
CybersecurityBan et al. Cybersecurity (2021) 4:21
https://doi.org/10.1186/s42400-021-00085-7

RESEARCH Open Access

B2SMatcher: fine-Grained version
identification of open-Source software in
binary files
Gu Ban1,2, Lili Xu1*, Yang Xiao1, Xinhua Li1, Zimu Yuan1 and Wei Huo1

Abstract

Codes of Open Source Software (OSS) are widely reused during software development nowadays. However, reusing
some specific versions of OSS introduces 1-day vulnerabilities of which details are publicly available, which may be
exploited and lead to serious security issues. Existing state-of-the-art OSS reuse detection work can not identify the
specific versions of reused OSS well. The features they selected are not distinguishable enough for version detection
and the matching scores are only based on similarity.
This paper presents B2SMatcher, a fine-grained version identification tool for OSS in commercial off-the-shelf (COTS)
software. We first discuss five kinds of version-sensitive code features that are trackable in both binary and source
code. We categorize these features into program-level features and function-level features and propose a two-stage
version identification approach based on the two levels of code features. B2SMatcher also identifies different types of
OSS version reuse based on matching scores and matched feature instances. In order to extract source code features
as accurately as possible, B2SMatcher innovatively uses machine learning methods to obtain the source files involved
in the compilation and uses function abstraction and normalization methods to eliminate the comparison costs on
redundant functions across versions. We have evaluated B2SMatcher using 6351 candidate OSS versions and 585
binaries. The result shows that B2SMatcher achieves a high precision up to 89.2% and outperforms state-of-the-art
tools. Finally, we show how B2SMatcher can be used to evaluate real-world software and find some security risks in
practice.

Keywords: Version Indentification, Binary-to-Source Mapping, Component Analytics, Code Features, One-Day Risks

Introduction
During the modern software development process, devel-
opers often use the rich functions provided by open source
software (OSS) to shorten the development cycle, spend-
ing more time on personalized development. In recent
years, the number of OSS is growing at an exponential
rate. Up to now, there are over 44 million repositories
on Github (Repo Statistics on Github 2020). Such a large
amount of OSS has brought great convenience to software
development. However, improper use of OSS can cause

*Correspondence: xulili@iie.ac.cn
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China
Full list of author information is available at the end of the article

potential serious security risks. Wang et al. (Wang et al.
2020) analyzed 806 software and pointed out that the use
of outdatedOSS is a common phenomenon, software con-
taining outdated OSS is more likely to be exploited. For
example, a severe security vulnerability called Heartbleed
(Heartbleed 2020) was found in version 1.0.1 before 1.0.1g
of OpenSSL, a popular cryptographic software library.
For software that used vulnerable versions of this library,
attackers could steal private information such as the
names and passwords of users. It affected much famous
software such as LibreOffice (LibreOffice 2020) from ver-
sion 4.2.0 to 4.2.2 and VMware Workstation 10 (VMware
Workstation Pro 2020).

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00085-7&domain=pdf
mailto: xulili@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Ban et al. Cybersecurity (2021) 4:21 Page 2 of 21

As shown in the previous examples, vulnerabilities
appear in specific versions of OSS. By correctly identifying
the version of reused OSS in COTS software, we can not
only get the release time and determine whether it is an
outdated version, but also check whether this version is a
vulnerable version. The aim of this paper is to implement
a fine-grained version identification tool for OSS reused
in COTS binary files.
Our task of OSS version identification is based on the

result of reused OSS candidates generated by code reuse
detection methods. In the following, we briefly review
three classic approaches of code reuse detection and
discuss which one suits our scenario. The three main
approaches are source-to-source comparison, binary-to-
binary comparison, and source-to-binary comparison.
Since we target COTS software, of which source code
is inaccessible, the source-to-source comparison method
(Kamiya et al. 2002; Li et al. 2006) is trivially excluded.
Binary-to-binary analysis (Tang et al. 2020; Hemel et al.
2011) measures the similarity between the target binary
and the binaries built from all candidate OSS versions.
However, an OSS often contains a large number of ver-
sions, for example, LibPNG contains 1615 versions. To the
best of our knowledge, there is no way to directly collect
the binary files of all versions. Too much labor is required
to manually configure OSS dependencies and find suit-
able compiler flags, therefore it is unacceptable to spend
tremendous amounts of time to build versions of a sig-
nificant amount of OSS (Yuan et al. 2019; Duan et al.
2017).
Therefore, we choose to directly perform the binary-to-

source comparison. For each given binary file, we extract
features from this binary and compare them with the fea-
tures extracted in advance from the candidate OSS source
codes. When adopting prior work, B2SFinder (Yuan et
al. 2019) and OSSPolice (Duan et al. 2017), to determine
the version of reused OSS, the experimental results in
“Evaluation” section show that their accuracy is not sat-
isfactory. Features extracted by them such as constant
numerical array are not discriminative enough to dis-
tinguish between versions, and the comparison methods
they adopt are mainly designed to detect OSS code reuse.
In order to accurately and effectively identifying the ver-

sions of reused OSS, the following three problems need to
be solved.

1. How to select version-sensitive code features? A
natural idea of code feature selection would be that of
first evaluating those features already used in the prior
work. As evaluated in “Evaluation” section, global arrays
and control-flow related features considered by B2SFinder
(Yuan et al. 2019) bring high false positives in the setting
of version identification. Code features like string liter-
als and exported function names selected by B2SFinder

(Yuan et al. 2019) and OSSPolice (Duan et al. 2017) are
not informative enough to distinguish all versions. We
are motivated to explore more fine-grained code features
that are traceable in both source code and binary files,
and enjoy a high degree of discrimination among differ-
ent versions. Such features are defined as version-sensitive
features.

2. How to effectively extract code features? Code fea-
tures help us measure the similarity between target binary
and candidate OSS versions. The following two aspects
need to be considered when performing the extraction
of code features. (1) From the point of view of preci-
sion improvement: Partial build, which means that most
source files are not compiled into the target binary, is com-
mon in the OSS compilation process. For example, we find
that only 7.3% source files of zlib are used in the build
process and obviously only the code features of compiled
source files can be found in the resulting binaries. For
the purpose of precisely calculating the similarity between
source code and binary code, we need to explore effec-
tive methods to determine the source files participating in
the compilation process and extract features from these
files. (2) From the point of view of scalability improve-
ment: Note that in general, the entire source code of an
OSS is developed iteratively each time the OSS is updated,
thus using all the source code of each version during the
comparison would bring in redundant cost at the parts
that are not notably modified among different versions.
Identifying code changes across versions and eliminating
redundant comparison on the common parts can improve
the efficiency of version identification.

3. How to design detection methods to improve the
precision of version identification? In code compari-
son, code similarity is commonly used as an indicator to
predict code reuse. We give a realistic example to illus-
trate the limitation of only relying on code similarity in
our scenario. The library SQLite3.dll is reused by a mul-
timedia player Storm Codec (Storm Codec 7 2020) and
has the highest similarity with SQLite version 3-6-15. But
some code features on higher versions of SQLite can also
be found in this dll. More specifically, we find in this dll
some special functions which only exist in SQLite ver-
sion 3-8-8-3. Throughmanual analysis, we find this binary
file reuses SQLite version 3-6-15 and 3-8-8-3, in a way
of patching on 3-6-15 subsequently for compatibility. It
inspires us to propose an appropriate detection method
such as combining matched features and similarity.
To solve the aforementioned challenges, we pro-

pose an effective binary-to-source comparison technique,
B2SMatcher, for precisely identifying the version of reused
OSS. By evaluating the discrimination degree of the code
features considered in the previous work (Duan et al. 2017;

Ban et al. Cybersecurity (2021) 4:21 Page 3 of 21

Yuan et al. 2019), B2SMatcher decides to use string liter-
als and exported function names as program-level code
features. Usually, adjacent versions may differ only in the
implementation of some functions, using the program-
level code features is not sensitive enough to distinguish
them. We are motivated to add function-level code fea-
tures to capture slight changes among neighbor OSS ver-
sions. We propose a two-stage identification approach,
of which the first stage uses program-level features for a
rough matching and identifying reuse types, the second
stage uses function-level features for precise matching.
For the reuse types, we identify two types of reuse rela-
tionship, namely, single-version reuse and multi-version
reuse.
One way of obtaining the list of compiled source files

is to hook the build process (Duan et al. 2019). Taking
into account the low success rate of auto-build (Shahkar
2016; Yuan et al. 2019; Duan et al. 2017) and the very
time-consuming manual build, we inventively use clus-
tering analysis (K-means Clustering 2020) and decision
tree (Decision tree 2020) to predict compiled source files
and extract features from them. For the sake of scalabil-
ity, we adopt abstraction and normalization techniques
to eliminate redundant functions that appear in multiple
versions.
In order to evaluate the effectiveness of our work,

we crawled in total 6351 versions of source code
from popular and historically-vulnerable open source
libraries on Github. We construct a ground truth
dataset that contains 585 binaries, consisting of manu-
ally compiled binaries and the ones collected from real-
world open source software. We compare B2SMatcher
with the two most closely related approaches OSSPo-
lice and B2SFinder, and one commercial tool Cybellum
(Cybellum 2020). The experiments show that B2SMatcher
achieves a precision of 89.2%, which notably outper-
forms B2SFinder, and is 8% and 7% higher than the
ones of OSSPolice and Cybellum, respectively. We also
evaluate our work on software collected from Tencent
Application Center (Tencent Software Download Official
Version 2020) and find that some popular applications
like Zoom and TeamViewer reuse vulnerable versions
of OSS.
In summary, we make the following contributions.

• We introduce a binary-to-source comparison
approach for fine-grained version identification of
reused OSS. The key technical contributions include
using machine learning methods for predicting
compiled source files and precisely extracting source
code features, selecting representative functions of
OSS versions by abstraction and normalization
methods, and adopting a two-stage identification
approach to precisely recognize reused OSS versions.

