
work did not make up for the difference between nat-
ural language and PL, resulting in poor decompilation
output, and the post-processing method was too sim-
ple to guarantee syntax correctness. Recently, (Katz et al.
2019) used Long Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber 1997) networks to build a decom-
piler named TraFix. They proposed a way to preprocess
assembly language (input) and post-process C language
(output), which narrowed the difference between the PL
and natural language. However, TraFix performs poorly
on decompilation of conditional branches and loop state-
ments.

Overview
The overview of Neutron is illustrated in Fig. 1,
including three main components: Code Preprocessor,
Neural Translator, and Function Reconstructor. Figure 2
shows an concrete example of Neutron’s decompilation of
low-level PL.
In the Code Preprocessor phrase, Neutron is commit-

ted to ASM generation (the step 1© in the figure) and
Code Standardization. The ASM generation module is
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Fig. 1 An overview of Neutron

mainly responsible for disassembling the binary code into
assembly code. Because assembly code has richer seman-
tic and structural information than binary code, and the
disassembly technology is very mature, using assembly
language as a low-level PL can effectively reduce the dif-

ficulty of NMT model learning decompilation rules. The
standardization module focuses on the regular processing
of identifiers, numbers, etc. in the PL code, which reduces
its impact on model training and translation to learn
better the conversion rules between low-level PL and

Fig. 2 An example of low-level PL decompilation by Neutron
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high-level PL. Since the standardized operation descrip-
tion is relatively clear and simple, we did not reflect this
part in the Fig. 2. Besides, in the training phase of the
AsmTran model, to improve the complexity and robust-
ness of the training set and ensure the balance of various
data types in the training set, we design a data augmenta-
tion method to expand the data set to four to five times,
so that the model can better learn the translation rules
between PL pairs.
In the Neural Translator phrase, we design a new neural

network architecture AsmTran that is suitable for learn-
ing conversion rules between low-level PL and high-level
PL, which trains based on the regularized dataset to make
it accurately learn the conversion rules. The AsmTran
model is mainly divided into two sub-models. The first
sub-model is a text classification model (step 2©) aiming
to perform fine-grained code segmentation for low-level
PL based on basic operations. The second sub-model is
an NMT model (step 3©), which takes each basic oper-
ation of the target low-level PL as input and outputs its
corresponding high-level PL. The translation unit based
on basic operations can reduce the difficulty of learn-
ing decompilation rules for the AsmTran model, making
the NMT model suitable for PL decompilation tasks and
improving the model’s generalization ability. It is worth
mentioning that we introduce the iterative error correc-
tion (EC) mechanism in both sub-models in the training
phrase. The prediction errors in the two sub-models’ out-
put are fed back to the sub-model itself to improve the
AsmTran’s performance through the manual definition of
judgment and EC rules. Finally, Neutron utilizes AsmTran
to decompile the target low-level PL code and outputs a
C-like high-level PL code.
Since AsmTran translates the basic operation of the

code as a unit, and the low-level target PL undergoes regu-
larization processing, its output result is also a regularized
high-level PL fragment corresponding to the function is
no actual function structure. Therefore, we design a func-
tion reconstruction method, which mainly realizes the
restoration of data flow recovery (step 4© and 5©), con-
trol flow recovery (step 6©), parameters and return value
Recovery (step 7©) by manually defining rules, and fur-
ther completes the reconstruction of the function struc-
ture (step 8©), which effectively improves the readability
of the decompiled high-level PL.

