
CybersecurityYang et al. Cybersecurity (2021) 4:13
https://doi.org/10.1186/s42400-021-00075-9

RESEARCH Open Access

TKCA: a timely keystroke-based
continuous user authentication with short
keystroke sequence in uncontrolled settings
Lulu Yang1,2, Chen Li1,2, Ruibang You1,2, Bibo Tu1,2* and Linghui Li3

Abstract

Keystroke-based behavioral biometrics have been proven effective for continuous user authentication. Current
state-of-the-art algorithms have achieved outstanding results in long text or short text collected by doing some tasks.
It remains a considerable challenge to authenticate users continuously and accurately with short keystroke inputs
collected in uncontrolled settings. In this work, we propose a Timely Keystroke-based method for Continuous user
Authentication, named TKCA. It integrates the key name and two kinds of timing features through an embedding
mechanism. And it captures the relationship between context keystrokes by the Bidirectional Long Short-Term
Memory (Bi-LSTM) network. We conduct a series of experiments to validate it on a public dataset - the Clarkson II
dataset collected in a completely uncontrolled and natural setting. Experiment results show that the proposed TKCA
achieves state-of-the-art performance with 8.28% of EER when using only 30 keystrokes and 2.78% of EER when using
190 keystrokes.

Keywords: Keystroke dynamics, Continuous user authentication, Embedding, LSTM, Bi-LSTM

Introduction
The traditional computer desktop or cloud desktop
authentication method uses a point of entry for users to
log in with a username and password or PIN. Unautho-
rized access could occur when a legitimate user forgets to
log out and steps away from the terminal for lunch or an
emergency or when an attacker has stolen his password or
PIN. The attacker may gain access to a fully operational
systemwith a privileged account and access it like the user.
Subsequent attack mounted on the desktop is hard to dis-
cover, which poses a significant security risk. Continuous
user authentication is a way to tackle this issue. It actively
and continuously authenticates users without their aware-
ness. Behavioral biometrics is popular in the continuous
user authentication field by using users’ characteristics to

*Correspondence: tubibo@iie.ac.cn
1Institute of Information Engineering, Chinese Academy of Sciences, 100093
Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, 100049
Beijing, China
Full list of author information is available at the end of the article

authenticate their identity information. Continuous user
authentication based on behavioral biometrics includes
free-text keystroke dynamics (Monrose and Rubin 1997;
Dowland and Furnell 2004; Gunetti and Picardi 2005;
Janakiraman and Sim 2007; Sim and Janakiraman 2007;
Montalvão Filho and Freire 2006; Davoudi and Kabir 2009;
2010; Harun et al. 2010; Stewart et al. 2011; Al Solami et
al. 2011; Messerman et al. 2011; Rahman et al. 2011; Fer-
reira and Santos 2012; Bours 2012; Monaco et al. 2013;
Deutschmann et al. 2013; Ahmed and Traore 2013; Kang
and Cho 2015; Çeker and Upadhyaya 2016; Mondal and
Bours 2017; Huang et al. 2017; Ayotte et al. 2019; Alshehri
et al. 2017; 2018; Xiaofeng et al. 2019), mouse dynam-
ics (Pusara and Brodley 2004; Ahmed and Traore 2007;
Nakkabi et al. 2010; Zheng et al. 2011; Feher et al. 2012; Lin
et al. 2012; Mondal and Bours 2013), touch screen inputs
(Frank et al. 2012; Cai et al. 2013; Feng et al. 2014; Buschek
et al. 2015), eye movements (Kinnunen et al. 2010; Eberz
et al. 2015; 2016), gait (Ailisto et al. 2005; Rong et al.
2007; Derawi et al. 2010), etc. Although continuous user

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00075-9&domain=pdf
http://orcid.org/0000-0002-0278-7420
mailto: tubibo@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Yang et al. Cybersecurity (2021) 4:13 Page 2 of 16

authentication can not replace traditional authentication
schemes, it makes up for their shortcomings.
Free text keystroke dynamics is proper for continuous

user authentication because it is non-invasive, relatively
cheap to realize, no additional hardware requirement,
and available after the login stage (Dowland and Furnell
2004). Considerable progress has been made in free text
Keystroke-based Continuous user Authentication (KCA)
(Monrose and Rubin 1997; Dowland and Furnell 2004;
Gunetti and Picardi 2005; Janakiraman and Sim 2007; Sim
and Janakiraman 2007; Montalvão Filho and Freire 2006;
Davoudi and Kabir 2009; 2010; Harun et al. 2010; Stewart
et al. 2011; Al Solami et al. 2011; Messerman et al. 2011;
Rahman et al. 2011; Ferreira and Santos 2012; Bours 2012;
Monaco et al. 2013; Deutschmann et al. 2013; Ahmed and
Traore 2013; Kang and Cho 2015; Çeker and Upadhyaya
2016;Mondal and Bours 2017; Huang et al. 2017; Ayotte et
al. 2019; Alshehri et al. 2017; 2018; Xiaofeng et al. 2019).
The process of a KCA algorithm is usually to collect a
user’s keystrokes and time stamps, extract features, and
use statistical or machine learning methods to determine
whether the current user is legitimate. Notable perfor-
mances have been achieved with long (Gunetti and Picardi
2005; Çeker and Upadhyaya 2016) or short text (Alshehri
et al. 2017; 2018; Xiaofeng et al. 2019) collected by doing
tasks (i.e., answering questions or transcriptions) and long
data (Huang et al. 2017; Ayotte et al. 2019) collected in
uncontrolled settings.
However, it remains a challenge to use short keystroke

inputs collected in uncontrolled settings for accurate
KCA. Since proved in Huang et al. (2017), that KCA
performance degrades significantly when applied to data
collected in uncontrolled environments. Moreover, users
with similar traits produce similar keystroke data (Lau
and Maxion 2014). And the same user’s typing behavior is
varied by mood, keyboard layout, application, time reso-
lution, and other factors. They are making it challenging
to distinguish users or identify the same user. Otherwise,
in real-world scenarios, users usually type only a few char-
acters to search or chat online and spend the rest of the
time browsing the web, documents, pictures, videos, etc.
We find that the number of keystrokes less than 50 in
once typing accounts for 51.95% of all keystrokes in the
Clarkson II dataset (Murphy et al. 2017). It is necessary to
overcome these difficulties of using short keystroke data
for accurate KCA in real uncontrolled scenarios.
In this work, we propose a Timely Keystroke-based

Continuous user Authentication, named TKCA, to detect
attackers using short keystroke sequences in uncon-
trolled scenarios quickly and accurately. We use the
Bi-directional Long Short-Term Memory (Bi-LSTM)
network to capture the relationship between context
keystrokes. As stated in Sim and Janakiraman (2007), a
keystroke sequence’s typing pattern may change when it

is part of a longer word. For example, the digraph “in”
may have different timing information in typing the word
“mini” and the word “thing” because a user’s typing behav-
ior depends not only on the exact key but also on the
context keys. To make the most use of the keystroke data’s
information, we use all available keystrokes instead of
selecting commonly used digraphs, trigraphs while filter-
ing out others or just using timing features. We propose
integrating the key name and two kinds of timing features
by embedding mechanism. As far as we know, we are the
first engaging embedding mechanism in KCA to convert
key names into digital vectors and amply timing features.
To evaluate the performance of TKCA and compare it

with previous works, we conduct a series of experiments
on the Clarkson II dataset. The TKCA algorithm achieves
an EER (Equal Error Rate) of 8.28% when only using
30 keystrokes. When the number of keystrokes increases
to 90, the EER reaches 4.30%. With more keystrokes,
the performance continues to improve steadily. With 190
keystrokes, the EER drops to 2.78%. The evaluation results
show that the TKCA achieves state-of-the-art perfor-
mance, and it is desirable for accurate KCA with short
keystroke sequences in uncontrolled settings.
The primary contributions in this work are as follows:
(1) We design a keystroke model based on embedding

mechanism and Bi-LSTM.We propose integrating the key
name and two kinds of timing features (the hold time
and the digraph flight time) by the embedding mechanism
that converts key names into digital vectors and amply
timing features. Moreover, we use Bi-LSTM to learn the
dependence between context keystrokes. They are proved
to be effective in improving accuracy in the experimental
section.
(2) We propose TKCA based on the keystroke model

and majority vote mechanism to quickly detect attackers
using short unconstrained keystroke sequences. For each
legitimate user, we train a unique binary classifier based
on the keystroke model. The TKCA uses an authorized
user’s classifier to classify keystroke sequences. Multi-
ple classification results are fused by a majority vote to
determine whether the current user is legitimate.
(3) We evaluate the proposed TKCA and compare it

with previous KCA algorithms on the Clarkson II dataset,
collected in a completely uncontrolled and natural setting.
Experimental results show the EER of TKCA 8.28% when
only using 30 keystrokes, which dramatically improves the
KCA field’s performance.
The rest of this paper is organized as follows:

“Related work” section provides the related work. The
keystroke model and the TKCA algorithm is presented in
“Methodology” section. In “Experiments and evaluation”
section, we evaluate TKCA and compare it with other
KCA algorithms on the Clarkson II dataset comprehen-
sively. We discuss the strengths and limitations of the

Yang et al. Cybersecurity (2021) 4:13 Page 3 of 16

proposed TKCA method and future work in “Discussion
and future work” section. Finally, we make a conclusion in
“Conclusion” section.