• We define a new concept of reuse type for patching
cases (multi-version reuse) and utilize it to better
discover security risks (discussed in “Multi-version
reuse” section)

• We develop a prototype implementation called
B2SMatcher, which achieves a precision of 89.2%
when identifying the reused version between 6351
candidate OSS versions and 585 binaries.
B2SMatcher is also shown to be capable of reporting
security risks for software in the real world.

The remainder of the paper is organized as follows.
“Overview” section uses a practical example to briefly
introduce the workflow of B2SMatcher. “Design” section
presents more implementation details, including how to
select version-sensitive features, how to predict com-
piled files, how to eliminate redundant functions and
how to perform a two-stage identification. We evalu-
ate B2SMatcher in “Evaluation” section and discuss the
limitation of our work in “Discussion” section. Related
work is in “Related work” section and we conclude in
“Conclusion” section.

Overview
In this section, we first describe the assumption and the
goal of B2SMatcher. Then we walk through a motivating
example to illustrate how B2SMatcher detects the specific
version of a reused OSS.

Assumption and goal
In order to discover the potential security risks of a binary
file brought in by reusing vulnerable OSS, as discussed in
“Introduction” section, it is crucial to detect the specific
version of a reused OSS. Given a binary B1, we assume
that the reused open source software in B1 are known,
for simplicity, they are oss1, oss2, oss3. The aim of this
paper is to find the specific versions of oss1, oss2, oss3.
Furthermore, those potential security bugs introduced in
certain reused OSS versions can be obtained and devel-
opers could be informed about the security risks in this
binary.
We use two tools, one open source project B2SFinder

and a commercial tool Cybellum, to obtain the reused
libraries in a binary and assume that their results are cor-
rect. To perform a version-level OSS reuse detection, we
need to extract code features from a binary. We use a
binary analysis tool IDA Pro and assume that features
extracted by it are accurate.

Amotivating example
We use a font rendering library freetype-VER-2-6.so
(compiled from its corresponding source code) as
an example to intuitively describe the workflow of
B2SMatcher. The key steps in version identification are to

Ban et al. Cybersecurity (2021) 4:21 Page 4 of 21

figure out which source code files and which code features
should be considered.
Extracting code features from all source files, regard-

less of whether they are compiled into binary files or not,
may cause false positives. Take freetype-VER-2-6.so as an
example, if we use the code feature of string literals and
extract feature instances simply from all source files, the
version which has the maximum number of exact matches
with the shared library would wrongly be freetype version
2-9. This is due to a source file Ftobjs.c, which, however, is
actually not compiled into the binary. Some strings in this
file, such as “FT_Property_Get” and “FT_Property_Set”,
affect the similarity. Therefore, to perform a precise ver-
sion identification, we only extract features from the
compiled source files.
For the feature selection, we first take into account all

these code features adopted by B2SFinder and OSSPolice.
More specifically, they are string literals, exported func-
tion names, global arrays and constants in control-related
statements. We evaluate the effect of all these features and
the comparison results are shown in Table 1: For each
feature in the first column, an exact match between the
binary file and different freetype versions’ source codes is
used. Those versions with the maximum number of exact
matches are listed in the second column. It can be seen
that the candidate versions matched by using string lit-
erals and exported function names correctly include the
target version of this freetype library, i.e. 2-6.
For the rest features in Table 1, they can not recognize

the target version 2-6. Constant branches in switch/case
statements and if/else statements appear only in a few ver-
sions of freetype. And freetype does not have global string
arrays and global enumeration arrays in the source code at
all, as can be seen from Row 6 and 7 in Table 1. In the case
of the global integer array, we find that it is easy to dis-
tinguish different global integer arrays from the point of
view of source code, but it is difficult to distinguish them
in binary files. Using it would mismatch version 2-3-6 as a
candidate, as can be seen from the last row in Table 1. We
detail its mismatch process as follows.

Table 1 Comparison of code features when identifying
freetype-VER-2-6.so

Feature Name Matched Versions

String [freetype-VER-(2-6, 2-6-1, 2-6-2 ... 2-8-1)]

Export [freetype-VER-(2-6, 2-6-1, 2-6-2)]

Consts in switch/case [freetype-VER-(2-6-4, 2-6-5, 2-7)]

Consts in if/else [freetype-VER-2-6-4]

Global string array []

Global enum array []

Global integer array [freetype-VER-2-3-6]

In the source code of freetype version 2-3-6, there is a
global integer array ft_extra_glyph_unicodes and its con-
tent is shown in the second column of the third row in
Table 2. After being compiled to a shared file, it exists in
the binary as a little-endian bitstream, which is shown in
the third column of the third row in Table 2.
In another version of freetype, i.e. version 2-6, there

is also a global integer array ft_extra_glyph_unicodes. It’s
content in source code and related little-endian bitstream
are shown in the second row of Table 2. We can find that
it does not have the last two integers compared with the
previous one in version 2-3-6.
As shown in Fig. 1, the bitstreams of the previous two

arrays can both be found in freetype-VER-2-6.so, high-
lighted with a red and a blue rectangle, respectively. Since
a numerical array exists in a binary file as a sequence of
bytes, usually it is difficult to accurately determine the
boundary of the array. This eventually makes the over-
all number of exact matches of freetype version 2-3-6 the
maximum one, and misleadingly regards version 2-3-6 as
the candidate.
Therefore, we decide to choose string literals and

exported function names to perform version identifica-
tion. We consider them as program-level features and
use them to do a rough match in the first stage. The
rough match can determine the reused range of OSS ver-
sions. For example, as can be seen from the third row in
Table 1, the rough match results of freetype-VER-2-6.so
are versions 2-6, 2-6-1 and 2-6-2.
Taking into account that the function will change

between different versions, we explore function-level fea-
tures such as constants extracted from assignments, use
them in the second stage for a precise match, and finally
determine the reused OSS version. As can be seen from
the left side of Fig. 3, the constants extracted from assign-
ments in a decompiled function of freetype-VER-2-6.so,
namely, [0, 0, 2, 6, 0, 1], are the same as the constants
defined in the corresponding function in version 2-6
shown in the first box on the right side, while different
from the ones in version 2-6-1 and 2-6-2, which are [0, 0,
2, 6, 1, 1] and [0, 0, 2, 6, 2, 1], respectively. This helps to
determine that version 2-6 is the reused OSS version.

Workflow of B2SMatcher
As shown in Fig. 2, B2SMatcher contains three major
steps.
(1) Features Selection. As shown in the motivating

example, appropriate code features need to be selected
for precisely identifying reused version. We select both
program-level features and function-level features. The
detailed feature selection approach will be presented in
“Feature selection” section.
(2) Features Extraction. After the step of feature selec-

tion, we need to extract the selected features effectively.

Ban et al. Cybersecurity (2021) 4:21 Page 5 of 21

Table 2 Global integer array in source code and binary file

Version
ft_extra_glyph_unicodes

Source code Binary file

ver-2-6 {0x0394, 0x03A9, 0x2215, 0x00AD, 0x02C9,
0x03BC, 0x2219, 0x00A0, 0x021A, 0x021B}

94030000 a9030000 15220000 ad000000
c9020000 bc030000 19220000 a0000000
1a020000 1b020000

ver-2-3-6 {0x0394, 0x03A9, 0x2215, 0x00AD, 0x02C9,
0x03BC, 0x2219, 0x00A0}

94030000 a9030000 15220000 ad000000
c9020000 bc030000 19220000 a0000000

Not all source files will be compiled into the final binary
files, we extract features only from compiled source files
to better check out which version of the source code
can match the binary file with the maximum number
of matched features. Considering that there are massive
duplicate functions between versions, we focus on distinct
functions of each OSS version for improving efficiency in
comparison.
(3) Two-stage detection: The program-level code fea-

tures are used for a rough identification, and its results
are divided into two reuse types: single-version reuse
(such as the above-mentioned freetype-VER-2-6.so) and
multi-version reuse (such as SQLite.dll in “3. How to
design detection methods to improve the precision of
version identification?” section). Function-level features
are used in the precise identification stage. The results
of the two stages are combined to determine the reused
version. For each target binary, we detect the OSS ver-
sions reused by it and form a reuse relationship report.
This report can help track potential security risks, which
will be discussed in “Real-world software exploration”
section.

Design
In this section, we present the detailed design of
B2SMatcher for version detection in COTS software.

Feature selection
Though there exist considerable differences between
binary and source code representations, we try to find
uniform features between them for comparison. For the
purpose of version detection in COTS software, we pro-
pose the following two selection criteria. First, the code
features should exist in both source code and binary file,

and the representation of features does not vary a lot dur-
ing the compilation. Second, these features should have
a high degree of discrimination between different OSS
versions. Features that meet the above criteria are defined
as version-sensitive features. The features we choose can
be divided into two types: program-level features and
function-level features.

Program-level features
Table 3 lists a total of 7 candidate code features, covering
all the features used in existing binary-to-source compar-
ison techniques (Li et al. 2017; Hemel et al. 2011; Duan et
al. 2017; Yuan et al. 2019).
First, we evaluate at the source code level which code

features enjoy a relatively high discrimination degree
among OSS versions. Below, we present a formula for
computing the discrimination degree of a code feature.
The larger the discrimination degree is, the more ver-
sions this code feature can distinguish at the source code
level. Take the code feature string literals as an exam-
ple, for each version in a given project, we extract string
literals from source code, sort them in an alphabetically-
ascending order and store them in a file. A hash value
is generated for the entire file and we denote it by fea-
ture_hash. If the hash value of a version is unique, i.e.,
it is different from the rest, it means that this version
has string literals that do not appear in other versions,
thus this version can be distinguished. Overall, the dis-
crimination degree for a code feature, denoted by dis-
crimination, is obtained according to Formula 1. We use
#(distinct(feature_hash)) to represent the total number
of unique feature_hash among all versions. The nota-
tion k represents the total number of versions in this
project.