Design and implementation
Code preprocessing
As mentioned above, the main challenge of applying the
NMT model in the decompilation technology is to pre-
process the PL to meet the training data input require-
ments of the NMT model without losing its information.
Unlike natural languages, high-level PL is hierarchical,
such as C, C++, etc. It is not very practical to apply

the serialized NMT model directly to PL’s decompilation
because it is challenging to learn the syntax structure of
high-level PL. To overcome this challenge, we propose a
forward-looking code preprocessing method. First, we
introduce a disassembly mechanism to disassemble the
binary code and use assembly language as a low-level PL
for decompilation. The reason is that the binary code
contains less semantic information. From the direct trans-
lation of the binary language to the high-level PL like C
code, it is difficult for the NMT model to learn the con-
version rules. Secondly, in order to improve the training
efficiency of the model and the accuracy of the trans-
lation, we regularize the code, which learned from the
word segmentation method in natural language process
(NLP). And then realize the word segmentation operation
of PL by setting rules to prevent the accuracy of transla-
tion from being affected by model segmentation errors.
Finally, in order to ensure the balance of various statement
types, such as arithmetic operations, logical operations,
comparison operations and function calls in the train-
ing set. We design a data augmentation technique, and
at the same time increase the scale and robustness of
the training set. This ensures that the model can better
learn the translation rules between low-level PL and the
high-level PL.

ASM generation
Compared to binary code, assembly code has richer
semantic and structural information, and the existing dis-
assembly tools, such as objdump, angr (Shoshitaishvili et
al. 2016), etc., can better convert the binary code into a
functionally corresponding assembly program. Angr is an
open-source python framework for analyzing binary files,
which contains a flexible interface applicable to various
analysis tasks. We use the disassembly and CFG analysis
module CFGEmulated in angr to perform fundamental
analysis on the binary code and obtain the assembly code
segments and CFG of all functions.

Standardization
To enable the NMT model to learn better the conver-
sion rules between low-level PL and high-level PL, we
standardize the PL code pairs in the training set.
1 mov edx, DWORD PTR -4[rbp]
2 mov eax, DWORD PTR -8[rbp]
3 add eax, edx
4 mov DWORD PTR -12[rbp], eax //var3 = var1 + var2;

Listing 1 An example of low-level PL in Intel format

Low-level PL Standardization. Listing 1 is an example
of assembly code in Intel format2 with the expression var2
= var0 + var1. As assembly code has fixed and fewer
syntax rules, we define the rules manually for word seg-

2The current mainstream assembly code has two formats, Intel and AT&T,
which differ only in syntax. We use the former in this paper.
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mentation, separating instruction mnemonics, numbers,
and symbols with space. We also use the symbol ‘;’ to
separate each instruction. For example, the instruction
form of line 2 in Listing 1 after regularization processing
is mov eax , DWORD PTR -8 [ rbp ] ;.
High-level PL Standardization. We choose the C pro-

gram as the target PL for decompilation. The main rea-
son is that C high-level PL has higher readability, and
compared with object-oriented PL, its syntax is more
straightforward and comfortable for the NMT model to
learn. However, word segmentation is still required due
to the C-like high-level PL’s own syntax rules and spe-
cial symbols. We use space to separate reserved words,
variable names, and symbols. The C-like high-level PL
contains many user-defined elements such as variable
names, strings, constants, etc. These elements will cause
the explosion of the model word list on the one hand,
and also affect the convergence of the model on the other
hand. Therefore, we also standardize these elements: First,
we rename the variables in each sample from var0 to varn;
Secondly, since the generative model in NLP cannot han-
dle the replication problem, we use the mark symbol imm
to replace elements such as strings and constants.
1 mov edx, DWORD PTR -4[rbp]
2 mov eax, DWORD PTR -8[rbp]
3 add edx, eax //tmp = var1 + var2;
4 mov eax, DWORD PTR -12[rbp]
5 imul eax, edx //tmp = tmp * var3;
6 mov DWORD PTR -16[rbp], eax //var=tmp;