Related work
Keystroke dynamics is an efficient and inexpensive behav-
ioral biometrics that can be used to authenticate users in
the background while the user is actively working. Various
previous works on user authentication using keystroke
dynamics focus on Keystroke-based Static user Authenti-
cation (KSA), which extracts typing patterns from prede-
fined texts. Applications such as username, password, and
PIN authentication (Joyce and Gupta 1990; Monrose et al.
2002; Killourhy and Maxion 2009; Syed et al. 2016) apply
KSA to assist in authenticating users. However, KSA is
not suitable for scenarios where continuous user authen-
tication is required. Hence, the idea of using keystroke
dynamics for free text, Keystroke-based Continuous user
Authentication (KCA), has been proposed. In the liter-
ature, researchers use different types of keystroke data
for KCA studies according to the collection device. Many
KCA studies use keystroke data collected on a traditional
keyboard for continuous user authentication when users
work at a computer terminal. Besides, some KCA studies
focused on mobile systems gather keystroke data on soft
keyboards, such as touch screens (Feng et al. 2013; Wu et
al. 2015). Since this work focuses on using keystroke data
to detect attackers in computer/cloud terminal scenarios,
we will only introduce KCA studies using traditional hard-
ware keyboards. KCA studies using traditional keyboards
have come a long way in the last two decades (Dowland
and Furnell 2004; Gunetti and Picardi 2005; Janakiraman
and Sim 2007; Sim and Janakiraman 2007; Monrose and
Rubin 1997; Montalvão Filho and Freire 2006; Davoudi
and Kabir 2009; 2010; Harun et al. 2010; Stewart et al.
2011; Al Solami et al. 2011; Messerman et al. 2011; Rah-
man et al. 2011; Ferreira and Santos 2012; Bours 2012;
Monaco et al. 2013; Deutschmann et al. 2013; Ahmed and
Traore 2013; Kang and Cho 2015; Çeker and Upadhyaya
2016; Mondal and Bours 2017; Huang et al. 2017; Ayotte
et al. 2019; Alshehri et al. 2017; 2018; Xiaofeng et al. 2019)
as shown in Table 1. In the following, we will introduce
the existing KCA studies in terms of features, methods,
evaluation metrics, and datasets.

Features
Almost all existing KCA studies use keystroke timing fea-
tures for classification. As shown in Fig. 1, timing features
include hold time, latency time, n-graphs flight time, etc.
The naming of timing features varies from study to study.
For example, hold time is also called dwell time, dura-
tion, or held time. They all represent the duration between
pressing and releasing the same key. In this work, we refer
to this time as hold time. Hold time has been used in

Janakiraman and Sim (2007); Sim and Janakiraman (2007);
Monrose and Rubin (1997); Stewart et al. (2011); Ferreira
and Santos (2012); Bours (2012); Monaco et al. (2013);
Deutschmann et al. (2013); Ahmed and Traore (2013);
Çeker and Upadhyaya (2016); Mondal and Bours (2017);
Alshehri et al. (2017); Alshehri et al. (2018); Xiaofeng et
al. (2019). Latency time is the time from the previous key
released to the current key pressed, which has been used
in Monrose and Rubin (1997); Stewart et al. (2011); Rah-
man et al. (2011); Ferreira and Santos (2012); Bours (2012);
Monaco et al. (2013); Ahmed and Traore (2013); Mondal
and Bours (2017); Xiaofeng et al. (2019). N-graph flight
time is the time from the first key pressed to the last
key pressed (Moskovitch et al. 2009), and the frequently
used values of n are 2 (digraph), 3 (trigraph), 4. Many
KCA studies use n-graph flight time as a feature, such
as (Dowland and Furnell 2004; Gunetti and Picardi 2005;
Janakiraman and Sim 2007; Sim and Janakiraman 2007;
Montalvão Filho and Freire 2006; Davoudi and Kabir 2009;
2010; Al Solami et al. 2011; Messerman et al. 2011; Fer-
reira and Santos 2012; Ahmed and Traore 2013; Kang and
Cho 2015; Çeker and Upadhyaya 2016; Mondal and Bours
2017; Huang et al. 2017; Ayotte et al. 2019; Alshehri et al.
2017; 2018; Xiaofeng et al. 2019). Besides, there are some
other timing features, for example, n-graph total time used
in Dowland and Furnell (2004); Mondal and Bours (2017),
up-up time used in Mondal and Bours (2017), and per-
cent usage of certain keys used in Stewart et al. (2011). In
addition to timing features, the key itself can also be used
as a feature. For example, (Xiaofeng et al. 2019) uses the
keycode as a feature.

Methods
Various techniques have been used in KCA algorithms.
Gunetti and Picardi (2005); Messerman et al. (2011); Rah-
man et al. (2011); Kang and Cho (2015) use ‘R’ Distance
and ‘A’ Distance. ‘R’ Distance is determined by the normal-
ized disorder between the two ordered vectors of average
n-graph latencies. ‘A’ Distance is determined by the dif-
ference in average n-graph latencies. Euclidean distance,
Manhattan distance, or Bhattacharyya Distance have been
used in Dowland and Furnell (2004); Janakiraman and
Sim (2007); Sim and Janakiraman (2007); Monrose and
Rubin (1997); Davoudi and Kabir (2009); Davoudi and
Kabir (2010); Harun et al. (2010); Ferreira and Santos
(2012); Bours (2012); Kang and Cho (2015) to calculate
the mean and standard deviation of some timing fea-
tures. Moreover, to identify users, a number of studies use
machine learning methods including k-Nearest Neigh-
bour (k-NN) or Nearest Neighbour (Monrose and Rubin
1997; Stewart et al. 2011; Monaco et al. 2013; Kang and
Cho 2015), Markov Chain (Montalvão Filho and Freire
2006), Support VectorMachines (SVM) (Çeker and Upad-
hyaya 2016; Mondal and Bours 2017), Kernel Density

Yang et al. Cybersecurity (2021) 4:13 Page 4 of 16

Table 1 Available KCA algorithms based on free-text keystroke dynamics

Study Feature Method Dataset Performance Length

(Monrose and
Rubin 1997)

hold time, latency time k-NN, Euclidean
distance

collect ACC: 23% 31

(Dowland and
Furnell 2004)

n-graph flight time (n=2,
3),

mean, standard
deviation

collect FAR: 4.9%,

keyword-based keystroke
latency

FRR: 0%,

ANIA: 6,390,

ANGA: 68,755

(Gunetti and
Picardi 2005)

n-graph flight time (n=2,
3, 4)

‘R’ and ‘A’
Distance

collect FAR: 0.005% 700-900

FRR: 4.833%

(Montalvão Filho
and Freire 2006)

digraph flight time Markov Chain collect EER: 12.7% about 550

(Janakiraman and
Sim 2007),

held time, inter-key time Bhattacharyya
Distance,

collect ACC: 74-100% 1,500-100,000

(Sim and
Janakiraman
2007)

Naive Bayes

(Davoudi and
Kabir 2009; 2010)

digraph flight time HDE, ‘R’ and ‘A’
Distance

(Gunetti and
Picardi 2005)

FAR: 0.07%, FRR:
15.2%

700-900

(Harun et al.
2010)

ANN, some
Distance

(Montalvão Filho
and Freire 2006)

EER: 22.9% about 550

(Stewart et al.
2011)

hold time, latency time, k-NN collect EER: 0.55% about 6,000

percent usage of keys

(Al Solami et al.
2011)

most typed digraph Clustering (Gunetti and
Picardi 2005)

ACC: 100% 700-900

(Messerman et al.
2011)

n-graph flight time (n=2,
3, 4)

‘R’ and ‘A’
Distance

collect eFAR: 2.61%, iFAR:
2.02%, FRR: 1.84%

150-450

(Rahman et al.
2011)

latency time ‘R’ and ‘A’
Distance

collect EER: 10-15% 854-1,836

(Ferreira and
Santos 2012)

hold time, latency time, mean, standard
deviation

collect EER of 1.4% 250

n-graph flight time (n=2,
3, 4)