Fig. 1 Hex view of freetype-VER-2-6.so

Ban et al. Cybersecurity (2021) 4:21 Page 6 of 21

Fig. 2 The workflow of B2SMatcher

discrimination = #(distinct(feature_hash))
k

(1)

To give a flavor of the discrimination degree that a code
feature enjoys, we select three OSS projects FreeType,
LibTIFF, and SQLite as examples. The discrimination
degree of each code feature is computed for the three
projects according to Formula 1 and the result is shown
in Table 3. The “Average” column shows the average value
of discrimination degrees of the three projects. As can be
seen from Table 3, the average discrimination degrees of
string literals, exported function names and global integer
arrays are all over 0.5.We decide to use the above top three
features as program-level code features for the moment.
Next, we evaluate at the binary code level whether

these features can effectively distinguish different versions

of binary files. String literals and exported function
names stay the same after the compilation, but a global
integer array exists in binary files as a sequence of bytes.
We can not exactly restore the boundaries of an array.
As already discussed in “A motivating example” section,
using this type of code feature can be misleading in identi-
fying the correct version of binary files. In conclusion, we
choose string literals and exported function names as the
program-level features.

Function-level features
Fine-grained function-level code features also need to
be extracted to increase the accuracy of version pin-
pointing. Prior works on binary-to-source comparison,
B2SFinder and OSSPolice, do not consider function-level

Table 3 Candidate code features

Feature Class Feature Name
Discrimination

Selected?
freetype SQLite libTIFF Average

Program-level String 0.7246 0.8889 1.0 0.8712 �
Export 0.7536 0.5 0.7778 0.5624 �
Consts in switch/case 0.2778 0.1726 0.3551 0.2685

Consts in if/else 0.3551 0.1726 0.2778 0.2684

Global string array 0 0 0 0

Global enum array 0.0145 0.0089 0.0279 0.0170

Global integer array 0.6493 0.5513 0.4944 0.5650 �

Ban et al. Cybersecurity (2021) 4:21 Page 7 of 21

code features. We turn to works on binary-to-binary com-
parison for inspirations of function-level code features.
Numerical features in functions are widely used in binary-
to-binary comparison works (Eschweiler et al. 2016; Feng
et al. 2016; Xu et al. 2017), such as the constants in com-
parison instructions, the total number of parameters and
local variables. But they are heavily affected during the
compilation by optimization, which violates our crite-
ria. Through manual analysis, we find that two types of
constants are affected relatively slightly during the com-
pilation, which are the constant sequence of assignments
arranged in an ascending order and the constant parame-
ters in function calls. We depict their meanings below.
We first illustrate the constant sequence of assignments

in an ascending order using code snippets in Fig. 3. Basi-
cally, the feature is obtained by extracting all constants
in assignments of a function, which are further arranged
in an ascending sequence. As shown in Fig. 3, the code
snippet on the left side is taken from the shared file
freetype-VER-2-6.so, and the code snippet on the upper
right corner is taken from the same version of the source
code. We find that the constant sequence in assignments
are the same in the two code snippets, which are both
[0, 0, 2, 6, 0, 1] (highlighted in red in the figure). The
corresponding ascending order is [0, 0, 0, 1, 2, 6]. While
the constant sequences in assignments in the same func-
tion of the two other versions 2-6-1 and 2-6-2 of freetype
are [0, 0, 2, 6, 1, 1] and [0, 0, 2, 6, 2, 1], respectively.
Their corresponding ascending orders are [0, 0, 1, 1, 2,
6] and [0, 0, 1, 2, 2, 6], respectively, which are different
from the one of version 2-6. This type of constant-related
code feature is selected and named briefly as constants in
assignments.
Next, we use the function openDatabase in sqlite-

version-3.7.14 to illustrate another constant-related code
feature, namely, the constant parameters in function
calls. The relevant source code and disassembled code
snippets of openDatabase are shown in the following
two listings, respectively. In Listing 1, at line 9, func-
tion sqlite3MisuseError is called by openDatabase with
a constant parameter 113824. We can see clearly in
the corresponding disassembled version in Listing 2, at
line 6, the parameter of the callee sqlite3MisuseError is
also the constant 113824, correctly restored after being
disassembled.
Similar functions share similar call graphs. We consider

previous works on binary function similarity detection.
DiscovRE (Eschweiler et al. 2016) uses call graph as a
code feature. αdiff (Liu et al. 2018) uses as the inter-
function feature the numbers of callers and callees of a
function, i.e., the in-degree and out-degree of the func-
tion on call graph. Inspired by them, we also take into
account the code feature related to call graph, namely, the
in/out-degrees of a function.

1. static int openDatabase(
2. const char *zFilename,
3. sqlite3 **ppDb,
4. unsigned int flags,
5. const char *zVfs
6.){
7. ...
8. if(((1<<(flags&7)) & 0x46)==0)
9. return sqlite3MisuseError(113824);
10. ...
11. }
constant type parameter in the function call:{113824}

Listing 1 openDatabase (source code).

1. __int64 __fastcall openDatabase
2. (__int64 a1, char *a2, int a3, __int64 a4)
3. {
4. ...
5. if (!((70 >> (v9 & 7)) & 1))
6. return sqlite3MisuseError(113824LL);
7. ...
8. }
constant type parameter in the function call:{113824}

Listing 2 openDatabase (binary).

Overall, we select five kinds of code features, includ-
ing two kinds of program-level features: string literals and
exported function names, and three kinds of function-
level features: constants in assignments, constant param-
eters in function calls and in/out-degrees of a function
on call graph. We will discuss the effectiveness of these
features in “Effectiveness of the two-stage identification”
section through experiments.

Feature extraction
After the selection of code features, we need to extract
feature instances from binary code and source code in
an accurately and effectively way. For the feature extrac-
tion in source code, as discussed in “Introduction” section,
restricting the analysis within compiled source files
and eliminating comparison on duplicate functions can
improve the accuracy and effectiveness, respectively. We
detail in the following why and how to use machine learn-
ing methods to obtain the compiled source files, and how
to use function abstraction and normalization methods
to eliminate redundant functions and focus on “unique”
functions across versions.

Compilation-related files
OSS source package contains source files that will be com-
piled into the binary, and source files that will not be
compiled into the binary. Taking the project zlib-v1.2.8 as
an example, there are 42 source files with .c suffix in the
source code package, but only 15 of them are compiled
into binary. We call this phenomenon “selective build”. We
define compiled source files as compilation-related files
and the rest as compilation-irrelevant files.
Compilation-related files can be obtained by hooking

the build process as done in autopatch (Duan et al. 2019).

Ban et al. Cybersecurity (2021) 4:21 Page 8 of 21

Fig. 3 Function-level code feature instance: constants in assignments

For the purpose of version identification, we need to
build multiple OSS projects. However, an experiment per-
formed by B2SFinder (Yuan et al. 2019) shows that only
about a quarter of 2189 OSS projects can be automatically
built without manual intervention. In order to success-
fully build OSS, a large amount of manual work is needed
such as finding appropriate external OSS dependencies.
For the purpose of reducing manual participation, we are
inspired to propose a static method. More specifically, for
versions of an OSS project which can not be built suc-
cessfully, we use compilation-related files obtained from
successfully built versions to predict compilation-related
files of versions that are not successfully built.
For an OSS project, we find that those versions of a

project that share similar lists of source files usually have
similar lists of compilation-related files as well. In order
to seek the correlation between them, we do the following
experiments.
We manually build in total 210 mainline versions of

three libraries zlib (30), freetype (67) and libxml2 (113),
and construct “a version vector” for each built binary.
Basically, for each binary, we traverse all source files (with
c/cpp suffix) of all the built versions, use the names of
these files to form a vocabulary, adopt the one-hot (One-
hot Embedding 2020) approach, and construct a version
vector, i.e., putting 1/0 in the corresponding position,
according to the compilation-related files.
First, we use t-SNE (t-Distributed Stochastic Neighbor

Embedding 2020), a tool for visualizing high dimensional
vectors, to plot the version vectors generated by the

compilation-related files of zlib’s built versions, and the
result is shown in Fig. 4. A quick inspection shows that
the built versions are visibly divided into several clusters
according to compilation-related files, which means that
the lists of compilation-related files in some versions are
very similar.
Second, we cluster the versions of the three

libraries according to the version vectors generated by
compilation-related files and all source files, respectively.
We calculate the similarity of the above two clustering
results. We depict below how the similarity degree
between two clustering results is obtained. The similarity
degree between two sets S and T is obtained as follows,
where the notation # denotes the number of items in a set.

SetSim(S,T) = #(S ∩ T)

max{#S, #T}
The similarity degree between two clustering results S

and T, where S = {S1, S2, ..., Sn}, T = {T1, T2, ..., Tn} and
n is the number of clusters, is obtained as follows:

ClusterSim(S,T) =
∑

i∈[1,n]maxj∈[1,n]{SetSim(Si,Tj)}
n

For each binary, the similarity degrees of the two clus-
tering results in the settings where the numbers of clusters
range from 3 to 7 are calculated and shown in Fig. 5. As
can be seen from the figure, for all binaries, the simi-
larity degrees under all settings are over 80%. The result
means that if two versions of a project have similar lists of
source code files in the source code packages, then their

Ban et al. Cybersecurity (2021) 4:21 Page 9 of 21

Fig. 4 T-SNE of version vectors constructed by compilation-related files

compilation-related files are also similar, which means
that they tend to build similar files into binary.
Based on the two observations, we predicate compiled

files as follows:

• Version clustering. For each OSS project, we form
the version vector corresponding to each version and
then use cluster analysis to group similar versions.
Specifically, native k-means clustering (K-means
Clustering 2020) algorithm is used.

• Obtaining compilation-related files. For each version
in a group, we execute plainly the auto-build file in
the source code folder, such as Makefile, under the
default compilation option. If none version in a group

can be successfully compiled, we choose the latest
version in this group and compile it manually. In this
way, for each group, there is at least one version
compiled. Hence, for each group, the
compilation-related files of at least one version are
known.