Listing 2 An example of ternary operation of low-level PL

Training data augmentation
The complex statements in the high-level PL can be split
into a combination of multiple basic operations. There-
fore, we use the random code generation tool (cfile 2020)
to randomly generate many basic operation statements,
such as Listing 1, to obtain low-level PL and high-level
PL pairs, then mix various types of sentences in propor-
tion as the raw data set to ensure the balance of the data
set. However, program statements are usually like List-
ing 2 in reality. In real-world PL, the variables temporarily
stored in the register can be used in later operations to
reduce the memory read and write operations. Therefore,
the actual segmentation’s code fragments may not con-
tain memory-related instructions. Model trained with raw
data can not handle this problem. In order to solve this
problem, we use the method of deleting memory opera-
tion instructions to process the raw data set and obtain
an expanded data set after data augmentation (the sample
size can reach four to five times the raw data set), make
it meet the ability to process a small fragment after com-
pilation. Also, the data set’s existing sample data may not
cover all the program forms in the real world, so there may
be deviations in the offset addresses of registers or vari-
ables. In order to increase the robustness of the model and

enable it to better handle situations that did not appear
in the training set, we perform random masking opera-
tions on the words in the raw data set and the extended
data set by covering 20% of the words in some sentences,
and get the mask data set. Figure 3 shows an example
of data augmentation. In the figure, augmentation 1 and
2 are an augmented example of deleting memory from
the raw data. While augmentation 3 and 4 are examples
of augmentation to block certain words or instructions.
Finally, we construct the training set by organically fus-
ing the above three data sets. Benefit from the training
data augmentation phrase, the average accuracy of our
Neutron increased by 73.02% during evaluate different
tasks.

Neural Translation
After preprocessing the PL dataset with the preprocessor,
Neutron utilizes the regularized dataset as the training set
for our neural decompilationmodel, which is based on the
idea of attention-based NMT mechanism. The detailed
design is as below.

Segmentation
Similar to natural language translation, the decompila-
tion of low-level PL to high-level PL can also be seen
as a translation problem between two natural languages.
However, because PL has stricter syntax rules and infor-
mation asymmetry between PLs, it is more difficult to
translate between PLs than natural languages. Besides, the
issue of the length of high-level PL statements also needs
consideration.
Because combinations between expressions in PL are

evenmuchmore diverse than in natural language, the data
set cannot include all possible combinations in the code.
Hence, it poses a more significant challenge to the trans-
lation model’s generalization ability. Fortunately, since PL
has strict syntax rules and the number of rules is rela-
tively small, we modify and optimize the NMT model in
combination with the rules to make it be able to meet
the decompilation task of PL. We carry out a more fine-
grained division of a code line, reducing the translation
unit of the NMT model from a code sentence line to
basic operation. A line of code is usually composed of
one or more phrases. These phrases are the basic types of
operations in the code, such as unary operations, binary
operations, function calls, etc. Taking the basic operation
of PL as the translation unit of the NMT model can effec-
tively improve the model’s generalization while reducing
model learning difficulty.
The fine-grained code segmentation can be regarded

as a text classification task. We use the sequence model
LSTM encoder (tensor2tensor 2020) to classify each
instruction. According to the model’s tags output, low-
level PL code fragments can be converted into a combi-
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Fig. 3 An example of training data augmentation

nation of several basic operations. Listing 2 is the code
fragment of the expression var4 = (var1 + var2) *
var3. After fine-grained segmentation, the output label
is seen as <0,0,1,0,1,1>, which is obviously divided
into three basic operations. Each basic operation would be
used as the input of the translation model.
Translation
After fine-grained segmentation of low-level PL, we divide
a line of code into code fragments with considering basic
operations as units. The code fragments are similarly
treated as units for subsequent decompilation. In this
way, the difficulty for the translation model to learn low-
level PL and high-level PL conversion rules is significantly
reduced, and it can cope with PL structures that do not
appear in the training set, while effectively improving the
generalization ability of the AsmTran model.
The decompilation task of PL is similar to machine