(Bours 2012) hold time, latency time mean, standard
deviation

collect ANIA: 182

(Monaco et al.
2013)

hold time, latency time mean, standard
deviation

collect EER: 3.7% 755

(Deutschmann et
al. 2013)

Bayesian network collect ANIA: 760-950

(Ahmed and
Traore 2013)

hold time, latency time, ANN collect EER: 2.13% 500

n-graph flight time (n=2,
3)

(Kang and Cho
2015)

digraph flight time 12 different
techniques

collect EER: 5.64% 1,000

(Çeker and
Upadhyaya 2016)

hold time, digraph flight
time

One-class SVM (Vural et al. 2014) EER: 0 1,319-3,454

(Mondal and
Bours 2017)

hold time, total time,
latency time,

ANN, CPANN,
SVM

collect ANIA: 167 or
larger

Yang et al. Cybersecurity (2021) 4:13 Page 5 of 16

Table 1 Available KCA algorithms based on free-text keystroke dynamics (Continued)

Study Feature Method Dataset Performance Length

flight time, up-up time for
digraph

(Alshehri et al.
2017; 2018)

hold time, digraph flight
time

DTW collect, (Vural et
al. 2014)

ACC: 98.39%,
97.32%

100

(Huang et al.
2017)

digraph flight time KDE (Gunetti and
Picardi 2005),

EER: 3.48%, 3.36%,
1.95%, 7.59%

1,000

(Vural et al. 2014),

(Sun et al. 2016),

(Murphy et al.
2017)

(Ayotte et al.
2019)

digraph flight time KDE, Energy
Distance,

(Murphy et al.
2017)

EER: 35.1%,
15.3%, 6.3%, 3.6%

100, 200, 500, 1,000

Kolmogorov-
Smirnov

(Xiaofeng et al.
2019)

keycode, hold time,
latency

CNN, RNN (Sun et al. 2016) EER: 3.04 30

time, digraph flight time

Estimation (KDE) (Davoudi and Kabir 2009; Huang et al.
2017; Ayotte et al. 2019), Dynamic Time Warping (DTW)
(Alshehri et al. 2017; 2018), Artificial Neural Network
(ANN) (Harun et al. 2010; Ahmed and Traore 2013; Mon-
dal and Bours 2017), Histogram-based Density Estimation
(Davoudi and Kabir 2009; 2010), Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN)
(Xiaofeng et al. 2019), etc.

Metrics
Besides, the evaluation metrics of KCA studies are not all
the same. FAR, FRR, EER, and Accuracy are the four most
commonly used evaluation metrics. FAR (False Accept
Rate) is the ratio of impostor attacks that are falsely
accepted as genuine users and has been used in Dowland
and Furnell (2004); Gunetti and Picardi (2005); Mon-
talvão Filho and Freire (2006); Davoudi and Kabir (2009);
Davoudi and Kabir (2010); Harun et al. (2010); Stewart et
al. (2011); Messerman et al. (2011); Rahman et al. (2011);
Ferreira and Santos (2012); Monaco et al. (2013); Ahmed
and Traore (2013); Kang and Cho (2015); Çeker and Upad-
hyaya (2016); Huang et al. (2017); Ayotte et al. (2019);

Xiaofeng et al. (2019). Messerman et al. (2011) uses eFAR
and iFAR to differentiate between unknown external and
known internal attackers. FRR (False Reject Rate) is the
ratio of genuine tests that are falsely rejected as impostors
and has been used in Dowland and Furnell (2004); Gunetti
and Picardi (2005); Montalvão Filho and Freire (2006);
Davoudi and Kabir (2009); Davoudi and Kabir (2010);
Harun et al. (2010); Stewart et al. (2011); Messerman et al.
(2011); Rahman et al. (2011); Ferreira and Santos (2012);
Monaco et al. (2013); Ahmed and Traore (2013); Kang
and Cho (2015); Çeker and Upadhyaya (2016); Huang et
al. (2017); Ayotte et al. (2019); Xiaofeng et al. (2019).
EER (Equal Error Rate) is the point on a DET (Detec-
tion Error Tradeoff) curve where FAR and FRR are equal
and has been used in Montalvão Filho and Freire (2006);
Harun et al. (2010); Stewart et al. (2011); Rahman et al.
(2011); Ferreira and Santos (2012); Monaco et al. (2013);
Ahmed and Traore (2013); Kang and Cho (2015); Çeker
and Upadhyaya (2016); Huang et al. (2017); Ayotte et
al. (2019); Xiaofeng et al. (2019). EER balance FAR and
FRR to avoid one of them being too large. ACC (Accu-
racy) is the ratio of truly rejected impostors and accepted

Fig. 1 A keystroke sequence. Each upward and downward pointing arrow indicates a keystroke event

Yang et al. Cybersecurity (2021) 4:13 Page 6 of 16

genuine users and has been used in Janakiraman and Sim
(2007); Sim and Janakiraman (2007); Monrose and Rubin
(1997); Al Solami et al. (2011); Alshehri et al. (2017);
Alshehri et al. (2018). Except for these four metrics,
(Mondal and Bours 2017) proposes to use ANIA and
ANGA to evaluate KCA algorithms. ANIA (the Aver-
age Number of Imposter Actions) shows how much an
imposter can do before being locked out. And, ANGA (the
Average Number of Genuine Actions) shows how much a
genuine user can do before being locked out of the system
wrongfully.

Datasets
As for datasets, most KCA studies use the dataset col-
lected by themselves, making performance comparisons
difficult. Huang et al. (2017) evaluates two existing KCA
algorithms and their KDE-based KCA algorithm on four
publicly available free-text keystroke datasets. The free
text collection scenarios for the first three datasets: Torino
dataset (Gunetti and Picardi 2005), Clarkson I dataset
(Vural et al. 2014), Buffalo dataset (Sun et al. 2016),
are similar in that users can answer some questions or
do some tasks according to their situation. They have
been used in Gunetti and Picardi (2005); Davoudi and
Kabir (2009); Davoudi and Kabir (2010); Al Solami et al.
(2011); Huang et al. (2017); Çeker and Upadhyaya (2016);
Huang et al. (2017); Alshehri et al. (2017); Alshehri et al.
(2018); Xiaofeng et al. (2019), respectively. The Clarkson II
dataset (Murphy et al. 2017) is collected when the partic-
ipants work in a completely uncontrolled, natural setting
without any task. It has been used in Huang et al. (2017);
Ayotte et al. (2019).
Though notable performances have been achieved with

long or short text collected by doing tasks and long data
collected in uncontrolled settings, (Huang et al. 2017)
finds that KCA performance degrades significantly when
applied to data collected in uncontrolled environments.
It remains a challenge to use short keystroke inputs col-
lected in nature settings for accurate KCA.

Methodology
In this section, we give the details of the proposed TKCA.
We first introduce two definitions. Then, we present the
keystroke model. Next, we brief how TKCA quickly dis-
covers attackers by using short keystroke sequences and a
majority vote.

Definitions
3-dimensional keystrokeaction. A 3-dimensional keystroke
action is a tuple of the form < key, ht, df >, where key is
the key name, ht is the hold time, and df is the digraph
flight time for a keystroke. The key name is used as a fea-
ture because users’ typing behavior relates to the specific
key and context keys. Hold time and 2-graph flight time

are selected because they are the most efficient (Gunetti
and Picardi 2005) and always positive (consideration for
embedding, latency time not selected).
keystroke sequence. A keystroke sequence is a series of

consecutive 3-dimensional keystroke actions. Such that a
keystroke sequence S can be formulated as a multivariate
series of the form {< key1, ht1, df1 >,< key2, ht2, df2 >

, ... < keyω, htω, dfω >} with length of ω.