• Predicting compilation-related files. We use
compilation-related files in successfully built binaries
to construct a decision tree (Decision tree 2020) in
each version group. After that, we use this decision
tree to classify each source file of a binary that is not
successfully built in the same group, and determine
whether it is a compilation-related file.

Fig. 5 Clustering result of libxml, freetype, zlib

Ban et al. Cybersecurity (2021) 4:21 Page 10 of 21

Note that, an OSS project may generate more than one
library file (with .a / .so suffix). We will predict for each
library the compilation-related files contained in it.

Unique functions
If functions have the same source code and they are shared
by different versions, we define such functions as repeated
functions. If a function is implemented only in one
version, we define such a function as a unique function.
Identifying whether the type of a function is a repeated
one or a unique one can help reduce duplicate compar-
isons across OSS versions and improve efficiency. Tak-
ing cURL as an example, the ratio of repeated functions
between adjacent versions is 93%. Moreover, unique func-
tions play a crucial role in recognizing unique versions at
the precise match stage. We detail below how to obtain
unique functions among a given set of OSS versions.
Some functions have the same name but different imple-

mentations in each version. To improve the robustness of
function types identification, inspired by Vuddy (Kim et
al. 2017), we also use abstraction to normalize functions
and eliminate the difference between functions caused
by the modification of types, identifiers, comments, and
whitespace. We consider each normalized function as a
text string and compute a hash value for it.
To get unique functions which can be used to identify

unique versions, we use function name + function hash
value (such as “deflateInit293f14310d6527296cfc24691a
576ab1c”) as a key field, the versions which have the func-
tion with the same name and same hash value as a value
field, to create a direct (inverted) mapping of functions
to OSS versions. We look up for functions whose total
number of OSS versions is one in this mapping and select
them as unique functions. Note that, each unique function
is essentially contained by only one version, while each
version may contain several unique functions.
The detailed normalization process of a function is

shown as follows, we also exemplify the normalization
result using a toy function in Listing 3.

• Local variables abstraction: For each local variable in
function body, we replace it with the symbol local.
For each member in struct, we replace it with the
symbol member.

• Parameters abstraction: We use symbol param to
represent parameters in function header and function
body.

• Type abstraction of all variables: Regardless of the
type information of function parameters and local
variables in the function, we replace it with the
symbol type.

• Function hash generation: We remove all
whitespaces and comments in a function, and then
generate the hash value of the function.

int ZEXPORT inflateBackEnd(strm)
{

z_streamp strm;
if (strm == Z_NULL || strm->state == Z_NULL

|| strm-zfree == free_func)0)
return Z_STREAM_ERROR;

ZFREE(strm, strm->state);
strm->state = Z_NULL;
return Z_OK;

}
===
intinflatebackend(strm)(param)typeparam;
if(param==0||param->member==0
||param->member==(type)0)return(-2);
(*((param)->member))
((param)->member,(type)(param->member));
param->member=0;return0;

Listing 3 Abstraction on a simple function.

Two-stage identification
For performing a fine-grained version recognition, we
design a two-stage identification approach. Program-level
features are used at the rough match stage for quickly
determining the version range. According to the results of
the rough match stage, we identify the reuse type of the
binary and use different matching methods for different
types at the precise match stage.
From here on, the feature extraction of an OSS source

code is performed by default from the compilation-related
files obtained from the previous section, source files men-
tioned below are actually referred to the compilation-
related files as well.

Roughmatch
At the rough match stage, we use the code features string
literals and exported function names as program-level fea-
tures. Considering that the two kinds of code features
always keep the same even after compilation. Therefore,
for those feature instances of string literals and exported
function names extracted from binary and source files,
only when they are exactly the same can they be consid-
ered to be a match. We use the following equation (2) to
score each OSS version with a match_score, and versions
with the highest match_score are the potential reused
versions for a target binary.

match_score = weighted_matched_features − loss

=
∑

f∈(BIN∩OSS)

1
n(f)

− Nsrc − Nf

Nsrc

(2)

In Eq. (2), we use BIN and OSS to denote the fea-
ture instances extracted from the target binary and the
OSS version to be scored, respectively. To measure the
contribution of each feature instance for version recog-
nition, B2SMatcher weighs each feature instance accord-
ing to its frequency in different versions and calculates
weighted_matched_features. The notation n(f) denotes

Ban et al. Cybersecurity (2021) 4:21 Page 11 of 21

the total number of versions in which a feature instance
f appears. The similarity is also taken into consideration,
and is defined as the notation loss in Eq. (2). For each ver-
sion to be scored, Nsrc denotes the total number of feature
instances extracted from source code and Nf denotes the
total number of matched feature instances.

Identify reuse type
In general, a high match_score means true reuse, and
these binaries are defined as single-version reuse. Some-
times only relying on match_score may not be enough.
For example, unique version string “3.8.5” can be found in
SQLite.dll of matlab (MATLAB 2020) and thematch_score
computed by Eq. (2) also shows SQLite.dll reuse SQLite-
3.8.5. However, we also found that SQLite.dll has
program-level feature instances occurring in SQLite ver-
sions 3.8.8.1, 3.8.8.2, 3.8.8.3, 3.8.8.5 and 3.8.8.8, while these
feature instances do not occur in version 3.8.5. Such exam-
ples are defined asmulti-version reuse andwe discuss how
to identify this scenario as follows.
We use mfg(b,AV) to represent the total number of

matched program-level feature instances between a tar-
get binary b and all versions AV of an OSS. The nota-
tion mfg(b,CV) represents the total number of matched
program-level feature instances between the binary b and
the candidate versions CV (with the highestmatch_score)
obtained from the rough match stage. If the value of
mfg(b,AV) and the value of mfg(b,CV) are close, this
means that all matched feature instances can be found in
the candidate versions.We define the reuse type of the tar-
get binary b in this case as single-version reuse. If the value
of mfg(b,AV) and the value of mfg(b,CV) are obviously
different, we define the reuse type of the target binary b
in this case as multiple-version reuse. We use the follow-
ing equation to identify different reuse types, where the
threshold is set empirically.

⎧
⎪⎨

⎪⎩

mfg (b,AV)−mfg (b,CV)

mfg (b,CV)
� threshold, multiple-version reuse

mfg (b,AV)−mfg (b,CV)

mfg (b,CV)
� threshold, single-version reuse

(3)

Precisematch
Previously in the feature selection step, we select three
kinds of function-level features: constants in assignments,
constant parameters in function calls, and in/out-degrees
of a function on call graph, to further characterize the sim-
ilarity between a binary function and a source function.
We first define below how to calculate two types of simi-
larity degrees based on the first two kinds of code features,
and based on the third kind of code feature, respectively,
and use the summation of the two similarity degrees to
determine the final reused OSS versions.

For the code features constants in assignments and con-
stant parameters in function calls, given a binary function
BinFunc, we find its similarity degree constantssimilarity
with a source function SrcFunc calculated by Eq. (4) as
follows. We use BinFuncconst and SrcFuncconst to repre-
sent the aforementioned two kinds of feature instances
extracted from the target binary function and the source
function, respectively. We use the notation # to denote the
number of items in a set. If the total number of constants
in a binary function is much more than that in a source
function, only considering the match ratio may cause a
false positive. So we also add the ratio of the binary feature
instances number to the source feature instances number
to the equation.

constantssimilarity(BinFunc, SrcFunc)

= #(BinFuncconst ∩ SrcFuncconst)
#SrcFuncconst

× #BinFuncconst
#SrcFuncconst

(4)

Next, we show how to compute the similarity degrees
between binary and source functions based on in/out-
degrees of a function on call graph. We define in/out-
degree vectors of a function as an ascending sequence of
its numbers of incoming/outgoing edges to/from the func-
tion, respectively. For example, if function A is called by
function B one time and function C two times1, and func-
tion A calls function D three times and function E one
time, the in-degree vector of this function is (1, 2) and the
out-degree vector of this function is (1, 3). If two vectors
do not have the same number of dimensions, we pad the
shorter vector with 0 from its front to make them have the
same length. Thus we use Euclidean distance (Euclidean
Distance 2020) to compute similarity as follows, where
the subscripts “in/out_degree” are used to represent the
corresponding in/out-degree vectors.

callgraphsimilarity(BinFunc, SrcFunc)

= distEclud(BinFuncin_degree, SrcFuncin_degree)
+ distEclud(BinFuncout_degree, SrcFuncout_degree)

(5)

Given a target binary function BinFunc, a source func-
tion SrcFunc is considered to be matched with Bin-
Func, if it has the highest score (constantssimilarity +
callgraphsimilarity) with BinFunc.
Given a target binary file, to determine the OSS ver-

sion for single-version reuse type, B2SMatcher compares
all the binary functions of the target binary file with all
unique source functions of candidate versions obtained
from the rough match stage. The candidate version that

1All feature instances in this article are extracted statically, i.e., without the
need of dynamically running programs. Here means that there are two call
sites in C’s function body that both call A.

Ban et al. Cybersecurity (2021) 4:21 Page 12 of 21

matches the maximum number of unique source func-
tions with the target binary file is considered to be the
reused version.
For multi-version reuse type, we match binary functions

with unique source functions of all OSS versions, and then
decide the version range of OSS to be those versions that
have at least one matched unique function with a function
of the target binary file.