translation in NLP, which is a text generation task of
sequence-to-sequence (Seq2Seq) (Sutskever et al. 2014).
The Seq2Seq model is a particular type of RNN archi-
tecture, usually used to solve complex language problems
such as machine translation (Sutskever et al. 2014; Wu et
al. 2016), text summarization (Shi et al. 2018), and ques-
tion answering (Yang et al. 2016). The most common
Seq2Seq model architecture is encoder-decoder architec-
ture. The encoder converts the input sequence into a
fixed-length vector encoding, while the decoder decodes
the fixed vector and converts it into an output sequence,
where the encoder and decoder are mostly LSTMmodels.
In the Seq2Seq model, since the encoder transforms the
variable-length input sequence into a fixed-length seman-
tic vector, there is a loss of information in the encoding
process, and the longer the sentence, the more apparent.
Also, in the decoder operation, the output at eachmoment

uses the same context vector in the decoding process, so
there is a specific deviation in the prediction result.
In order to solve the above problems, researchers intro-

duced the attention mechanism into the Seq2Seq model
so that the context used by the model when predict-
ing the output at each moment is the context related to
the current output. In another word, the weight of the
semantic vector changes dynamically according to the
predicted vocabulary. The attention mechanism allows
the model to assign higher weights to specific parts
of the input sequence when decoding instead of focus-
ing only on the last hidden layer’s results in the LSTM
model. The attention mechanism solves the problem that
long-distance information will be weakened in the RNN
models and quickly grasp critical points in long texts
without losing important information. We introduce the
attention-based NMT model (Luong et al. 2015) as the
decompilation model, whose architecture is shown in the
Fig. 4.
Given an input code X = (x1, · · · , xm), we use xi ∈ R

d

to represent the i-th word in the input. The output high-
level PL code sequence is defined as Y : (y1, · · · , ym).
For the input sequence X, the encoder first maps each
word xi in X to a vector wi to obtain the model input
W : (w1, · · · ,wn). The vector e output by the encoder
can represent the input low-level PL code sequence’s con-
text information. The decoder decodes according to e and
the current output sequence and inserts a start tag < s>
for each source code. The decoder stops decoding when it
reaches the terminator ‘;’. The initial hidden layer state
h0 of the decoder is calculated according to e. The decoder
decodes the hidden state hi of the i-th word to calculate
the probability distribution pi of the i-th word. Its input
is the vector wi−1 corresponding to the word i − 1 and
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Fig. 4 Attention-based LSTM architecture

the current hidden layer state hi−1, as well as the attention
vector ci.

h0 = LSTM(e,w < s >) (1)

ci =
n∑

i=0
softmax(f (hi−1, ei))ei (2)

where f is the function of calculating the attention vector.

hi = LSTM(hi−1, [wxi−1,ci]) (3)

pi = softmax(generator(hi)) (4)

where the function generator : Rd ⇒ R
v (v is the length

of the word list), the softmax function maps the generator
input to the (0, 1) interval to obtain the probability distri-
bution of the ith word on the word list. Finally, the word
with the highest probability is selected as the decoded
word yi, and the current word can be obtained bymapping
ŷi to the word list.

ŷi = argmax(pi) (5)

In the test phase, AsmTran adopts the beam search
decoding method (Reddy 1977). Each neuron selects the
k outputs with the highest current output probability and
transmits them to the next neuron.
AsmTran takes the basic operations of low-level PL

(assembly code) as inputs and the high-level PL (C-like
source code) as output.We use amixture of different types
of codes as the training set and adjust the proportion of
various types of codes according to the translation results
to improve the model’s accuracy. The size of the training
set is 1.53 million. Benefit from the design of AsmTran,
the accuracy of our approach is increased by 36.11%, com-
pared to the state-of-the-art natural language translator
(Luong et al. 2015).