Keystroke model
In this work, we design a keystroke model to capture typ-
ing behavior in a keystroke sequence and convert it into
an identity label. Figure 2 shows the keystroke model’s
network architecture, which contains five parts: input,
embedding, LSTM, attention, and output.
Input The input is a keystroke sequence S in which

each si is a 3-dimensional keystroke action, as described
in “Definitions” section.
Embedding For learning, we need to find a way to con-

vert key names to numeric values. We tried numbering
keys in one or two dimensions according to their distri-
bution on a keyboard. However, we discard this idea due
to the different keyboard layouts and poor performance.
Afterward, we find the embedding can solve this issue
entirely. Embedding is a way to transform discrete vari-
ables into consecutive vector presentations. We use a key
embedding to transform keys into digital vectors. And we
use timing embeddings to convert hold times and digraph
flight times into vectors for feature amplifying. As shown
in Fig. 2,Matrix1 is the key embedding, whileMatrix2 and
Matrix3 are the two time embeddings.
LSTM Because the user’s typing behavior depends not

only on the exact key but also on the context key he types.
In the keystroke model, we use a bidirectional LSTM layer
to extract the relationship between context keystrokes. As
a variant of Recurrent Neural Networks (RNN), LSTM
(Hochreiter and Schmidhuber 1997) has been proven
effective for sequence tasks (LeCun et al. 2015) because
it has “memory” units. It reads one input at a time, and
remember some information/context through the hidden
layer activations that get passed from one time-step to the
next. This allows a unidirectional LSTM to take informa-
tion from the past to process later inputs. A bidirectional
LSTM (Bi-LSTM) can take context from both the past
and the future. Because a user’s typing behavior can be
influenced by context keystrokes, in this work, we use Bi-
LSTM to capture bidirectional keystroke dependencies in
a sequence.
Attention The attention layer learns and combines the

importance of each keystroke in a sequence. Otherwise,
we use a dropout with a value of 0.5 in each LSTM layer
and the attention layer to prevent over-fitting. And we
use a fully connected sub-layer for further depth feature
extraction.

Yang et al. Cybersecurity (2021) 4:13 Page 7 of 16

Fig. 2 Network architecture of the keystroke model. Where ω is the length of the keystroke sequence,M1 is the total number of different keys in the
dataset,M2 is the number of ht, andM3 is the number of df. L1, L2, and L3 are the size of each vector inMatrix1,Matrix2, andMatrix3. and L4 is the size
of hidden layers

OutputWe employ the softmax function to generate the
similarity then use the argmax function to output an iden-
tity label. There are two labels: ‘0’ and ‘1’. In this work, the
label ‘0’ indicates that the current user behaves similarly
to the legitimate user. In contrast, ‘1’ represents that the
current user behaves differently from the legitimate user.
All parameters, including the three embedding matrixes

in the model, are generated randomly and tuned through
back-propagation when we train classifiers.

TKCA algorithm
For each legitimate user, we train a unique binary clas-
sifier based on the keystroke model. The TKCA uses
the well-trained classifier to classify keystroke sequences
typed by the current user and uses a majority vote fus-
ing multiple classification results (labels) to verify if the
current user is legitimate. For example, we use 2n + 1
keystroke sequences once. A n+1

2n+1 majority vote means
that the label with greater than n votes will be the final
predicted label.
The pseudo-code for the TKCA algorithm is presented

in Algorithm 1. The inputs are (i) the sequence length:
ω, (ii) the limit HT of ht, (iii) the limit DT of df, and

(iv) a n+1
2n+1 majority vote. The algorithm is triggered every

once in a while or when a key is pressed. Once the cur-
rent user types a key, the number corresponding to the
key name key, the hold time ht, and the digraph flight
time df of the keystroke are simultaneously recorded.
A keystroke sequence S is formulated when the number
of keystrokes reaches ω. Because there may be a long
pause between keystrokes and some functional keys may
be pressed long, such as “Ctrl” and “Shift”, the ht and df
are sometimes large and need to be limited in a certain
time range. ht and df are checked to ensure that they are
within limits HT and DT. Then, TKCA input S into the
classifier. Classification result label will be used to renew
the value of sml. And the total number of sequences total
increases 1. When total reaches 2n + 1, if sml is larger
than n, the current user will be considered as the genuine
user. total and sml will be reset to 0 and initiating a new
round of continuous user authentication. Otherwise, the
current user will be regarded as an intruder. Necessary
measures are taken to prevent the intruder from using
the computer terminal or cloud terminal, such as lock-
ing the screen, logging out the current user, generating
an alarm log, or notifying the legitimate user via email or

Yang et al. Cybersecurity (2021) 4:13 Page 8 of 16

Algorithm 1 TKCA algorithm.
Input: (i) the sequence length: ω, (ii) the limit HT of ht,
(iii) the limit DT of df, (iv) a n+1

2n+1 majority vote;

1: total = 0; sml = 0; cur_user = 0
2: init an empty queue Q
3: while cur_user == 0 do
4: enqueue the current 3-dimensional keystroke

action < key, ht, df > to Q
5: if length(Q) >= ω then
6: formulate a keystroke sequence S and clear Q
7: for each ht and df in S do
8: check(ht, HT), and check(df, DT)
9: classify S and get label

10: sml += 1 - label
11: total += 1
12: if total == 2n + 1 then
13: if sml > n then
14: current user is legal
15: total = 0, sml = 0
16: else
17: cur_user = 1
18: current user is illegal

return

message. The parameters in Algorithm 1 will be evaluated
in “Experiments and evaluation” section.

Experiments and evaluation
To evaluate the proposed method, we conduct compre-
hensive experiments on the Clarkson II dataset. Exper-
imental results show that TKCA achieves comparable
performance. In the following section, we first intro-
duce the dataset and implementation details. Then, we
perform experiments to evaluate classifiers’ performance
and the TKCA algorithm and compare it with previous
works.

Dataset
The Clarkson II dataset is collected in an entirely uncon-
trolled and natural setting (Murphy et al. 2017). A
Windows-based logger loaded on users’ computers pas-
sively records all keystrokes from natural behaviors, with-
out any particular task. This dataset contains keystroke
data from 103 participants. Keystroke events are time-
stamped of ticks (100-nanosecond intervals), while the
system clock tick has a resolution of approximately 10-16
milliseconds. It means that the last 4 bits should not be
taken into account.
Some users have multiple records of the same keystroke

event with the same timestamp. We delete the redun-
dant duplicate keystroke records and preserve all valid
keystroke records. Even though a previous work (Huang

et al. 2016) on this dataset shows that the performance
can be improved by cleaning up “gibberish” keystrokes
from the data. The amount of valid keystroke events varies
greatly. Each user’s average contribution is 98K, with a
minimum value of 20 and a maximum value of 581K.
The data records for each user in the Clarkson II dataset
are ordering keystroke events formed by timestamp, key
event (key down or key up), and key name. Before learning
the typing behaviors in these data, we need to prepro-
cess the data. We extract the key name, the hold time, and
the digraph flight time of each keystroke to making up a
3-dimensional keystroke action.

Implementation details
Experimental setup We implement our proposed model
based on the Pytorch framework (an open-source deep
learning framework) and run on a computer configured
with an NVIDIA Tesla P4 GPU, 32G RAM, 600G hard
disk, and 12 CPU processors.
Training and testing plan As mentioned, the data

amount of users in the Clarkson II dataset varies exceed-
ingly. There are 88 users with more than 10K keystroke
data. Before the experimental evaluation, we divide each
user’s keystroke data into two equal parts: one part only
for training and another only for testing. For each user,
we train a unique binary classifier based on the keystroke
model. That is, there are 88 classifiers to be trained.
And we randomly split the remaining 87 users into two
categories: 43 known internal users and 44 unknown
external users. Each classifier corresponds to a legiti-
mate user, 43 internal users, and 44 external users. Inter-
nal users are the classifier knows their tying behaviors.
Inversely, external users are the ones unknown to the
classifier. To train each classifier, we use the keystroke
sequences in the current user’s training part as pos-
itive examples with the label ‘0’ and randomly select
the same number of keystroke sequences from inter-
nal users’ training parts as negative examples with the
label ‘1’.
To test each classifier, we use all test data of the legit-

imate user and randomly select an equal amount from
43 internal users’ test data and another equal amount
from 44 external users’ test data, respectively. For every
test keystroke sequence, we record whether this is a True
Positive (TP), False Negative (FN), False Positive (FP), or
True Negative (TN). In this manner, False Rejection Rate
(FRR), False Acceptance Rate of internal users (iFAR),
False Acceptance Rate of external users (eFAR), False
Acceptance Rate (FAR), and Accuracy (ACC) for each
classifier can be calculated using Eqs. (1)–(5), respectively.
The mean value of performance of all classifiers is taken
in the next comparative analysis. To obtain stable perfor-
mance, we conduct each experiment five times and use the
average results.