Architecture
Figure 6 shows B2SMatcher’s architecture, it contains
three main modules: Collecter, Extractor and Detector.
The Collecter module performs information collection.
By taking advantage of API provided by github (GitHub
2020) and CVEdetails (CVEDetails 2020), we obtain OSS
source code packages and details of vulnerabilities. We
use a powerful scraping framework Scrapy[75] to collect
real-world software.
The Extractor module extracts features from source

code with the help of ANTLR (Parr and Quong 1995). It is
difficult and time-consuming to find a proper build envi-
ronment to complete the build process for each version of
a project. We extract the code features from compilation-
related files by developing some static analysis tools with
the parser generator ANTLR 4.5.3 (Parr andQuong 1995).
ANTLR parses C/C++ code based on the concept of fuzzy
parsing and does not require a build environment. For
each source file, it parses as much symbols as it can. For
each binary to be analyzed, the Extractor module extracts
relevant features by using IDAPython (IDAPython 2020).
Detector module identifies reused OSS versions by the

following steps:

1. It performs a rough match by applying the matching
method on program-level features.

2. It identifies reuse type based on the match score and
matched features obtained from Step 1.

3. Detector module performs a precise match stage
based on reuse types and function-level features.

Having matched OSS versions, and obtaining known
vulnerability information of these versions by Collector,
Detector finally highlights 1-day security risks for the
target binaries.

Evaluation
In this section, we evaluate the precision and efficiency
of B2SMatcher. We also explore a large number of real-
world software and find that some commercial software
like Teamviewer (TeamViewer 2020) and Zoom (Zoom
2020) reuse vulnerable OSS versions.

Dataset
We construct three datasets to evaluate B2SMatcher
including one candidate OSS dataset and two binary file
datasets.

Candidate OSS dataset (S)
This dataset includes not only commonly used OSS, but
also OSS with known vulnerabilities. First, we get all ver-
sions of the top 10 frequently reused libraries according to
the reuse detection result given by B2SFinder and OSSPo-
lice. For the purpose of reporting potential vulnerabilities
caused by OSS reuse, we obtain vulnerability information
from CVEdetails (CVEDetails 2020) and collect all ver-
sions of those third-party libraries which contain at least
30 previously disclosed vulnerabilities.
Up to now, this dataset contains 243 open source

libraries, in a total of 6351 versions. We have categorized
these open source libraries as shown in Table 4. The com-
plete list of projects in this dataset is available at (Detailed
datasets used in this paper 2020).

Binaries with labeled versions (B1)
Because there is no publicly available ground-truth
dataset, we manually label 585 binaries to evaluate the
precision of our work in identifying versions of OSS. B1
contains ELF files compiled from multiple OSS, types
of which include font rendering (e.g. freetype), image

Fig. 6 The architecture of B2 SMatcher

Ban et al. Cybersecurity (2021) 4:21 Page 13 of 21

Table 4 The categories of candidate OSS

Project type Examples

Image processing libpng, openjpeg, libjpeg

Encryption and decryption openssl, botan

Sound/video processing ffmpeg, libsndfile

Document formatting libxml2, tinyxml, poppler

Font processing freetype, libtiff

Protocol openssh, libssh, dnsmasq

Database sqlite

Compression bzip2, zlib, unrar

Other libvnxcserver, opencv

processing (e.g. LibPNG), and document processing (e.g.
libxml2). In order to evaluate B2SMatcher on software
in the real world, we obtain the versions of open source
libraries used in open source software, according to the
license and version description files in their source code
package. We check all reused versions extracted from
the source and verified them in binaries. These software
cover different areas, such as video parsing (e.g. VLC),
PDF rendering (e.g. SumatraPDF) and audio editing (e.g.
Audacity). Binary files of these open source software are
also contained in B1.
All binary files in B1 are shown in Table 5. Take the sec-

ond row as an example, we manually compile 67 versions
of freetype from source code. As shown in the penulti-
mate row, we download VLC from its official website and
obtain libxml2.dll from the VLC installation package. All
sqlite.dll are multi-version reuse cases, we obtain them
from real world commercial software. The rest binary files
are single-version reuse cases.

Real-world commercial software (B2)
This dataset contains 217 commercial closed source soft-
ware which is crawled from Tencent Application Center.
There are overall 3889 binary files in this dataset. Due to
space limit, partial software are presented in Table 6. The
complete list of B2 is available at (Detailed datasets used
in this paper 2020).

Precision
We manually label 585 pairs of version-level reuses,
denoted as B1. We query binaries in B1 against our OSS
projects dataset S, which contains 6351 OSS versions.
In this part, the accuracy of B2SMatcher is evaluated
from two aspects. First, B2SMatcher is compared with
state-of-the-art tools B2SFinder and OSSPolice. Second,
B2SMatcher is compared with a mature commercial tool
Cybellum of which functionality is to create a detailed
genome map of software components. We also evaluate
the effectiveness of the two-stage identification in this
section.

Table 5 The list of binary files in B1

Project name All versions Data source Format

freetype 67 Compiled from source
code

ELF

libjpeg-turbo 22 Compiled from source
code

ELF

libjpeg 23 Compiled from source
code

ELF

openjpeg 11 Compiled from source
code

ELF

jbig2dec 8 Compiled from source
code

ELF

libpng 210 Compiled from source
code

ELF

libxml2 112 Compiled from source
code

ELF

sqlite 113 Compiled from source
code

ELF

zlib 1 Audacity.exe PE

freetype.dll 6 Official websites PE

freetype.dll 4 Mupdf, VLC, SamatraPDF,
GIMP

PE

libfreetype.dll 1 GIMP PE

libpng.dll 1 VLC PE

libxml2.dll 1 VLC PE

sqlite.dll 5 Matlab, QQMusic, TIM,
QQPCMGR, Storm Codec

PE

total 585

In “Compilation-related files” section, we have designed
an approach based on clustering and decision tree to
predict the compilation-related files. At the end of this
section, we evaluate the accuracy of this approach.

Comparisonwith B2SFinder and OSSPolice
The experimental results of B2SMatcher compared with
B2SFinder (Yuan et al. 2019) and OSSPolice (Duan et al.
2017) are shown in Table 7.
B2SFinder does not directly support version identifica-

tion, we make a little improvement for comparison. Since
B2SFinder computes a matching score for each type of

Table 6 The partial list of binary files in B2

Project name Brief introduction

Teamviewer Remote access tool

Sunlogin Remote access tool

Zoom Enterprise video communication

Tencent meeting Enterprise video communication

Duet display External display software

Tencent PC manager Freeware antivirus protection software

QQmusic Music player software

Ban et al. Cybersecurity (2021) 4:21 Page 14 of 21

Table 7 Comparison of B2SMatcher with other tools

Versions TP1 FP1 P2

B2SMatcher 522 63 89.2%

B2SFinder (Top 1) 7 581 1.1%

B2SFinder (Top 3) 585 44 541 7.5%

OSSPolice 475 110 81.2%

Cybellum 481 104 82.2%

1TP: True Positive. FP: False Positive
2P: Precision

code feature, we sum up the matching scores of all code
features for each version and rank the versions in descend-
ing order. We also introduce two criteria for B2Sfinder:
(1) the version with the highest score is the correct ver-
sion (top1), (2) the versions with top 3 scores contain
the correct version (top3). OSSPolice supports version
identification, thus we can directly compare with it.
As shown in Table 7, we find that B2SMatcher out-

performs OSSPolice and B2SFinder in all settings. We
first analyze why B2SFinder performs so badly. In order
to analyze the effectiveness of each code feature used in
B2Sfinder, we use the matching score of one feature each
time for version identification and the result is shown in
Fig. 7. As can be seen from Fig. 7, the code feature of
constant branches in if/else statements has the highest
false positive, where 95% of versions can not be correctly
identified. We briefly analyze how B2SFinder computes
a matching score. We use BIN to denote the set of code
feature instances, i.e., concrete feature objects, extracted
from target binaries, use OSS to denote the set of fea-
ture instances extracted from open source software. The
calculation method of B2SFinder can be interpreted into
#(BIN∩OSS)

#OSS , where the notation # represents the number of
instances in a set.

To give a concrete example, we found the numbers
of the matched feature instances, i.e., #(BIN ∩ OSS),
between freetype-VER-2-5-0-1.so and the freetype ver-
sions of 2-5-0-1, 2-5-1, 2-5-2, 2-5-3, 2-5-5, 2-5-0 are the
same. However, version 2-5-3 has the maximummatching
score calculated by B2SFinder because the total num-
ber of features, i.e. #OSS, in version 2-5-3 is the least.
Therefore freetype-VER-2-5-0-1.so is wrongly identified as
version 2-5-3 by B2SFinder. We recognize versions based
on both the total number of matched features and simi-
larity, and the result presented in Table 7 shows that the
total numbers of false positives have been significantly
reduced.
Our tool can correctly identify 8% more OSS versions

than OSSPolice. It detects fewer OSS versions mainly
for two reasons. (1) OSSPolice claims that it identifies
versions mainly through version strings such as “inflate
1.2.5.3 Copyright 1995-2011 Mark Adler” in zlib-v1.2.5.3.
However, some OSS, e.g. freetype and jbig2dec, does not
have version strings among versions. Besides that, com-
mon commercial software tends to strip away such kinds
of strings. (2) OSSPolice uses “NormScore” (a similar-
ity calculation formula defined by OSSPolice) to obtain
matched versions if no version string can be used. Norm-
Score can also be interpreted into the way of #(BIN∩OSS)

#OSS ,
of which limitation is already discussed in the case of
B2SFinder.
For multi-version reuse cases, B2SFinder identifies ver-

sions relying on maximum similarity and OSSPolice rec-
ognizes versions mainly relying on version strings. There-
fore, they can not handle multi-version reuse cases well.
Take the library SQLite3.dll in the software of Tencent
PC Manager with version 13.5.20525 as an example, this
binary file has the version string “3.7.5”. OSSPolice con-
siders that the version of this binary is SQLite-v3.7.5.
The identification result of B2SFinder is also SQLite-
v3.7.5. However, with the help of function-level features,

Fig. 7 Effectiveness of each feature in B2SFinder

Ban et al. Cybersecurity (2021) 4:21 Page 15 of 21

B2SMatcher finds that this binary contains functions
which are in versions of {v3.8.8, v3.8.8.1, v3.8.8.2, v3.8.8.3}.
Thus the final identification results given by B2SMatcher
are {v3.7.5, v3.8.8, v3.8.8.1, v3.8.8.2, v3.8.8.3}.
In conclusion, B2SMatcher not only combines program-

level features and function-level features, but also
improves the similarity calculation by considering the
total matched features. Besides that, B2SMatcher can
identify multi-version reuse cases and perform better than
OSSPolice and B2SFinder.