Iterative error correction
Error Correction for Segmentation. In the AsmTran
model, the segmentation sub-model may produce some
false-positives and false-negatives. EC1 is mainly divided
into two parts. First, we use rules to correct some obvious
classification errors, includingmemory write instructions,
function call instructions, separate arithmetic, and logic
operation are obvious boundaries, while memory read
instructions are not boundary instructions. Iterative train-
ing enhances the sub-model’s classification capabilities by
adding the incorrectly classified instructions and their
correct labels to the training set.
The other most crucial error is that to speed up code

execution, the division operation in some cases is changed
into a combination of multiple other basic instructions
like sub, add, imul, shl, shr. These operations may be
mistaken for boundary instructions by the segmentation
sub-model. Due to divisible optimization instructions’
fixed characteristics, they are usually composed of several
addition, subtraction, and shift instructions. Therefore,
we identify the suspected divisibility code block by defin-
ing rules, correcting each instruction’s marking, and only
mark its last instruction as a boundary instruction.
Error Correction for Translation. In the AsmTran

model, there are two main types of errors in the trans-
lation sub-model: syntax errors and semantic errors. The
syntax error means that the translated code does not con-
form to the syntax specification of C code. We use regular
expressions to design a syntax checker, named CS3, for
the types of statements in the data set to check for syn-
tax errors. For some syntax errors that have little impact
on errors, we use rules to correct them, including errors
in brackets and commas between parameters in function
call statements, errors in the order of operands and oper-
ators in arithmetic and logical expressions, and errors in
conditional expression “:” and “?”.

3CS (Check syntax)
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Semantic errors mean that the meaning of the sentence
obtained after translation is different from the meaning
of the original assembly code. It is difficult to check and
correct semantic errors, so we correct a few particular
semantic errors, including obvious translation errors in
arithmetic and logic operations, translation errors in func-
tion calls, and an incorrect number of function parame-
ters. We obtain some obvious guidance information from
the assembly statement to fine-tune the decompiled code.
In the training process, we use the supervision informa-
tion to add the wrong sentences in the test set and their
correct labels to the iterative training of the training set to
improve the performance of AsmTran.

Function Reconstruction
After AsmTran has completed the decompilation of the
target low-level PL code, we get regularized high-level
PL code fragments corresponding to low-level PL’s basic
operations. However, in the actual source code (function),
there are control dependencies and data dependencies
between variables and statements. Therefore, we need
to restore the function’s dependencies through specific
rules, further complement the function’s head and tail,
and finally build a complete function. Our function recon-
struction technique is divided into three parts: data flow
recovery, control flow recovery, as well as parameters and
return value recovery.

Data flow recovery
In the code preprocessing phrase, in order to reduce the
influence of the variable names in the PL on the sub-
sequent model translation, we have carried out regular
operations on them, so the variable names of the decom-
piled high-level PL are all in the form of vari, which causes
many obstacles to the readability and understandability.
Therefore, we need to reconstruct the variable name in the
function to restore its data dependency.
Ourmethod is mainly composed of three steps: (1) Vari-

able extraction. We extract the operands corresponding
to the low-level PL code variables, build a hash table,
and assign variable names to each operand, starting from
var0 to varn. (2) Ingredient identification. For each basic
operand of low-level PL, we identify its position in the
current code fragment and the bound operation. The
basic rules are as follows: 1© mov read memory operation,
marked as (right, ‘mov’); 2© mov write memory opera-
tion, marked as (left, ‘mov’); 3© other instructions read
memory operation, marked as (right, opcode); 4© Write
memory operation for other instructions, marked as (left,
opcode). During this step, we can associate the meaning-
less variables vari and imm in the decompiled code sketch
with the offset address and immediate value in the low-
level PL code to form a mapping relationship. For exam-
ple, the second code snippet mov dword ptr [rbp -

8], 5 correspond to var1 = imm, so the mapping rela-
tionship imm: 5, var1: rbp-8 can be obtained. (3)
Variable name restoration. According to the correspond-
ing relationship between the variable name and the offset
address obtained in the first step, we replace the vari-
able’s position in the code sketch corresponding to the
offset address in the second step with the new variable
name. For example, the variable name corresponding to
rbp-8 in the entire function should be var2 in Fig. 2, so
we use var2 to replace var1. Similarly, we use 5 to replace
imm, then we get var2 = 5; after the data flow recovery.
For the position where there is no corresponding variable
name, this situation is usually caused by the split of a com-
plex sentence, resulting in the lack of memory to read and
write instructions. In this case, there is no correspond-
ing sentence in the source code, so we use “tmp” as an
intermediate variable to replace these positions.