Yang et al. Cybersecurity (2021) 4:13 Page 9 of 16

Table 2 The ACC (%) of classifiers with different values of c, HT, and DT

DT=600 DT=900 DT=1200

c/HT 180 210 240 270 180 210 240 270 180 210 240 270

10 85.61 85.53 85.61 85.50 85.43 85.40 85.27 85.23 85.26 85.38 85.24 85.31

12 85.73 85.53 85.73 85.54 85.44 85.40 85.52 85.41 85.61 85.47 85.25 85.34

14 85.62 85.53 85.48 85.46 85.50 85.43 85.12 85.32 85.36 85.40 85.31 85.23

16 85.35 85.17 85.25 85.17 85.13 85.03 84.89 85.12 85.08 84.99 84.86 84.97

FRR = FN/(TP + FN) (1)

iFAR = iFP/(iFP + iTN) (2)

eFAR = eFP/(eFP + eTN) (3)

FAR = (iFAR + eFAR)/2 (4)

ACC = 1 − ((FRR + FAR)/2) (5)

The performance of classifiers
As explained above, we will train a unique binary classifier
based on the keystrokemodel for each legitimate user. The
performance of classifiers can be influenced by:
1. The clock resolution c, the time limit HT and DT.
2. Different features.
3. Each part of the keystroke model.
4. The length of a keystroke sequence ω.
We set the keystroke sequence length ω to a value of 10

when testing other parameters. Besides, in the following
experiments, the hyper-parametersM1, L1, L2, L3, and L4
in the keystroke model are set to 133, 32, 24, 24, and 96,
respectively. The value of M1 is determined by counting
the number of different keys and adding 1 (representing
unknown). The values of L1, L2, L3, and L4 are derived
from the grid search experiments. The hyper-parameters
M2 andM3 are equal toHT/c, andDT/c.We do not adjust
the best parameters for each classifier but global values
based on all classifiers’ average performance because we
use keystroke data of other users to train the classifier
for each legitimate user. Next, we detail the impact of the
factorsmentioned above on the performance of classifiers.
(I) The clock resolution c, the time limit HT and DT:
Since the number of vectors M1 and M2 (the size of

Matrix2 andMatrix3 in the embedding layer) is related to
the time limit HT, DT, and clock resolution c. The effects
of these three parameters on the classifiers are tested
together. The system clock resolution is about 10-16 mil-
liseconds stated in Murphy et al. (2017). We calculate the
median and average of all hold times for all users. They are
108 milliseconds and 151 milliseconds. And the median
and average of all digraph flight times (less than 10 s)
for all users are 184 milliseconds and 460 milliseconds,

respectively.We select the values of c,HT, andDT accord-
ing to the above information. Table 2 illustrates the impact
of these three parameters on classifiers performance. The
best accuracy is 85.73% when we set c to 12 millisec-
onds,DT to 600 milliseconds, andHT to 180 milliseconds
or 240 milliseconds. Since the average hold time is 151
milliseconds, which is very close to 180 milliseconds, we
choose to set HT to 240 milliseconds. If there is no indi-
vidual declaration, we will arrange the clock resolution c
to 12 milliseconds, the time limit HT to 240 milliseconds,
and DT to 600 milliseconds in the following experiments.
(II) Different features:
In this paper, we assume that the combination of the key

name (key), the hold time (ht), and the digraph flight time
(df) can get better performance results than the combi-
nation of two of them. We test whether this hypothesis is
correct by using different feature combinations. Table 3
shows the effect of each feature’s absence on classifiers’
performance. When using ht and df while key is absent or
using key and df while ht is absent, the classifiers perform
worse with an accuracy of 79.03% or 79.25%. When df is
not used, the accuracy 82.79% eases the situation slightly.
As supposed, the classifiers perform best with an accuracy
of 85.73% when using all three features. The compari-
son illustrates the importance of using key, ht, and df as
features in KCA studies.
(III) Each part of the keystroke model:
In this work, we design a keystroke model, as shown in

Fig. 2. We compare the impact on classifiers performance
when a part of the keystroke model is absent or when Bi-
LSTM is replaced with a different deep learning model.
As shown in Table 4, the classifiers perform worse when

there is no embedding layer or Bi-LSTM in the keystroke
model than when there is no attention mechanism. And

Table 3 The effects of different feature combinations on the
performance of classifiers

Features FRR (%) iFAR (%) eFAR (%) ACC (%)

with all 12.48 14.58 17.53 85.73

without key 18.77 22.17 24.16 79.03

without ht 17.76 22.50 24.98 79.25

without df 15.09 17.73 20.93 82.79

Yang et al. Cybersecurity (2021) 4:13 Page 10 of 16

Table 4 The effect of different parts of the keystroke model on
classifiers performance

Model parts FRR (%) iFAR (%) eFAR (%) ACC (%)

with all 12.48 14.58 17.53 85.73

without embedding 16.32 21.53 23.99 80.46

without LSTM 17.07 20.07 22.17 80.90

without attention 12.62 14.88 17.78 85.52

not having any of them results in a performance reduc-
tion of the classifiers. In particular, the classifiers’ accu-
racy decreases by an average of 5.27% without using the
embedding mechanism. And the accuracy of the classi-
fiers reduces by an average of 4.83% without using the
Bi-LSTM.
To verify the effectiveness of the Bi-directional LSTM,

we compare the keystroke model based on Bi-LSTM with
ANN, CNN, LSTM, Bi-RNN, and Bi-GRU (GRU is a vari-
ant of LSTM). Table 5 shows that the keystroke model’s
performance with Bi-LSTM is better than others. The
accuracy of the keystroke model with Bi-GRU is close to
but not superior to that based on Bi-LSTM.
(IV) The length of keystroke sequences: The effect of

keystroke sequence length on classifiers performance is
shown in Table 6. The accuracy of classifiers will increase
with the increase of keystroke sequence length overall,
and the speed of improvement decreases. We will evalu-
ate the relationship between the number of keystrokes and
the performance of TKCA in the following.

The performance of the TKCA algorithm
This part evaluates the TKCA algorithm under different
lengths of keystroke sequences and majority vote mecha-
nisms. We use all test data of the legitimate user, internal
and external users. Here, we use the Equal Error Rate
(EER) as the metric of the evaluation. EER is the point on a
DET curve where FAR and FRR are equal. We also use the
average of iFAR and eFAR to approximate the final FAR.
But we will not use Eq. (5) to calculate ACC because the
number of positive test samples is much smaller than the
number of negative test samples. To get a set of FAR and

Table 5 The effects of different neural networks on classifiers
performance

Model FRR (%) iFAR (%) eFAR (%) ACC (%)

ANN 17.03 19.98 21.62 81.08

CNN 15.26 17.81 19.91 82.94

LSTM 12.95 15.47 18.43 85.04

Bi-RNN 14.39 17.00 19.64 83.64

Bi-GRU 13.02 15.07 17.89 85.24

Bi-LSTM 12.48 14.58 17.53 85.73

Table 6 The effects of the length of keystroke sequences ω on
classifiers performance

ω FRR (%) iFAR (%) eFAR (%) ACC (%)

10 12.34 15.05 17.15 85.78

15 9.92 12.86 16.12 87.79

20 9.09 11.02 14.63 89.04

25 8.54 10.37 13.48 89.75

FRR pairs, we adjust the threshold value of each classi-
fier’s sigmoid function instead of setting the threshold to
a specific value of 0.5 as in the previous experiments.
Figure 3 shows the DET curve of the TKCA algorithm

using only one keystroke sequence at different values of
the keystroke sequence length ω without majority vote.
When the keystroke sequence length ω is 10, 15, 20, or 25,
the EER is 13.51%, 11.34%, 10.09%, or 9.35%, respectively.
Different majority votes are evaluated on the four

keystroke sequence lengths mentioned above. When the
number of keystrokes in a sample is the same, the num-
ber of keystroke sequences is inverse to the keystroke
sequence length ω. For example, there are 990 keystrokes
in a sample. When ω is 10, the number of keystroke
sequences is 99. We can use a 50

99 majority vote. And when
the ω is 25, the number of keystroke sequences is 39. We
can use a 20

39 majority vote. This work evaluates the sam-
ple size ranges from 10 to 9901. As shown in Fig. 4, the
more keystrokes contain in a sample, the smaller the EER.
The EER has a slight advantage with the ω of 10. The EER
drops from 13.51% to 0.85% when keystrokes in a sample
range from 10 to 990.

The comparison with previous KCA works
We compare the performance of TKCA with previous
KCA algorithms on the Clarkson II dataset in Table 7.
When a sample containing 1,000 keystrokes, the EER for
Gunetti & Picardi’s algorithm (Gunetti and Picardi 2005),
Buffalo’s SVM algorithm (Çeker and Upadhyaya 2016),
and KDE based algorithm (Huang et al. 2017) tested on
the Clarkson II dataset in Huang et al. (2017) are 10.36%,
15.67%, and 7.59%. Ayotte et al. (2019) improves KCA
studies’ performance by combining the results of KDE,
Kolmogorov-Smirnov (KS), and Energy distance through
majority rules and get an EER of 15.3% with 200 digraphs.
It is 3.6% with 1,000 digraphs. Liverpool’s DTW algorithm
(Alshehri et al. 2017; 2018) gets a good result when test
on the Clarkson I dataset with 100 keystrokes. But the best
EER of it tested on the Clarkson II dataset is 45.25% with
125 keystrokes. Study (Xiaofeng et al. 2019) is outstanding
on the Buffalo dataset with 30 keystrokes. However, the

1That is when ω=10, majority votes vary from 1/1 to 50/99. And when ω=15,
majority votes differ from 1/1 to 33/65. When ω=20, they are range from 1/1
to 25/49. At last, when ω=25, they deviate from 1/1 to 20/39.