Comparisonwith Cybellum
We run Cybellum against binaries in B1 and compute the
numbers of its true positives and false positives. As can
be seen from Table 7, the precision of Cybellum is 82.2%,
which is 7% lower than the one of B2SMatcher.
In the identification of some OSS versions, B2SMatcher

performs much better than Cybellum. For example,
B2SMatcher can correctly identify 96.4% of libxml2 ver-
sions in B1. The precision of the Cybellum is only 63.1%.
B2SMatcher can correctly identify 74.6% freetype versions
in B1 and the precision of Cybellum is only 48.1%. For
multi-version cases, Cybellum can not identify the correct
versions.

Effectiveness of the two-stage identification
B2SMatcher employs a two-stage version identification
approach. It uses program-level features at the rough
match stage and uses function-level features at the precise
match stage. We use B2SMatcher to identify the version
of the binary file in B1 and evaluate the contribution of
each stage. As shown in Table 8, B2SMatcher obtains a
precision of 82.1% by using the rough match. By adding
a precise match stage, B2SMatcher is able to correctly
identify 42 more versions and improve the precision from
82.1% to 89.2%.
We further evaluate the effectiveness of each function-

level feature. A total of 6405 unique functions are selected
from different versions of freetype as a testcase set. As
shown in Table 9, we present the precisions of function
matching based on function in/out-degree and constant
type features in the second and the third row, respectively.
The precision of function matching based on the function
in/out-degree feature is above 80%, the precision of func-
tion matching based on the constant type feature is nearly

Table 8 Effectiveness of two stage detection

B2SMatcher Versions TP1 FP1 P2

Rough match
585

480 105 82.1%

Rough+Precise match 522 63 89.2%

1TP: True Positive. FP: False Positive
2P: Precision

Table 9 Effectiveness of function level features

Feature name Total TP1 FP1 P2

In/out-degrees of a function callgraph
6409

5384 1025 84%

Constant type features 5072 1337 79.1%

1TP: True Positive. FP: False Positive
2P: Precision

80%. We think that the corresponding precision rates are
acceptable.

Effectiveness of the compilation-related file prediction
In “Compilation-related files” section, we have designed
an approach based on clustering and decision tree to
predict the compilation-related files. Here, we perform
an evaluation on the accuracy of correctly predicted
complation-related files using our approach, which is car-
ried on 4 projects containing 5 libraries and 280 mainline
versions in total. The result of the evaluation shows that
nearly 97% of truly compiled files are correctly predicted.
We describe the detailed experiment below.
We manually compiled in total 280 mainline versions

of zlib(30), freetype(67), libxml2(113) and openssl(70). An
OSS project may generate more than one library. For
example, the project OpenSSL generates two dynamic
libraries libssl.so and libcrypto.so. After the build pro-
cess, for each library, the list of real compilation-related
files is defined as true_compiled_files = {tf1, tf2, ..., tfm},
the list of predicted compilation-related files is defined as
predicted_compiled_files = {pf1, pf2, ..., pfn}. We use the
following three indicators for evaluation.

• TP: If predicted_compiled_files and
true_compiled_files are exactly the same, we think it
is a true positive.

• FP: If predicted_compiled_files and
true_compiled_files have different files, we consider
it as a false positive.

• F_Ratio: It is an indicator defined by us. We use the
following equation to calculate F_ratio and use the
notation # to denote the number of items in a set, the
set operation � to denote the symmetric difference
between two sets. F_Ratio represents the difference
between predicted_compiled_files and
true_compiled_files.

FRatio = #(true_compiled_files � predicted_compiled_files)
#true_compiled_files

We evaluate our approach on the 4 OSS mentioned
above and the result is shown in Table 10. The second
column shows the name of dynamic libraries generated
after the build process. The third column represents the
total number of versions predicted. Although the TP
of some OSS is relatively low, the F_ratio of all OSS

Ban et al. Cybersecurity (2021) 4:21 Page 16 of 21

Table 10 The effectiveness of prediction method

Name Dynamic library Total number TP FP F_Ratio

zlib libz.so 25 25 0 0

freetype libfreetype.so 43 30 13 0.0325

libxml2 libxml2.so 85 84 1 0.03

openssl libssl.so 58 17 41 0.033

libcrypto.so 58 6 52 0.0155

shows that there is not much difference between pre-
dicted_compiled_files and true_compiled_files. We think
that the result is promising and shows the effectiveness of
our approach.

Efficiency
Our experiments are mainly run on a machine equipped
with 8 cores of Intel(R) Xeon(R) Gold 6133 CPU @
2.50GHz, 16 GB memory and 300GB disks.
For the purpose of improving the efficiency of

B2SMatcher, we employ machine learning methods to
solve selective build and obtain compilation-related files
mentioned in “Compilation-related files” section. More-
over, we eliminate repeated functions among versions. We
randomly select 146 OSS source code and show the quan-
titative relationship between the number of compilation-
related files and all source files in Fig. 8. On average, only
32.5% of source files are compiled. Extracting features
only in compilation-related files can therefore effectively
reduce the total number of files to be analyzed. Besides, we
count the numbers of unique functions and all the func-
tions for each source code package. The statistic result is

shown in Fig. 9. The functions that need to be extracted
and compared are effectively reduced from 2784 to 656 on
average.
To evaluate the identification time of B2SMatcher, for

each binary in B1, we spent on average 145.12 seconds
on features matching, of which the program-level and the
function-level feature matching processes contribute to
2.27% and 97.73%, respectively.

Real-world software exploration
We use B2SMatcher to conduct a large-scale analysis
between 6351 OSS source code from dataset S and 3889
binary files from dataset B2. By analyzing the experimen-
tal results, we get the following findings. First, multi-
version reuse is a common phenomenon, the proportion
of it is up to 16.3%. We find that binary files that reuse
LibTIFF and SQLite are more likely to be multi-version
reuse cases.
Second, we make an overall security risk assessment for

the binaries in B2, based on version-level reuses results
obtained by B2SMatcher. We select the top 3 OSS projects
which are most frequently reused, i.e., Zlib, SQLite and
libxml2, and show their version distributions in Fig. 10.
The horizontal axis shows the release time of each iden-
tified version. We are surprised to find that 100% reuses
of Zlib and more than 50% reuses of libxml2 and SQLite
contain the versions that are released at least 3 years ago
(earlier than 2017).
We identify those versions with at least one previously

disclosed vulnerability according to CVEdetails (CVEDe-
tails 2020) as a vulnerable version and show vulnerable
version distribution in Fig. 11. The versions of an OSS

Fig. 8 All source files vs compilation-related files in multiple OSS

Ban et al. Cybersecurity (2021) 4:21 Page 17 of 21

Fig. 9 All functions vs unique functions in multiple OSS

that have the same number of disclosed vulnerabilities are
grouped into one column. The vulnerability numbers are
decorated on the yellow curve in Fig. 11.We find thatmost
reuses contain vulnerable OSS versions. For example, as
can be seen from the highest column in Fig. 11, more
than 60% reuses of SQLite use the version that contains a
disclosed vulnerability.

Case study
In the end, we show some analysis results of recently
released and popular software. According to an annual
analysis report OSSRA (2020 Open Source Security and
Risk Analysis Report 2020) published by Synopsys, using
obsolete components (released 4 years ago or not devel-
oped in recent two years) or using a version of OSS

that contains at least one CVE brings security risk. After
getting the version of reused OSS, we classify it as a vul-
nerable version if it meets any of the following criteria.
First, the OSS of this version has been disclosed at least
one vulnerability. Second, this version is released at least
4 years ago (before 2016).
Then we show how to find security risks in real world

software and give examples to illustrate software with
different reuse types.

Single-version reuse
We select three well-known software Zoom, Teamviewer,
and Tencent PC Manager. B2SMatcher shows in Table 11
that these software contain some vulnerable OSS
versions.

Fig. 10 Version release time of zlib, sqlite, libxml2

Ban et al. Cybersecurity (2021) 4:21 Page 18 of 21

Fig. 11 Ratio of vulnerable versions in zlib, sqlite, libxml2

Nevertheless, B2SMatcher finds that some versions of
reused OSS are almost the latest ones and there are not yet
any disclosed vulnerabilities on these versions. For exam-
ple, TeamViewer with version 15.10.5.0 uses libvpx-1.8.2
(released atMon, 09 Dec 2019 23:09:20 GMT); Zoomwith
version 5.1.28656.0709 reuses openssl-1.1.1e (released at
Tue, 17 Mar 2020 14:31:17 GMT) and libjpeg-turbo-2.0.4
(released at Tue, 31 Dec 2019 07:10:30 GMT).

Multi-version reuse
We take an anonymous database management software
“A” as an example, of which name can not be disclosed
for the moment, as the discussion and negotiation with
the developer are not yet completed. B2SMatcher iden-
tifies that A reuses SQLite-v3.7.14 in the rough match-
ing stage by locating the unique string “3.7.14” which
only appears in SQLite version 3.7.14. Since there are
some unique functions, such as sqlite3OsDlSym and
sqlite3_enable_load_extension, which are contained only
in SQLite versions of {v3.8.8, v3.8.8.1, v3.8.8.2, v3.8.8.3},
B2SMatcher identifies {v3.8.8, v3.8.8.1, v3.8.8.2, v3.8.8.3}
in the precise stage. Combining the results of the two
stages, we identify that A may reuse {v3.7.14, v3.8.8,

v3.8.8.1, v3.8.8.2, v3.8.8.3}. For each version in the above
list, we check whether it is a vulnerable version and obtain
related CVEs. Finally, we find that the vulnerable function
sqlite3VXPrintf reported by CVE-2015-3416 (disclosed in
SQLite-v3.8.8.3) can be found in this software.
Through the above example, by categorizing a binary

into different reuse types, we can discover more security
risks.