Control flow recovery
In addition to data dependencies, control dependencies
exist before code blocks, such as conditional branch
structures and loop structures. The control dependent
structure recovery constructs the CFG of the recovery
function, which is very important. Since we segment the
assembly code block of a function, the code recovered by
the translation model is only one sentence by sentence,
and each sentence is independent of each other, lacking
the proper organization structure within the function. In
the process of code preprocessing, we use angr to obtain
the CFG of the function, so we use this CFG to restore the
control dependence of the program function after decom-
pilation, which can be divided into two steps: (1) Basic
block internal sequence recovery. The basic block state-
ments are executed sequentially, so the order between
the high-level PL codes can be restored according to the
basic block’s assembly blocks’ sequence. (2) Jump rela-
tionship recovery. There are a jump relationships between
basic blocks. The condition types or the loop types can be
judged according to the jump directions. The condition
expression is determined according to the last condition
expression in the jump block. Loops all use the while
loop format. If it cannot be determined, we use the goto
statement temporarily.

Parameters and return value recovery
Parameters and return values are two critical elements
in the code function, and they are the external interface
parts of the function. Therefore, accurate identification of
parameters and return values helps to analyze the func-
tion call relationships of the entire binary code. The return
value is usually stored in the eax register, located in the
last basic block in the assembly code. In the above pro-
cess, we have translated the last sentence. The final return
value helps to analyze the entire binary code’s function
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call relationship. When the return value is determined, we
can judge the entire function’s return type based on the
type of eax. However, it is not easy to find the param-
eter list directly from the function. We determine the
parameter list of the target function through other assem-
bly code fragments that call the function. For example,
the GCC X86-64 compiler prefers to use registers, such
as rdi, rsi, and rdx, to pass parameters, and then pass
them using program stack if the number of parameters are
more than 7.

Evaluation
Experimental Setup
We evaluate the performance of Neutron on a variety
of benchmarks with real-world applications and differ-
ent tasks, as shown in Table 1. All the experiments are
performed on a 64-bit server running Ubuntu 18.04 with
16 cores (Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz),
128GB memory, 2TB hard drive and 5 GPUs (2 GTX
Titan-V GPU and 3 GTX Titan-X GPU).
Training data generation. To build a dataset for train-

ing, and testing of Neutron, we randomly generate 180,000
pairs of high-level PL codes with corresponding assem-
bly codes as the raw data set. The program is compiled
using GCC 9.3.0, with all optimization options disabled.
Furthermore, we mark the basic operations’ boundary
instructions in all the assembly code blocks of the raw
data set to obtain the segmentation sub-model training
data set. For the translation sub-model, we expand the raw
data set based on the above data augmentation technique.
We obtain 1.53 million pairs of high-level PL codes with
corresponding low-level PL codes as the training set.
Benchmarks. We evaluate the performance of Neu-

tron using real-world applications. Particularly, we select
three real-world projects (Warren 2012; Karel the Robot
1995; Yang et al. 2011) and three different tasks of differ-
ent statement types, such as arithmetic operations, logical
operations, comparison operations, and function calls,
which generated using real libraries (Math c++ library
2020). (1) Hacker’s Delight loop-free programs (Warren
2012) constructed by Schkufza et al. (2013), which is
used to encode complex algorithms as small, loop-free
sequences of bit-operated instructions. (2) Karel. (Karel
the Robot 1995) is a C-based library for control robot
actions, which contains more function call statements. (3)
Csmith. Csmith (Yang et al. 2011) is a tool for testing com-
pilers or other tools that process C code. We randomly

generate various types of C programs of different com-
plexity by the Csmith 2.3.0. Liu and Wang (2020) also
used Csmith to evaluate existing conventional decompil-
ers. (4) Math. We generate code by the math.h library
(Math c++ library 2020), which contains more function
call statements. (5) Normal Expression (NE). We use NE
to generate code containing arithmetic, logic, and com-
parison expressions. (6) Math + NE. We also utilize the
math.h library and NE to generate more complex code.
Each function contains the above four types of statements.
The most recent work Coda (Fu et al. 2019) also exploited
these similar methods to evaluate its performance.