Yang et al. Cybersecurity (2021) 4:13 Page 11 of 16

Fig. 3 DET curves for different values of the keystroke sequence length ω

best EER of it tested on the Clarkson II dataset is 20.46%
with 70 keystrokes. Compared with these algorithms, our
proposed TKCA algorithm achieves state-of-the-art per-
formance with the EER of 8.28% when only using 30
keystrokes and 2.78% when using 190 keystrokes on the
Clarkson II dataset.

Discussion and future work
TKCA can use short keystroke sequences for uncon-
strained input to identify attackers timely. For each legit-
imate user, TKCA trains a binary classifier and uses it
to compare the typing behavior between the current user
and the valid user. To make accurate decisions, TKCA
combines several classification results by a majority vote.

Once TKCA determines that the current user is not a
logged-in user, necessary measures are taken to prevent
the intruder from using the computer or cloud terminal.
In “Experiments and evaluation” section, we have evalu-
ated the TKCA algorithm’s accuracy through a series of
experiments.

About continuous authentication
At login time, multi-factor authentication (Wang and
Wang 2016; Jiang et al. 2020; Qiu et al. 2020) can enhance
authentication like passwords and PINs to address pass-
word or PIN leakage. After the login phase, unautho-
rized access could occur when a legitimate user forgets
to log out and steps away from the terminal for lunch

Fig. 4 The relationship between EER and the number of keystrokes in a sample

Yang et al. Cybersecurity (2021) 4:13 Page 12 of 16

Table 7 The comparison of TKCA with previous KCA algorithms

Study Method Realized by Sample
Size

EER

(Gunetti and
Picardi 2005)

‘R’ Distance (Huang et al.
2017)

1,000 10.36%

‘A’ Distance

(Çeker and
Upadhyaya 2016)

One-class
SVM

(Huang et al.
2017)

1,000 15.67%

(Huang et al.
2017)

KDE (Huang et al.
2017)

1,000 7.59%

(Alshehri et al.
2017)

DTW This work 125 45.25%

(Ayotte et al.
2019)

KDE, (Ayotte et al.
2019)

100, 35.1%,

KS, 200, 15.3%,

Energy 500, 6.3%,

1,000 3.6%

(Xiaofeng et al.
2019)

CNN, RNN This work 70 20.46%

TKCA Embedding, This work 30, 8.28%,

Bi-LSTM, 70, 5.05%,

Attention 90, 4.30%,

190, 2.78%,

490, 1.46%,

990 0.85%

or an emergency or when the attacker has bypassed the
login entry. The authentication during the login phase
is not sufficiently applicable to detect this unauthorized
access. Continuous user authentication based on behav-
ioral biometrics can continuously authenticate users by
collecting their physical or behavior information and ana-
lyzing it transparently to tackle this issue. It cannot replace
traditional authentication or multi-factor authentication
schemes but makes up for their shortcomings.
Continuous user authentication based on behavioral

biometrics includes free-text keystroke dynamics (Mon-
rose and Rubin 1997; Dowland and Furnell 2004; Gunetti
and Picardi 2005; Janakiraman and Sim 2007; Sim and
Janakiraman 2007; Montalvão Filho and Freire 2006;
Davoudi and Kabir 2009; 2010; Harun et al. 2010; Stewart
et al. 2011; Al Solami et al. 2011; Messerman et al. 2011;
Rahman et al. 2011; Ferreira and Santos 2012; Bours 2012;
Monaco et al. 2013; Deutschmann et al. 2013; Ahmed and
Traore 2013; Kang and Cho 2015; Çeker and Upadhyaya
2016;Mondal and Bours 2017; Huang et al. 2017; Ayotte et
al. 2019; Alshehri et al. 2017; 2018; Xiaofeng et al. 2019),
mouse dynamics (Pusara and Brodley 2004; Ahmed and
Traore 2007; Nakkabi et al. 2010; Zheng et al. 2011; Feher
et al. 2012; Lin et al. 2012; Mondal and Bours 2013), touch
screen inputs (Frank et al. 2012; Cai et al. 2013; Feng et
al. 2014; Buschek et al. 2015), eye movements (Kinnunen

et al. 2010; Eberz et al. 2015; 2016), gait pattern (Ailisto
et al. 2005; Rong et al. 2007; Derawi et al. 2010), etc. We
compare different biometrics continuous authentication
from aspects of the environment (the settings of hardware,
operating systems, and applications), assignment tasks,
filtering data, stability, the requirement for additional
hardware, implementation cost, and application scenar-
ios in Table 8. Since every biometric factor of continuous
authentication should be non-invasive and available after
login, they are not shown in Table 8. To simulate the
real usage scenarios, it needs to collect users’ data in an
uncontrolled environment without any tasks. Though fil-
tering data as it is processed can improve accuracy, it also
gives attackers chances. Pulse response, eye movement,
and voice are relatively stable. But they require additional
hardware, and the implementation cost is expensive. In
traditional desktop or cloud desktop, free-text keystroke
dynamics are proper for continuous user authentication.
The proposed TKCA achieves a timely keystroke-based
continuous user authentication in real scenarios without
filtering data. In future work, we will combine free-text
keystroke dynamics with other appropriate behavioral fac-
tors (i.e., mouse dynamics) in continuous authentication
in desktop or cloud desktop.

The security strength
Since the TKCA is a continuous authentication based
on free-text in uncontrolled settings, the acceptable
keystroke sequences for a legitimate user are not only
a fixed one or some. Some entropy metrics for user
authentication (like passwords (Wang et al. 2017) or
PINs (Wang et al. 2017)) are not suitable for evaluat-
ing the security strength of TKCA. In this work, we
can use other users’ test data for similarly evaluating
the expected number of guesses to attack each legit-
imate user’s classifier. When the TKCA does not use
majority vote, and the keystroke sequence length ω

is 10, 15,20, and 25, the expected number of attacks
tested on the Clarkson II dataset is 5.75, 6.31, 6.90, and
7.15, respectively. However, the existing behavior-based
continuous authentication schemes lack entropy evalua-
tions. Beside s, the security strength and the accuracy
of the classifiers have a positive correlation. Instead of
using entropy, we evaluate the accuracy of classifiers and
EER of the TKCA and compare the results with pre-
vious KCA studies in “Experiments and evaluation”
section. Study (Eberz et al. 2017) find that the Equal
Error Rate (EER), as well as derived metrics, are
reported by the vastmajority of continuous authentication
papers.

The deployment concerns
Similar to other behavioral biometrics, typing behaviors
may change over time and lead to a decrease in classifier

Yang et al. Cybersecurity (2021) 4:13 Page 13 of 16

Table 8 The comparison of different biometrics-based continuous authentication

Biometrics Study Environment Assign Filter Stability Additional Implementation Application

tasks data hardware cost scenarios

Keystroke (Gunetti and
Picardi 2005)

Uncontrolled Yes No Medium No Cheap Desktop Computers

dynamics (Çeker and
Upadhyaya 2016)

Uncontrolled Yes Yes

(Huang et al.
2017)

Uncontrolled No No

(Alshehri et al.
2017)

Uncontrolled Yes No

(Ayotte et al.
2019)

Uncontrolled No No

(Xiaofeng et al.
2019)

Uncontrolled Yes No

This work etc. Uncontrolled No No

Mouse (Pusara and
Brodley 2004)

Controlled Yes Yes Medium No Cheap Desktop Computers

dynamics (Ahmed and
Traore 2007)

Uncontrolled No Yes

(Nakkabi et al.
2010)

Uncontrolled No No

(Zheng et al.
2011)

Controlled Yes No

(Feher et al. 2012) Uncontrolled No Yes

(Lin et al. 2012) Uncontrolled No Yes

(Mondal and
Bours 2013)

Uncontrolled No No

etc.

Pulse (Rasmussen et al.
2014)

Controlled No No High Yes Expensive Desktop Computers

response etc.

Eye (Kinnunen et al.
2010)

Controlled Yes No High Yes Expensive Desktop Computers

movement (Eberz et al. 2015) Controlled Yes No

(Eberz et al. 2016) Controlled Yes No

etc.

Touch (Frank et al. 2012) Controlled Yes No Medium No Cheap Portable devices

screen (Cai et al. 2013) Controlled Yes No

inputs (Feng et al. 2014) Uncontrolled No Yes

(Buschek et al.
2015)

Controlled Yes No

etc.