Discussion
In this section, we discuss the limitations of our work and
potential solutions.

Version analysis improvements
More OSS
Up to now, we have collected 6351 versions of source
code to form our public OSS dataset. It would be worth-
while to collect more open source libraries for analyzing
real-world software. Some commonly used open source
libraries such as libevent, harfbuzz are not included in the
current dataset, because these libraries contain less than 5
previously disclosed vulnerabilities. Considering that each
repository in GitHub has stargazers count and fork count,

Table 11 Vulnerable versions used in software

Software Software version Reused OSS Reused OSS version Historical CVE/ Release time

TeamViewer 15.10.5.0 libcurl 7.65.3 CVE-2019-5481, CVE-2019-5842

zlib 1.2.5 Sun, 18 Dec 2011 18:39:45 GMT

libjpeg-turbo 8b Mon, 27 Jul 2015 18:48:40 GMT

Tencent PC Manager 13.5.20525.234 zlib 1.2.8 CVE-2016-9840, CVE-2016-984, CVE-2016-9842, CVE-2016-9843

libpng 1.4.17 CVE-2015-8472, CVE-2015-8540, CVE-2016-10087

Zoom 5.1.28656.0709 zlib 1.2.5 Sun, 18 Dec 2011 18:39:45 GMT

sqlite 3.27.2 CVE-2019-8457, CVE-2019-9936, CVE-2019-9937

Ban et al. Cybersecurity (2021) 4:21 Page 19 of 21

potentially indicating its popularity, it would be beneficial
for improving B2SMatcher’s availability to include reposi-
tories withmore than 200 stargazers or the number of fork
count over 50.

More function-level code features
We find that some OSS such as unrar and bzip have
few version-sensitive program-level features, thus their
version identifications mainly depend on function-level
code features. The function-level features we currently
choose are not perfect, they can still be influenced dur-
ing the compilation. For example, the constant param-
eters in function calls can be influenced by constant
propagation. The in/out-degrees of a function on the
call graph will change due to function inlining. How-
ever, the result of the precision evaluation of function
matching based on these function-level features shown in
“Effectiveness of the two-stage identification” section is
acceptable. It is also explainable thanks to the way of
our similarity degree computation.We compare functions
using similarity degree rather than exact match, which is
able to tolerate a certain degree of the influence induced
during the compilation.
Nonetheless, it is worth exploring more robust

function-level features as one of the future work. Inspired
by binary similarity analysis work, e.g. DeepBinDiff
(Duan et al. 2020) and discovRE (Eschweiler et al. 2016),
functions can be regarded as special text and NLP tech-
niques can be used to capture the semantic information of
functions. It would be interesting to explore the combina-
tion of manually selected code features and the semantic
features provided by NLP techniques for achieving better
identification results.

Compilation-related files
In this paper, we build a project and make predictions
of compilation-related files plainly based on the project’s
default compilation setting. However, the functions and
source code files compiled into a binary depend on com-
pilation options such as macro definition. If the configu-
ration in the default build is significantly different from
the one used in the target binary program, there will be
indeed a difference between the features extracted from
binary and the features extracted from source code. It
is worthwhile to explore configuration-aware source-to-
binary analysis for further improving the precision.

Vulnerability confirmation
The final goal of our work is to discover potential 1-day
vulnerabilities caused by misusing vulnerable versions of
OSS, a lot of work needs to be done to confirm whether
the vulnerability really exists. First, we need to locate the
vulnerable function, then, analyze whether this vulnera-
ble function has been patched. VulDeePecker (Li et al.

2018) uses vulnerable code fragments to train BLSTM
and applies this BLSTM to classify code gadgets in the
target program. FIBER (Zhang and Qian 2018) generates
signatures from patches and adopts symbolic execution
to obtain semantic information of the function to be
detected, it develops a match engine for searching patch
signature in the target binary and verifies the presence
of patches in functions based on the matching result. In
the future, we would like to investigate more methods for
determining whether the vulnerabilities really exist.

Related work
Improper use of OSS will bring security issues, OSS reuse
detection in COTS software has become imperative. The
previous work related to us can be categorized into the
following lines of work.

Security risk by using OSS
Among the top 10 security risks of OWASP (OWASP Top
10 Application Security Risks 2020), components that use
known vulnerabilities are the ninth-highest risk. Synop-
sys (2020 Open Source Security and Risk Analysis Report
2020), based on its product Black Duck’s audit results
of closed-source software, believes that 96% of the soft-
ware contains open source components, and most of the
components are out-of-date and containmany known vul-
nerabilities. Some articles track and study the specific sce-
narios of using components with known vulnerabilities.
Wang et al. (Wang et al. 2020) study usages, updates and
risks of OSS in JAVA projects, and provide experiences on
maintaining them as third-party libraries. Cadariu et al.
(Cadariu et al. 2015) point out that the use of third-party
components may introduce security vulnerabilities in the
software system. They present a tool, Vulnerability Alert
Service(VAS), to track known vulnerabilities in software
systems.
Serena et al. (Ponta et al. 2018) mainly focus on whether

the vulnerability in OSS can be exploited, they combine
dynamic and static analysis to determine the accessibility
of a vulnerable part.

Code clone detection
Considering the relevance to our work, we mainly focus
on the following two analysis methods.

Binary-to-Binary
Binary code analysis measures the similarity between two
binaries. It is widely used for code clone detection. Tang
et al. (Tang et al. 2020) introduce a tool Libdx, they use
contents in read-only data segments as features and pro-
pose a concept of logic feature block to cope with the
feature duplication. Some other features are also taken
into consideration, such as numeric features in instruc-
tion (Eschweiler et al. 2016), callgrah (Gao et al. 2008;

Ban et al. Cybersecurity (2021) 4:21 Page 20 of 21

Liu et al. 2018; Wang et al. 2009) and control flow graph
(Eschweiler et al. 2016; Xu et al. 2017; Feng et al. 2016),
and semantic related information including IO behavior
(Pewny et al. 2015) and execution traces (Chandramohan
et al. 2016). Besidesmanually selected features, somework
automatically extracts semantic information with the help
of NLP techniques (Ding et al. 2019; Duan et al. 2020; Yu
et al. 2020).

Binary-to-Source
Binary-to-source comparison usually extracts feature
instances from source files in advance, and detects poten-
tial reused OSS projects for target binaries. We give a
brief introduction to the following work. BinPro (Miyani
et al. 2017) extracts 7 types of code features. After using
SVM to assign weights to features, it uses a combinatorial
optimization algorithm to calculate the similarity between
source functions and binary functions. The Binary Anal-
ysis Tool (BAT) (Hemel et al. 2011) applies string literals
as the only code feature and proposes a data compres-
sion method to compute the similarity score. OSSPolice
(Duan et al. 2017) exploits string literals and exported
function names as code features, and devises a hierarchi-
cal indexing scheme to detect OSS reuse. B2SFinder (Yuan
et al. 2019) utilizes 7 kinds of code features and designs
multiple methods to solve different types of reuse. Karta
(Karta 2020) is an IDA Python plugin, it mainly uses string
and numeric features and employs a heuristic matching
algorithm for matching open source projects in binaries.

Conclusion
In this paper, we implement a fine-grained version identi-
fication tool B2SMatcher for OSS reused in COTS binary
files. Overall, B2SMatcher selects five kinds of version-
sensitive code features, forming the program-level and
function-level features, and design a two-stage identi-
fication approach. For the purpose of precisely extrac-
ting features, B2SMatcher uses the K-means algorithm
and decision tree to predict compilation-related files.
For improving efficiency, B2SMatcher eliminates com-
parisons on duplicate functions between versions. We
evaluate B2SMatcher with 6351 versions of source code
and 585 labeled binaries, the experiment result shows
that B2SMatcher outperforms the twomost closely related
approaches and one commercial tool. With B2SMatcher,
we find that popular software in the real world,
such as TeamViewer and Zoom, reuses vulnerable OSS
versions.

Acknowledgments
The authors would like to thank Yican Yao for preparing partial experiments’
environment and conditions.

Authors’ contributions
GB proposed the technical route. GB and LX performed the experiments and
drafted the paper. YX and WHmade crucial contributions on the technical

route and revised the article. XHL and ZMY revised the article. The author(s)
read and approved the final manuscript.

Funding
This research was supported (in part) by the National Natural Science
Foundation of China (Grant No. 61802394, U1836209), Key Program of the
National Natural Science Foundation of China (Grant No. 62032010).

Availability of data andmaterials
All public dataset sources are as described in the paper.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing,
China. 2School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China.