Effectiveness
We measure the effectiveness of Neutron. The effective-
ness is dependent on whether the target low-level PL
code is translated into the high-level PL code with similar
functionality.
Performance on real-world projects. We evaluate the

performance of Neutron using the five real-world appli-
cations, as mentioned above. To ensure the accuracy and
objectivity of evaluation results, we remove duplicates of
those data. From Table 1, we can find that Neutron is
very accurate. Such an accurate model enables Neutron to
have high performance. There are lines of C program code
composed of many mixed comparison, logical, and arith-
metic operations, which directly leads themodel unable to
translate such overly complex sentences accurately. Com-
pared with using the LSTM-Seq2Seq-attention model
(Luong et al. 2015), our approach achieves 36.11% higher
accuracy on average, which reflects that the attention-
based NMT method fails to learn the conversion rules
between PL pairs effectively. Besides, our approach could
improve 74.71% on average than using LSTM. This is
mainly because LSTM can not handle long-term infor-
mation. The above result shows that our Neutron has a
significant performance.
Performance on different tasks. Based on the real-

world code library, we generate code blocks of different
data types, such as arithmetic operations, logical opera-
tions, comparison operations, and function calls, to eval-
uate Neutron’s translation effects on different data types.
Because the PL code is a combination of various data
types, the model’s translation accuracy of data types can
also reflect low-level PL decompilation performance. The
results of Neutron’s accuracy are shown in Table 1. For
Math and NE tasks, the native attention-based LSTM

Table 1 Performance on different benchmarks

Hacker’s Delight Karel CSmith Math NE Math+NE

Neutron 100% 100% 95.45% 98% 97.4% 97.00%

LSTM+attention 8.69% 81.05% 73% 80% 71.79% 56.67%

LSTM 0 0 21.7% 37% 31.66% 49.18%
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performs well, but it appears weak for the more com-
plex Math+NE tasks. In contrast, Neutron has excellent
performance (accuracy rate higher than 97%) for the
above three tasks of different complexity. Since we apply
the code segmentationmethod, the accuracy of Neutron is
not limited by the length of a single statement of the code.
However, the related work Coda (Fu et al. 2019) is greatly
affected by the length of the single code sentence. When
the code length increases to 30, Coda’s accuracy drops by
an average of 5.4% - 13.5%.

Runtime Performance
Time cost of training. We calculate the training time for
Neutron using the 1.6 million datasets. The time spent
by the model for every 100 steps is 16 seconds, and the
model completes the training task with a total of 8,000
steps. Therefore, the training time for Neutron is about
0.5 hours.
Time for translation. Regarding the time of translation,

we randomly select 100 low-level PL code fragments (cor-
responding to a line of high-level PL code) from the test
set for the translation efficiency evaluation. After 100 ran-
dom experiments, it shows that the average testing time of
Neutron is 1.01 seconds.

Influence of Parameters
Impact of training data augmentation
Data augmentation includes expansion and randommask-
ing. First, we evaluate the impact of using data augmenta-
tion on Neutron’s accuracy. Second, we evaluate the effect
of different iteration times and mask ratios on our model’s
accuracy.
Firstly, We evaluate the accuracy of the translation sub-

model of the AsmTran (without code segmentation) on
a data set, consisting of four sentence types: arithmetic
operations, logical operations, comparison operations,
and function calls. We use the raw data set (R), extended
data set (E), and mask data set (M) to train three models
and then evaluate the code translation accuracy of these
three models. The results are shown in Table 2, which
suggests that data augmentation plays an essential role in
improvingNeutron’s accuracy. To separate the effect of EC
from the effect of data enhancement, here is the accuracy
of the model before EC. The expansion part enhances the
ability to deal with incomplete code fragments, and the
mask part significantly enhances the model’s robustness.