Gait (Ailisto et al. 2005) Uncontrolled No No Medium No Cheap Portable devices

pattern (Rong et al. 2007) Uncontrolled No No

(Derawi et al.
2010)

Controlled Yes Yes

etc.

Voice (Feng et al. 2017) Controlled Yes Yes High Yes Expensive Portable and IoT devices

etc.

Yang et al. Cybersecurity (2021) 4:13 Page 14 of 16

accuracy.We can collect a valid user’s latest keystroke data
and feed it to the previously well-trained classifier. Specifi-
cally, we can save the keystroke sequence whose similarity
to a legitimate user’s behavior exceeds a threshold while
TKCA is verifying a current user. After some time, when
the number of keystroke sequences reaches a particular
value, the keystroke data is fed to the classifier to learn
the legitimate user’s recent typing behaviors. Therefore,
the TKCA can earn the changes in the legal user’s typ-
ing behaviors and adjust the parameters in the classifier
for this user usually. In this way, the TKCA can keep the
classifier’s accuracy as a user’s typing behavior changes.
We get a superior performance by setting the keystroke

sequence length to a fixed value in this work. In real-world
deployment scenarios, the number of keystrokes entered
varies for different users or at other times. We can use two
criteria for partitioning the keystroke sequence according
to the requirements in future work. A keystroke sequence
is generated once the number of keystrokes is greater than
a maximum sequence length or the pause time is greater
than a maximum pause time. Otherwise, we can use the
mechanisms in trusted computing to ensure the security
of TKCA itself.
When collecting users’ keystroke data, some privacy

information may be involved. In this work, TKCA col-
lects keystroke sequences by extracting 3-dimensional
keystroke actions. TKCA will not save or use key names
directly but assign every key a number to represent it. It
canmitigate the possibility of privacy exposure somewhat.
However, protecting users’ privacy included in keystroke
data in the whole life cycle while implementing timely
KCA is a worthy concern.
In future work, we will focus on deploying the TKCA

in a desktop or cloud desktop system and how to protect
users’ privacy included in keystroke data while achieving
timely KCA.

Conclusion
This paper presents TKCA, a timely KCA method for
continuous user authentication, which prevents attack-
ers fast and accurately in uncontrolled environments. We
have integrated the key name, the hold time, and the
digraph flight time to improve classification accuracy.
We have proposed a keystroke model using embedding,
Bi-directional LSTM, and the attention mechanism to
learn the depth keystroke features and analyze users’
typing behavior. We have trained a unique binary clas-
sifier for every legitimate user based on the keystroke
model. To further improve the accuracy, we have used
a majority vote mechanism in TKCA. The comprehen-
sive experiments demonstrate that our proposed method
achieves outstanding performance on the Clarkson II
dataset collected in a completely uncontrolled and nat-
ural setting. While for previous KCA studies, the EER

is 20.46% or higher when using 70 keystrokes to valid a
user. The TKCA gets an EER of 8.28% when only using
30 keystrokes and 2.78% when using 190 keystrokes to
validate a user without filtering out any keystroke. It
achieves the goal of using short keystroke sequences in
uncontrolled and natural settings for timely and accurate
keystroke-based continuous user authentication.

Abbreviations
TKCA: Timely keystroke-based continuous user authentication

Acknowledgements
The authors would like to thank the editors and reviewers for the constructive
comments to improve the paper.

Authors’ contributions
Lulu Yang: Investigation, Conceptualization, Methodology, Software, Data
curation, Writing - Original draft preparation. Chen Li: Software, Validation.
Ruibang You: Software, Validation. Bibo Tu: Supervision, Writing - Reviewing
and Editing, Funding acquisition. Linghui Li: Suggestion of Methodology,
Writing - Reviewing and revising. The author(s) read and approved the final
manuscript.

Funding
This work is supported by the National Key R&D Program of China (Grant
No.2016YFB0801002).

Availability of data andmaterials
The Clarkson II dataset can be accessed after signing an agreement with the
authors of Murphy et al. (2017).

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Information Engineering, Chinese Academy of Sciences, 100093
Beijing, China. 2School of Cyber Security, University of Chinese Academy of
Sciences, 100049 Beijing, China. 3Key Laboratory of Trustworthy Distributed
Computing and Service, Ministry of Education, Beijing University of Posts and
Telecommunications, 100876 Beijing, China.

Received: 1 December 2020 Accepted: 1 February 2021

References
Ahmed AAE, Traore I (2007) A new biometric technology based on mouse

dynamics. IEEE Trans Dependable Secure Comput 4(3):165–179
Ahmed AA, Traore I (2013) Biometric recognition based on free-text keystroke

dynamics. IEEE Trans Cybern 44(4):458–472
Ailisto HJ, Lindholm M, Mantyjarvi J, Vildjiounaite E, Makela S-M (2005)

Identifying people from gait pattern with accelerometers. In: Biometric
Technology for Human Identification II. International Society for Optics and
Photonics. Vol. 5779. pp 7–14

Al Solami E, Boyd C, Clark A, Ahmed I (2011) User-representative feature
selection for keystroke dynamics. In: 2011 5th International Conference on
Network and System Security. IEEE. pp 229–233

Alshehri A, Coenen F, Bollegala D (2017) Accurate continuous and
non-intrusive user authentication with multivariate keystroke streaming.
In: Proceedings of the 9th International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management.
SCITEPRESS-Science and Technology Publications. pp 61–70

Alshehri A, Coenen F, Bollegala D (2018) Iterative keystroke continuous
authentication: A time series based approach. KI-Künstliche Intelligenz
32(4):231–243

Ayotte B, Huang J, Banavar MK, Hou D, Schuckers S (2019) Fast continuous user
authentication using distance metric fusion of free-text keystroke data. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. pp 0–0

Yang et al. Cybersecurity (2021) 4:13 Page 15 of 16

Bours P (2012) Continuous keystroke dynamics: A different perspective
towards biometric evaluation. Inf Secur Tech Rep 17(1-2):36–43

Buschek D, De Luca A, Alt F (2015) Improving accuracy, applicability and
usability of keystroke biometrics on mobile touchscreen devices. In:
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems. pp 1393–1402

Cai Z, Shen C, Wang M, Song Y, Wang J (2013) Mobile authentication through
touch-behavior features. In: Chinese Conference on Biometric Recognition.
Springer. pp 386–393

Çeker H, Upadhyaya S (2016) User authentication with keystroke dynamics in
long-text data. In: 2016 IEEE 8th International Conference on Biometrics
Theory, Applications and Systems (BTAS). IEEE. pp 1–6

Davoudi H, Kabir E (2009) A new distance measure for free text keystroke
authentication. In: 2009 14th International CSI Computer Conference. IEEE.
pp 570–575

Davoudi H, Kabir E (2010) Modification of the relative distance for free text
keystroke authentication. In: 2010 5th International Symposium on
Telecommunications. IEEE. pp 547–551

Derawi MO, Nickel C, Bours P, Busch C (2010) Unobtrusive user-authentication
on mobile phones using biometric gait recognition. In: 2010 Sixth
International Conference on Intelligent Information Hiding and
Multimedia Signal Processing. IEEE Computer Society. pp 306–311

Deutschmann I, Nordström P, Nilsson L (2013) Continuous authentication
using behavioral biometrics. IT Prof 15(4):12–15

Dowland PS, Furnell SM (2004) A long-term trial of keystroke profiling using
digraph, trigraph and keyword latencies. In: IFIP International Information
Security Conference. Kluwer / Springer. pp 275–289

Eberz S, Rasmussen K, Lenders V, Martinovic I (2015) Preventing lunchtime
attacks: Fighting insider threats with eye movement biometrics. In: 22nd
Annual Network and Distibuted System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8–11, 2015. Internet Society

Eberz S, Rasmussen KB, Lenders V, Martinovic I (2016) Looks like eve: Exposing
insider threats using eye movement biometrics. ACM Trans Priv Secur
19(1):1–31

Eberz S, Rasmussen KB, Lenders V, Martinovic I (2017) Evaluating behavioral
biometrics for continuous authentication: Challenges and metrics. In:
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. pp 386–399

Feher C, Elovici Y, Moskovitch R, Rokach L, Schclar A (2012) User identity
verification via mouse dynamics. Inf Sci 201:19–36

Feng H, Fawaz K, Shin KG (2017) Continuous authentication for voice
assistants. In: Proceedings of the 23rd Annual International Conference on
Mobile Computing and Networking. pp 343–355

Feng T, Yang J, Yan Z, Tapia EM, Shi W (2014) Tips: Context-aware implicit user
identification using touch screen in uncontrolled environments. In:
Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications. pp 1–6