Received: 25 January 2021 Accepted: 29 March 2021

References
2020 Open Source Security and Risk Analysis Report (2020). https://www.

synopsys.com/zh-cn/software-integrity/resources/reports/2020-open-
source-security-risk-analysis.html. Accessed 10 Apr 2021

Cadariu M, Bouwers E, Visser J, van Deursen A (2015) Tracking known security
vulnerabilities in proprietary software systems. In: Proceedings of 2015 IEEE
22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). Software Analysis, Evolution, and Reengineering,
New York. pp 516–519

Chandramohan M, Xue Y, Xu Z, Liu Y, Cho CY, Tan HBK (2016) Bingo:
Cross-architecture cross-os binary search. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering. USENIX Association, Kyoto. pp 678–689

CVEDetails (2020) Free CVE security vulnerblity database source. https://www.
cvedetails.com/. Accessed 10 Apr 2021

Cybellum (2020) Uncover the Software Components Inside Your Vehicles and
Identify All Vulnerabilities. https://cybellum.com/. Accessed 10 Apr 2021

Decision tree (2020). https://en.wikipedia.org/wiki/Decision_tree. Accessed 10
Apr 2021

Detailed datasets used in this paper (2020). https://github.com/summerban/
B2SMatcher-cybersecurity. Accessed 10 Apr 2021

Ding SH, Fung BC, Charland P (2019) Asm2vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler
optimization. In: Proceedings of the 2019 IEEE Symposium on Security and
Privacy (SP). Springer, Kyoto. pp 472–489

Duan R, Bijlani A, Ji Y, Alrawi O, Xiong Y, Ike M, Saltaformaggio B, Lee W (2019)
Automating patching of vulnerable open-source software versions in
application binaries. In: Proceedings of the 2019 Annual Network and
Distributed System Security Symposium (NDSS)

Duan R, Bijlani A, Xu M, Kim T, Lee W (2017) Identifying open-source license
violation and 1-day security risk at large scale. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM. pp 2169–2185

Duan Y, Li X, Wang J, Yin H (2020) Deepbindiff: Learning program-wide code
representations for binary diffing. In: Proceedings of the 27th Annual
Network and Distributed System Security Symposium (NDSS’20). Springer,
Shanghai

Eschweiler S, Yakdan K, Gerhards-Padilla E (2016) discovRE: Efficient
Cross-Architecture Identification of Bugs in Binary Code. In: Proceedings of
the 2016 Annual Network and Distributed System Security Symposium
(NDSS). The Internet Society, London

Euclidean Distance (2020). https://en.wikipedia.org/wiki/Euclidean_distance.
Accessed 10 Apr 2021

Feng Q, Zhou R, Xu C, Cheng Y, Testa B, Yin H (2016) Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC

https://www.synopsys.com/zh-cn/software-integrity/resources/reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/zh-cn/software-integrity/resources/reports/2020-open-source-security-risk-analysis.html
https://www.synopsys.com/zh-cn/software-integrity/resources/reports/2020-open-source-security-risk-analysis.html
https://www.cvedetails.com/
https://www.cvedetails.com/
https://cybellum.com/
https://en.wikipedia.org/wiki/Decision_tree
https://github.com/summerban/B2SMatcher-cybersecurity
https://github.com/summerban/B2SMatcher-cybersecurity
https://en.wikipedia.org/wiki/Euclidean_distance

Ban et al. Cybersecurity (2021) 4:21 Page 21 of 21

Conference on Computer and Communications Security. Springer, Beijing.
pp 480–491

Gao D, Reiter MK, Song D (2008) Binhunt: Automatically finding semantic
differences in binary programs. In: Proceedings of the International
Conference on Information and Communications Security. The Internet
Society, London. pp 238–255

GitHub (2020) Where the World Builds Software. https://github.com/.
Accessed 10 Apr 2021

Heartbleed (2020). https://en.wikipedia.org/wiki/Heartbleed. Accessed 10 Apr
2021

Hemel A, Kalleberg KT, Vermaas R, Dolstra E (2011) Finding software license
violations through binary code clone detection. In: Proceedings of the 8th
Working Conference on Mining Software Repositories. pp 63–72

IDAPython (2020). https://www.hex-rays.com/products/ida/support/
idapython_docs/. Accessed 10 Apr 2021

K-means Clustering (2020). https://en.wikipedia.org/wiki/K-means_clustering.
Accessed 10 Apr 2021

Kamiya T, Kusumoto S, Inoue K (2002) Ccfinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans Softw
Eng 28(7):654–670

Karta (2020). https://github.com/CheckPointSW/Karta. Accessed 10 Apr 2021
Kim S, Woo S, Lee H, Oh H (2017) Vuddy: A scalable approach for vulnerable

code clone discovery. In: Proceedings of the 38th IEEE Symposium on
Security and Privacy (Oakland). IEEE, San Jose. pp 595–614

Li Z, Lu S, Myagmar S, Zhou Y (2006) Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Trans Softw Eng 32(3):176–192

Li M, Wang W, Wang P, Wang S, Wu D, Liu J, Xue R, Huo W (2017) Libd: scalable
and precise third-party library detection in android markets. In: 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE).
IEEE. pp 335–346

Li Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y (2018) Vuldeepecker: A
deep learning-based system for vulnerability detection. arXiv preprint
arXiv:1801.01681 13:266–267

LibreOffice (2020) A Free and Open-source Office Suite, a Project of The
Document Foundation. https://en.wikipedia.org/wiki/LibreOffice.
Accessed 10 Apr 2021

Liu B, Huo W, Zhang C, Li W, Li F, Piao A, Zou W (2018) αdiff: cross-version
binary code similarity detection with dnn. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering.
The Internet Society, San Diego. pp 667–678

MATLAB (2020). https://en.wikipedia.org/wiki/MATLAB. Accessed 10 Apr 2021
Miyani D, Huang Z, Lie D (2017) Binpro: A tool for binary source code

provenance. arXiv preprint arXiv:1711.00830 Suppl 3:149–170
One-hot Embedding (2020). https://en.wikipedia.org/wiki/One-hot. Accessed

10 Apr 2021
OWASP Top 10 Application Security Risks (2020). https://www.owasp.org/

index.php/Category:OWASP_Top_Ten_Project. Accessed 10 Apr 2021
Parr TJ, Quong RW (1995) Antlr: A predicated-ll (k) parser generator. Softw

Pract Experience 25(7):789–810
Pewny J, Garmany B, Gawlik R, Rossow C, Holz T (2015) Cross-architecture bug

search in binary executables. In: Proceedings of the 36th IEEE Symposium
on Security and Privacy (S&P). Springer, Kyoto

Ponta SE, Plate H, Sabetta A (2018) Beyond metadata: Code-centric and
usage-based analysis of known vulnerabilities in open-source software. In:
Proceedings of the 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). International Conference on Software
Maintenance and Evolution, New York. pp 449–460

Repo Statistics on Github (2020). https://octoverse.github.com. Accessed 10
Apr 2021

Shahkar A (2016) On matching binary to source code. PhD thesis, Concordia
University

Storm Codec 7 (2020) A Video Codec Pack. https://storm-codec-7.en.
uptodown.com/windows. Accessed 10 Apr 2021

t-Distributed Stochastic Neighbor Embedding (2020). https://lvdmaaten.
github.io/tsne/. Accessed 10 Apr 2021

Tang W, Luo P, Fu J, Zhang D (2020) Libdx: A cross-platform and accurate
system to detect third-party libraries in binary code. In: Proceedings of the
2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). Software Analysis, Evolution, and
Reengineering, New York. pp 104–115

TeamViewer (2020). https://www.teamviewer.com/en/. Accessed 10 Apr 2021
Tencent Software Download Official Version (2020). https://pc.qq.com/.

Accessed 10 Apr 2021
VMware Workstation Pro (2020). https://en.wikipedia.org/wiki/

VMware_Workstation. Accessed 10 Apr 2021
Wang Y, Chen B, Huang K, Shi B, Xu C, Peng X, Liu Y, Wu Y (2020) An empirical

study of usages, updates and risks of third-party libraries in java projects.
arXiv preprint arXiv:2002.11028 Suppl 3:149–170

Wang X, Jhi Y-C, Zhu S, Liu P (2009) Detecting software theft via system call
based birthmarks. In: Proceedings of the 2009 Annual Computer Security
Applications Conference. The Internet Society, San Diego. pp 149–158

Xu X, Liu C, Feng Q, Yin H, Song L, Song D (2017) Neural network-based graph
embedding for cross-platform binary code similarity detection. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. Springer, Beijing. pp 363–376

Yu Z, Cao R, Tang Q, Nie S, Huang J, Wu S (2020) Order matters:
Semantic-aware neural networks for binary code similarity detection. Proc
AAAI Conf Artif Intell 34:1145–1152

Yuan Z, Feng M, Li F, Ban G, Xiao Y, Wang S, Tang Q, Su H, Yu C, Xu J, et al.
(2019) B2sfinder: detecting open-source software reuse in cots software.
In: Proceedings of the 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. pp 1038–1049

Zhang H, Qian Z (2018) Precise and accurate patch presence test for binaries.
In: Proceedings of the 27th USENIX Security Symposium (Security).
Springer, Oakland. pp 887–902

Zoom (2020). https://zoom.us/. Accessed 10 Apr 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://github.com/
https://en.wikipedia.org/wiki/Heartbleed
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://www.hex-rays.com/products/ida/support/idapython_docs/
https://en.wikipedia.org/wiki/K-means_clustering
https://github.com/CheckPointSW/Karta
https://en.wikipedia.org/wiki/LibreOffice
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/One-hot
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://octoverse.github.com
https://storm-codec-7.en.uptodown.com/windows
https://storm-codec-7.en.uptodown.com/windows
https://lvdmaaten.github.io/tsne/
https://lvdmaaten.github.io/tsne/
https://www.teamviewer.com/en/
https://pc.qq.com/
https://en.wikipedia.org/wiki/VMware_Workstation
https://en.wikipedia.org/wiki/VMware_Workstation
https://zoom.us/

	Abstract
	Keywords

	Introduction
	1. How to select version-sensitive code features?
	2. How to effectively extract code features?
	3. How to design detection methods to improve the precision of version identification?

	Overview
	Assumption and goal
	A motivating example
	Workflow of B2SMatcher

	Design
	Feature selection
	Program-level features
	Function-level features

	Feature extraction
	Compilation-related files
	Unique functions

	Two-stage identification
	Rough match
	Identify reuse type
	Precise match

	Architecture

	Evaluation
	Dataset
	Candidate OSS dataset (S)
	Binaries with labeled versions (B1)
	Real-world commercial software (B2)

	Precision
	Comparison with B2SFinder and OSSPolice
	Comparison with Cybellum
	Effectiveness of the two-stage identification
	Effectiveness of the compilation-related file prediction

	Efficiency
	Real-world software exploration
	Case study
	Single-version reuse
	Multi-version reuse

	Discussion
	Version analysis improvements
	More OSS
	More function-level code features
	Compilation-related files

	Vulnerability confirmation

	Related work
	Security risk by using OSS
	Code clone detection
	Binary-to-Binary
	Binary-to-Source

	Conclusion
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