Table 2 Impact of training data augmentation

Training
data set

Arithmetic Logic Comparison Function call

M(R) 1.89% 2.35% 0.74% 10.96%

M(R+E) 82.3% 69.8% 60.77% 83.16%

M(R+E+M) 85.2% 72.06% 63.4% 87.41%

Secondly, we evaluate the impact of the number of
iterations and mask ratio on the model’s accuracy. The
results are shown in Fig. 5. When the number of iterations
exceeds 5, the accuracy of themodel does not improve sig-
nificantly. The model works better when the number of
iterations is 10, and the mask ratio is 0.2. Besides, when
there is no iteration, the model’s average accuracy is only
1.74%. Themore iterations, the larger the number of train-
ing sets, and theoretically, the higher themodel’s accuracy.
However, after segmentation, the types of instructions
contained in the assembly code block are limited. Too
many iterations would cause many repeated data, so we
set the upper limit of the number of iterations to 10. Sim-
ilarly, if the mask ratio is too large, the code sentence’s
characteristics would be blurred, which is not conducive
to the model’s convergence. Therefore, we set the upper
limit of the mask ratio to 0.2.

Impact of iterative error correction
We use a mixed data set (containing 150,000 pairs of PL
codes) constructed by the above four sentence types to
evaluate the two EC modules’ performance in the Asm-
Tran. For the segmentation sub-model, the EC1 mech-
anism improves the model’s accuracy from 93.85% to
100%. Through manual statistics, we find that the EC for
divisible optimization accounts for the largest proportion.
For the translation sub-model, the Neutron’s accuracy is
increased by 21.95%, reached 99.98%. From the above
experimental results, We can see that the iterative EC
module is critical to Neutron’s performance.

Discussion
Limitations. In our work, we propose and implement
a new attention-based neural decompilation framework
named Neutron. The evaluation shows that the approach
performs well. However, there still exist several limita-
tions. Firstly, Neutron not effectively restores the seman-
tics of target low-level PL, and the code comprehensibility
needs to be improved. Secondly, Neutron has poor trans-
lation performance for compiler-optimized code, for we
adopted the slicing mechanism, which aims to reduce the
difficulty of the model and consider GPU resources’ lim-
itations. The high-level optimized code adopts a more
advanced register allocation mechanism with a large front
and back dependency and is challenging to perform fine-
grained slicing. Thirdly, Neutron is powerless to identify
and recover user-defined datatypes, such as classes, struc-
tures, which enables to improve the comprehensibility of
the decompiled high-level PL.
Future Work. We will continue to explore techniques

for improving the translation effect and semantic recov-
ery accuracy of Neutron together with resolving the above
limitations to expand Neutron’s translation capabilities.
For example, we will add optimized code data to the
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Fig. 5 Impact of iteration times and mask ratio

training dataset and try to let Neutron learn more opti-
mization rules to decompile optimized low-level PL codes
accurately. We will also learn from the existing work of
identifying and restoring user-defined datatypes, further
proposing a neural-based user-defined data identification
approach. The method can improve the comprehensi-
bility of decompiled high-level PL to provide technical
assistance for vulnerability detection and malicious code
analysis.

Conclusion
In this paper, we propose Neutron, the new decompila-
tion architecture based on the LSTM-Seq2Seq-attention
mechanism, which can accurately translate low-level PL,
such as assembly code into high-level PL with similar
functions. Besides, we design a novel translation mecha-
nism based on the PL’s basic operation to make the NMT
model more accurate, efficiently capture the translation
rules between PLs, and improve the NMT model’s gener-
alization ability. The results on three real-world projects
and three different tasks show that Neutron’s accuracy can
reach 96.96% on average.
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