Feng T, Zhao X, Carbunar B, Shi W (2013) Continuous mobile authentication
using virtual key typing biometrics. In: 2013 12th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications. IEEE Computer Society. pp 1547–1552

Ferreira J, Santos H (2012) Keystroke dynamics for continuous access control
enforcement. In: 2012 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery. IEEE Computer Society.
pp 216–223

Frank M, Biedert R, Ma E, Martinovic I, Song D (2012) Touchalytics: On the
applicability of touchscreen input as a behavioral biometric for continuous
authentication. IEEE Trans Inf Forensics Secur 8(1):136–148

Gunetti D, Picardi C (2005) Keystroke analysis of free text. ACM Trans Inf Syst
Secur 8(3):312–347

Harun N, Woo WL, Dlay S (2010) Performance of keystroke biometrics
authentication system using artificial neural network (ann) and distance
classifier method. In: International Conference on Computer and
Communication Engineering (ICCCE’10). IEEE. pp 1–6

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput
9(8):1735–1780

Huang J, Hou D, Schuckers S, Law T, Sherwin A (2017) Benchmarking keystroke
authentication algorithms. In: 2017 IEEE Workshop on Information
Forensics and Security (WIFS). IEEE. pp 1–6

Huang J, Hou D, Schuckers S, Upadhyaya S (2016) Effects of text filtering on
authentication performance of keystroke biometrics. In: 2016 IEEE

International Workshop on Information Forensics and Security (WIFS). IEEE.
pp 1–6

Janakiraman R, Sim T (2007) Keystroke dynamics in a general setting. In:
International Conference on Biometrics. Springer. pp 584–593

Jiang Q, Zhang N, Ni J, Ma J, Ma X, Choo K-KR (2020) Unified biometric privacy
preserving three-factor authentication and key agreement for
cloud-assisted autonomous vehicles. IEEE Trans Veh Technol
69(9):9390–9401

Joyce R, Gupta G (1990) Identity authentication based on keystroke latencies.
Commun ACM 33(2):168–176

Kang P, Cho S (2015) Keystroke dynamics-based user authentication using
long and free text strings from various input devices. Inf Sci 308:72–93

Killourhy KS, Maxion RA (2009) Comparing anomaly-detection algorithms for
keystroke dynamics. In: 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks. IEEE Computer Society. pp 125–134

Kinnunen T, Sedlak F, Bednarik R (2010) Towards task-independent person
authentication using eye movement signals. In: Proceedings of the 2010
Symposium on Eye-Tracking Research & Applications. pp 187–190

Lau S, Maxion R (2014) Clusters and markers for keystroke typing rhythms. In:
The {LASER} Workshop: Learning from Authoritative Security Experiment
Results ({LASER} 2014). pp 1–10

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Lin C-C, Chang C-C, Liang D (2012) A new non-intrusive authentication

approach for data protection based on mouse dynamics. In: 2012
International Symposium on Biometrics and Security Technologies. IEEE
Computer Society. pp 9–14

Messerman A, Mustafić T, Camtepe SA, Albayrak S (2011) Continuous and
non-intrusive identity verification in real-time environments based on
free-text keystroke dynamics. In: 2011 International Joint Conference on
Biometrics (IJCB). IEEE Computer Society. pp 1–8

Monaco JV, Bakelman N, Cha S-H, Tappert CC (2013) Recent advances in the
development of a long-text-input keystroke biometric authentication
system for arbitrary text input. In: 2013 European Intelligence and Security
Informatics Conference. IEEE. pp 60–66

Mondal S, Bours P (2013) Continuous authentication using mouse dynamics.
In: 2013 International Conference of the BIOSIG Special Interest Group
(BIOSIG). GI. pp 1–12

Mondal S, Bours P (2017) A study on continuous authentication using a
combination of keystroke and mouse biometrics. Neurocomputing
230:1–22

Monrose F, Reiter MK, Wetzel S (2002) Password hardening based on keystroke
dynamics. Int J Inf Secur 1(2):69–83

Monrose F, Rubin A (1997) Authentication via keystroke dynamics. In:
Proceedings of the 4th ACM Conference on Computer and
Communications Security. pp 48–56

Montalvão Filho JR, Freire EO (2006) On the equalization of keystroke timing
histograms. Pattern Recognit Lett 27(13):1440–1446

Moskovitch R, Feher C, Messerman A, Kirschnick N, Mustafic T, Camtepe A,
Lohlein B, Heister U, Moller S, Rokach L, et al (2009) Identity theft,
computers and behavioral biometrics. In: 2009 IEEE International
Conference on Intelligence and Security Informatics. IEEE. pp 155–160

Murphy C, Huang J, Hou D, Schuckers S (2017) Shared dataset on natural
human-computer interaction to support continuous authentication
research. In: 2017 IEEE International Joint Conference on Biometrics (IJCB).
IEEE. pp 525–530

Nakkabi Y, Traoré I, Ahmed AAE (2010) Improving mouse dynamics biometric
performance using variance reduction via extractors with separate
features. IEEE Trans Syst Man Cybern Syst Hum 40(6):1345–1353

Pusara M, Brodley CE (2004) User re-authentication via mouse movements. In:
Proceedings of the 2004 ACMWorkshop on Visualization and Data Mining
for Computer Security. pp 1–8

Qiu S, Wang D, Xu G, Kumari S (2020) Practical and provably secure
three-factor authentication protocol based on extended chaotic-maps for
mobile lightweight devices. IEEE Trans Dependable Secure Comput. IEEE

Rahman KA, Balagani KS, Phoha VV (2011) Making impostor pass rates
meaningless: A case of snoop-forge-replay attack on continuous
cyber-behavioral verification with keystrokes. In: CVPR 2011 Workshops.
IEEE. pp 31–38

Rasmussen KB, Roeschlin M, Martinovic I, Tsudik G (2014) Authentication using
pulse- response biometrics. In: 21st Annual Network and Distributed
System Security Symposium, NDSS 2014, San Diego, California, USA,
February 23–26, 2014. Internet Society

Yang et al. Cybersecurity (2021) 4:13 Page 16 of 16

Rong L, Zhiguo D, Jianzhong Z, Ming L (2007) Identification of individual
walking patterns using gait acceleration. In: 2007 1st International
Conference on Bioinformatics and Biomedical Engineering. IEEE.
pp 543–546

Sim T, Janakiraman R (2007) Are digraphs good for free-text keystroke
dynamics? In: 2007 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Computer Society. pp 1–6

Stewart JC, Monaco JV, Cha S-H, Tappert CC (2011) An investigation of
keystroke and stylometry traits for authenticating online test takers. In:
2011 International Joint Conference on Biometrics (IJCB). IEEE Computer
Society. pp 1–7

Sun Y, Ceker H, Upadhyaya S (2016) Shared keystroke dataset for continuous
authentication. In: 2016 IEEE International Workshop on Information
Forensics and Security (WIFS). IEEE. pp 1–6

Syed Z, Banerjee S, Cukic B (2016) Normalizing variations in feature vector
structure in keystroke dynamics authentication systems. Software Qual J
24(1):137–157

Vural E, Huang J, Hou D, Schuckers S (2014) Shared research dataset to support
development of keystroke authentication. In: IEEE International Joint
Conference on Biometrics. IEEE. pp 1–8

Wang D, Cheng H, Wang P, Huang X, Jian G (2017) Zipf’s law in passwords. IEEE
Trans Inf Forensics Secur 12(11):2776–2791

Wang D, Gu Q, Huang X, Wang P (2017) Understanding human-chosen pins:
characteristics, distribution and security. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security.
pp 372–385

Wang D, Wang P (2016) Two birds with one stone: Two-factor authentication
with security beyond conventional bound. IEEE Trans Dependable Secure
Comput 15(4):708–722

Wu J-S, Lin W-C, Lin C-T, Wei T-E (2015) Smartphone continuous authentication
based on keystroke and gesture profiling. In: 2015 International Carnahan
Conference on Security Technology (ICCST). IEEE. pp 191–197

Xiaofeng L, Shengfei Z, Shengwei Y (2019) Continuous authentication by
free-text keystroke based on CNN plus RNN. Procedia Comput Sci
147:314–318

Zheng N, Paloski A, Wang H (2011) An efficient user verification system via
mouse movements. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security. pp 139–150

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Related work
	Features
	Methods
	Metrics
	Datasets

	Methodology
	Definitions
	Keystroke model
	TKCA algorithm

	Experiments and evaluation
	Dataset
	Implementation details
	The performance of classifiers
	The performance of the TKCA algorithm
	The comparison with previous KCA works

	Discussion and future work
	About continuous authentication
	The security strength
	The deployment concerns

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

